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Absence of bistable behavior in the optical response of a dimer

V. A. Malyshev,* H. Glaeske, and K.-H. Feller
Fachhochschule Jena, Fachbereich Medizintechnik/Physikalische Technik, Tatzendpromenade 1b, D-07745 Jena, Germa

~Received 24 September 1997; revised manuscript received 1 April 1998!

The problem is examined whether a bistable behavior of optical response of a dimer really exists. We carry
out an exact treatment of this problem based on the two-molecule density matrix, without its representation in
the form of a product of the one-molecule density matrices of each molecule composing the dimer. Our
conclusion is that the bistability discussed is an artifact originating from the splitting procedure. A condition
for getting the bistable optical response from a linear chain of a large number of monomers is also formulated.
@S1050-2947~98!07308-9#

PACS number~s!: 42.65.Pc, 36.40.Vz
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I. INTRODUCTION

In the last few years the problem of bistable behavior o
dimer composed of two molecules@1–3# as well as of a
linear aggregate made up of many molecules@4,5# appeared
to be extensively discussed. Much earlier, this problem w
discussed in Refs.@6–9#. The effect consists of a sudde
switching of the population~or number of excited units of an
aggregate! when the external field amplitude exceeds so
critical value. The model of dimer bistability has been
ready exploited for interpretation of the results of recent
periments on bistable behavior of both visible and ne
infrared luminescence of a crystal Cs3Y2Br9 :Yb31 @10–12#.

In order to treat the problem, the authors of all pap
mentioned above used the one-molecule density matrix
malism, instead of considering the global density matrix
the system as a whole. The last approach, being of cours
adequate one, has diminishing chances in treating aggreg
of a large number of molecules. At the same time, opti
response of a dimer can be entirely elaborated making us
the exact approach. Nevertheless, the authors of Refs.@1–
3,9# restricted their studies to the approximate one-molec
density matrix formalism.

The aim of this paper is to show that the dimer bistabil
is an artifact that originates from splitting of the global~two-
molecule! density matrix into a product of the density mat
ces~one-molecule! of each component of the dimer. We d
not make use of such an approximation and solve the e
equations for the global density matrix written in the colle
tive state representation. From our study, it follows that
optical response of the dimer~the intensity of luminescence
for instance! is a one-valued function of the driven field in
tensity and, hence, never manifests any bistable beha
Thus, such behavior obtained in Refs.@1–3,9# is a result of
the splitting procedure.

The paper is organized as follows. In Sec. II, we wr
down the system of equations for the density matrix o
dimer in the collective state representation. Section III de
with an analytical steady-state solution of this system
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equations. In Sec. IV, we discuss, in some heuristic man
the applicability of the splitting procedure in the case
aggregates composed of many molecules. Section V sum
rizes the paper.

II. EXCITONIC STATE REPRESENTATION
FOR THE DENSITY MATRIX

For the sake of simplicity, we assume that the dimer
composed of two identical monomers separated by a dista
much less than an emission wavelength with the transi
dipole matrix elementsm forming an angleu with the dimer
axis and with the static dipole moments equal to zero~these
restrictions do not limit generality of our treatment!. Let an
external fieldE(t)5E0(t)cos(v0t) polarized parallel tom
drive this system, with a slow varying envelopeE0(t) and a
frequencyv0 in the vicinity of resonance with the dime
transitions~see Fig. 1!. The behavior of the dimer treated a

te
,

FIG. 1. Schematic of the energy diagram of a dimer in t
excitonic representation. The allowed transitions induced by
external field are shown by solid arrows. Wavy arrows indicate
allowed spontaneous transitions. The dashed arrow shows the
tion of the external field frequency with respect to the dimer ene
levels.
1496 © 1998 The American Physical Society
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a whole can be described in terms of the density oper
r(t). In the frame of the rotating-wave approximation, v
Neuman’s equation driving the evolution of this opera
reads~see, for instance,@13#!

ṙ~ t !52 i @H0
RWA1V~ t !,r~ t !#

1g@Dr~ t !D†2 1
2 D†Dr~ t !2 1

2 r~ t !D†D#, ~1a!

H0
RWA5D (

k51,2
bk

†bk1Hdd , ~1b!

V~ t !52
1

2
mE0~ t !~D†1D !, D5 (

k51,2
bk . ~1c!

Here, H0
RWA is the Hamiltonian of the dimer in rotatin

frame in the absence of the field,D5v212v0 is the detun-
ing of resonance for a monomer (v21 is the monomer tran-
sition frequency!, bk

† and bk are respectively creation an
annihilation operators of an excitation of thekth monomer,
Hdd is the Hamiltonian of the dipole-dipole interaction b
tween monomers;V(t) is the Hamiltonian of the dimer
external field interaction. The second term in square brac
in the right-hand side of Eq.~1! describes the interaction o
monomers with the quantized electromagnetic field withg
being the spontaneous emission rate~hereafter\51). We do
not include into our scheme any additional dephasing p
cess. As can be seen further, it is of no importance.

In the problem at hand, it is natural to make use of a ba
of collective ~in fact, excitonic! states, which diagonalize
the HamiltonianH0

RWA . For a dimer system, it is represente
by the well-known quartet of states

ug&5u1g,2g&, ~2a!

us&5
1

A2
~ u1g,2e&1u1e,2g&), ~2b!

ua&5
1

A2
~ u1g,2e&2u1e,2g&), ~2c!

ue&5u1e,2e&. ~2d!

The first of them is the dimer ground state, with no excito
The doublet of symmetric and antisymmetric states co
sponds to the one-exciton states, with equal amplitudes
each monomer but with different relative phases of tho
For the negative sign of the inter-monomer interaction~we
choose hereafter̂ 1g,2euHddu1e,2g&52U,@U.0#), the
symmetric state is the lower state of the doublet. And fina
the last state of the quartet represents the two exciton s
~both monomers are in the upper level!. The eigenenergies o
the quartet are 0,D2U, D1U, and 2D, respectively~see
Fig. 1!.

It is easy to check that the operatorD†1D has nonzero
matrix elements only between the symmetric~with respect to
a permutation of monomers! states of the dimer:̂ gu(D†

1D)us&5^su(D†1D)ue&5A2. Thus, the interaction Hamil
tonian V(t) couples only ground, symmetric, and fully e
cited states. This, in particular, means that the frequenc
or
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the ground-to-one exciton transition,v212U, differs from
that of the one-to-two exciton transition,v211U, by the
magnitude of splitting 2U ~see also Fig. 1!. Note that the
antisymmetric state has no contribution to the dimer opti
response.

To account for the above, one can easily obtain the
lowing system of equations for matrix elements of the de
sity operator:

ṙgg52grss1 iF ~ t !~rsg2rgs!, ~3a!

ṙss522grss12gree1 iF ~ t !~res2rse1rgs2rsg!,
~3b!

ṙee522gree1 iF ~ t !~rse2res!, ~3c!

ṙsg52~ iD81g!rsg12gres1 iF ~ t !~rgg2rss1reg!,
~3d!

ṙes52@ i ~D812U !12g#res1 iF ~ t !~rss2ree2reg!,
~3e!

ṙeg52@2i ~D81U !1g#reg1 iF ~ t !~rsg2res!, ~3f!

whereD85D2U is the detuning of resonance with respe
to the ground-to-one exciton transition renormalized by
intermonomer interaction as compared to its original va
D5v212v0, and the notation is introduced:F(t)
5mE0(t)/A2.

As one of the possible quantities to characterize the o
cal response of the dimer, we choose the average numb
excited molecules defined as

n52ree1rss. ~4!

The fact should be especially mentioned that, when de
ing Eqs. ~3!, no simplifications have been done except t
standard rotating-wave approximation. This gives us a r
tool to solve the problem we are interested in, whether
optical response of a dimer can manifest a bistable behav

III. STEADY-STATE ANALYSIS

Let us turn out to a steady-state solution of Eqs.~3!. Then,
assumingF(t)5F5const and substituting the time deriva
tives in Eqs.~3! by zero, one obtains

rgg1rss1ree51, ~5a!

2grss1 iF ~rsg2rgs!50, ~5b!

22grss12gree1 iF ~res2rse1rgs2rsg!50, ~5c!

22gree1 iF ~rse2res!50, ~5d!

2~ iD81g!rsg12gres1 iF ~rgg2rss1reg!50, ~5e!
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2@ i ~D812U !12g#res1 iF ~rss2ree2reg!50, ~5f!

2@2i ~D81U !1g#reg1 iF ~rsg2res!50. ~5g!

Here, we have added the normalization condition, Eq.~5a!.
Obviously, including the static dipole moments of mon

mers as well as additional dephasing constants, as was
in @1,3#, is of no importance since it cannot disturb the stru
ture of the resulting density matrix equations, causing o
renormalization of both the relaxation constants and the
ergy shifts.

In order to demonstrate explicitly the character of the fi
dependence of the dimer optical response resulting from E
~5!, we carried out numerical calculations for different d
tunings of resonanceD8: ~i! D850(v05v212U, the exact
resonance with the ground-to-one exciton transition!; ~ii !
D852U(v05v21, the exact resonance with the monom
transition!; ~iii ! D8522U(v05v211U, the exact reso-
nance with the one-to-two exciton transition!. The results
depicted in Fig. 2 do not manifest any bistability effe
Moreover, they can be easily explained in terms of satura
of the transitions as well as based on the fact that in orde
saturate the system one should apply a field of strengthF ~in
frequency units! exceeding the detuning of resonance~in our
case, of the order ofU).

We should only pay attention to the case~ii !, where the
saturating strength is noticeably less than the detuning m
nitude U. This effect results from the fact that atv05v21
one has the exact two-photon resonance with the ground
two exciton transition. The rate of this transition is given
the 9golden rule9 taken in the second order of the perturb
tion theory

weg52pu^euV~Eg2H0
RWA!21Vug&u2r~Ee!, ~6!

whereV and H0
RWA are determined by Eqs.~1b! and ~1c!,

while the operatorV(Eg2H0
RWA)21V represents an effectiv

two-photon interaction operator initiating the transitions

FIG. 2. A family of the field dependences of the averaged nu
ber of excited molecules of a dimer (n) obtained by numerica
solution of Eq. ~5! for three types of resonance conditions: t
external field is in resonance with the ground-to-one exciton tra
tion of the dimer,v05v212U ~solid line!; the external field is in
resonance with the transition of a monomer,v05v21 ~dashed line!;
the external field is in resonance with the one-to-two exciton tr
sition of the dimer,v05v211U ~dotted line!. g/U50.01.
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both monomers. SubstitutingEg50 as well as the density o
final statesr(Ee) by (2g)21, one then obtains for the rate o
two-photon transition:

weg5
p

g S F2

U D 2

. ~7!

In order to gain insight into the saturation peculiaritie
one should compare the rateweg with the effective Rabi
frequency of the two-photon transition, which in our ca
is given ~analogously to the dipole transition! by
^euVus&^su(2H0

RWA)21us&^suVug&5F2/U. Equalizing these
two magnitudes, we get the following estimation for th
saturation magnitude of the external field strength

Fsat5S gU

p D 1/2

. ~8!

For the valueg/U50.01 used in the numerical calculation,
follows from Eq.~8! thatFsat/U5(1/100p)1/2, what is in full
correspondence with the numerical result presented in Fi
~dashed curve!.

IV. DISCUSSION

A. Dimer

In this section, we discuss the origin of a discrepan
between the exact theory presented above and the
molecule density matrix approximation used in Refs.@9,1,3#
to treat the problem of dimer bistability. In the latter a
proach, a coupled system of equations for the density ma
ces of monomers is considered. We will write down th
system of equation with no comments with respect to
derivation, forwarding the reader to Refs.@14–16# for de-
tails. Adopted to a dimer composed of two identical mon
mers, it has the form

Ż52
g

2
uRu21 i

V~ t !

2
~R!2R!2g~11Z!, ~9a!

Ṙ5F2 i ~D1UZ!1
g

2
~Z21!GR2 iV~ t !Z. ~9b!

Here, the following notation is introduced:V(t)5mE0(t)
and Z5r222r11, wherer11 and r22 are diagonal element
of the density matrix of a dimer~no importance of which
one, due to the system symmetry!, while R is the amplitude
of the off-diagonal element of that.

A great difference between Eqs.~9! and Eqs.~3!–~5! is
that the former isnonlinear, on the contrary to the latter. Th
nonlinearity results from the coupling of monomers to ea
other. The basic sequence of this coupling, in fact, leading
a bistable effect, is the dependence of the resonance
quency on the population difference@4,5,16#, which now
ranges fromv212U in the ground dimer state tov211U in
the upper one@see Eq.~9b!#. Note that the limits of this
change exactly correspond to the energy gap between
ground-to-one exciton and one-to-two exciton transitions i
dimer. In that sense, the one molecular density matrix

-

i-

-
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proach mimics quite well these features. Nevertheless, i
lows a continuous change of the resonance frequency
present in the frame of the exact description. In our opini
this is a key discrepancy between the two approaches us
the literature. This finally causes a wrong description of
optical response of a dimer, in the frame of the on
molecular density matrix approach.

It seems to be very useful to get insight in the physi
origin of the pseudobistability effect we are dealing with.
order to observe the effect, one should excite the sys
slightly above the renormalized resonancev212U. As the
current detuning of resonance,D1UZ, depends on the popu
lation differenceZ, then the system, when exciting by a
external field, ‘‘wishes’’ to reduce the detuning of resonan
and, what is important, can do it continuously. The radiat
damping, both incoherent and coherent represented in Eq~9!
by g and R2 terms, respectively, competes with this te
dency, stabilizing the population at a certain level. Howev
at a certain threshold value of the incident field amplitu
the radiative damping cannot resist anymore the pump
and the system experiences an abrupt jump to another
of population. We should notice once more that it happen
a fixed external field amplitude due to acontinuousreduction
of the detuning of resonance. When the latter changes s
wise ~the case of a dimer!, the upper level is excited mono
tonically as the Rabi frequency of the external field exce
the energy gap. This is just what we demonstrated in
previous section.

B. N-molecule problem

Naturally, the question arises whether splitting of the g
bal (N-molecule! density matrix of the system into a simp
product of the one-molecule density matrices can be e
used for describing the optical response of a system buil
of a large number of interacting monomers. As was alre
pointed out in Ref.@4#, the one-molecule density matrix ap
proach, tracing adequately the limits of the resonance
quency shift induced by the local field correction, tota
fails nevertheless in describing quantization of the resona
frequency and, as a result, in a proper reflection of the sp
tral features of the third-order susceptibility@17#. From this it
becomes clear that the problem we are going to disc
hardly has a universal solution. The one-molecule den
matrix approach being appropriate for the description
some physical observables may not be adequate for d
that with respect to others.

We will try to get insight into the splitting problem in
heuristic manner, as applied to the problem of bistability o
regular linear Frenkel chain. Our treatment is based on
observation done above, namely, for getting bistability,
population-dependent resonance frequency of the system
to be changed continuously~and not stepwisely!. From this it
follows that one should compare the characteristic scale
changing the transition energies in the optically active sp
tral region, with the radiative damping constantgR attributed
to this region~or maybe with the dephasing constantG, if it
exceedsgR). If gR is large in that scale, quantization of th
transition energies is not important. This is just a condit
necessary~but not sufficient! for manifesting a bistable be
havior.
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In order to get some quantitative estimates let us turn
regular linear Frenkel chain ofN identical molecules ac-
counting for the nearest-neighbor coupling only. By this a
proximation, one-dimensional Frenkel excitons become n
interacting fermions@18#, so that the energy spectrum of th
system can be easily built up by making use of the sing
exciton energy spectrum and Pauli’s exclusive principle.
addition, let all transition dipole moments of molecules
parallel and make an angleu with the chain axis. Then, the
interaction of nearest neighbors,U, can be written as fol-
lows: 2U53g(123cos2u)/4(k0a)3, where k052p/v21.
Further, we set (123cos2u)521 for definiteness, so tha
U.0. At the negative sign of the nearest-neighbor coupli
the states close to the bottom of multiexciton manifo
mostly contribute to the optical transitions@19–22#. The
transition energy between manifolds ofn21 andn excitons
is exactly equal to the energy ofnth single exciton state
En5\v2122Ucos@pn/(N11)# @19#. Thus, the energy scal
we are talking about is given byE22E153p2U/N2 ~at N
@1). The radiative damping constantgR for a chain of size
less than the emission wavelengthl is given by the expres-
sion gR5gN and does not exceed this interval@19#. In the
opposite limit, gR53pgsin2u/4k0a5pg/4k0a(sin2u51/3)
@14,4#, the necessary conditiongR@E22E1 can be definitely
satisfied by raising the chain size. EqualizinggR to E22E1,
one finds a critical lengthL* 5lA9/4p for this condition to
be valid.

The lengthL* introduced above represents an exciton c
herence length limited by the radiative damping. This me
that any two molecules separated by a distanceL exceeding
L* can be considered independent of one another. On
contrary, molecules inside a chain part of size less thanL*
are strongly correlated. Clearly, applying the splitting proc
dure of the global density matrix into a product of the on
molecule density matrices seems to be a rather good app
mation for the former and not for the latter. This observati
provides a key for a heuristic answer to the question rais
namely, the one-molecule density matrix approach is
pected to be a good approach for treating any attribu
feature of the system as a whole~including bistability! as
soon as the system length exceeds the correlation lengthL* .
More detailed analysis of this problem is in progress.

Concluding this subsection, we would like to comment
an attributive feature of the global density matrixr, which
might result in a bistable behavior in systems of a larg
number of monomers. Certainly, the rigorous treatment
this problem should be based on the von Neuman equa
~1a!, which obviously is always linear inr. At first sight, it is
unclear how then bistability can appear if the latter norma
results from a nonlinearity. The matter is that observa
quantities showing bistability are not the elements of
global density matrix itself, but as averages are some fu
tions of them. It is intuitively clear that for a mesoscopic
even macroscopic system, where the full set of quant
numbers is large,r represents a complex function, in prin
ciple, with several maxima over this set. Then, in calculat
the averages, uniqueness of measuarable quantities v
the external parameters can be lost, resulting in a bista
and even multistable behavior.
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V. SUMMARY

A rigorous analysis of the possibility to get a bistab
optical response from a dimer composed of two identi
monomers was carried out. Our treatment was based on
two-particle density matrix in the collective~excitonic! state
representation without its splitting into a product of dens
matrices of monomers. The latter procedure leads to the
pearance of a nonlinearity in the reduced equations for
n.

A

d,

m.
l
he

p-
e

one-particle density matrix which, in turn, results in the a
tifact of a bistable behavior of the dimer optical response
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