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Emission spectrum in driven two-level systems
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We study the dynamic behavior of an electron in a two-level system driven by dc-ac electric fields. Ana-
lytical solutions for the dipole moment and its emission spectrum are obtained under the approximation of the
high-frequency driving case, from which the physical property of the system is found to be controlled by the
field parameters. A number of time-periodic and quasiperiodic phenomena as well as their signature in the
emission spectrum are revealed. By making the proper choice of the field parameters, it is possible to selec-
tively eliminate some components in the spectrum. The analytical findings are confirmed numerically.
[S1050-294{8)01108-1

PACS numbd(s): 42.50.Hz, 03.65-w, 32.80.Bx

[. INTRODUCTION sound foundation for further analysis, which we will address
in Secs. lll and IV. Section V contains the discussions and
In recent years the study of the dynamic effect of elecconclusions.
trons in double quantum wells or two-level systems subject
to time-dependent electric or/fand magnetic fields has at- Il. KINETIC EQUATION OF THE DIPOLE MOMENT
tracted increasing attentigd—13]. The understanding of the IN THE HIGH-FREQUENCY DRIVING CASE
nature of quantum behavior of such systems is not only of
fundamental importance but also provides a strong back-
gI‘Ol.Jnd. of experimgntal reIe\{ance in fields as diverse_ as Rabi H=—V(t)o+#Ao,. 2.0
oscillations in the time domaifi4] Landau-Zener transitions
and Autler-Townes doublets in optical rings5], and other  HereA is the splitting parametel/(t) is the driving force:
contexts. Of particular interest is the case of electrons under
the influence of time-periodic electric fields, e.g., a laser field V(t) = nEo+ nE coswt, 2.2
or a dc-ac field. Such systems are found to be equivalent to ) » ) )
the previous studies of an atom with sginsubject to the Wherex is the transition dipole between two levels, is a
simultaneous action of a static magnetic field and an oscil¢onstant field, and and » are, respectively, the amplitude
lating rf field [11—13, where many unusual, fascinating re- and th_e frequency of the driving laser field. Hereafter we set
sults have already been obtained. Of special interest is thge “”'tﬁ,zl- )
tunneling effect, in which, dynamic localization and delocal- ~ Equations(2.1) and(2.2) are formally equivalent to those
ization are involved. This phenomenon was reexamined ifor an atom with _splré subject to a simultaneous action of a
recent studies of emission properties of an electron in &tatic magnetic field and an oscillating rf fiefd1], which
double well or/and a two-level systenfi8,16]. There, the has been studied in great detail and many different results
signature of the localization condition in the emission spechave been obtaindd2,13. With the usual Floguet theorem,
trum for some special situation was revealed. However, dhe problem can be solved generally by the use of Shirley’s
systematical study of the emission spectrum in the full fielgwell-known resul{17]. However, in the following, we deal
parameter space is absent. with this problem in terms of the kinetic equation of the
In this paper, we report our findings on this problem for atime-dependent dipole momep{(t), which is defined as

two-level system driven by a dc-ac electric field. We find _
that in the case of high-frequency driving, this problem can pO=(lody). 23

be solved analytically. As the result, we obtain explicit €x-| the case of high-frequency drivinge., e=A/w<1), the

pressions for the dipole moment and its emission spectrum iﬂme-dependent dipole moment satisfies the integrodifferen-
the full field parameter space. The time-periodic and quasigjg, equation[9,13]

periodic evolution behavior as well as the dynamic localiza-
tion and delocalization for the system is manifested from our 7
analytical results, which are in good agreement with those of ~ du(7)/d7=—¢€ Ref drido(2asin(7—71)/2])
Refs.[11-13. To check the validity of our theory, we also 0
provide numerical calculations. The analytical and numerical xexdib(7— ) u(7y), (2.9
results compare very well.

The rest of this paper is set out as follows. In Sec. Il, wewith the initial condition w(0)=1. HereJ is the ordinary
derive a kinetic equation for the dipole moment in the case oBessel function. Note that in EqR.4) we have made use of
high-frequency driving dc-ac fields. This will establish a the following substitutions,

The Hamiltonian we consider here can be written as
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r=ot,  wu(r)—u(7r)/ u0); 1
and the following definitions, : B
05 . B
a=2uE/w, b=2uEjlw, e=Alw. -

Equation(2.4) can be solved by using the Laplace trans- (7)ot 1
form, the solution of the dipole moment is

()\)=fwdt g M (t)=; (2.9
MU= 1 M= NFAZK(N) '

1 I 1 R I 1
where 0 3 6 ?_ 12 15 18

FIG. 1. Induced dipolex(7) as a function of the scaled time
(in 27 units). The solid line showg(7) fora=2uE/w=3.83 and
b=2uEy/w=1, while the dots line showg(7) for a=2.0 and
b=1, respectively. Herg=0.05.

K(N)= fowdt e MJy(2asin(wt/2))cog bwt]

Ly _ M@ o M@
T & N [(mEb)el? & N [(m—b)w]?

(2.6 Cra=[In+i(@) + Iy (@) /2. 33

It is obvious that' one can obtain the time—depgndent di-  From Eq.(3.1) we can see that the Fourier transform
pole moment by using Eq$2.5)_ and(2.6), and 'Fhe inverse () has a peak at the frequengly (in this paperQy, Q,
Laplace transform. However, since we are mainly concemed are all inw units) which was stemmed from the first
with thg long-time evolution behavior of the sysjtem that iS;arm on the right-hand of Eq3.1). HereQ is small in the
determined by the property &f(\) at smallx, we will focus high-frequency driving casé.e., e=Alw<1), it corresponds

on this special situation below. to the low-frequency generatioFG). The other terms on

The other observation on E@2.6) is that the emission the right-hand side of Ed3.1) represent the high-frequenc
spectrum of the system can be classified by the number g d3.1) rep J a y

. ‘ parts of the spectrum. Note that the intensity of the LFG
theoretical property of the field parameter 2uEo/w. The  neay is very high, as compared to the other peaks, since the
case ofb being an integer has already been presented in Re

i y e =" ransition dipole w(7) is dominated by the first term,
[16], where the signature of the localization condition for thecos@Nr), under the approximation od<1. In the extreme

system in the emission spectrum was manifested. A similaf, w-frequency limit, 0,—0, the induced dipoleu(s) will
situation for the problem of magnetic resonance can be foun pproach unityu(n)—1, meaning that the localization oc-
in the literaturg 11-13, where the effect of localization was o Otherwiseu(7) wiII, oscillate between 1 and-1. This
revealed in the phenomenop of level crossing. Howe_ver,. Weature is confirmed by our numerical calculation depicted in
prowde a compl_ete descrl_pt|on of Fhe problem,. we will _stlll Fig. 1, where the dipolg:() is plotted as a function of the
give a brief review for this case in the following section. .gied timer (in 27 unit9. In the figure, we have taken
Then, we report our results for the general case béing an ¢ 05, The solid line in Fig. 1 shows an example where we

arbitrary real number in Sec. IV. let the parametera=3.83 andb=1 so thatQy= €J;(3.83
=0 which corresponds to the localization conditi@. It is
lll. THE CASE OF 2 pEs/w=N clearly seen in this casg(7) is almost equal to a constant

From Eq.(2.6) we can see that, whem=N, the behavior which is close to one at all times, plus a term oscillating with
of K(\) is dorﬁinated by the terrr,n:N (N='1 23...)in small amplitude at a high frequency. This coincides with the

- : findings of Ref.[8]. The emission properties of this case
D o ST, (2 o ()0 shall b dscussd n detal e folowing ar The doted
means that the behavior &f()) in the case oBy(a)=0 is line in Fig. 1 illustrates the situation a=2.0 ando=1 that
different from the case ofy(a)#0. Therefore, in the fol- resullts in th_e value OQN given by Eq.(3.9) being f”’?'te'y
lowing discussions, we present these two situations sep mall. The time evolution oi(7) shows a'large-amplltude—
rately. ow-frequency c_omponent _and a high-frequency—low-
a. The case of y(a) #0. In this case, considering that amplitude behavior, as predicted by the thepBgs. (3.1)

. . W and(3.3)].
is small and using inverse Laplace transform one gets Equations(3.1)—(3.9 need more comments. First of all,

o the spectrumu(€)) consists of a number of doublet§)
u(7)=cog Q1) —e>, (—1)*Cy {cog (k—Qy) 7] =(k+Qy) andQ = (k—€Qy); herek includes both even and
k=1 odd harmonics. This is different from the pure ac field driv-
_ K+ 0 3.1 ing case where the spectrum consists of doublets at even
cos( N7 @D harmonics with vanishing amplitudes at odd of@}s Figure
where 2(a) shows an example for these doublddss (k+ Q) and

QO =(k—Qy), as well as the low-frequency componéiy; .
Qn=€ely(a), (3.2 This plot is generated by the Fourier transform of the time-
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FIG. 2. Numerically calculated emission spectrum with: a
=2uElw=2.0 andb=2uE,/w=1; (b) a=3.055 andb=1. Here
€=0.05.

dependent dipole moment numerically using E3j3). Note
that we label the vertical axis by the relative intensity of
harmonic generations in(€2).

Secondly, from Egs(3.1)—(3.3) we can see that some
doublets will disappear whe@y =0. This condition can be
fulfilled by proper choice of the parameters. For instance
whena=3.055,b=1, we havel;(3.055)+J_4(3.055)=0.
Therefore,C, ,=0. Correspondingly, the amplitude of sec-
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FIG. 3. Numerically calculated emission spectrum wih
=3.83,b=1, ande=0.05.

Through the study of the higher-order correctionudgfr),
we can get the following properties of emission spectrum
when we choose the field parameters that makea) =0
(i.e., Qn=0). In this case, because 6¥\=0, the LFG line
goes to zero and the doublets coalesce to give a pure har-
monic, andu(7) acquires a static dipole moméie., u(7)
equals a constant plus a time dependent]p&ténce, the
emission spectrum consists of a static component and the
pure harmonidk (herek includes both even and odd harmon-
ics). This feature is confirmed by our numerical result about
1(Q) depicted in Fig. 3 for=0.05,a=3.83 ando=1 [such
choice of parameters makék,; = €J4(3.83)=0].

IV. THE CASE OF 2 uEy/@#N

Similar to the case db=N, whenb# N one gets

o

w(n)=1+a+pB, cos{br)+k2 {By cog (k+b)7]
=1

ond harmonic doublet should be eliminated. This becomes

transparent in Fig. (®).

b. The case of y(a)=0. Whena=2uE/w is taken to be
a zero of theNth order Bessel functiody(a) (which is the
localization condition in Ref[8]), the Eqg.(3.1) cannot give

any spectrum information except of a zero-frequency term.

This difficulty can be overcome by calculating the higher-
order correction ofu(7). When Q=0 [or Jy(a)=0], one
gets

u(r)=1- eZkZl Dy — eszl D, cogkr] (3.9

with

E !

n=—o

+In-k(@) = JI-k-n(a) = Insk(a)],

Jn(a)

K= W[kaN(a)

(3.5

where the prime in the sum is used to exclude the term with

n+N=0, andN is a constant for a given dc field, i.eb,
=2uEqs/w=N.

~ v cog(k=b)7]— 6 cok)}, .1
where
- n . 1
azezn;w m:z_an(a)Jm(a) n+b<m+b + ——].
4.2
_ el . -
A= ks K@@ (k=0123...),
4.3
_ 7762 N B
= Kb)sinbm K@@ (k=1.23,..),
(4.4
o (@)
%= Ezn;m (n+(—b)k[‘]n+k(a)—~1nk(a)] (k=1,2,3,..),
(4.5
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FIG. 4. Numerically calculated emission spectrum for 2.0 12 ' ' ' '
andb=1/4. Heree=0.02.
and:]b(a) is the Anger function defined b1 8] 8r 7
Q)
Jp(a)=(1/m) f dr cogbr—asinr). (4.6) 4r 7
0
In the above expressions, the prime in the second sum of Eq 0_1 0 1 2 3 4
(4.2) indicates that the term with—m=0 is excluded. (b) Q

In the following discussions, we divide this section into , -
two parts:(a) the case ob=p/q and (b) the case ob=Q FIG. 5. (@) Numerically calculated emission spectrum far
) =2.404 andb=1/4; (b) numerically calculated emission spectrum

(Q is an irrational. for a= _ _
. =3.83 andb=1/4. H =0.02.
a. The case of & p/q. When we put the dc field param- ora an eree

eterb=p/q, from Eq. (4.1 we can see that, in general, the

spectrum consists of a static compon&rt0, the character- w
istic frequency of localized motiofd,=b=p/q (Q, is in w _ .
units), and the triplet€2 = k andQ = (k=b), which centered w(n)=1ta= 2, b cogkr]. S

at all harmonics of ac field frequenay. This is different

from the case ob=N. This feature is confirmed by our  prom this equation, we can see that the emission spectrum
numerlt_:al.calculatlon depicted in Fig. 4. In Fig. 4, we ,ShOWconsists of a static component and the pure harmioitiere
the emission spectrum far=0.02,b=1/4 anda=2.0. Itis | jhc|udes both even and odd harmonicEhis feature is also

obvious that the spectrum consists of a very high static comznfirmed by our numerical result abou{Q) depicted in

ponent, the lower characteristic frequency of localized MOEig. 6 for e=0.02,b=1/2 anda=3.32[such a choice of the
tion Q,=1/4, and the tripletk and (= 1/4), which are fielc.i parametérs ’makeA}%(a)=:]1/2(é.32)= 0].

centered at all harmonics of ac field frequeney b. The case of bQ. Here Q is an irrational and we

Equations(4.1)—(4.6) also need further comment. First, . )
from Egs.(4.3), we can see that the characteristic l‘requencynaStrICt 0<Q<1. From Eqs(4.1)-(4.6) we can see that, if

of localized motion(},, will disappear wherBy= 0. This can

be achieved by the choice of the field parameters. For in-

stance, whera=2.40, we havel,(2.40)=0. Therefore3,

=0. Correspondingly, the amplitude é1,=b should be

eliminated. This becomes transparent in Fi@g)5 8 i
Second, from Eqg4.1), (4.3, and(4.4), it is obvious that

we can eliminate any pair of the two satellites that is cen-I(Q)

tered atk by the proper choice of the field parameters, since

both B, and vy, have the same factal(a)Jy(a). For in-

stance, when we choose=3.83, we haveB;=0 and y;

=0 because 0f,(3.83)=0. Correspondingly, the amplitude

of Q=k*b=1*1/4 should be eliminated, as we can see

12 T T T T

from Fig. 5b). -1 0 1 2 3 4
Third, when we choose the field parameters in such a way @
that J,(a) =0, all of the amplitudeg,(k=0,1,2,3...) and FIG. 6. Numerically calculated emission spectrum éor 3.32

w(k=1,2,3,...) should disappear, and E@l.1) becomes  andb=1/2. Heree=0.02.
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' ' ' ' for the dipole moment and its emission spectrum. From these
results, we have shown that, whbs2uEy/w=N, in gen-

1 7 eral, the emission spectrum consists of a static component,
low-frequency Q) (LFG), and doublets at frequencyk (
+Qy) fork=1,2,3,... . It was found that the amplitudes of

w(7) all the Fourier components of dipole moment &hg depend
0.99 - _ on the field parametera andb. We have also shown ana-

Iytically and numerically that it is possible, by making the
proper choice of the field parameters to selectively eliminate
any one of the doublets in the spectrum. Whén
0.98 . . . . =2uEy/o=N and Jy(a)=0 (i.e., Qy=0), the doublets
o 6 12 18 2 30 coalesce to give pure harmonic apgr) acquires a static
T dipole moment. The emission spectrum consists of a very
FIG. 7. Induced dipoles(7) as a function of the scaled ime ~ Nigh static component and the lower pure harmonic, which
(in 27 units for b=y2—[\2] anda=2.0. Heree=0.02. includes both even and odd harmonics. When2 uEq/w
#N, the emission spectrum of electron has following prop-
A erties: (1) Whenb=2uEy/w=p/q and Jy,(a)#0, in gen-
Jp(a)=0, one gets the same equation as Eq7). There- eral, the spectrum consists of a static comporertO, the
fore, the above discussion is still valid for this case. How-characteristic frequency of localized motid,=b=p/q,
ever, ifb is an irrational and,(a)#0, the situation is dif- and the triplet)=k and () =(k=b), which is centered at
ferent. In this case, contrary to the situation infbeing  all harmonics of ac field frequenay. Meanwhile, we have
rational, one cannot find any periodic characteristics in thé!so shown analytically and numerically that it is possible,
evolution of the dipole moment(7). This feature has been Py making the proper choice of the field parameters, to elimi-
shown in Fig. 7. There, we show the(7) (in 27 unity for ~ Nate the charagtensuc frequency of Iocahze_d motion and to
€=0.02,b=2—[ 2], where[ y2] means the integral part selectively eliminate any a pair of two satellites in the spec-
of V2 anda=2.0 [such a choice of the field parameters rum. (2) Whenb=2.E,/w=p/q andJ,(a) =0, the emis-
makesJ,(a) #0]. It can be clearly seen from Fig. 7 that the sion spectrum con5|sts_of a very high static component and
dipole momentu(7) is close to one with small amplitude "€ lower pure harmonid3) Whenb=2uE,/w=Q is an
oscillations within any period of the driving laser. But there irational andJ,(a) =0, the emission spectrum also consists
is not any periodic characteristics shown in this figure. Thisof @ very high static component and the lower pure har-
suggests the dipole momepi(7) in this case is quasiperi- Monic. (4) When b=2uE,/0=Q is an irrational and
odic. That conclusion agrees with the findings in R8fp)].  Jp(a) #0, the evolution of the dipole momep{7) becomes
quasiperiodic.

V. CONCLUSION
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