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Bose-Einstein condensates in spatially periodic potentials

Kirstine Berg-So”rensen1 and Klaus Mo” lmer2
1Niels Bohr Institute, O” rsted Laboratory, Universitetsparken 5, DK-2100 Copenhagen O” , Denmark
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~Received 23 February 1998!

We investigate theoretically the properties of a Bose-Einstein condensate located in a spatially periodic
potential. The excitations of the condensate are obtained from linear equations involving the periodic potential
and the periodic condensate density. The Bloch ansatz therefore applies and the excitation spectrum exhibits
band structure. If the periodic potential is accelerated, the condensate may undergo Bloch oscillations in the
accelerated frame, corresponding to an acceleration without spreading of the entire condensate.
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I. INTRODUCTION

Since the first observation of Bose-Einstein condensa
in trapped dilute gases@1–3# the experimental developmen
in this field have advanced rapidly. Applications of Bos
Einstein condensates have been proposed, and the prop
of condensates in different circumstances have becom
matter of practical interest. In this work we study the infl
ence of a spatially periodic external potential on the prop
ties of a Bose-Einstein condensate. Such a periodic pote
may be induced by a far-off-resonant laser field, and w
present trapped condensates it is possible to have a con
sate extending over many periods of such a field. The sin
atom behavior in a periodic potential has been extensiv
studied in connection with laser cooling and atom optics@4#,
and, recently, the issue of quantum transport has been
dressed both theoretically and experimentally@5#. Our study
of condensates in periodic potentials thus both serves to
eralize these studies to the case of interacting particles, a
presents a new setting for condensate dynamics where
tools for diagnostics and manipulation of condensates m
be suggested. The system of an interacting condensate
periodic potential complements the situation in optical l
tices @6#, where interactions can usually be neglected a
where dissipation due to spontaneous emission of light p
an important role when the individual atoms localize in d
ferent potential minima.

II. THE GROSS-PITAEVSKII EQUATION FOR ATOMS
IN A PERIODIC POTENTIAL

We consider a zero-temperature Bose-Einstein conden
of atoms with massM . The atoms interact by elastic coll
sions and their low kinetic energies permit a replacemen
their short-range interaction by a contact term, so that
single-particle wave function obeys the Gross-Pitaev
equation,

F2
\2

2M
¹21Vext~rW !1Nguc~rW !u2Gc~rW !5mc~rW !. ~1!

We consider a condensate extending over many periods
one-dimensional periodic potential,
PRA 581050-2947/98/58~2!/1480~5!/$15.00
n

-
ties
a

r-
ial
h
en-
le
ly

d-

n-
it

ew
y
a

-
d
ys

ate

f
e
ii

f a

Vext~x!5V0coskx. ~2!

All our calculations will be for the corresponding one
dimensional problem@7#.

Let N denote the number of atoms per period 2p/k of the
periodic potential. When the Gross-Pitaevskii equation
considered in one dimension, the density of the atoms in
two orthogonal directions must be specified, hereby attrib
ing the coefficientg dimension of energy times length. Ver
elongated condensates of length;300 mm and with radii of
;17 mm have been produced with;53106 sodium atoms
@8#. If we assume that such a condensate is introduced
potential with a period of roughly 1mm ~half the wave-
length of an off-resonant laser beam!, we obtainN on the
order of 10 000 andg on the order of 0.001(\2k2/M )k21.
We present calculations for this choice of parameters.

A comment on what we mean by the number of atomsN
may be in order: The physical situation is that a much lar
number of atomsKN are distributed overK periods of the
potential. For a weak modulation of the periodic potenti
these atoms occupy a common wave function extending o
the entire potential. A given period is thus not populated
a definite number of atoms but by a binomial distributio
converging to a Poisson distribution in the limit of largeK.
When the potential modulation increases, we expect to
the condensate break up into separate condensates, an
lowest energy is obtained with a specific number of atoms
each well, because an imbalance effectively correspond
an excitation of the system. Although there seems to b
large physical difference between the united and the fr
mented condensate, we expect the quantitative signatur
be small since the Gross-Pitaevskii equation only differs
significantly for the two cases: our Eq.~1! is the one that
follows from a Poisson distribution ansatz, whereas fo
number state ansatz the factorN is replaced byN21. This
difference is usually neglected in treatments of Bose cond
sates. Also for excitations, to be described below, it has b
shown that there is little quantitative difference between
sults obtained with a definite number and with a Poiss
distribution, @9#, and we therefore believe that our calcul
tions for the condensate density and for the spectrum of
citations of the system are reliable both for small and
large potential modulation.
1480 © 1998 The American Physical Society



tl
d

A

na

e

re
ich

e
b-

al

in
if

T
th

ed

o

t

the
e
for

hall
our

a-
at

ve

re
ds
of
s in
th
e

e

-
-

PRA 58 1481BOSE-EINSTEIN CONDENSATES IN SPATIALLY . . .
The condensate ground state is periodic~note that the
nonlinear term in the Gross-Pitaevskii equation is perfec
consistent with this property!, and the wave function nee
only be considered on a single period of the potential.
simple and efficient solution of Eq.~1! is obtained by the
method of steepest descent, i.e., a propagation in imagi
time t, replacingmc(x) by 2(]/]t)c(x,t) on the right-
hand side of Eq.~1!. In the long-time limit the wave function
norm decays with the ratem, and the renormalized wav
function is the desired solutionc(x).

The results of this numerical treatment may be compa
with the ones of the Thomas-Fermi approximation, wh
neglects the kinetic energy operator in Eq.~1! and yields the
expression

ucTF~x!u25max$@m2Vext~x!#/~Ng!,0% ~3!

for the single particle density. The single-particle energym is
determined by the normalization ofc(x) to unity. For V0
,Ng/(2p/k) the density is positive everywhere, andm has
the same value as for a homogenous gas,m5Ng/(2p/k)
(51.59\2k2/M for our choice of parameters!. For a larger
modulationV0 the atoms fill up the cos potential to a valu
m,V0 and an explicit integration of the distribution esta
lishes the connection betweenm and N, g, and V0:
Ng/(2p/k)5m2mcos21(m/V0)/p1AV0

22m2/p. There is
good agreement between the steepest-descent numeric
lution of Eq. ~1! and the Thomas-Fermi approximation.

III. EXCITATIONS

Excitations out of the condensate may be driven and
vestigated ‘‘spectroscopically.’’ They will be populated
the condensate is at a finite temperatureT, and they provide
the noncondensed fraction of atoms at zero temperature.
excitations are determined from linear equations, treating
density of the condensed atoms as a fixed background.

The contribution to the Hamiltonian from noncondens
atoms can be written in the canonical form

dH5a P̂2/21 (
kÞ0

\vkgk
†gk , @gk ,gk8

†
#5dkk8 , ~4!

where we have introduced the Bogoliubov transformation

the atomic field operators,Ĉ(rW)5ANc(rW)1dĈ(rW) @10#,

dĈ~rW !5(
k

@Uk~rW !ĝk2Vk* ~rW !ĝk
†#. ~5!

The functions Uk(rW),Vk(rW) fulfill the coupled
Bogoliubov–de Gennes equations@10#

@L12gNuc~rW !u2#Uk~rW !2gNuc~rW !u2Vk~rW !5\vkUk~rW !,

@L12gNuc~rW !u2#Vk~rW !2gNuc~rW !u2Uk~rW !52\vkVk~rW !,
~6!

whereL52(\2/2M )¹21Vext(rW)2m, and they are subjec
to the normalization and orthogonality relations:
y

ry

d

so-

-
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e

f

E d3rW@Uk~rW !Uk8
* ~rW !2Vk~rW !Vk8

* ~rW !#5dkk8 . ~7!

The excitation of the condensate described bya P̂2/2 in
Eq. ~4! is the gapless Goldstone mode resulting from
U~1! symmetry breaking@10#. It describes the collapse of th
global phase of the condensate, a quantity of relevance
matter wave interference with another condensate. We s
return to a discussion of phase diffusion at the end of
treatment of the excitation spectrum.

The equations~6! are linear and show the usual transl
tion symmetry for periodic problems, which implies th
Bloch’s theorem applies for the solutionsUk , Vk , i.e., they
can be chosen as periodic functions multiplying plane wa
factors exp(iqx). For each value ofq in the first Brillouin
zone 2k/2,q,k/2, a discrete set of eigenfunctions a
found, and whenq is varied these provide the energy ban
En(q)5\vn(q) for excitations of the system. Examples
the resulting band structure are presented as solid line
Fig. 1 for the two different values of the potential streng
V05\2k2/M and 3\2k2/M . In Fig. 2 the energy bands ar
shown as functions of the potential strength.

FIG. 1. Excitation spectra as functions of the Bloch indexq. In
part ~a!, V05\2k2/M ; solid lines: numerical solution of Eq.~6!,
dashed lines: numerical solution of Eq.~11! and open squares: th
analytical expression~12!. In part ~b!, V053\2k2/M .

FIG. 2. Energy bands~hatched regions! and band gaps as func
tions of the potential depthV0. The dashed lines indicate the dis
crete eigenvalues for separate condensate fragments.
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We may obtain a simpler, approximate equation for
excitations, if we rewrite the Bogoliubov–de Gennes eq
tions,

@L1gNuc~rW !u2#ck~rW !5\vkfk~rW !,
~8!

@L13gNuc~rW !u2#fk~rW !5\vkck~rW !,

where we have introducedck(rW)5@Uk(rW)1Vk(rW)#/A2 and
fk(rW)5@Uk(rW)2Vk(rW)#/A2. The idea is now to neglect th
kinetic energy operator in places where it is relatively le
significant. In the operator@L13Nguc(rW)u2# the kinetic en-
ergy may be neglected in comparison with the remain
term equal to 2@m2Vext(rW)# in the Thomas-Fermi approxi
mation. Thus, the second equation in Eq.~8! can be formally
solved forfk(rW) and upon insertion in the first equation w
obtain a single eigenvalue equation,

2@m2Vext~rW !#@L1Nguc~rW !u2#ck~rW !5~\vk!
2ck~rW !.

~9!

Subsequently we make the ansatz,ck(rW)5Wk(rW)c(rW), and
use thatc(rW) solves the Gross-Pitaevskii equation, to get
equation

2
\2

M
@m2Vext~rW !!@c~rW !¹2Wk~rW !12¹c~rW !¹Wk~rW !#

5~\vk!
2Wk~rW !c~rW !. ~10!

As the last step, we replacec(rW) by cTF(rW) and we note that
¹cTF(rW)/cTF(rW)52¹Vext(rW)/$2@m2Vext(rW)#%, so that we
get the equation

2
\2

M
@m2Vext~rW !#¹2Wk~rW !1

\2

M
¹Vext~rW !¹Wk~rW !

5~\vk!
2Wk~rW !. ~11!

Equation~11! generalizes the result of Ref.@13# to arbitrary
potentials, and it is in agreement with a hydrodynami
analysis@14#.

If we include the periodic potential as a perturbation
Eq. ~11!, and if we expandWk(rW) on the functionseiqx and
ei (q6k)x, we obtain an analytical approximation for the low
est band

\vq5A2m
\2q2

2M S 12
V0

2

2m2D , ~12!

indicated by open squares in Fig. 1~a!. The approximation
skips a couple of derivatives, and in the homogeneous c
whereV050 it does not provide the second term in the ex
expression \vq5A2m(\2q2/2M )1(\2q2/2M )2, readily
obtained from Eq.~6!. This omission clearly accounts for th
discrepancy at high energies between the exact excita
spectrum and the numerical solution to Eq.~11!, shown by
dashed lines in Fig. 1~a!.

By assuming thatWk is a superposition of traveling
waves, exp(iqx) and exp@i(q2k)x# near the q5k/2
e
-

t

g

e

l

se
t

on

zone boundary, we can also determine the energy g
and for V0 smaller than m we get a gap of DE
5V0A(\2k2/2M )/(8m) between the lowest and the first e
cited band. WhenV0 gets very large we are in the situatio
of independent condensates withN atoms located in each
minimum of the periodic potential. The allowed energ
bands then converge to discrete excitations, and assumi
harmonic approximation to the potential, we obtain the ex
tation energies\vk5AV0 /(\2k2/M )Ak(k11)/2\2k2/M ,
k51,2, . . . @11#. These analytical predictions are in goo
agreement with the numerical results and are indicated
dashed lines in Fig. 2.

Let us come back to the issue of phase diffusion of
Bose-Einstein condensate. For brevity, we discuss this is
within a symmetry-breaking framework; the same conc
sions can be reached with a definite number of partic
where one would discuss the dephasing of an entangled
with different numbers of particles populating different we
@12#. Phase differences between wells represent an excita
of the system, which is already accounted for by t
Bogoliubov–de Gennes treatment. This is more easily see
we rewrite the discrete sum in Eq.~4! in terms of conjugate
pairs of ‘‘momenta’’ and harmonically bound ‘‘positions’

( P̂k ,Q̂k). As in a single-particle problem, where the grou
state becomes degenerate if the wells decouple complete
number of the condensate excitation energies converg
zero (vk→0), and this implies that a number of ‘‘free’

quasiparticles with ‘‘momenta’’P̂k appear in addition to the
one representing the global phase in Eq.~4!. In @11#, it is
explicitly shown for a double-well potential how a sing
excitation determined by functionsU(x),V(x) with opposite
signs in the two wells, describes the relative phase of the
condensate components as such a harmonically bound
able. In the limit of separate condensates the excitation
ergy approaches zero, and the functionsU(x),V(x), in fact,
yield new values for the quantitya, predicting the correct
independent time scales for phases diffusion of the separ
condensate components.

In our problem, the lowest energy band, as shown in F
2, is associated with such phase variations across the pe
icity of the potential. The Bloch-indexq generalizes the odd
even distinction in the double well, and in this context
mimics a Bloch ansatz for the phase variation through
lowest excitation functionsUq(x),Vq(x) obtained for given
values ofq. In Fig. 2 it is shown that the excitation energie
of the lowest band decrease when the potential wells
deeper. Thus, a whole series of Goldstone modes appear
rather than using the Bloch ansatz, we may form new mo
corresponding to phase variables, associated with individ
wells. As the calculations in@11# clearly indicate, each frag
ment acquires a phase diffusion terma i P̂i

2 , with a resulting
lifetime of the local phase, comparable to the value obtain
within the Thomas-Fermi approximation in a harmonic w
with same curvature@11#,

tc5\SAV0k2

3

g

2D 22/3

N21/6. ~13!
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IV. COLLECTIVE CONDENSATE DYNAMICS, BLOCH
OSCILLATIONS

We may induce a collective dynamics of the whole co
densate by temporally modifying the external potentialVext.
Experiments have addressed the behavior of condensat
temporally modulated harmonic oscillator traps@15#, and
damping of condensate oscillations@16# and depletion of the
condensate@17# in such situations are topics of current inte
est.

We consider the case where a constant force field is ad
along the periodic potential,Vext(x)→Vext(x)2Fx. A con-
stant external force is equivalent to a constant acceleratio
the periodic potential, easily realized experimentally by a
plication of laser fields with constant frequency drifts.
recent experimental works@5,18,19#, this situation was stud
ied for the dynamics of independent atoms, and conce
developed in solid state physics were observed: Bloch os
lations, Zener breakdown, Wannier-Stark ladders. In
laboratory frame, the atoms in the lowest band of the b
structure are accelerated along with the potential in a di
pation free way, and we shall present the theory for t
process applied to a Bose-Einstein condensate.

We wish to solve the time-dependent Gross-Pitaev
equation

i\
]

]t
c~x,t !5S p2

2M
1Vext~x!1Nguc~x,t !u22FxDc~x,t !,

~14!

where p52 i\]/]x. If we make the ansatz,c(x,t)
5exp@iq(t)x#u(x,t) and if we setq(t)5Ft/\ we obtain the
equation foru(x,t):

i\
]

]t
u~x,t !5S @p1q~ t !#2

2M
1Vext~x!1Nguu~x,t !u2Du~x,t !.

~15!

Within an adiabatic approximationu(x,t) is given by
uq(t)(x) multiplied by a phase factor, whereuq(x) solves the
eigenvalue equation

S ~p1q!2

2M
1Vext~x!1Nguuq~x!u2Duq~x!5m~q!uq~x!.

~16!

One might have suggested this equation for the computa
of the band structure of the condensate in a periodic po
tial. Note, however, that it has an entirely different physic
meaning, since it determines the time-dependent state o
condensate and the numberq is a given function of time. We
recall the approximate character of Eq.~16!. We are pres-
ently studying the solutions of Eq.~15! numerically to verify
to which extent the adiabaticity assumption may be app
to our nonlinear problem.

The solution of Eq. ~16! can be determined by th
steepest-descent method, and if this were an indepen
particle problem, we would obtain the expectation value
the particle velocity asv(t)5\21]m(q)/]q evaluated at
q(t) @20#. Now, we are dealing with a nonlinear problem
and this expression is not valid. Given the solution of E
~16!, however, it is no problem to obtain the mean veloc
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of the atoms by direct computation of the expectation va
of the momentum operator. Forq values outside the firs
Brillouin zone, we get a periodic function corresponding
the extended zone scheme representation of the energy
trum in solid state physics. This is exactly what we want, a
it is this periodic behavior of the particle velocity that
referred to as Bloch oscillations. In the case of an accelera
potential, in the laboratory frame the oscillations are sup
imposed on a steady acceleration atF/M . See Ref.@19# for
different physical pictures of this acceleration of independ
atoms. We present in Fig. 3 numerical results forv(q) ob-
tained for different values of the potential depthV0. Recall
thatq is a function of time, controlled experimentally by th
rate of acceleration of the periodic potential. For shallo
potential wells, the adiabatic following of the lowest state
the system requires an abrupt change in velocity at each B
loin zone boundary, and in this case the adiabatic assump
will not be valid.

V. DISCUSSION

We have investigated the behavior of a Bose-Einst
condensate in a periodic potential. In the static case we h
computed the condensate ground state and the band stru
of excitations. Numerical results are in good agreement w
our simple analytical expressions. It is straightforward
generalize the theory to three-dimensional periodic pr
lems, but in this case it seems worthhwile to apply the eff
tive methods of solid state physics~augmented plane waves
etc.! @20#.

We also considered the situation where a constant ac
eration is applied to the periodic potential. The prospects
accelerate the atoms without spreading seem attractive
condensates, e.g., in connection with output couplers
atom lasers@21#. If the transverse density of the atoms is n
a constant, one has to solve the corresponding 2D or
problem, and the dynamics of the condensate may get q
complex. This analysis should be carried out together wit
more detailed analysis also of the transient behavior w
the atoms are exposed to the periodic potential, and w
they eventually leave this potential.

Apart from quantitative differences in excitation spec

FIG. 3. The mean velocityv(q) for different values ofV0. In an
experiment q5Ft/\, see text. From above atq50.50,
V0 /(\2k2/M )51.,1.5,1.75,2.,2.25.
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and in the Bloch oscillations of the atoms in an accelera
potential, we imagine that, in particular, breakdown of o
simplifying assumptions may cause the most dramatic dif
ences between the behavior of interacting and noninterac
atoms. Transverse instabilities have been mentioned@7#, and
we recall that for our analysis of Bloch oscillations, the ad
baticity criterion for non-interacting particles of Ref.@19#
cannot immediately be applied; we must both consider
passage of the entire condensate to collectively excited s
and depletion of the condensate during the acceleratioA
an
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tt.
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tes

priori , we imagine that parameters exist so that the adia
ticity assumption is fulfilled, and we may even imagine th
the lack of adiabaticity in higher bands causes a Zener bre
down so that noncondensed atoms are not accelerated a
with the condensate, hence a filtering process may occu
temporal variation of the periodic potential, e.g., a harmo
oscillation in time@22#, may also address the condensate a
the noncondensed cloud in different ways, and could b
way to excite and investigate different ‘‘sounds’’ in the sy
tem.
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