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Absence of bistable behavior in the optical response of a dimer
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The problem is examined whether a bistable behavior of optical response of a dimer really exists. We carry
out an exact treatment of this problem based on the two-molecule density matrix, without its representation in
the form of a product of the one-molecule density matrices of each molecule composing the dimer. Our
conclusion is that the bistability discussed is an artifact originating from the splitting procedure. A condition
for getting the bistable optical response from a linear chain of a large number of monomers is also formulated.
[S1050-294{@8)07308-9

PACS numbe(s): 42.65.Pc, 36.40.Vz

I. INTRODUCTION equations. In Sec. IV, we discuss, in some heuristic manner,
the applicability of the splitting procedure in the case of
In the last few years the problem of bistable behavior of aaggregates composed of many molecules. Section V summa-
dimer composed of two moleculdd—3] as well as of a rizes the paper.
linear aggregate made up of many molecu$] appeared
to be extensively discussed. Much earlier, this problem was Il. EXCITONIC STATE REPRESENTATION
discussed in Refd.6—9]. The effect consists of a sudden FOR THE DENSITY MATRIX
switching of the populatiofior number of excited units of an
aggregatewhen the external field amplitude exceeds some For the sake of simplicity, we assume that the dimer is
critical value. The model of dimer bistability has been al-composed of two identical monomers separated by a distance
ready exploited for interpretation of the results of recent exmuch less than an emission wavelength with the transition
periments on bistable behavior of both visible and neardipole matrix elementg forming an anglef with the dimer
infrared luminescence of a crystal {f5Brg: Yb®* [10-17.  axis and with the static dipole moments equal to zéhese
In order to treat the problem, the authors of all paperdestrictions do not limit generality of our treatmgnitet an
mentioned above used the one-molecule density matrix forexternal field £(t) = Eq(t)cosfgt) polarized parallel tou
malism, instead of considering the global density matrix ofdrive this system, with a slow varying envelofg(t) and a
the system as a whole. The last approach, being of course tii@gquencyw, in the vicinity of resonance with the dimer
adequate one, has diminishing chances in treating aggregatégnsitions(see Fig. 1. The behavior of the dimer treated as
of a large number of molecules. At the same time, optical
response of a dimer can be entirely elaborated making use of le)
the exact approach. Nevertheless, the authors of Réfs.
3,9 restricted their studies to the approximate one-molecule
density matrix formalism.
The aim of this paper is to show that the dimer bistability
is an artifact that originates from splitting of the glolgato-
moleculg density matrix into a product of the density matri-

ces(one-moleculg of each component of the dimer. We do | a)
not make use of such an approximation and solve the exact U

equations for the global density matrix written in the collec- ol == — —é— T
tive state representation. From our study, it follows that the |

optical response of the diméhe intensity of luminescence, |
for instanceg is a one-valued function of the driven field in-

tensity and, hence, never manifests any bistable behavior. |
Thus, such behavior obtained in Ref$-3,9 is a result of “ |
the splitting procedure.

The paper is organized as follows. In Sec. I, we write |
down the system of equations for the density matrix of a |
dimer in the collective state representation. Section Il deals o)
with an analytical steady-state solution of this system of g 1 schematic of the energy diagram of a dimer in the

excitonic representation. The allowed transitions induced by the
external field are shown by solid arrows. Wavy arrows indicate the
*Permanent address: All-Russian Research Center “Vavilov Statallowed spontaneous transitions. The dashed arrow shows the loca-
Optical Institute,” Birzhevaya Liniya 12, 199034 St. Petersburg, tion of the external field frequency with respect to the dimer energy
Russia. levels.
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a whole can be described in terms of the density operatahe ground-to-one exciton transitiom,,;— U, differs from
p(t). In the frame of the rotating-wave approximation, vonthat of the one-to-two exciton transitiom,;+U, by the
Neuman’s equation driving the evolution of this operatormagnitude of splitting P (see also Fig. )1 Note that the

reads(see, for instancd]13])

p()=—i[HE" +V(1),p(1)]
+y[Dp(t)D'=3DDp(t)—3p(t)D'D], (1a)

antisymmetric state has no contribution to the dimer optical
response.

To account for the above, one can easily obtain the fol-
lowing system of equations for matrix elements of the den-
sity operator:

RWA _ T . .
HO _Akzzl'z bkbk+Hdd’ (lb) pgg:27Pss+|F(t)(psg_Pgs)l (3a)
1 o i _ _
V(t)=——,uE0(t)(DT+ D), D= 2 by . (10 Pss 2ypsst2¥peetiF (1) (pes Pset Pgs psg): ab
2 k=12 )
Here, HRWA is the Hamiltonian of the dimer in rotatin - :
0 g Pee= —2VpeetiF(1)(pse—pes)s (30

frame in the absence of the field,= w,;— wq is the detun-

ing of resonance for a monomem4,; is the monomer tran-
sition frequency, bﬁ and b, are respectively creation and
annihilation operators of an excitation of thkth monomer,
Hqq is the Hamiltonian of the dipole-dipole interaction be-
tween monomersy(t) is the Hamiltonian of the dimer-
external field interaction. The second term in square brackets

bsg: —(IA"+ ')’)Psg"' 2ypestiF (t)(ng_ psst Peg) 1(3

bes: —[I(A"+2U)+2y]pestiF () (pss— Pee_peg)1

3
in the right-hand side of Eq1) describes the interaction of 39
monomers with the quantized electromagnetic field wjith ) . _
being the spontaneous emission rdtereafter: = 1). We do Peg= —[2I(A"+U) + y]pegtiF (1) (psg—pes), (3f)

not include into our scheme any additional dephasing pro- ] ] )

cess. As can be seen further, it is of no importance. whereA’=A—U is the detuning of resonance with respect
In the problem at hand, it is natural to make use of a basié the ground-to-one exciton transition renormalized by the

of collective (in fact, excitoni¢ states, which diagonalizes Ntérmonomer interaction as compared to its original value

the HamiltoniartHRWA. For a dimer system, it is represented 4 = @21~ wo, and the notation is introduced:(t)

by the well-known quartet of states = nEo(t)/V2. ) - ) )
As one of the possible quantities to characterize the opti-

lg)=119,29), (2a)  cal response of the dimer, we choose the average number of
excited molecules defined as
1
|s)= E(|1g,2€>+ |1e,2g)), (2b) N=2peet Pss. (4)
1 The fact should be especially mentioned that, when deriv-
_ = _ ing Egs. (3), no simplifications have been done except the
a) \/§(|1g,2e> |1e.29)). (29 standard rotating-wave approximation. This gives us a real
tool to solve the problem we are interested in, whether the
le)=|1e,2e). (2d) optical response of a dimer can manifest a bistable behavior.

The first of them is the dimer ground state, with no excitons.
The doublet of symmetric and antisymmetric states corre-
sponds to the one-exciton states, with equal amplitudes on L€t us turn out to a steady-state solution of Hg$. Then,
each monomer but with different relative phases of thoseassumingF(t)=F=const and substituting the time deriva-
For the negative sign of the inter-monomer interactile  tives in Eqs.(3) by zero, one obtains

choose hereafter(1g,2e|Hqyq/1€,29)=—U,[U>0]), the

Ill. STEADY-STATE ANALYSIS

symmetric state is the lower state of the doublet. And finally, Pggt Psst Pee=1, (5a)
the last state of the quartet represents the two exciton state
(both monomers are in the upper levé@lhe eigenenergies of . _
the quartet are 0OA—U, A+U, and 2A, respectively(see 2YpsstIF (psg=Pgs) =0, (50)
Fig. 1).

It is easy to check that the operatdf + D has nonzero —2Ypsst 2YpeetiF (pes— pset Pgs— Psg) =0, (50
matrix elements only between the symmetiigth respect to
a permutation of monomersstates of the dimer{g|(D' 2 ypeatiF (pee— pod =0 (5d)

ee se e ’

+D)|s)=(s|(DT+D)|e)= 2. Thus, the interaction Hamil-
tonian V(t) couples only ground, symmetric, and fully ex-

cited states. This, in particular, means that the frequency of ~ —(iA"+ ¥)psgt 2ypestiF(pgg— pPsst Peg) =0, (5€)
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both monomers. Substitutirigy;=0 as well as the density of
final statesp(E,) by (2y) 1, one then obtains for the rate of
two-photon transition:

| F?\?
") "

In order to gain insight into the saturation peculiarities,
one should compare the rate.; with the effective Rabi
frequency of the two-photon transition, which in our case
is given (analogously to the dipole transitipnby
(e|V|s)(s|(—HRYA ~1|s)(s|V|g)=F?/U. Equalizing these

FIG. 2. A family of the field dependences of the averaged num-tWO magnitudes, we get the following estimation for the

ber of excited molecules of a dimen) obtained by numerical saturation magnitude of the external field strength
solution of Eq.(5) for three types of resonance conditions: the
external field is in resonance with the ground-to-one exciton transi- yU\ 2
tion of the dimer,wy= w,;—U (solid ling); the external field is in Fes (7) - (8)
resonance with the transition of a monomes= w,; (dashed ling
the external field is in resonance with the one-to-two exciton trangor the valuey/U =0.01 used in the numerical calculation, it
sition of the dimerwy= w,,+U (dotted ling. v/U=0.01. follows from Eq.(8) thatFSa/U = (1/100r) 12 \what is in full
_ ) correspondence with the numerical result presented in Fig. 2
—[iI(A"+2U)+2y]pestiF(pss— pPee— peg) =0, (5f) (dashed curve

log (F/U)

—[2i(A"+U)+ ¥]pegtiF (psg—ped=0. (59 V. DISCUSSION

A. Dimer

Here, we have added the normalization condition, Ga).
Obviously, including the static dipole moments of mono-
mers as well as additional dephasing constants, as was do

in [1,3], is of no importance since it cannot disturb the struc- treat th bl ¢ di bistability. In the latt
ture of the resulting density matrix equations, causing onl)}o reat the problem of dimer bistability. ‘In the latter ap-

renormalization of both the relaxation constants and the erproach, a coupled system 9f equations f(_)r thg density matri-
ergy shifts. ces of monomers is c;onS|dered. We W|II'Wr|te down th!s
In order to demonstrate explicitly the character of the fielgSystem of equation with no comments with respect to its
dependence of the dimer optical response resulting from EqQF:‘”Va“O”' forwardm_g the reader to Ret§.4_—1@ for de-
(5), we carried out numerical calculations for different de—ta'ls‘ Adopted to a dimer composed of two identical mono-
tunings of resonancA’: (i) A’ =0(wy=w,;— U, the exact mers, it has the form
resonance with the ground-to-one exciton transtiafii)
A’'=—-U(wo=w,;, the exact resonance with the monomer
transition; (iii) A’'=-2U(wg=w,+U, the exact reso-
nance with the one-to-two exciton transitjorThe results
depicted in Fig. 2 do not manifest any bistability effect.
Moreover, thgy can be easily explained in terms of ;aturation R=|—i(A+UZ)+ Z(Z— 1)|R-iQ(1)Z. (9b)
of the transitions as well as based on the fact that in order to 2
saturate the system one should apply a field of streRdin
frequency unitsexceeding the detuning of resonarizeour ~ Here, the following notation is introduced(t) = wEq(t)
case, of the order df). andZ=p,,— p;1, Wherep,; and p,, are diagonal elements
We should only pay attention to the ca@g, where the Of the density matrix of a dimefo importance of which
saturating strength is noticeably less than the detuning magne, due to the system symmegryhile R is the amplitude
nitude U. This effect results from the fact that al,=w,,  Of the off-diagonal element of that. _
one has the exact two-photon resonance with the ground-to- A great difference between Eq&) and Egs.(3)—(5) is
two exciton transition. The rate of this transition is given by that the former isionlinear, on the contrary to the latter. The

the "golden rulé& taken in the second order of the perturba-nonlinearity results from the coupling of monomers to each
tion theory other. The basic sequence of this coupling, in fact, leading to
a bistable effect, is the dependence of the resonance fre-
RWA. 1 ) guency on the population differendd,5,16, which now
Weg=27|(€[V(Eg—Hg ) *V|9)|“p(Ee), (6)  ranges fromw,;— U in the ground dimer state t@,;,+ U in
the upper ondsee Eq.(9b)]. Note that the limits of this
whereV and H§"* are determined by Eqglb) and (10,  change exactly correspond to the energy gap between the
while the operatoW (E,— H§WA) ~1V represents an effective ground-to-one exciton and one-to-two exciton transitions in a

two-photon interaction operator initiating the transitions indimer. In that sense, the one molecular density matrix ap-

In this section, we discuss the origin of a discrepancy
Rgtween the exact theory presented above and the one-
molecule density matrix approximation used in R¢%1,3

2:—%|R|2+i ?(R*—R)—y(lJrZ), (93



PRA 58 ABSENCE OF BISTABLE BEHAVIOR IN THE OPTICAL ... 1499

proach mimics quite well these features. Nevertheless, it al- In order to get some quantitative estimates let us turn to a
lows a continuous change of the resonance frequency neégular linear Frenkel chain dfl identical molecules ac-
present in the frame of the exact description. In our opiniongounting for the nearest-neighbor coupling only. By this ap-
this is a key discrepancy between the two approaches used jitoximation, one-dimensional Frenkel excitons become non-
the literature. This finally causes a wrong description of thenteracting fermion$18], so that the energy spectrum of the
optical response of a dimer, in the frame of the one-system can be easily built up by making use of the single-
molecular density matrix approach. _ exciton energy spectrum and Pauli’s exclusive principle. In

[t seems to be very useful to get insight in the physicalyqgition, let all transition dipole moments of molecules be
origin of the pseudobistability effect we are dealing with. In arallel and make an angkewith the chain axis. Then, the
or_der to observe the effect_, one should excite the syste teraction of nearest neighbord, can be written as,fol-
e o OV ~U=35(0 Scog Millay’, whre = Zrios

' ' Further, we set (3cog6)=—1 for definiteness, so that

lation differencezZ, then the system, when exciting by an U>0. Atth . . fh “neiahb i
external field, “wishes” to reduce the detuning of resonance ~0. Atthe negative sign of the nearest_nelg or coupling,
and, what is important, can do it continuously. The radiativel® States close to the bottom of multiexciton manifolds
damping, both incoherent and coherent represented itgEq. MOStly contribute to the optical transitiojd9-22. The
by y and R? terms, respectively, competes with this ten- f[ransmon energy between manlfoldsm)fl andn _eXCItons
dency, stabilizing the population at a certain level. Howeveris exactly equal to the energy aith single exciton state
at a certain threshold value of the incident field amplitude En=7% w21—2Ucog#n/(N+1)] [19]. Thus, the energy scale
the radiative damping cannot resist anymore the pumpingyve are talking about is given b,—E;=3w?U/N? (at N
and the system experiences an abrupt jump to another levet1). The radiative damping constapg for a chain of size
of population. We should notice once more that it happens dess than the emission wavelengthis given by the expres-
a fixed external field amplitude due taantinuougreduction  sion yg=yN and does not exceed this interyao]. In the
of the detuning of resonance. When the latter changes steppposite limit, yr=3mysir?6l4k,a= myldkoa(sint6=1/3)
wise (the case of a dimgrthe upper level is excited mono- [14,4], the necessary conditiops>E,—E; can be definitely
tonically as the Rabi frequency of the external field exceedsatisfied by raising the chain size. Equalizipgto E,— Ej,

the energy gap. This is just what we demonstrated in thee finds a critical length* =\ \/9/4 for this condition to
previous section. be valid.

The lengthL* introduced above represents an exciton co-
herence length limited by the radiative damping. This means
that any two molecules separated by a distdn@xceeding

Naturally, the question arises whether splitting of the glo-| * an be considered independent of one another. On the
bal (N-moleculg density matrix of the system into a simple cqnrary, molecules inside a chain part of size less than
product of the one-molecule density matrices can be evelye gyrongly correlated. Clearly, applying the splitting proce-
used for describing the optical response of a system built UBure of the global density matrix into a product of the one-

of a large number of interacting monomers. As was alread¥nolecule density matrices seems to be a rather good approxi-

pointed out n Refl4], the one-mc_)le_cule density matrix ap- mation for the former and not for the latter. This observation
proach, tracing adequately the limits of the resonance fre-

quency shift induced by the local field correction, totally provides a key for a heuristic answer to the question raised,

fails nevertheless in describing quantization of the resonanc'%amely’ the one-molecule density matrix approach Is ex-

frequency and, as a result, in a proper reflection of the sped®€cted to be a good approach for treating any attributive
tral features of the third-order susceptibilfj7]. From thisit  feature of the system as a whalecluding bistability as
becomes clear that the problem we are going to discus300n as the system length exceeds the correlation ldrigth
hardly has a universal solution. The one-molecule densitMore detailed analysis of this problem is in progress.
matrix approach being appropriate for the description of Concluding this subsection, we would like to comment on
some physical observables may not be adequate for doingn attributive feature of the global density matfix which
that with respect to others. might result in a bistable behavior in systems of a larger
We will try to get insight into the splitting problem in a number of monomers. Certainly, the rigorous treatment of
heuristic manner, as applied to the problem of bistability of athis problem should be based on the von Neuman equation
regular linear Frenkel chain. Our treatment is based on théla), which obviously is always linear ip. At first sight, it is
observation done above, namely, for getting bistability, theunclear how then bistability can appear if the latter normally
population-dependent resonance frequency of the system hessults from a nonlinearity. The matter is that observable
to be changed continuous{snd not stepwisely From thisit  quantities showing bistability are not the elements of the
follows that one should compare the characteristic scale oflobal density matrix itself, but as averages are some func-
changing the transition energies in the optically active spections of them. It is intuitively clear that for a mesoscopic or
tral region, with the radiative damping constaptattributed even macroscopic system, where the full set of quantum
to this region(or maybe with the dephasing constahtif it numbers is largep represents a complex function, in prin-
exceedsyg). If yris large in that scale, quantization of the ciple, with several maxima over this set. Then, in calculating
transition energies is not important. This is just a conditionthe averages, uniqueness of measuarable quantities versus
necessarybut not sufficient for manifesting a bistable be- the external parameters can be lost, resulting in a bistable
havior. and even multistable behavior.

B. N-molecule problem
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V. SUMMARY one-particle density matrix which, in turn, results in the ar-

A rigorous analysis of the possibility to get a bistablet'faCt of a bistable behavior of the dimer optical response.

optical response from a dimer composed of two identical
monomers was carried out. Our treatment was based on the
two-particle density matrix in the collectiyexcitonig state We would like to thank Professor H.U. @el for sending
representation without its splitting into a product of densityus the manuscript of Reff12] before its publication. V.A.M.
matrices of monomers. The latter procedure leads to the aphanks the Deutsche Forschungsgemeinschaft for financial
pearance of a nonlinearity in the reduced equations for theupport.
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