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Bose-Einstein condensation in one-dimensional power-law traps:
A path-integral Monte Carlo simulation
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Bose-Einstein condensation is known to occur in one-dimensional power-law pot&fftijds|x|” as a true
phase transition fom<2, but only if there are no interactions between the particles. We show, via a path-
integral quantum Monte Carlo scheme, that for bgth2 and =2 the spatial distribution of finite numbers of
hard-core bosons suddenly becomes bimodal below a certain temperature, with a central condensate of par-
ticles distributed according to the lowest single-particle eigenstate. At still lower temperatures, the hard-core
interactions cause the single-particle ground state to become a poor description for the interacting<gas. If
the energy per particle undergoes a sudden decrease near the same temperature at which the bimodal distri-
bution appears. It is found that this drop in energy disappears if the range of the interaction potential is
sufficiently large [S1050-294{©8)09308-1

PACS numbgs): 03.75.Fi, 02.70.Lg, 05.30.Jp

Recent observations of Bose-Einstein condensatiomonic oscillator, a transition to a superfluid state in the ther-
(BEC) [1-3] in gases of magnetically trapped ultracold modynamic limit has been proposdd7], and a similar
alkali-metal atom$4—7] have opened up exciting new pros- pPhase may also be present in some 1D potentials.
pects for studying the quantum statistics of bosonic systems, Experiments are carried out with finite numbers of par-

Prominent among current goals is the construction of exlicles so questions of density divergence never arise in real-

tremely anisotropic trapping configurations in order to deterJstic situations, and since an interacting Bose gas can exhibit

mine whether a condensate can be produced in less th essentially ideal behavior as long as the range of the interac-

: . - L n potential is small compared with the average distance
three dimensions, a possibility that was initially ruled out by patveen particles, the observation of Bose-Einstein conden-

Hohenberg’s theorerfB], which states that BEC cannot oc- gation (at least as a pseudotransition 1D systems may
cur in ideal one-dimensiondlLD) or two-dimensional sys- well be feasible in the laboratory.
tems. Widom([9] later pointed out that this theorem only  In this article we report simulations of finite numbers of
applies to homogeneous systems, and proved that BEC phaskeal and weakly interactinghard-cor¢ bosons in 1D
transitions occur in a 2D rotating gas and a 1D gas in thgpower-law traps. We are particularly interested in the experi-
presence of a gravitational field. Further examples include amental implications of our results, which are limited to a few
attractive s-impurity system in any number of dimensions hundred atoms. Meanwhile, the thermodynamic limit of a
[10], a general 2D power-law trap, and a 1D power-law traptfapped nonideal Bose gas in 1D is an interesting problem
more confining than parabolfd.1]. which also deserves attention, but which is not considered
The potential wells that trap the atoms in experiments arel€reé: In fact, the interacting systems we study here are di-
to a good approximation, harmonic oscillator potentials. It'€ctly relevant to a possible future experimental setup. In &
has been pointed out that lowering the number of dimension _al trap, atomic motion could be restricted to a single spatial

D of a harmonic oscillator increases the transition temperaéi'g%ng;)nnbzn:nesgsz dfrbeefrl]rja?(ir(])mtl’?; In(;r?“?hnslgaf(\alvgfct“hn;ecno-n-
ture asT.~NP and is therefore favorable for BE[@2]. In y 9 9

" finement potential much smaller in those dimensions. The
any case, the absence of a true phase transition has beseystem that we actually simulate is strictly 1D with the
proved for parabolically confined ideal bosons in one dimen- ower-law confinement given by/(x)=Vo(|x|/L)” with

sion[13,14. There is only a pseudotransition, characterize L—1

by a sudden rise in the ground-state occupancy, which occurs®’ ;
at a temperature that goes to zero as W/In the thermody- Pathvintegral Monte CarlPIMC) methods represent the

namic limit [15]. This effect has nevertheless been referred St powerful approach for studying the finite-temperature

= . P . . _properties of many-body systems in the quantum regime.
tq as Bose-Einstein condensqt[ ] and_|s assigned a tran PIMC schemes have recently been used to simulate BEC for
sition temperaturel,, determined byN= 7.In(27) where

re=ke T /fi . hard-core bosons in three dimensigas,19. In this article

Bose-Einstein condensation does occur meanwhile in \a/lve will apply the PIMC method for bosonic syste(@9,21,

1D power-law potentiaV(x)«|x|” if <2 [11]. That is, Specifically following the formulation of Ref21]. PIMC is

. 1 Based on the fact that the partition functigh=Tr p of a
there is a true phase transition in that case. In general, BEman _bodv svstem can be written in the form of a path inte-
in the thermodynamic limit is only possible in 1D and 2D y y sy P

. . L A(HAtH)
systems if the density can increase without bound somegral [22] if the_ density operatop=e" A o™H) is decom-
where in the system. Since this divergence is prevented in a%osed according to the Trotter formula

interacting gas, there can be no BEC phase transition for e BHotH) = |im (g AHo/Mg=BHLI/M)M )
nonideal bosons in one dimensiph5-17. In a 2D har- Mo
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FIG. 2. The goodness of fit? for fits of p(x) to the single-
L . particle ground state for both=1.5 (diamond$ and »=2 (crosses
T/N = 0.1250 Lines connecting data points provide a visual guide only. The peaks
. shows that the distributions become bimodal due to the onset of
BEC. The effect of the hard-core interactions caugeto increase
0.05 - 1 again at low temperature.
. T/N = 0.0625 . . . .
0.00 5 10 15 20 The technigue used to compute the spatial atomic density

T p(X) is straightforward: A system of small boxes is set up
) ) ) ) along thex axis. After each complete Monte Carlo sweep
_FIG. 1. The spatial atomic densip(x) of 50 atoms in a rap oy || particles, the coordinates of each atom are binned in
with #=1.5 and hard-core radies=10 * at different temperatures. o 555rgpriate box. The number of counts in each box leads
For clarity, all but the lowest curve have been offset vertically at | ly to p(x). The size of the boxes must be chosen with
equal intervals of 0.1; a dotted line is used to indicate the zero poin?'rect y 1o p(x).
of each curve. care. If they are too small,l then the number of counts per box
will be small and the statistics poor. On the other hand, the
exact result forp(x) can only be obtained in the limit of
where Ho=— (A%2m) ZNVZ and H;=V(ry,r,, ... ry)  infinitesimally small box size. In the present work we have
are, respectively, the kinetic and potential energy operatorgsed a small box size so that it was necessary to carry out a
of the systemB=1/kgT is the inverse of the temperatufe  large number of Monte Carlo sweeps in order to reduce the
andkg is the Boltzmann constant. For convenience, we usetatistical noise to a reasonable level. Consequently, the re-
A=m=1. For bosons, a sum over permutations of all thesults presented here are limited to calculations for samples of
particles is necessary in order to symmetrize the density m&0 atoms.
trix [20,21]. In practice this means that the Monte Carlo In cases where BEC occurs a bimodal atomic distribution
simulation consists of permutation moves as well as coordiappears below the transition temperature—a broad distribu-
nate moves. tion due to the uncondensed portion and a narrow distribu-
The inclusion of a hard-core interaction potential, withtion due to the condensater pseudocondensateEven for
core radiusa, is straightforward for a 1D system. We have an ideal Bose gas, this does not necessarily confirm the ex-
designed an efficient algorithm based on a system of cellsstence of a phase transition. The sudden appearance of a
each of length 4. N-particle configurations that consist of bimodal distribution is, however, directly related to an abrupt
one or more multiply occupied cells are immediately re-increase in the fractionlNy/N, of particles occupying the
jected. Otherwise the only interatomic separations that areingle-particle ground state. For a finite number of ideal
computed are those between atoms that occupy adjacehosons, we know that such an abrupt increase occurs for both
cells. n=2 where there is a pseudotransition and fpr2 for
In all our simulations, great care is taken to ensure that thevhich a true phase transition occurs. Neither system can
results are convergent with respect to the Trotter nunvber have a BEC phase transition if the bosons are interacting.
as well as the number of Monte Carlo iterations. Since no Figure 1 shows the evolution of the atomic dengifx)
approximations remain, we can be confident that our resultwith decreasing temperature fop=1.5 with N=50 anda
are correct within the statistical errors. For the potentials=10 3. A central peak emerges and gradually grows as the
studied here, around $0Monte Carlo sweeps, including system is cooled. In order to interpret this result, we have fit
about 18 warm-up sweeps, are required with largegen-  the data to a function of the form of the probability density,
erally requiring slightly fewer iterations. zpa”(x), for a single particle in the ground state of the same
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FIG. 3. The energy per atom ¢) 50, (b) 100, (c) 200, and(d) 400 hard-core bosons witi=10"3. (a) includes results for=1.25
(crossep 1.5(diamonds$, and 2(boxes, while (b), (c), and(d) include onlyn=1.5. Lines connecting data points provide a visual guide only.
A change in the slope of the curve is an indication of Bose-Einstein condensaties-oR25 and 1.5.

potential, and thus obtained the goodness ofxﬁt[23]. In cult for the hard-core Bose gas to mimic the ideal Bose gas.
Fig. 2 we ploty? for »=1.5 andn=2. For =1.5, x? i In particular, if the sum of the hard-core diametefd&is
creases steeply a'N= 0 4 and reaches a local maximum at sufficiently large on the length scale ¢f, ,(x), then it will
T/N=0.35. Fory=2, x? increases more gradually and peaksbecome impossible for all of the atoms to be distributed ac-
at around the same temperat(nete that for 50 ideal bosons cording toy, ,(x). In that case, the low-temperature conden-
with =2, T./N=0.418). The hump iry? is associated with sate would broaden with respect to the ideal case and the
the emergence of a central condensate of atoms, which oprobablllty density would eventually become very different
curs atT/N=0.4 for »=1.5, as shown in Fig. 1. When the from 1//0 (x) (so thaty? would increasgasT is lowered. In
condensate formg? first of all increases because the atomicfact, we find that in the present case, the length scale of
distribution becomes bimodal. As the temperature is de+jq,(x) is only about a factor of 10 greater thaNa, so itis
creased further beloW=T,, the condensate fractidd,/N not surprising thaj? increases in the regiof/N<0.2 for
begins to approach unity, so thgf becomes very small. In both =1.5 andz=2 (at a slightly higher temperaturelin
an ideal Bose gad\ly/N continues to increase untily/N fact, comparison op(x) for »=1.5 andzn=2 shows that the
=1 (and y?>=0) atT=0. density in the central region of the trap is always greater for
As the system is cooled, the atom density in the center of)=2, which explains why this increase jt is at higherT in
the trap increases, and it becomes progressively more diffthat case.
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FIG. 4. TheN dependence of the transition temperature with " 'C- 5- The average energy per particle f50 with 7=1.5

— —2 H _ —3 _ — 4
7=1.5 anda=10"3. The line connecting data points provides a @hda2=10"* (diamonds, a=10"" (crosses anda=10"" (boxes.

visual guide only. For larghl it appears thaT,, scales roughly with Lines connecting data points provide a visual guide only. BEC is
N. found to occur at roughly the same temperature far

=10310 4

As we have stated, condensation of an ideal Bose gas in
one dimension occurs as a true phase transition in potentials
more confining than parabolic. Such a transition would bechose the hard-core radias= 102 because that is likely to
accompanied by an abrupt change in the slope of the energpe close to the experimental value. We have repeated some
temperature curve nedr=T,. If the interactions in a real of those simulations for varioua. In Fig. 5 we plot the
Bose gas are sufficiently weak then such an effect should stihverage energy per particle fdé=50 with »=1.5 anda
be observed. The energy per particE/N, of up to 400 =10 2,10 3,10 *. The difference between the regimes of
atoms, displayed in Fig. 3, varies smoothly above or below atrongly and weakly interacting hard-core bosons is striking.
certain temperaturéwhich we take to be the pseudotransi- The average energy in the strongly-interacting caase (
tion temperaturel,), whereas at that temperature it drops =10 2) varies smoothly with temperature over the whole
sharply. This behavior is qualitatively similar to what we range. Because the hard-core radius is not small on the scale
expect to see for ideal bosons. The energy curveNfer50  of the average distance between particles in the center of the
with »=1.5, shown in the middle of Fig.(8), changes slope trap, condensation is prevented. For smake(10 3 or
at a temperature just above the pealyfn corresponding to 10" %), the average energy exhibits a change of slope which
the peak in Fig. 2. As in the ideal gas, itis only fp=2 that  occurs at approximately the same temperature in both cases,
there is no drop in energy nedg, as shown in Fig. @.  while the energy drop increases with decreasingve have
Furthermore, we find that the drop in energy increasesias also carried out similar simulations foyj=1.25, 1.75, and
decreased. In fact, we find that the change in the slope of thiund equivalent behavior. In those cases, there is no ob-
energy curve also occurs for highgt2, but asy increases served drop in energy fa= 102, while the value ofT in
the drop in energy eventually becomes comparable with ougach case has no observed difference 61102 and a
error estimation. =10“. For 50 atoms in a 1D power-law trap of unit length

In Fig. 4 we plot the pseudotransition temperatiig L, a=10"2 is required to observe BEC. Because the average
extracted from our energy data fe=1.5. For largeN, the  distance between particles varies aN,1émallera ought to
dependence off . upon N is different from the 3D case be required for largeN.
whereT <N for ideal[12,14 or weakly interacting4,18] The results presented here should be very interesting from
bosons in a harmonic oscillator. Here it appears that the experimental point of view. We have provided simulation
scales roughly wittN for largeN. On the other hand, we do results for interacting bosons confined in one dimension. Our
not make the claim that the relation betwélerandN shown  results are reliable insofar as the PIMC method we have used
in Fig. 4 can be directly extrapolated to highér Since the does not contain any significant approximations. We have
density of atoms in the condensate increases Witithe  calculated anomalous behavior in the energy and spatial dis-
interparticle repulsions would presumably eventually smeatribution for weakly interacting bosons in one dimension.
out the pseudotransition. The observation of condensatioPespite the absence of a BEC phase transition in the thermo-
for progressively higheN would therefore require progres- dynamic limit of nonideal bosons, it seems likely that these
sively smallera. phenomena are due to BEC of finite numbers of interacting

We have computed the enerdy of up to 400 weakly atoms. The distinction that exists between the regime®
interacting hard-core bosons in 1D power-law traps. Weand =2 for an ideal gas is observed in the interacting gas. It
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is only for #<<2 that BEC is revealed by a drop in the energy, forward[6] given the velocity distribution of the atom cloud.
while the appearance of a bimodal distribution is also moreThe possibility of obtaining sufficiently anisotropic trapping
abrupt. In other words, power-law traps more confining tharconditions is discussed in RéfL2], although only harmonic
harmonic offer by far the more promising situation for ob- confinement is considered.

serving BEC in the laboratory. The energies we have calcu-

lated could be directly compared with future experimental This work is supported in part by the NSF under the Co-
measurements following a procedure similar to that in Refoperative Agreement OSR-9353227, the U.S. DOE under the
[7]. Likewise, calculation of the appropriaj€’s is straight- EPSCOR program, and the W. M. Keck Foundation.
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