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Bose-Einstein condensation in an external potential at zero temperature: General theory
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Bose-Einstein condensation is described in terms of the condensate wave function and the pair-excitation
function, the latter being responsible for the existence of phonons. This minimal description in terms of these
two functions is generalized to the case with an external potential. For a dilute gas with short-range pairwise
repulsive interaction and at very low temperatures when the Bose-Einstein condensation is nearly complete, a
partial differential equation is obtained for the condensate wave function and an integro-differential equation
for the pair excitation. Experimentally, the external potential is used to trap the atoms, i.e., to keep them
together. Since the trap is of macroscopic dimensions, the resulting external potential is often slowly varying.
In these cases and when the condensate is in the lowest state, the partial differential equation for the condensate
wave function and the integro-differential equation for the pair excitation are solved approximately for the case
of a time-independent trap.@S1050-2947~98!04208-5#

PACS number~s!: 03.75.Fi, 32.80.Pj, 05.20.2y
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I. INTRODUCTION

Over a year ago, in a remarkable paper@1#, Anderson,
Ensher, Matthews, Wieman, and Cornell reported the fi
experimental observation of Bose-Einstein condensation
weakly interacting system. The system used is a vapo
rubidium-87 atoms confined by a magnetic trap. Seve
similar experiments on various atomic vapors followed so
after @2#.

From the theoretical point of view, the most importa
implication of the presence of the trap is that there is
translational invariance. Thirty-five years ago, Bose-Einst
condensation without translational invariance was treated
a low-density system of hard spheres at zero temperature@3#.
It is the purpose of the present investigation to apply t
approach to these recent cases of interest where a tra
present.

The key idea of the approach in Ref.@3# is the following.
Let F(r ,t) be the wave function for the Bose-Einstein co
densate at timet, while a0* (t) anda0(t) are the correspond
ing creation and annihilation operators for thisF(r ,t). Then
the terms in the Hamiltonian due to boson-boson pair in
action are classified according to the numbern of times that
a0* (t) anda0(t) appear, where thisn can be 4, 3, 2, 1, or 0
To the first approximation, the equation of motion forF(r ,t)
is determined by the terms withn53. In the usual case
where the Bose-Einstein condensate is in the single-par
zero-momentum state, thesen53 terms are absent. See al
Sec. II.

When the condensate is in the zero-momentum state,
known that pair excitation plays an important role@4#. This is
the process where two zero momentum bosons in the B
Einstein condensate scatter from each other to produce a
of bosons of opposite momenta. In particular, from t
atomic point of view, this is the process that is responsi
for the existence of phonons and sound vibrations in a su
fluid. When translational invariance does not hold, pair ex
tation remains equally important; however, since there is
pairing of equal but opposite momenta, this process is m
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more complicated@3#. The pair-excitation function, to be dis
cussed in Sec. III, satisfies an integro-differential equat
involving the external potential.

Experimentally, the external potential is used to keep
large numberN of atoms together. It is therefore necessary
use thisN for normalization. This is carried out in Sec. IV
Such external potentials are often time-independent and
tially slowly varying. When the condensate is in the lowe
state, both the condensate wave function and the p
excitation function can be found explicitly by solving ap
proximately the nonlinear Schro¨dinger equation and the
integro-differential equation of Secs. II and III. This is ca
ried out in Sec. V.

This paper is devoted to the study of the simplest situat
where the temperature is sufficiently low that the Bos
Einstein condensation is nearly 100%. The technique u
here can be combined with the pioneering work of Lee a
Yang @5# to treat the case where the Bose-Einstein cond
sation is less than 100%, i.e., the case where the super
and the normal fluid coexist. This is going to be presented
a later paper.

II. THE CONDENSATE

Consider a system ofN pairwise interacting bosons in a
external potentialVe . The Hamiltonian is (\52m51)

(
i 51

N

pi
21(

i , j
V0~r i j !1(

i 51

N

Ve~r i ,t !, ~2.1!

where

r i j 5ur i2r j u, ~2.2!

and V0 is a short-range repulsive potential with scatteri
lengtha.0. For example,V0 may be the hard-sphere pote
tial, which is zero forr i j .a and infinite for r i j ,a. The
external potentialVe(r ,t) may have explicit dependence o
the timet.
1465 © 1998 The American Physical Society
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In the late 1950s, Huang and Yang@6# initiated the appli-
cation of the method of pseudopotentials to many-body pr
lems. This method developed rapidly within a few years@7–
9#. When this method is used, the Hamiltonian~2.1! is
replaced approximately by

H85T1V8, ~2.3!

with

T5(
i

@pi
21Ve~r i ,t !# ~2.4!

and

V854pa(
iÞ j

d~r i2r j !
]

]r i j

r i j . ~2.5!

For the present purpose, it is sufficient to use

H5T1V, ~2.6!

where

V54pa(
iÞ j

d~r i2r j !. ~2.7!

The only difficulty involved in usingH instead ofH8 is the
appearance of a familiar type of divergence, which may
removed using the procedure of Refs.@4# and @8#.

It is convenient to rewrite thisH in the language of quan
tized fields:

T5E dr @ u¹c~r !u21Ve~r ,t !uc~r !u2# ~2.8!

and

V54paE dr c* ~r !2c~r !2, ~2.9!

wherec(r ) satisfies the usual commutation rules for a bos
field.

Let F(r ,t) be the wave function at timet for the Bose-
Einstein condensate, i.e., the wave function for the state
is macroscopically occupied. For the case under consi
ation, this macroscopic occupation is nearly 100%. In g
eral, this wave functionF(r ,t) depends ont and is complex.
It is normalized by

V21E dr uF~r ,t !u251 ~2.10!

for all t, whereV is the volume of the box, and the creatio
and annihilation operators for this condensate state are

a0* ~ t !5V21/2E dr F~r ,t !c* ~r !,
~2.11!

a0~ t !5V21/2E dr F* ~r ,t !c~r !.
-

e

n

at
r-
-

SinceF(r ,t) is in general time-dependent, so area0* (t) and
a0(t). They, of course, satisfy the commutation rule

@a0~ t !,a0* ~ t !#51 ~2.12!

for all t. With the parts ofc* (r ) andc(r ) corresponding to
this F(r ,t) singled out, definec1* (r ,t) andc1(r ,t) by

c* ~r !5V21/2F* ~r ,t !a0* ~ t !1c1* ~r ,t !,
~2.13!

c~r !5V21/2F~r ,t !a0~ t !1c1~r ,t !.

Since this stateF is macroscopically occupied, for low
densities thesec1* andc1 may be considered to be a sma
perturbation@3,4#. Moreover, at low temperatures very ne
zero, the relation

N5E dr c* ~r !c~r !

5a0* ~ t !a0~ t !1E dr c1* ~r ,t !c1~r ,t ! ~2.14!

may be approximated by

N;a0* ~ t !a0~ t !. ~2.15!

Clearly this approximation can be used only when the Bo
Einstein condensation is nearly complete.

To first order inc1* (r ,t) andc1(r ,t), theT andV of Eqs.
~2.4! and ~2.7! are approximated by

T15N@ z̄~ t !1ze~ t !#1V21/2a0~ t !E dr @2¹2F~r ,t !

1Ve~r ,t !F~r ,t !#c1* ~r ,t !1V21/2a0* ~ t !

3E dr @2¹2F* ~r ,t !1Ve~r ,t !F* ~r ,t !#c1~r ,t !

~2.16!

and

V15
4paN

V
S Nz~ t !

12V21/2a0~ t !E dr uF~r ,t !u2F~r ,t !c1* ~r ,t !

12V21/2a0* ~ t !E dr uF~r ,t !u2F* ~r ,t !c1~r ,t ! D ,

~2.17!

where

z̄~ t !5V21E dr u¹F~r ,t !u2,

z~ t !5V21E dr uF~r ,t !u4, ~2.18!

ze~ t !5V21E dr Ve~r ,t !uF~r ,t !u2.
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Note that Eq.~2.17! here is identical to Eq.~2.14! of Ref. @3#,
but T1 is modified by the presence of the external poten
Ve(r ,t).

Since the HamiltonianT11V1 is linear in c1* (r ,t) and
c1(r ,t), it is a simple matter to take a Schro¨dinger state
vector of the form

C~ t !5~N! !21/2a0* ~ t !Nuvac&, ~2.19!

whereuvac& is defined by

c~r !uvac&50. ~2.20!

The Schro¨dinger equation forC,

~T11V1!C~ t !5 i ~]/]t !C~ t !, ~2.21!

then leads to a nonlinear Schro¨dinger equation forF(r ,t):

i S ]

]t DF~r ,t !5S 2¹21Ve~r ,t !1
8paN

V
uF~r ,t !u2

2
4paN

V
z~ t ! DF~r ,t !. ~2.22!

This is essentially Eq.~2.21! of Ref. @3#. See also the paper
of Pitaevskii@10# and Gross@11#.

In the time-independent case,F(r ,t) takes the form

F~r ,t !5F~r !e2 iEt, ~2.23!

whereE is the energy per particle for the condensate, and
~2.22! reduces to

S 2¹21Ve~r !1
8paN

V
uF~r !u22

4paN

V
z2EDF~r !50.

~2.24!

Note thatVe(r ,t) in Eq. ~2.22! can have explicit time depen
dence, but notVe(r ) in Eq. ~2.24!.
l

q.

There are two basic lengths in Eq.~2.24!: ~i! the length
over whichVe(r ) varies, and~ii ! the length scale determine
by (4paN/V)uF(r )u2. It is the interplay between these tw
lengths that is responsible for some of the interesting pr
erties of this nonlinear Schro¨dinger equation. The simples
example of this interplay is the case of the rigid bounda
@3,4#.

III. PAIR PRODUCTION

Since the time-dependent formalism and the tim
independent formalism are closely related, the choice
made to treat pair production in this section using the tim
independent formalism. In the absence of the external po
tial, a possible approach is to use the Bogoliubov trans
mation @12#. An equivalent procedure as used in Ref.@4#
involves diagonalizing a matrix. In the Appendix here, th
procedure of Lee, Huang, and Yang@4#, as discussed in thei
Appendix I, is recast in a form more suitable for generaliz
tion to the present case. See also Ref.@13#.

In the time-independent formalism, the creation and an
hilation operators for the condensate are

a0* 5V21/2E dr F~r !c* ~r !,
~3.1!

a05V21/2E dr F* ~r !c~r !.

By Eq. ~2.23!, these are related toa0* (t) anda0(t) by

a0* ~ t !5e2 iEta0* , a0~ t !5eiEta0 . ~3.2!

Equations~2.16! and ~2.17! give approximations to theT
andV of Eqs.~2.8! and ~2.9! to the first order inc* (r ) and
c(r ). In order to study pair production, what is needed is
second-order approximation toT andV. Here, Eq.~2.15! for
N is no longer accurate enough, and Eq.~2.14! needs to be
used. Thus,
are
T5N~ z̄1ze!1V21/2a0E dr @2¹2F~r !1Ve~r !F~r !#c1* ~r !1V21/2a0* E dr @2¹2F* ~r !1Ve~r !F* ~r !#c1~r !

1E dr @ u¹c1~r !u21Ve~r !c1* ~r !c1~r !2~ z̄1ze!c1* ~r !c1~r !# ~3.3!

and

V25
4paN

V
FNz12V21/2a0E dr uF~r !u2F~r !c1* ~r !12V21/2a0* E dr uF~r !u2F* ~r !c1~r !

1E dr$@22z14uF~r !u2#c1* ~r !c1~r !1N21a0
2F~r !2c1* ~r !21N21a0*

2F* ~r !2c1~r !2%G . ~3.4!

The first terms in Eqs.~3.3! and~3.4! are constants, while the sum of those terms involving a factor ofV21/2 also leads to
a constant by virtue of the nonlinear Schro¨dinger equation~2.24! for F(r ). We therefore concentrate on the terms that
quadratic inc1* (r ) andc1(r ):
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H25E dr H u¹c1~r !u21F2 z̄2ze2
8paN

V
z1Ve~r !Gc1* ~r !c1~r !1

4paN

V
@4uF~r !u2c1* ~r !c1~r !1N21a0

2F~r !2c1* ~r !2

1N21a0*
2F* ~r !2c1~r !2#J . ~3.5!
This is a quadratic form inc1* (r ) andc1(r ).
Following the procedure in the Appendix, define

H285e2PH2eP, ~3.6!

where@3#

P5~2N!21E dr dr 8c1* ~r !c1* ~r 8!K0~r ,r 8!a0
2 . ~3.7!

Without loss of generality, chooseK0 to satisfy

K0~r ,r 8!5K0~r 8,r ! ~3.8!

and

E dr F* ~r !K0~r ,r 8!50. ~3.9!

Since it follows from Eq.~2.13! that

@c1~r !,c1* ~r 8!#5d3~r2r 8!2V21F~r !F* ~r 8!,
~3.10!

it is straightforward to verify that

@c1~r !,eP#5N21E dr 8K0~r ,r 8!c1* ~r 8!ePa0
2 ,

~3.11!
@c1* ~r !c1~r !,eP#5N21E dr 8K0~r ,r 8!c1* ~r !c1* ~r 8!ePa0
2 ,

~3.12!

@ u¹c1~r !u2,eP#5N21E dr 8¹ rK0~r ,r 8!

3¹ rc1* ~r !c1* ~r 8!ePa0
2 , ~3.13!

and

@c1~r !2,eP#5N21ePFK0~r ,r !

12E dr 8K0~r ,r 8!c1* ~r !c1~r 8!

1N21E dr 8dr 9K0~r ,r 8!K0~r ,r 9!

3c1* ~r 8!c1* ~r 9!a0
2Ga0

2 . ~3.14!

Using these commutation relations, theH28 of Eq. ~3.6! is
given by

H285H21e2P@H2 ,eP#5H291H2c8 , ~3.15!

where
H295E dr H u¹c1~r !u21F2 z̄2
8paN

V
z2ze1Ve~r !Gc1* ~r !c1~r !1

4paN

V
@4uF~r !u2c1* ~r !c1~r !

1N21F* ~r !2a0*
2c1~r !2#1F* ~r !2

4paN

V
FK0~r ,r !12E dr 8K0~r ,r 8!c1* ~r 8!c1~r !G J , ~3.16!

andH2c8 contains all the terms that are quadratic inc1* (r ) and hence noc1(r ):

H2c8 5N21E dr H 4paN

V
F~r !2c1* ~r !22E dr 8@¹ r

2K0~r ,r 8!#c1* ~r !c1* ~r 8!

1F2 z̄2
8paN

V
z2ze1Ve~r !G E dr 8K0~r ,r 8!c1* ~r !c1* ~r 8!1

4paN

V
F4uF~r !u2E dr 8K0~r ,r 8!c1* ~r !c1* ~r 8!

1F* ~r !2E dr 8dr 9K0~r ,r 8!K0~r ,r 9!c1* ~r 8!c1* ~r 9!G J a0
2 . ~3.17!

Similar to Eqs.~3.7!–~3.9!, defineL(r ,r 8) by

H2c8 5~2N!21E dr dr 8L~r ,r 8!c1* ~r !c1* ~r 8!a0
2 , ~3.18!
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L~r ,r 8!5L~r 8,r !, ~3.19!

and

E dr F* ~r 8!L~r ,r 8!50. ~3.20!

As a generalization of Eq.~A4! in the Appendix, the pair-production distributionK0(r ,r 8) is determined by the condition

L~r ,r 8!50. ~3.21!

It only remains to rewrite Eq.~3.21! in the form of an integro-differential equation forK0(r ,r 8):

L~r ,r 8!52¹2K0~r ,r 8!2¹8 2 K0~r ,r 8!1
8paN

V
F~r !2d~r2r 8!

1H 22z̄2
16paN

V
z22ze1Ve~r !1Ve~r 8!1

16paN

V
@ uF~r !u21uF~r 8!u2#J K0~r ,r 8!

1
8paN

V E dr 9F* ~r 9!2K0~r ,r 9!K0~r 8,r 9!2l~r !F~r 8!2l~r 8!F~r !

50, ~3.22!

wherel(r ) is to be determined by Eq.~3.20!.
This determination is carried out by multiplying byF* (r 8) and then integrating overr 8. An integration by parts gives

E dr 8K0~r ,r 8!F2¹8 2 1Ve~r 8!1
16paN

V
uF~r 8!u2GF* ~r 8!1

8paN

V
uF~r !u2F~r !5l~r !V1F~r !E dr 8F* ~r 8!l~r 8!.

~3.23!

Equation~2.24! may be used to give

l~r !5
8paN

V2 F uF~r !u2F~r !1E dr 8K0~r ,r 8!uF~r 8!u2F* ~r 8!2 1
2 zF~r !G . ~3.24!

The integro-differential equation forK0(r ,r 8) is explicitly

2¹2K0~r ,r 8!2¹8 2 K0~r ,r 8!1
8paN

V
F~r !2d~r2r 8!1H 22z̄2

16paN

V
z22ze1Ve~r !1Ve~r 8!

1
16paN

V
@ uF~r !u21uF~r 8!u2#J K0~r ,r 8!1

8paN

V E dr 9F* ~r 9!2K0~r ,r 9!K0~r 8,r 9!

5
8paN

V2 HF~r !F~r 8!@ uF~r !u21uF~r 8!u22z#1F~r !E dr 9K0~r 8,r 9!uF~r 9!u2F* ~r 9!

1F~r 8!E dr 9K0~r ,r 9!uF~r 9!u2F* ~r 9!J . ~3.25!

For completeness, we write down the corresponding equation for the time-dependent case. In this case, theV is approxi-
mated by

V25
4paN

V
FNz~ t !12V21/2a0~ t !E dr uF~r ,t !u2F~r ,t !c1* ~r ,t !12V21/2a0* ~ t !E dr uF~r ,t !u2F* ~r ,t !c1~r ,t !

1E dr $@22z~ t !14uF~r ,t !u2#c1* ~r ,t !c1~r ,t !1N21a0~ t !2F~r ,t !2c1* ~r ,t !21N21a0* ~ t !2F* ~r ,t !2c1~r ,t !2%G ,
~3.26!

and theN-body wave function takes the form
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C~ t !5N~ t !eP~ t !~N! !21/2a0* ~ t !Nuvac&, ~3.27!

whereP(t) describes the creation of pairs from the condensate

P~ t !5~2N!21E dr dr 8c1* ~r ,t !c1* ~r 8,t !K0~r ,r 8;t !a0~ t !2, ~3.28!

andN(t) is the normalization constant. It should be noted that the reduction to the time-independent case involves th
factor

K0~r ,r 8;t !5e22iEtK0~r ,r 8!. ~3.29!

The time-dependent version of Eq.~3.25! is

F i
]

]t
22E~ t !GK0~r ,r 8;t !52¹2K0~r ,r 8;t !2¹82K0~r ,r 8;t !1

8paN

V
F~r ,t !2d~r2r 8!1H 22z̄~ t !2

16paN

V
z~ t !22ze~ t !

1Ve~r ,t !1Ve~r 8,t !1
16paN

V
@ uF~r ,t !u21uF~r 8,t !u2#J K0~r ,r 8;t !

1
8paN

V E dr 9F* ~r 9,t !2K0~r ,r 9;t !K0~r 8,r 9;t !2
8paN

V2 HF~r ,t !F~r 8,t !

3@ uF~r ,t !u21uF~r 8,t !u22z~ t !#1F~r ,t !E dr 9K0~r 8,r 9;t !uF~r 9,t !u2F* ~r 9,t !

1F~r 8,t !E dr 9K0~r ,r 9;t !uF~r 9,t !u2F* ~r 9,t !J , ~3.30!
l
is

ily
n

whereE(t) on the left-hand side is defined by

E~ t !5 iV21E dr
]F~r ,t !

]t
F* ~r ,t !. ~3.31!

Compare with Sec. 7 of Ref.@3#.

IV. ATOMIC TRAP

One immediate consequence of the trapping potentia
that the volumeV no longer has a well-defined meaning. It
indeed possible to assign a somewhat arbitrary value toV,
and the final results will be independent of this arbitrar
assigned value. A better procedure is to useN, the total num-
ber of particles, as the normalization instead ofV. In terms
of the condensate wave function of Eq.~2.10!, define

F̃~r ,t !5~N/V!1/2F~r ,t !, ~4.1!

so that Eq.~2.10! becomes
is

N21E dr uF̃~r ,t !u251. ~4.2!

Note that, whileF(r ,t) is dimensionless, theF̃(r ,t) here
has the dimension of (length)23/2. Similar to thez(t) of Eq.
~2.18!, define

z̃~ t !5N21E dr uF̃~r ,t !u4, ~4.3!

which is equal toNz(t)/V.
In terms of thisF̃(r ,t), the basic equations of motio

~2.22! and ~3.30! for F̃ andK0 are, respectively,

i S ]

]t D F̃~r ,t !5@2¹21Ve~r ,t !18pauF̃~r ,t !u2

24paz̃~ t !#F̃~r ,t !, ~4.4!

and
F i
]

]t
22E~ t !GK0~r ,r 8;t !52¹2K0~r ,r 8;t !2¹82K0~r ,r 8;t !18paF̃~r ,t !2d~r2r 8!1$22z̄~ t !216paz̃~ t !22ze~ t !

1Ve~r ,t !1Ve~r 8,t !116pa@ uF̃~r ,t !u21uF̃~r 8,t !u2#%K0~r ,r 8;t !

18paE dr 9F̃* ~r 9,t !2K0~r ,r 9;t !K0~r 8,r 9;t !2
8pa

N H F̃~r ,t !F̃~r 8,t !

3@ uF̃~r ,t !u21uF̃~r 8,t !u22 z̃~ t !#1F̃~r ,t !E dr 9K0~r 8,r 9;t !uF̃~r 9,t !u2F̃* ~r 9,t !

1F̃~r 8,t !E dr 9K0~r ,r 9;t !uF̃~r 9,t !u2F̃* ~r 9,t !J , ~4.5!
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wherez̄(t) andze(t) are defined in Eq.~2.18!, and

E~ t !5 iN21E dr
]F̃~r ,t !

]t
F̃* ~r ,t !. ~4.6!

In the time-independent case given by Eq.~3.29! and

F̃~r ,t !5F̃~r !e2 iEt, ~4.7!

the above equations of motion reduce to

@2¹21Ve~r !18pauF̃~r !u224paz̃2E#F̃~r !50, ~4.8!

and

2¹2K0~r ,r 8!2¹82K0~r ,r 8!18paF̃~r !2d~r2r 8!1$22z̄216paz̃22ze1Ve~r !1Ve~r 8!

116pa@ uF̃~r !u21uF̃~r 8!u2#%K0~r ,r 8!18paE dr 9F̃* ~r 9!2K0~r ,r 9!K0~r 8,r 9!

58paN21H F̃~r !F̃~r 8!@ uF̃~r !u21uF̃~r 8!u22 z̃ #1F̃~r !E dr 9K0~r 8,r 9!uF̃~r 9!u2F̃* ~r 9!

1F̃~r 8!E dr 9K0~r ,r 9!uF̃~r 9!u2F̃* ~r 9!J . ~4.9!
e.

in
o
on

n

.

ate

n

In Eqs.~4.2!–~4.9!, the volumeV does not appear anywher
In the next section, Eqs.~4.8! and ~4.9! will be studied

under the assumption that the external potentialVe(r ) is suf-
ficiently slowly varying. This case is of interest because
the experiments@1,2# the magnetic traps are necessarily
macroscopic dimensions. Note that in the following secti
only the simpler time-independent cases are treated.

V. CONDENSATE IN A TRAP

When the condensate is in the lowest state, its wave fu
tion F̃(r ) can be chosen to be non-negative. Thus, Eq.~4.8!
is

@2¹21Ve~r !18paF̃~r !224paz̃2E#F̃~r !50.
~5.1!

When Ve(r ) is slowly varying, a first approximation to Eq
~5.1! is obtained by neglecting the first term2¹2F̃(r ) @14#,
i.e.,

@Ve~r !18paF̃~r !224paz̃2E#F̃~r !50. ~5.2!

This means that

F̃~r !5$@4paz̃1E2Ve~r !#/~8pa!%1/2 ~5.3a!

in some region, sayR0, and

F̃~r !50 ~5.3b!

outside ofR0. It follows from Eq. ~5.3a! that

Ve~r !<4paz̃1E ~5.4!
f
,

c-

in R0. Furthermore, sinceF̃(r ) is necessarily continuous,

Ve~r !54paz̃1E ~5.5!

on the boundary ofR0.
Multiplying Eq. ~5.2! by F̃(r ) and integrating overr give

E5ze14paz̃. ~5.6!

GivenN, the value ofz̃ is determined by Eqs.~4.2! and~4.3!.
With Eq. ~5.6!, the approximate solution~5.3! is

F̃~r !5H $z̃1~8pa!21@ze2Ve~r !#%1/2 insideR0

0 outsideR0 .
~5.7!

As mentioned above, in writing down Eq.~5.2!, the term
2¹2F̃(r ) has been neglected. However, if the approxim
solution ~5.3!, or equivalently Eq.~5.7!, is used, this ne-
glected term2¹2F̃(r ) is in general not even bounded o

FIG. 1. Geometry for the condensate wave function.
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the boundary ofR0. An improved solution is thus neede
near this boundary. Letx be the rectangular coordinate no
mal to the boundary, chosen such that the positivex axis
points toward the interior ofR0. The geometry is shown
schematically in Fig. 1. Instead of neglecting2¹2F̃(r ), re-
place it by the corresponding second derivative with resp
to x. Expand the potentialVe(r ) nearx50 on the boundary
of R0 to get

Ve~x,y,z!5Ve~0,y,z!2k~y,z!x1o~x!, ~5.8!

where k(y,z) is assumed to be positive. By Eq.~5.5! and
suppressing the variablesy andz, Eq. ~5.8! is

Ve~x!;4paz̃1E2kx. ~5.9!

The substitution of Eq.~5.9! into Eq.~5.1! gives the ordinary
differential equation

F2
d2

dx2
18paF̃~x!22kxG F̃~x!50. ~5.10!

This differential equation can be put in a canonical form
the scaling

x5k21/3h

and

F̃~x!5~4pa!21/2k1/3t~h!. ~5.11!

The equation fort is then

t9~h!22t~h!31ht~h!50, ~5.12!

with the boundary conditions

lim
h→2`

t~h!50 ~5.13!

and

lim
t→`

h21/2t~h!5221/2. ~5.14!
id
ct

Equation ~5.12! with the boundary conditions~5.13! and
~5.14! defines a unique universal functiont(h). It is plotted
in Fig. 2 and describes through Eq.~5.11! the behavior of the
condensate wave function near the boundary ofR0. This re-
sult is similar to the findings of Dalfovo, Pitaevskii, an
Stringari @15# using the chemical potential as a paramete

Note the important point that Eq.~5.12! is a special case
of the Painleve´ equation of the second type@16#.

The next step is to study the integro-differential equat
~4.9! when the external potentialVe(r ) is slowly varying. In
this case, it is convenient to use the ‘‘center-of-mass’’ co
dinate by defining

P~R,r !5K0~r1 ,r2!, ~5.15!

where

R5 1
2 ~r11r2!, r5r12r2 .

In terms of these coordinates, Eq.~4.9! is

FIG. 2. The universal functiont(h) that describes the behavio
of the condensate wave function near the boundary of the re
R0.
2 1
2 ¹R

2 P~R,r !22¹2P~R,r !18paF̃~R!2d~r !1$22z̄216paz̃22ze1Ve~R1 1
2 r !1Ve~R2 1

2 r !116pa@ uF̃~R1 1
2 r !u2

1uF̃~R2 1
2 r !u2#%P~R,r !18paE dr 8F̃* ~R1r 8!2P~R1 1

4 r1 1
2 r 8, 1

2 r2r 8!P~R2 1
4 r1 1

2 r 8,2 1
2 r2r 8!

58paN21H F̃~R1 1
2 r !F̃~R2 1

2 r !@ uF̃~R1 1
2 r !u21uF̃~R2 1

2 r !u22 z̃ #1F̃~R1 1
2 r !E dr 8P~R2 1

4 r1 1
2 r 8,2 1

2 r2r 8!

3uF̃~R1r 8!u2F̃* ~R1r 8!1F̃~R2 1
2 r !E dr 8P~R1 1

4 r1 1
2 r 8, 1

2 r2r 8!uF̃~R1r 8!u2F̃* ~R1r 8!J , ~5.16!
of
where¹2 means¹ r
2 .

Motivated by Eq.~5.2!, simplify Eq. ~5.16! by the follow-
ing approximations:~i! neglect the first term2 1

2 ¹R
2 P(R,r );

~ii ! replaceVe(R1 1
2 r )1Ve(R2 1

2 r ) by 2Ve(R), and simi-
larly replaceuF̃(R1 1

2 r )u21uF̃(R2 1
2 r )u2 by 2uF̃(R)u2; ~iii !

in the same spirit, simplify the last term on the left-hand s
to
e

8paE dr 8F̃* ~R!2P~R, 1
2 r2r 8!P~R,2 1

2 r2r 8!;

and, finally,~iv! neglect the entire right-hand side because
the factorN21.

With ~i!–~iv!, Eq. ~5.16! becomes
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2¹2P~R,r !14paF̃~R!2d~r !1@2 z̄28paz̃2ze1Ve~R!

116pauF̃~R!u2#P~R,r !14paF̃* ~R!2

3E dr 8P~R,r2r 8!P~R,r 8!50. ~5.17!

In this approximation,R can be considered to be a parame
and the ideas of Lee, Huang, and Yang@4# can be applied.

Since there is translational invariance in the variabler ,
define the Fourier transform

P̄~R,k!5E dr eik•rP~R,r !. ~5.18!

In terms of thisP̄, Eq. ~5.17! is a quadratic equation

4paF̃* ~R!2P̄~R,k!21@k21k0~R!2# P̄~R,k!14paF̃~R!2

50, ~5.19!

where

k0~R!252 z̄28paz̃2ze1Ve~R!116pauF̃~R!u2.
~5.20!

Therefore

P̄~R,k!5@8paF̃* ~R!2#21
„2k22k0~R!21$@k21k0~R!2#2

2~8pa!2uF̃~R!u4%1/2
…. ~5.21!

So far, no property ofF̃ has been used except that it
slowly varying. Let us now use the approximate soluti
~5.7!. With this approximation, it follows from Eq.~5.19!
that

K0~r ,r 8!50 ~5.22!

if 1
2 (r1r 8) is outside of the regionR0. If it is inside, then,

with z̄ negligible becauseF̃ is slowly varying, Eq.~5.20!
reduces simply to

k0~R!258paF̃~R!2, ~5.23!

and the substitution into Eq.~5.21! gives

P̄~R,k!52k0~R!22$k21k0~R!22k@k212k0~R!2#1/2%,
~5.24!

very similar to the result of Lee, Huang, and Yang@4#.
It is of some interest to carry out the inverse Fourier tra

form to getP(R,r ) explicitly. The result is

P~R,r !5p22~4pa!3/2F̃~R!3x21Im@S04~ ix!2S00~ ix!#,
~5.25!

where

x5~16pa!1/2F̃~R!ur u, ~5.26!

andS04 andS00 are Lommel’s functions@17#.
r

-

VI. DISCUSSION AND CONCLUSION

In the case of the system of hard-sphere bosons with
riodic boundary conditions and without any external pote
tial, the Bose-Einstein condensate is in the single-part
zero-momentum state and the many-body ground stat
characterized by the pair-excitation function@4–9,12#. This
pair excitation is essential for the existence of phonons
sound vibrations. Therefore, the minimal description
Bose-Einstein condensation of a dilute system in an exte
potential consists of the condensate wave function and
pair-excitation function. The former is a function of one sp
tial variable, while the latter is that of two spatial variable
In this paper, the equations satisfied by these two fundam
tal functions are given in the lowest-order approximation
Eqs. ~2.22! and ~3.30!, respectively. More precisely, Eq
~2.22! is the nonlinear Schro¨dinger equation for the conden
sate wave function, while~3.30! is the integro-differential
equation for the pair-excitation function.

It should perhaps be emphasized that, since Bose-Eins
condensation is a quantum phenomenon, the present t
ment is also entirely quantum in nature, without the introdu
tion of any classical concepts.

These lowest-order equations acquire corrections
higher orders, the leading corrections being of ord
@r(r ,t)a3#1/2, wherer is the local particle density, which is
assumed to be small. As the simplest example, the pair
citation necessarily acts back on the wave function for
Bose-Einstein condensate, and therefore modifies the e
tion of motion for this condensate. While the first correcti
to Eq. ~2.22! is manageable, higher corrections are likely
involve the logarithms of the expansion parameter@8,18,19#
and therefore pose a challenge to our physical insight.

A word of caution should be added about the equatio
for the condensate wave function and the pair-excitat
function. The approximate Hamiltonian used in this pap
does not contain, for example, the decay of a phonon
two phonons. Therefore, in the present treatment, as we
those of Lee, Huang, and Yang@4# and Lee and Yang@5#, the
phonons are stable. This implies, as previously discusse
Sec. 6C of Ref.@3#, that Eqs.~2.22! and~3.30! are valid only
on a moderate time scale. There are many open ques
both for shorter time scales and for longer time scales.

When the external potential is time-independent a
slowly varying, as is often the case because of the ma
scopic nature of the trap, both the nonlinear Schro¨dinger
equation and the integro-differential equation are solved
proximately in terms of known functions. Since the boso
are kept inside the trap, strictly speaking thermodynam
does not apply. However, since the number of atoms in
condensate ranges from the thousands to the millions@1,2#, it
is not unreasonable to use approximations based onN being
large. On the other hand, for future technological appli
tions, it is likely that the case of a moderate value ofN will
be most important. One example of such applications is p
haps to quantum computing@20#.

Since the present treatment is limited to zero temperat
the most important next step is to remove this limitation
that the properties of Bose-Einstein condensation at non
temperatures can also be studied in the presence of an e
nal potential. An equivalent way of stating this generaliz
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tion is to deal with a mixture of superfluids and normal fl
ids.
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APPENDIX

Consider the Hamiltonian

H5 1
2 ~a* a1b* b!1y~a* b* 1ab!, ~A1!

where (a* ,a) and (b* ,b) are a pair of independent creatio
and annihilation boson operators. Let us calculate
an

n
. J

D.

n,

M.

ll
.
k,
r
nt

r.

e

t

H85eaa* b* He2aa* b* , ~A2!

where the constanta remains to be chosen. ThisH8 is of
course not Hermitian. The result is

H85~ 1
2 2ay!~a* a1b* b!1yab

2ay1~y2a1a2y!a* b* . ~A3!

Let a be chosen such that the coefficient ofa* b* vanishes:

y2a1a2y50. ~A4!

This gives

a5
1

2y
@12~124y2!1/2#, ~A5!

which is Eq.~A12! of Lee, Huang, and Yang@4#. With this
a, H8 is

H852 1
2 1 1

2 ~124y2!1/2~a* a1b* b11!1yab. ~A6!

Since the last termyab has no effect on the energy spectrum
H8 leads immediately to the ground-state energy per part
and the phonons.
e-
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