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Bose-Einstein condensation in one-dimensional power-law traps:
A path-integral Monte Carlo simulation
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Bose-Einstein condensation is known to occur in one-dimensional power-law potentialsV(x)}uxuh as a true
phase transition forh,2, but only if there are no interactions between the particles. We show, via a path-
integral quantum Monte Carlo scheme, that for bothh,2 andh52 the spatial distribution of finite numbers of
hard-core bosons suddenly becomes bimodal below a certain temperature, with a central condensate of par-
ticles distributed according to the lowest single-particle eigenstate. At still lower temperatures, the hard-core
interactions cause the single-particle ground state to become a poor description for the interacting gas. Ifh,2,
the energy per particle undergoes a sudden decrease near the same temperature at which the bimodal distri-
bution appears. It is found that this drop in energy disappears if the range of the interaction potential is
sufficiently large.@S1050-2947~98!09308-1#

PACS number~s!: 03.75.Fi, 02.70.Lq, 05.30.Jp
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Recent observations of Bose-Einstein condensa
~BEC! @1–3# in gases of magnetically trapped ultraco
alkali-metal atoms@4–7# have opened up exciting new pro
pects for studying the quantum statistics of bosonic syste
Prominent among current goals is the construction of
tremely anisotropic trapping configurations in order to det
mine whether a condensate can be produced in less
three dimensions, a possibility that was initially ruled out
Hohenberg’s theorem@8#, which states that BEC cannot oc
cur in ideal one-dimensional~1D! or two-dimensional sys-
tems. Widom@9# later pointed out that this theorem on
applies to homogeneous systems, and proved that BEC p
transitions occur in a 2D rotating gas and a 1D gas in
presence of a gravitational field. Further examples include
attractived-impurity system in any number of dimension
@10#, a general 2D power-law trap, and a 1D power-law tr
more confining than parabolic@11#.

The potential wells that trap the atoms in experiments a
to a good approximation, harmonic oscillator potentials
has been pointed out that lowering the number of dimens
D of a harmonic oscillator increases the transition tempe
ture asTc;N1/D and is therefore favorable for BEC@12#. In
any case, the absence of a true phase transition has
proved for parabolically confined ideal bosons in one dim
sion @13,14#. There is only a pseudotransition, characteriz
by a sudden rise in the ground-state occupancy, which oc
at a temperature that goes to zero as 1/lnN in the thermody-
namic limit @15#. This effect has nevertheless been refer
to as Bose-Einstein condensation@12# and is assigned a tran
sition temperatureTc , determined byN5tcln(2tc) where
tc5kBTc /\v.

Bose-Einstein condensation does occur meanwhile i
1D power-law potentialV(x)}uxuh if h,2 @11#. That is,
there is a true phase transition in that case. In general, B
in the thermodynamic limit is only possible in 1D and 2
systems if the density can increase without bound so
where in the system. Since this divergence is prevented i
interacting gas, there can be no BEC phase transition
nonideal bosons in one dimension@15–17#. In a 2D har-
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monic oscillator, a transition to a superfluid state in the th
modynamic limit has been proposed@17#, and a similar
phase may also be present in some 1D potentials.

Experiments are carried out with finite numbers of p
ticles so questions of density divergence never arise in r
istic situations, and since an interacting Bose gas can exh
essentially ideal behavior as long as the range of the inte
tion potential is small compared with the average dista
between particles, the observation of Bose-Einstein cond
sation ~at least as a pseudotransition! in 1D systems may
well be feasible in the laboratory.

In this article we report simulations of finite numbers
ideal and weakly interacting~hard-core! bosons in 1D
power-law traps. We are particularly interested in the exp
mental implications of our results, which are limited to a fe
hundred atoms. Meanwhile, the thermodynamic limit of
trapped nonideal Bose gas in 1D is an interesting prob
which also deserves attention, but which is not conside
here. In fact, the interacting systems we study here are
rectly relevant to a possible future experimental setup. I
real trap, atomic motion could be restricted to a single spa
dimension since the freezing out of motion in two dime
sions can be ensured by making the length scale of the
finement potential much smaller in those dimensions. T
system that we actually simulate is strictly 1D with th
power-law confinement given byV(x)5V0(uxu/L)h with
V0 ,L51.

Path-integral Monte Carlo~PIMC! methods represent th
most powerful approach for studying the finite-temperat
properties of many-body systems in the quantum regim
PIMC schemes have recently been used to simulate BEC
hard-core bosons in three dimensions@18,19#. In this article
we will apply the PIMC method for bosonic systems@20,21#,
specifically following the formulation of Ref.@21#. PIMC is
based on the fact that the partition functionZ5Tr r of a
many-body system can be written in the form of a path in
gral @22# if the density operatorr5e2b(H01H1) is decom-
posed according to the Trotter formula

e2b~H01H1!5 lim
M→`

~e2bH0 /Me2bH1 /M !M, ~1!
1485 © 1998 The American Physical Society
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where H052 (\2/2m) ( i
N
“ i

2 and H15V(r1 ,r2 , . . . ,rN)
are, respectively, the kinetic and potential energy opera
of the system,b51/kBT is the inverse of the temperatureT,
andkB is the Boltzmann constant. For convenience, we
\5m51. For bosons, a sum over permutations of all
particles is necessary in order to symmetrize the density
trix @20,21#. In practice this means that the Monte Car
simulation consists of permutation moves as well as coo
nate moves.

The inclusion of a hard-core interaction potential, w
core radiusa, is straightforward for a 1D system. We hav
designed an efficient algorithm based on a system of c
each of length 2a. N-particle configurations that consist o
one or more multiply occupied cells are immediately
jected. Otherwise the only interatomic separations that
computed are those between atoms that occupy adja
cells.

In all our simulations, great care is taken to ensure that
results are convergent with respect to the Trotter numbeM
as well as the number of Monte Carlo iterations. Since
approximations remain, we can be confident that our res
are correct within the statistical errors. For the potenti
studied here, around 106 Monte Carlo sweeps, including
about 105 warm-up sweeps, are required with largerh gen-
erally requiring slightly fewer iterations.

FIG. 1. The spatial atomic densityr(x) of 50 atoms in a trap
with h51.5 and hard-core radiusa51023 at different temperatures
For clarity, all but the lowest curve have been offset vertically
equal intervals of 0.1; a dotted line is used to indicate the zero p
of each curve.
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The technique used to compute the spatial atomic den
r(x) is straightforward: A system of small boxes is set
along thex axis. After each complete Monte Carlo swee
over all particles, the coordinates of each atom are binne
the appropriate box. The number of counts in each box le
directly to r(x). The size of the boxes must be chosen w
care. If they are too small, then the number of counts per
will be small and the statistics poor. On the other hand,
exact result forr(x) can only be obtained in the limit o
infinitesimally small box size. In the present work we ha
used a small box size so that it was necessary to carry o
large number of Monte Carlo sweeps in order to reduce
statistical noise to a reasonable level. Consequently, the
sults presented here are limited to calculations for sample
50 atoms.

In cases where BEC occurs a bimodal atomic distribut
appears below the transition temperature—a broad distr
tion due to the uncondensed portion and a narrow distri
tion due to the condensate~or pseudocondensate!. Even for
an ideal Bose gas, this does not necessarily confirm the
istence of a phase transition. The sudden appearance
bimodal distribution is, however, directly related to an abru
increase in the fraction,N0 /N, of particles occupying the
single-particle ground state. For a finite number of ide
bosons, we know that such an abrupt increase occurs for
h52 where there is a pseudotransition and forh,2 for
which a true phase transition occurs. Neither system
have a BEC phase transition if the bosons are interactin

Figure 1 shows the evolution of the atomic densityr(x)
with decreasing temperature forh51.5 with N550 anda
51023. A central peak emerges and gradually grows as
system is cooled. In order to interpret this result, we have
the data to a function of the form of the probability densi
c0,h

2 (x), for a single particle in the ground state of the sam

t
nt

FIG. 2. The goodness of fitx2 for fits of r(x) to the single-
particle ground state for bothh51.5 ~diamonds! andh52 ~crosses!.
Lines connecting data points provide a visual guide only. The pe
shows that the distributions become bimodal due to the onse
BEC. The effect of the hard-core interactions causesx2 to increase
again at low temperature.
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FIG. 3. The energy per atom of~a! 50, ~b! 100, ~c! 200, and~d! 400 hard-core bosons witha51023. ~a! includes results forh51.25
~crosses!, 1.5~diamonds!, and 2~boxes!, while ~b!, ~c!, and~d! include onlyh51.5. Lines connecting data points provide a visual guide on
A change in the slope of the curve is an indication of Bose-Einstein condensation forh51.25 and 1.5.
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potential, and thus obtained the goodness of fit,x2 @23#. In
Fig. 2 we plotx2 for h51.5 andh52. For h51.5, x2 in-
creases steeply atT/N.0.4 and reaches a local maximum
T/N.0.35. Forh52, x2 increases more gradually and pea
at around the same temperature~note that for 50 ideal boson
with h52, Tc /N50.418). The hump inx2 is associated with
the emergence of a central condensate of atoms, which
curs atT/N.0.4 for h51.5, as shown in Fig. 1. When th
condensate forms,x2 first of all increases because the atom
distribution becomes bimodal. As the temperature is
creased further belowT5Tc , the condensate fractionN0 /N
begins to approach unity, so thatx2 becomes very small. In
an ideal Bose gas,N0 /N continues to increase untilN0 /N
51 ~andx250) at T50.

As the system is cooled, the atom density in the cente
the trap increases, and it becomes progressively more d
c-

-

of
fi-

cult for the hard-core Bose gas to mimic the ideal Bose g
In particular, if the sum of the hard-core diameters 2Na is
sufficiently large on the length scale ofc0,h(x), then it will
become impossible for all of the atoms to be distributed
cording toc0,h(x). In that case, the low-temperature conde
sate would broaden with respect to the ideal case and
probability density would eventually become very differe
from c0,h

2 (x) ~so thatx2 would increase! asT is lowered. In
fact, we find that in the present case, the length scale
c0,h(x) is only about a factor of 10 greater than 2Na, so it is
not surprising thatx2 increases in the regionT/N,0.2 for
both h51.5 andh52 ~at a slightly higher temperature!. In
fact, comparison ofr(x) for h51.5 andh52 shows that the
density in the central region of the trap is always greater
h52, which explains why this increase inx2 is at higherT in
that case.
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As we have stated, condensation of an ideal Bose ga
one dimension occurs as a true phase transition in poten
more confining than parabolic. Such a transition would
accompanied by an abrupt change in the slope of the ene
temperature curve nearT5Tc . If the interactions in a rea
Bose gas are sufficiently weak then such an effect should
be observed. The energy per particle,E/N, of up to 400
atoms, displayed in Fig. 3, varies smoothly above or belo
certain temperature~which we take to be the pseudotrans
tion temperatureTc), whereas at that temperature it dro
sharply. This behavior is qualitatively similar to what w
expect to see for ideal bosons. The energy curve forN550
with h51.5, shown in the middle of Fig. 3~a!, changes slope
at a temperature just above the peak inx2, corresponding to
the peak in Fig. 2. As in the ideal gas, it is only forh52 that
there is no drop in energy nearTc , as shown in Fig. 3~a!.
Furthermore, we find that the drop in energy increases ash is
decreased. In fact, we find that the change in the slope o
energy curve also occurs for higherh,2, but ash increases
the drop in energy eventually becomes comparable with
error estimation.

In Fig. 4 we plot the pseudotransition temperatureTc ,
extracted from our energy data forh51.5. For largeN, the
dependence ofTc upon N is different from the 3D case
whereTc}N1/3 for ideal @12,14# or weakly interacting@4,18#
bosons in a harmonic oscillator. Here it appears thatTc
scales roughly withN for largeN. On the other hand, we d
not make the claim that the relation betweenTc andN shown
in Fig. 4 can be directly extrapolated to higherN. Since the
density of atoms in the condensate increases withN, the
interparticle repulsions would presumably eventually sm
out the pseudotransition. The observation of condensa
for progressively higherN would therefore require progres
sively smallera.

We have computed the energyE of up to 400 weakly
interacting hard-core bosons in 1D power-law traps. W

FIG. 4. TheN dependence of the transition temperature w
h51.5 anda51023. The line connecting data points provides
visual guide only. For largeN it appears thatTc scales roughly with
N.
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chose the hard-core radiusa51023 because that is likely to
be close to the experimental value. We have repeated s
of those simulations for variousa. In Fig. 5 we plot the
average energy per particle forN550 with h51.5 anda
51022,1023,1024. The difference between the regimes
strongly and weakly interacting hard-core bosons is striki
The average energy in the strongly-interacting casea
51022) varies smoothly with temperature over the who
range. Because the hard-core radius is not small on the s
of the average distance between particles in the center o
trap, condensation is prevented. For smallera (1023 or
1024), the average energy exhibits a change of slope wh
occurs at approximately the same temperature in both ca
while the energy drop increases with decreasinga. We have
also carried out similar simulations forh51.25, 1.75, and
found equivalent behavior. In those cases, there is no
served drop in energy fora51022, while the value ofTc in
each case has no observed difference fora51023 and a
51024. For 50 atoms in a 1D power-law trap of unit leng
L, a.1023 is required to observe BEC. Because the aver
distance between particles varies as 1/N, smallera ought to
be required for largerN.

The results presented here should be very interesting f
the experimental point of view. We have provided simulati
results for interacting bosons confined in one dimension. O
results are reliable insofar as the PIMC method we have u
does not contain any significant approximations. We ha
calculated anomalous behavior in the energy and spatial
tribution for weakly interacting bosons in one dimensio
Despite the absence of a BEC phase transition in the ther
dynamic limit of nonideal bosons, it seems likely that the
phenomena are due to BEC of finite numbers of interact
atoms. The distinction that exists between the regimesh,2
andh52 for an ideal gas is observed in the interacting gas

FIG. 5. The average energy per particle forN550 with h51.5
anda51022 ~diamonds!, a51023 ~crosses!, anda51024 ~boxes!.
Lines connecting data points provide a visual guide only. BEC
found to occur at roughly the same temperature fora
51023,1024.
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is only for h,2 that BEC is revealed by a drop in the energ
while the appearance of a bimodal distribution is also m
abrupt. In other words, power-law traps more confining th
harmonic offer by far the more promising situation for o
serving BEC in the laboratory. The energies we have ca
lated could be directly compared with future experimen
measurements following a procedure similar to that in R
@7#. Likewise, calculation of the appropriatex2’s is straight-
th

-

i-

et

n,
tt.

n

,
e
n

u-
l
f.

forward @6# given the velocity distribution of the atom cloud
The possibility of obtaining sufficiently anisotropic trappin
conditions is discussed in Ref.@12#, although only harmonic
confinement is considered.
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