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Bose-Einstein condensates in spatially periodic potentials

Kirstine Berg-Seensen and Klaus Mémer
INiels Bohr Institute,/@sted Laboratory, Universitetsparken 5, DK-2100 Copenhage®€nhmark
2Institute of Physics and Astronomy, University of Aarhus, DK-8000 Arhus C, Denmark
(Received 23 February 1998

We investigate theoretically the properties of a Bose-Einstein condensate located in a spatially periodic
potential. The excitations of the condensate are obtained from linear equations involving the periodic potential
and the periodic condensate density. The Bloch ansatz therefore applies and the excitation spectrum exhibits
band structure. If the periodic potential is accelerated, the condensate may undergo Bloch oscillations in the
accelerated frame, corresponding to an acceleration without spreading of the entire condensate.
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l. INTRODUCTION Vext( X) = V(COSKX. 3]

Since the first observation of Bose-Einstein condensatioill our calculations will be for the corresponding one-
in trapped dilute gasdd—3] the experimental developments dimensional problen7].
in this field have advanced rapidly. Applications of Bose- LetN denote the number of atoms per periogl/2 of the
Einstein condensates have been proposed, and the propertjgriodic potential. When the Gross-Pitaevskii equation is
of condensates in different circumstances have become @nsidered in one dimension, the density of the atoms in the
matter of practical interest. In this work we study the influ- two orthogonal directions must be specified, hereby attribut-
ence of a spatially periodic external potential on the propering the coefficiengy dimension of energy times length. Very
ties of a Bose-Einstein condensate. Such a periodic potentialongated condensates of lengt300 wm and with radii of
may be induced by a far-off-resonant laser field, and with~17 wm have been produced with5x 10° sodium atoms
present trapped condensates it is possible to have a conddi]. If we assume that such a condensate is introduced in a
sate extending over many periods of such a field. The singlpotential with a period of roughly lum (half the wave-
atom behavior in a periodic potential has been extensivelyength of an off-resonant laser begmve obtainN on the
studied in connection with laser cooling and atom opfills  order of 10 000 andj on the order of 0.00H?«%/M)« ™.
and, recently, the issue of quantum transport has been a@lve present calculations for this choice of parameters.
dressed both theoretically and experiment@lly Our study A comment on what we mean by the number of atdns
of condensates in periodic potentials thus both serves to gemay be in order: The physical situation is that a much larger
eralize these studies to the case of interacting particles, andiumber of atom&N are distributed oveK periods of the
presents a new setting for condensate dynamics where neuotential. For a weak modulation of the periodic potential,
tools for diagnostics and manipulation of condensates maghese atoms occupy a common wave function extending over
be suggested. The system of an interacting condensate intige entire potential. A given period is thus not populated by
periodic potential complements the situation in optical lat-a definite number of atoms but by a binomial distribution,
tices [6], where interactions can usually be neglected andonverging to a Poisson distribution in the limit of larife
where dissipation due to spontaneous emission of light playg/hen the potential modulation increases, we expect to see
an important role when the individual atoms localize in dif- the condensate break up into separate condensates, and the

ferent potential minima. lowest energy is obtained with a specific number of atoms in
each well, because an imbalance effectively corresponds to

Il. THE GROSS-PITAEVSKII EQUATION FOR ATOMS an excitation of the system. Although there seems to be a
IN A PERIODIC POTENTIAL large physical difference between the united and the frag-

mented condensate, we expect the quantitative signature to
We consider a zero-temperature Bose-Einstein condensag@ small since the Gross-Pitaevskii equation only differs in-
of atoms with mas#. The atoms interact by elastic colli- sjgnificantly for the two cases: our E¢l) is the one that
sions and their low kinetic energies permit a replacement ofpllows from a Poisson distribution ansatz, whereas for a
their short-range interaction by a contact term, so that thumber state ansatz the factdris replaced byN—1. This
single-particle wave function obeys the Gross-Pitaevskiyifference is usually neglected in treatments of Bose conden-
equation, sates. Also for excitations, to be described below, it has been
shown that there is little quantitative difference between re-
2 - S ol e - sults obtained with a definite humber and with a Poisson
B mv Vel 1)+ NGO (1) = uip(r). - (1) distribution, [9], and we therefore believe that our calcula-
tions for the condensate density and for the spectrum of ex-
We consider a condensate extending over many periods of@tations of the system are reliable both for small and for
one-dimensional periodic potential, large potential modulation.
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The condensate ground state is periothiote that the 2.5 ' 5 '

nonlinear term in the Gross-Pitaevskii equation is perfectly Z @) b
consistent with this property and the wave function need % 20 4
only be considered on a single period of the potential. A <
simple and efficient solution of Ed1) is obtained by the 5 15l 5
method of steepest descent, i.e., a propagation in imaginary « X
time 7, replacingu¥(x) by —(d/d7) ¢(x,7) on the right- g
hand side of Eq(1). In the long-time limit the wave function ;’ Lop 27 2 \/
norm decays with the ratg, and the renormalized wave = pNY ]
function is the desired solutiog(x). 80 6k A 1

The results of this numerical treatment may be compared &
with the ones of the Thomas-Fermi approximation, which . 0.0 ob—
neglects the kinetic energy operator in Ef). and yields the 05 00 0.5 —05 00 0.5
expression Bloch index in units of «

|¢TF(X)|2: maxX{[ 1 — Vex(x)1/(Ng),0! 3) FIG. 1. Excitation spectra as functions of the Bloch indexn

part (a), Vo=%2«%/M; solid lines: numerical solution of Ed6),
dashed lines: numerical solution of E4.1) and open squares: the

for the single particle density. The single-particle eneugig analytical expressiofil2). In part (b), Vo=23#2x2/M.

determined by the normalization @f(x) to unity. ForV,
<Ng/(27/ k) the density is positive everywhere, apdhas
the same value as for a homogenous gas,Ng/(27/k) f A3 TULU™ (D)= Vu(FIVE (D)1= Suur 7
(=1.5%2k2/M for our choice of parametersFor a larger [UOU (N =VdOVie (D] = ()
modulationV, the atoms fill up the cos potential to a value

n<V, and an explicit integration of the distribution estab- The excitation of the condensate describedab?rzlz in

lishes the connectioI\l betweep and '\; 9, and Vo' Eq (4) is the gapless Goldstone mode resulting from the
Ng/(27/x) = pu— pcos HuNo)m+\Vg—u?lm. There is ) symmetry breakingi10]. It describes the collapse of the

good agreement between the steepest-descent numerical $obal phase of the condensate, a quantity of relevance for

lution of Eq. (1) and the Thomas-Fermi approximation. matter wave interference with another condensate. We shall
return to a discussion of phase diffusion at the end of our
. EXCITATIONS treatment of the excitation spectrum.

o ] ] The equationg6) are linear and show the usual transla-
Excitations out of the condensate may be driven and inion symmetry for periodic problems, which implies that
vestigated “spectroscopically.” They will be populated if giocn’s theorem applies for the solutiobk, Vi, i.e., they

the condensate is at a finite temperatiiy@nd they provide can pe chosen as periodic functions multiplying plane wave
the noncondensed fraction of atoms at zero temperature. Thgctors expifX). For each value of) in the first Brillouin

excitations are determined from linear equations, treating the o — kl2<q<«kl2, a discrete set of eigenfunctions are

density of the condensed atoms as a fixed background.  {5,nq and whem is varied these provide the energy bands

The contribution to the Hamiltonian from noncondensedEn(q):ﬁwn(q) for excitations of the system. Examples of
atoms can be written in the canonical form the resulting band structure are presented as solid lines in

Fig. 1 for the two different values of the potential strength

A 32,2 2.2 H
SH=aP2/2+ 2 ﬁwkglgk, [gk’gl,]:(skk,, (4) Vo=#k“IM an.d Fik4/M. In F|g_. 2 the energy bands are
k%0 shown as functions of the potential strength.

where we have introduced the Bogoliubov transformation of 10

the atomic field operatoral (r)=Ny(r)+ s¥(r) [10],

AN

co

n

5«if<r*>=2k [U(Ngx— Vi (N, (5)

,,/

The functions U(r),Vi(r) fulfill the coupled
Bogoliubov—de Gennes equatiofi]

Energy in units of (h«)?/M
)

[L+2gN|(1)|21U(r) = gN| (1) |2Vi(N) =Fr U (T),

[L+29N|w<F>|2]vk<F>—gN|w<F>|2uk<F>=—hwkvk<F>,(6) 0 Y, in units of (e)/M <0

R FIG. 2. Energy bandéhatched regionsand band gaps as func-
whereL = — (%2/2M)V?+V(r)— u, and they are subject tions of the potential deptl,. The dashed lines indicate the dis-
to the normalization and orthogonality relations: crete eigenvalues for separate condensate fragments.
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We may obtain a simpler, approximate equation for thezone boundary, we can also determine the energy gap,
excitations, if we rewrite the Bogoliubov—de Gennes equaand for V, smaller than u we get a gap ofAE

tions, =Vo\(h°k?I2M)/(8 ) between the lowest and the first ex-
- 1o - - cited band. Wherv,, gets very large we are in the situation
[L+gN[¢(n)[*]g(r) =hodi(r), (8  Of independent condensates with atoms located in each
R . R minimum of the periodic potential. The allowed energy
[L+3gN|(r)[21i(r) =R wyhi(r), bands then converge to discrete excitations, and assuming a

] - - - harmonic approximation to the potential, we obtain the exci-
whefe we hgve |ntr9duce¢k(r)=[uk(r)+Vk(r)]/\/§ and  tation energiesh w, = Vo (722 VK(K+ 1)/2h2k%IM,
di(r)=[U(r) = Vi(r)]/\2. The idea is now to neglect the k=12, ... [11]. These analytical predictions are in good
kinetic energy operator in places where it is relatively leasgreement with the numerical results and are indicated by
significant. In the operatdi_ +3Ng|#(r)|?] the kinetic en-  dashed lines in Fig. 2.
ergy may be neglected in comparison with the remaining Let us come back to the issue of phase diffusion of the
term equal to Pu— Ve, (r)] in the Thomas-Fermi approxi- Bose-Einstein condensate. For brevity, we discuss this issue
mation. Thus, the second equation in E&).can be formally  within a symmetry-breaking framework; the same conclu-
solved for¢(r) and upon insertion in the first equation we sions can be reached with a definite number of particles,

obtain a single eigenvalue equation, where one would discuss the dephasing of an entangled state
R R ) R with different numbers of particles populating different wells
20 = Ve DL+ NG| ()2 ] b (1) = (hw) 2 (1). [12]. Phase differences between wells represent an excitation

9 of the system, which is already accounted for by the
R S Bogoliubov—de Gennes treatment. This is more easily seen if
Subsequently we make the ansafg(r)=W(r)#(r), and e rewrite the discrete sum in E(#) in terms of conjugate
use thaty(r) solves the Gross-Pitaevskii equation, to get thepairs of “momenta” and harmonically bound “positions”

equation (P,,Q.). As in a single-particle problem, where the ground
52 state becomes degenerate if the wells decouple completely, a
— — [t = Ve D[ (1) VAW, () + 2V (1) VW, (r)] number of the condensate excitation energies converge to
M zero (wx—0), and this implies that a number of “free”
= (hwg) Wi (1) g(r). (100  quasiparticles with “momenta’P, appear in addition to the

one representing the global phase in E4). In [11], it is
As the last step, we rep|a@€(|7) by I,/ITF(F) and we note that explicitly shown for a double-well potential how a single
Vo () (1) = = Ve N/H{2[ 1= Vex(r) 1}, so that we €Xcitation determined by function$(x),V(x) with opposite
get the equation signs in the two wells, describes the relative phase of the two
condensate components as such a harmonically bound vari-
able. In the limit of separate condensates the excitation en-
ergy approaches zero, and the functith),V(x), in fact,
. yield new values for the quantity, predicting the correct
= (ha) ®W(r). (1)  independent time scales for phases diffusion of the separated
condensate components.
In our problem, the lowest energy band, as shown in Fig.
2, is associated with such phase variations across the period-
; - . .. icity of the potential. The Bloch-indeg generalizes the odd-
E If we mc(lju_cie the perlodc/i\llc Eotentlsl ?S a _pertL:;ljatlodn Ineven distinction in the double well, and in this context it
i?dig:lk)i)’ and if we expandV(r) on the functione™” an mimics a Bloch ansatz for the phase variation through the
€ , we obtain an analytical approximation for the low- et excitation functions) ,(x),V4(x) obtained for given
est band values ofq. In Fig. 2 it is shown that the excitation energies
P, V of the lowest band decrease when the potential wells get
fhiwg= \/ ( ) ,

h? . . h? - R
- M[M_Vext(r)]vzwk(r)+ Mvvext(r)vwk(r)

Equation(11) generalizes the result of RdfL3] to arbitrary
potentials, and it is in agreement with a hydrodynamical
analysis[14].

1- — (120  deeper. Thus, a whole series of Goldstone modes appear, and
2p rather than using the Bloch ansatz, we may form new modes

- N L corresponding to phase variables, associated with individual
indicated by open squares in Figial The approximation wells. As the calculations ifiL1] clearly indicate, each frag-

skips a couple of derivatives, and in the homogeneous case . e o .
ent acquires a phase diffusion teegP; , with a resulting

whereV,=0 it does not provide the second term in the exactMer :
expression fwq= V2 (h2aZ2M) + (R2qZ2M)2,  readily lifetime of the local phase, comparable to the value obtained

within the Thomas-Fermi approximation in a harmonic well
oWith same curvaturgll],

21 oM

obtained from Eq(6). This omission clearly accounts for the
discrepancy at high energies between the exact excitati
spectrum and the numerical solution to Efj1), shown by
dashed lines in Fig. (&). 5 23

By assuming thatW, is a superposition of traveling - =h( Vo 9) N~ L6 (13
waves, expfx) and expi(q—«)x] near the q=«/2 ¢ '




PRA 58 BOSE-EINSTEIN CONDENSATES IN SPATIALLY ... 1483

IV. COLLECTIVE CONDENSATE DYNAMICS, BLOCH 0.4
OSCILLATIONS

We may induce a collective dynamics of the whole con-
densate by temporally modifying the external poteritigy;.
Experiments have addressed the behavior of condensates
temporally modulated harmonic oscillator trafi5], and
damping of condensate oscillatioff] and depletion of the
condensat¢l7] in such situations are topics of current inter-
est.

We consider the case where a constant force field is addex
along the periodic potentiaVq,{(X) — Ve (X) —FX. A con-
stant external force is equivalent to a constant accelerationo -0.4 ! ! .
the periodic potential, easily realized experimentally by ap- -0.50 —-0.25 0.00 0.25 0.50
plication of laser fields with constant frequency drifts. In q in units of x
recent experimental work$,18,19, this situation was stud-
ied for the dynamics of independent atoms, and concepts,
developed in solid state physics were observed: Bloch oscil\—/
lations, Zener breakdown, Wannier-Stark ladders. In the °
laboratory frame, the atoms in the lowest band of the band

structure are accelerated along with the potential in a dissf—nc the atoms by direct computation of the expectation value

pation free way, and we shall present the theory for thisgf_ltlhe_momentum orierator._ chq ;/alute_s outside thed_flrstt
process applied to a Bose-Einstein condensate. h” ou;n zdonde, we geha periodic un;: 'tf’” cc;rtrﬁspon Ing 1o
We wish to solve the time-dependent Gross-Pitaevskit € extended zone scheme representation of the energy spec-
rum in solid state physics. This is exactly what we want, and

©
2

q) in units of hx/M
o
o

|
©
IS

FIG. 3. The mean velocity(q) for different values o¥. In an
periment q=Ft/h, see text. From above atgq=0.50,
[(h%k?IM)=1.,1.5,1.75,2.,2.25.

equation I . o ; . - .
a it is this periodic behavior of the particle velocity that is
P p2 referred to as Bloch oscillations. In the case of an accelerated
iﬁﬁw(x,t)= (m+vext(x)+ Ng|¢(x,t)|2—Fx) P(x,t), potential, in the laboratory frame the oscillations are super-

(14) imposed on a steady acceleratiorFaM. See Ref[19] for
different physical pictures of this acceleration of independent

where p=—ifid/dx. If we make the ansatzy(x,t)  &tOms. We present in Fig. 3 numerical results §¢g) ob-

—exdiq()x]u(xt) and if we setq(t)=Ft/4 we obtain the tained for different values of the potential depth. Recall
equation foru(x,t): thatq is a function of time, controlled experimentally by the

rate of acceleration of the periodic potential. For shallow
9 [p+q(t)]? ) potential wells, the adiabatic following of the lowest state of
|hﬁu(x,t)= (TﬂLVeﬂ(X) +Nglu(x,t)] )U(X,t)- the system requires an abrupt change in velocity at each Bril-
(15) loin zone boundary, and in this case the adiabatic assumption
will not be valid.
Within an adiabatic approximatioru(x,t) is given by
ug(t)(x) muItipIied.by a phase factor, wheug(x) solves the V. DISCUSSION
eigenvalue equation
We have investigated the behavior of a Bose-Einstein
(p+0)? ’ condensate in a periodic potential. In the static case we have
(W“Lvext(x)Jr Ng|Ug(x)[* |ug(X) = () Ug(X). computed the condensate ground state and the band structure
(16) of excitations. Numerical results are in good agreement with
our simple analytical expressions. It is straightforward to
One might have suggested this equation for the computatiogeneralize the theory to three-dimensional periodic prob-
of the band structure of the condensate in a periodic poterlems, but in this case it seems worthhwile to apply the effec-
tial. Note, however, that it has an entirely different physicaltive methods of solid state physisugmented plane waves,
meaning, since it determines the time-dependent state of thetc) [20].
condensate and the numtegis a given function of time. We We also considered the situation where a constant accel-
recall the approximate character of H46). We are pres- eration is applied to the periodic potential. The prospects to
ently studying the solutions of E¢L5) numerically to verify  accelerate the atoms without spreading seem attractive for
to which extent the adiabaticity assumption may be appliedondensates, e.g., in connection with output couplers for
to our nonlinear problem. atom laser$21]. If the transverse density of the atoms is not
The solution of Eqg.(16) can be determined by the a constant, one has to solve the corresponding 2D or 3D
steepest-descent method, and if this were an independeptoblem, and the dynamics of the condensate may get quite
particle problem, we would obtain the expectation value ofcomplex. This analysis should be carried out together with a
the particle velocity as(t)=#%"1ou(q)/dq evaluated at more detailed analysis also of the transient behavior when
g(t) [20]. Now, we are dealing with a nonlinear problem, the atoms are exposed to the periodic potential, and when
and this expression is not valid. Given the solution of Eq.they eventually leave this potential.
(16), however, it is no problem to obtain the mean velocity Apart from quantitative differences in excitation spectra
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and in the Bloch oscillations of the atoms in an accelerategbriori, we imagine that parameters exist so that the adiaba-
potential, we imagine that, in particular, breakdown of ourticity assumption is fulfilled, and we may even imagine that
simplifying assumptions may cause the most dramatic differthe lack of adiabaticity in higher bands causes a Zener break-
ences between the behavior of interacting and noninteractindown so that noncondensed atoms are not accelerated along
atoms. Transverse instabilities have been menti¢gcand  with the condensate, hence a filtering process may occur. A
we recall that for our analysis of Bloch oscillations, the adia-temporal variation of the periodic potential, e.g., a harmonic
baticity criterion for non-interacting particles of Rgfl9]  oscillation in time[22], may also address the condensate and
cannot immediately be applied; we must both consider théhe noncondensed cloud in different ways, and could be a
passage of the entire condensate to collectively excited stat@gy to excite and investigate different “sounds” in the sys-
and depletion of the condensate during the accelerafion. tem.
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