PHYSICAL REVIEW A VOLUME 58, NUMBER 2 AUGUST 1998
Bose-Einstein condensation in an external potential at zero temperature: General theory
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Bose-Einstein condensation is described in terms of the condensate wave function and the pair-excitation
function, the latter being responsible for the existence of phonons. This minimal description in terms of these
two functions is generalized to the case with an external potential. For a dilute gas with short-range pairwise
repulsive interaction and at very low temperatures when the Bose-Einstein condensation is nearly complete, a
partial differential equation is obtained for the condensate wave function and an integro-differential equation
for the pair excitation. Experimentally, the external potential is used to trap the atoms, i.e., to keep them
together. Since the trap is of macroscopic dimensions, the resulting external potential is often slowly varying.

In these cases and when the condensate is in the lowest state, the partial differential equation for the condensate
wave function and the integro-differential equation for the pair excitation are solved approximately for the case
of a time-independent trapS1050-294{@8)04208-3

PACS numbe(s): 03.75.Fi, 32.80.Pj, 05.28y

I. INTRODUCTION more complicatedi3]. The pair-excitation function, to be dis-
cussed in Sec. lll, satisfies an integro-differential equation
Over a year ago, in a remarkable papgf, Anderson, involving the external potential.
Ensher, Matthews, Wieman, and Cornell reported the first Experimentally, the external potential is used to keep a
experimental observation of Bose-Einstein condensation in krge numbeN of atoms together. It is therefore necessary to
weakly interacting system. The system used is a vapor ofse thisN for normali.zation. This isl carr_ied out in Sec. IV.
rubidium-87 atoms confined by a magnetic trap. SeveraPuch external potentials are often time-independent and spa-
similar experiments on various atomic vapors followed soorfi@lly slowly varying. When the condensate is in the lowest
after[2]. state, _both the_ condensate wave fu_n_ct|on and _the pair-
From the theoretical point of view, the most important excitation function can be found explicitly by solving ap-

implication of the presence of the trap is that there is naoroxmately the nonlinear Schinger equation and the

translational invariance. Thirty-five years ago, Bose—Einsteir%r?ézggﬁ;digf%reegusl equation of Secs. Il and Ill. This is car-
condensation without translational invariance was treated for This paper is devoted to the study of the simplest situation

a low-density system of hard spheres at zero temperg8iire where the temperature is sufficiently low that the Bose-

It is the purpose of the present investigation to apply thak,gtein condensation is nearly 100%. The technique used
approach to these recent cases of interest where a trap {gre can be combined with the pioneering work of Lee and

present. _ _ _ Yang [5] to treat the case where the Bose-Einstein conden-
The key idea of the approach in Rg8] is the following.  sation is less than 100%, i.e., the case where the superfluid

Let ®(r,t) be the wave function for the Bose-Einstein con- and the normal fluid coexist. This is going to be presented in
densate at timg while a§ (t) anday(t) are the correspond- a later paper.
ing creation and annihilation operators for tld¢r,t). Then

the terms in the Hamiltonian due to boson-boson pair inter-

action are classified according to the numbef times that

ag (t) andag(t) appear, where this can be 4, 3, 2, 1, or 0. Consider a system dfl pairwise interacting bosons in an
To the first approximation, the equation of motion fb¢r,t)  external potentiaV,. The Hamiltonian is  =2m=1)

is determined by the terms with=3. In the usual case

Il. THE CONDENSATE

where the Bose-Einstein condensate is in the single-particle N 5 N
zero-momentum state, these 3 terms are absent. See also .21 pi +gj Vo(fij)+i21 Ve(ri,t), (2.1
Sec. II. B B

When the condensate is in the zero-momentum state, it is
known that pair excitation plays an important rpfé. This is where
the process where two zero momentum bosons in the Bose-
Einstein condensate scatter from each other to produce a pair rj=Iri—rjl, (2.2
of bosons of opposite momenta. In particular, from the
atomic point of view, this is the process that is responsibleand V, is a short-range repulsive potential with scattering
for the existence of phonons and sound vibrations in a supetengtha>0. For exampleY, may be the hard-sphere poten-
fluid. When translational invariance does not hold, pair excitial, which is zero forr;;>a and infinite forr;;<a. The
tation remains equally important; however, since there is n@xternal potentiaV¢(r,t) may have explicit dependence on
pairing of equal but opposite momenta, this process is mucthe timet.
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In the late 1950s, Huang and Yaf#j initiated the appli-
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Sinced(r,t) is in general time-dependent, so a(t) and

cation of the method of pseudopotentials to many-body proba(t). They, of course, satisfy the commutation rule

lems. This method developed rapidly within a few ydats
9]. When this method is used, the Hamiltoni&®.1) is
replaced approximately by

H' =T+V’, (2.3
with
=20 [p{+ Velri 0] (24
and
J
V,:47Ta2 8(ri—rj)—rij. (25)
i#] &rij
For the present purpose, it is sufficient to use
H=T+V, (2.6
where
V=4may, &(ri—r)). 2.7
i

The only difficulty involved in usingH instead ofH’ is the

appearance of a familiar type of divergence, which may b

removed using the procedure of Reff4] and[8].

It is convenient to rewrite thisl in the language of quan-

tized fields:
T=fdr[lw<r>|2+ve<r,t>|wmlz] 28

and

v:4waj dr % (r)2y(r)?, (2.9

wherey(r) satisfies the usual commutation rules for a boson

field.

T

[ao(t),a5(1)]=1 (2.12

for all t. With the parts ofy* (r) and ¢(r) corresponding to
this ®(r,t) singled out, defing} (r,t) and ¢4 (r,t) by

* _ -1/ * * *
P* (1) =Q " Y2p*(r,t)ad (t)+ ¢ (r,1), 213
P(r)=Q 2D (r t)ag(t) + gy (r,b).

Since this stateb is macroscopically occupied, for low
densities these and ¢; may be considered to be a small
perturbation3,4]. Moreover, at low temperatures very near
zero, the relation

N=f dr ¢* () y(r)

~a3 a0+ [ dr g1 OB (2.14
may be approximated by
N~ag (t)ap(t). (2.19

Clearly this approximation can be used only when the Bose-
Einstein condensation is nearly complete.

To first order iny7 (r,t) and ¢ (r,t), theT andV of Egs.
2.4) and(2.7) are approximated by

T1=N[Z(t)+§e(t)]+ﬂ‘1’2a0(t)f dr[ — V2d(r 1)
+V(r)(r,H]91 (r,)+ 0~ g (1)
xf dr[ = V2@* (1,0) + Ve(r,Hy®* (r,) gy (r,1)
(2.19

and

47aN
V1= Q

NZ(1)

Let ®(r,t) be the wave function at timefor the Bose-
Einstein condensate, i.e., the wave function for the state that
is macroscopically occupied. For the case under consider-
ation, this macroscopic occupation is nearly 100%. In gen-
eral, this wave functiod(r,t) depends on and is complex.

It is normalized by

+ZQ_1/ZaO(t)f dr|d(r,t) 2D (r,t) o (r,1)

+29*1/2a3(t)fdr|<D(r,t)|2<I>*(r,t)llfl(f,t) :

(2.17
-1 2_
Q f dr|®(r,t)|°=1 (2.10 where
for all t, where() is the volume of the box, and the creation — 1 2
and annihilation operators for this condensate state are (H=a J dr[Vo(r,bl*,
aé(t)=Q‘l’Zf dr ©(r,t)y*(r), g(t):Q’lf dr|d(r,t)|%, (2.18

(2.11

ao(t)zﬂ‘l/ZJ dr ©*(r,t)y(r). ge(t):(rlf dr Vg(r,t)|®(r,1)|%
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Note that Eq(2.17) here is identical to Eq2.14) of Ref.[3], There are two basic lengths in E@.24): (i) the length
but T, is modified by the presence of the external potentialover whichV(r) varies, andii) the length scale determined
V(r,t). by (47aN/Q)|®(r)|2. It is the interplay between these two

Since the HamiltoniariT,+V, is linear in ¢ (r,t) and  lengths that is responsible for some of the interesting prop-
Y1(r,1), it is a simple matter to take a Schiinger state erties of this nonlinear Schdinger equation. The simplest
vector of the form example of this interplay is the case of the rigid boundary

[3.4].
W(t)=(N!)"Y2a¥(t)N|vao, (2.19
. . lll. PAIR PRODUCTION
where|vag is defined by

Since the time-dependent formalism and the time-
g(r)|vag=0. (220 independent formalism are closely related, the choice is
made to treat pair production in this section using the time-

The Schrdinger equation fot?, independent formalism. In the absence of the external poten-

(T V)W () =i(alat)¥(t) (2.21) tial, a possible approach is to use the Bogoliubov transfor-
o ’ mation [12]. An equivalent procedure as used in REf]
then leads to a nonlinear Schiinger equation forD(r,t): involves diagonalizing a matrix. In the Appendix here, this
procedure of Lee, Huang, and Ya, as discussed in their
|9 8maN Appendix |, is recast in a form more suitable for generaliza-
- —| _y2 2 )
|(&t>¢(r,t)—( VoA Ve(ri)+ Q [®(r.0)] tion to the present case. See also R&8].

In the time-independent formalism, the creation and anni-

4maN hilation operators for the condensate are
- Tg’(t))(b(r,t). (2.22 P

*x _—12 *
This is essentially Eq.2.21) of Ref.[3]. See also the papers 3= f dr ®(r) ¢~ (1),
of Pitaevskii[10] and Grosg11].

In the time-independent cas®(r,t) takes the form

d(r,t)=P(r)e &, (2.23

(3.1
ag=0"Y2| dr ®*(r)y(r).

. _ By Eg. (2.23, these are related @} (t) anday(t) by
whereE is the energy per particle for the condensate, and Eq.

(2.22 reduces to ai(t)y=e Bla}, ag(t)=€'F

ag. (3.2
5 8maN , 4ma Equations(2.16 and(2.17) give approximations to th&
— VI V(N + —q—®(]*~ Té—E)q’(f):O- andV of Egs.(2.8) and(2.9) to the first order iny* (r) and
(2.24) #(r). In order to study pair production, what is needed is the
second-order approximation #oandV. Here, Eq.(2.15 for
Note thatV(r,t) in Eq.(2.22 can have explicit time depen- N is no longer accurate enough, and E2.14) needs to be
dence, but noV(r) in Eqg. (2.24. used. Thus,

T=N(?+§e)+ﬂfllzaof dr[—qu)(r)JrVe(r)q)(r)]lﬂ’I(f)+971’233fdf[—V2®*(F)+Ve(f)¢*(r)]t/q(r)

+f dr[| Vg (0)]2+ Ve(r) ¥ (N iy () = (E+ L) (1) ()] (3.3
and
v2=47;;N N§+ZQ‘1’2a0f dr|¢>(r)|2d>(r)zp’l‘(r)+20‘1’2a3f dr|d(r)[2D* (r) g (r)
+f dr{[—2£+4|D(r)|*]¢; (1) o (r) +N"1ag®(r) 2y} (r)+ N~ tag 20* (r)2yy(r)?}]. (3.9

The first terms in Eqs3.3) and(3.4) are constants, while the sum of those terms involving a factét of? also leads to
a constant by virtue of the nonlinear Sctiimger equation(2.24) for ®(r). We therefore concentrate on the terms that are
quadratic ing7 (r) and ¢4(r):
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— 8maN
_g_ ge_ Q

H2:J dr[ |V iy (r)]?+

+N"a 2®*<r>2¢1(r>2]].

This is a quadratic form i3 (r) and (r).
Following the procedure in the Appendix, define

H,=e PH,e”, (3.6)

where[3]

P=<2N>—1fdr dr’ g (g (r)Ko(r,ra3. (3.7

Without loss of generality, chood€, to satisfy
Ko(r,r")=Ko(r',r) (3.9

and
J dr ®* (r)Kg(r,r')=0. (3.9

Since it follows from Eq(2.13 that

[fa(r), g1 (r)]=8%(r—=1") = Q10 (n)®*(r'),
(3.10

it is straightforward to verify that

Wl(r)aep]:'\rlf dr'Ko(r,r") ¢ (r')ePad,
(3.11

i | dr[|w/1<r>|2+

4aN
Q

+NTI* (r)2ag 2 (r) 2]+ 0* (r)?
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4maN
LA Py (1) ga(r) + N30 (1) 2y (1)?

(3.5

— 8maN
—{- L Lt Vel)

[«/fI(r)wl(r),ePFN’lf dr/Ko(r,r) ¢ (n)yi (r)efad,
(3.12
[|V¢1(r)|2,ep]=N_1f dr'V Ko(r,r')

XV ¥ (r)gi(r')efas, (3.13

and

[‘pl(r)z!ep]: Nilep KO(rvr)

+2J dr'Ko(r,r" )¢ (r)g(r’)
+Nflj dr'dr”Ko(r,r")Ko(r,r")

AR AGOEHEYS (3.14

Using these commutation relations, thg of Eq. (3.6) is
given by

Hy=H,+e P[H,,e"]=Hj+Hj, (3.19
where
47aN
Y1 (N () + —5 =LA@ Py (1) ga(r)
|:K0(r!r)+2f dr’KO(rar’)‘//:(r’)wl(r)}]! (316)

andHj, contains all the terms that are quadratic/ifi(r) and hence naj(r):

47raN
H§0=N‘1f drf 5 <1><r)2¢1*<r>2—fdr'[VEKo(r,r'nwi(rw*;(r')

— 8maN
+

+q>*(r)2j dr"dr”Ko(r,r")Ko(r,r") g1 (r') g1 (r")

Similar to Eqs.(3.7)—(3.9), defineL(r,r") by

Héc=(2N)’lf dr dr'L(r,r" )y (nyi(r)a3,

—§—T§—§e+ve(r)“dr’Ko(r.r’)wf(r)df’I(r’H a

47aN

o [ Kot w )

]ag. (3.17

(3.18
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L(r,r")=L(r",r), (3.19

and
f dr ®*(r’)L(r,r’)=0. (3.20

As a generalization of EqA4) in the Appendix, the pair-production distributidty(r,r’) is determined by the condition
L(r,r")=0. (3.21)
It only remains to rewrite Eq(3.21) in the form of an integro-differential equation f&r(r,r'):

8maN

9 d(r)28(r—r")

L(r,r")=—V2Ky(r,r')=V'2 Ko(r,r')+

16raN , 16raN
QO §_2§e+ve(r)+ve(r )+ Q

+i—2¢— [|®(r)|2+|D(r")|?] Ko(r,r")

8maN
+ a0 f dr”(I)*(r”)zKO(r,r”)Ko(r’,r”)—A(r)(b(r’)—)\(r’)db(r)
=0, (3.22

where) (r) is to be determined by E@3.20.
This determination is carried out by multiplying l&y* (r’) and then integrating over'. An integration by parts gives

f ) 167aN 8mraN
dr'Ko(r,r')| =V’ 2 +Vg(r')+ q |[D(r")|2|d*(r")+ Q |<D(r)|2<1>(r)=)\(r)(2+<b(r)jdr’(I)*(r’))\(r’).
(3.23
Equation(2.24 may be used to give
8maN ) ) N
A(r)= 02 |D(r) <D(r)+f dr'Ko(r,r")[@(r")[*®*(r") = 3{D(r) |. (3.29
The integro-differential equation fd€y(r,r’) is explicitly
8maN — 16m7aN
—V2Ko(r,r')=V"'2 Ko(r,r')+ <I>(r)26(r—r’)+|—2§— ) (=28 Vo(r)+Vo(r')
167TaN (D 2 q) "2 ' 87Ta.N d ”(I)* "2 " roen
q LPMPH@E ] Ko(r,r)+ —5 f D% (1)Ko, r)Ko(r ")
8’7TaN ' 2 "2 " roen MI2dy* (¢!
gz | 2P )P ()|[“+|D(r")] —§]+¢>(r)f dr”Ko(r',r")|®(r")|*®* (r")
+<D(r’)f dr”KO(r,r”)|<I>(r”)|2<I)*(r”)}. (3.295

For completeness, we write down the corresponding equation for the time-dependent case. In this Yaseapipeoxi-
mated by

aN[Ng(t)+ZQ1/2a0(t)Jdr|<I>(r,t)|2<I>(r,t)¢//’1‘(r,t)+291’2a3(t)Jdr|<I>(r,t)|ZCI>*(r,t)zpl(r,t)

V2: Q

+J dr{[ —2£(t) +4|D(r,t)|21¢F (r,0) ¢ (r, 1) + N~ Lag(t) 2P (r,t)2¢7 (r,0)2+ N~ Tad (1)20* (r,t) 2y (r,1)%} |,
(3.26

and theN-body wave function takes the form



1470 TAI TSUN WU PRA 58

W(t)=Mt)e"(N!)~Y2%g (t)N|vag), (3.27)

whereP(t) describes the creation of pairs from the condensate
P(t)=(2N)‘1j dr dr’ ¢ (r,t) 7 (r' HKe(r,r';t)ap(t)?, (3.28

and A\(t) is the normalization constant. It should be noted that the reduction to the time-independent case involves the phase
factor
Ko(r,r';ty=e 2EK(r,r"). (3.29
The time-dependent version of E@.25 is

8maN
Q

— 167aN
—2{(t)— ) {(t)—28e(1)

[i %—ZE(t)}KO(r,r’;t)z —V2Ko(r,r":t)= V" 2Ko(r,r';t)+ d(r,t)28(r—r'")+

6mraN
Q

+Ve(rat)+ve(r,:t)+ l [|(I)(r!t)|2+|q)(r,!t)|2]] KO(r!r,;t)

8maN
Q

"AHF (! 2 n roen 8maN
dr"®* (r”,t)“Ko(r,r";t)Ko(r',r";t) —

a2 {(I)(r,t)(l)(r’,t)

X[ @ (r,0)]?+ |<I>(r',t)|2—§(t)]+<I>(r,t)f dr’Ko(r',r"; )| (r",0)[20* (r",t)

+<I>(r',t)f dr"KO(r,r”;t)|CI>(r",t)|2<I>*(r",t)], (3.30

whereE(t) on the left-hand side is defined by -
N’lj dr|d(r,t)|?=1. 4.2
o ad(r,t)
E(t)=iQ 1J' dr ®*(r,1). (3.3) _
at Note that_, whilc_eCD(r,t) is dim/gnsi_oryless, thé(r,t) here
Compare with Sec. 7 of Ref3]. ?;sléhedg;m:nsmn of (length§2. Similar to theZ(t) of Eq.
IV. ATOMIC TRAP ()= N—lj dr|ff>(r,t)|4, 4.3

One immediate consequence of the trapping potential is = |
that the volume no longer has a well-defined meaning. It is Which is equal taNZ(t)/€).
indeed possible to assign a somewnhat arbitrary valu@,to  In terms of thisd(r,t), the basic equations of motion
and the final results will be independent of this arbitrarily (2.22 and(3.30 for ® andK, are, respectively,
assigned value. A better procedure is to Nséhe total num-
ber of particles, as the normalization instead(bfin terms
of the condensate wave function of EG.10), define

D(r,t)=(N/Q)2D(r 1), (4.) —4maf(t)]1B(r,t), (4.4
so that Eq(2.10 becomes and

0\~ ~
E)<I>(r,t)=[—V2+Ve(r,t)+87-ra|<I>(r,t)|2

[l %—ZE(t)}KO(r,r’;t): _VZKO(r’r';t)_V'zKo(r,r’;t)+877a<'i)(r,t)25(r—r’)+{—22(t)_ 167732(]:)—2{6('[)
+Vo(r,0) + Ve(r', 1)+ 167a[ | D(r,1)|2+|D(r,1)|2]}Ko(r,r';t)
e 8mal ~ -
+87raf dr"®* (r" ,t)?Ko(r,r";t)Ko(r’,r";t)— T[‘I’(r,t)@(r’,t)
><[|‘A13(r't)|2+|‘A13(r'’t)|2—~§(t)]+<h13(r,t)f dr'Ko(r 10 D (e, 1) 2D* (1, 1)

+&>(r’,t)f dr"Ko(r,r";t)|&>(r",t)|23>*(r",t)], (4.5
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where{(t) and £(t) are defined in Eq(2.18), and

E(t):n\rlJ draa);:’t)@*(r,t). (4.6)
In the time-independent case given by E829 and
d(r,t)=d(r)e B, 4.7
the above equations of motion reduce to
[~ V2+V(r)+8ma|®(r)|?—4mal—E]D(r)=0, (4.9

and

—V2Ko(r, 1) =V 2Ko(r,r") +87a®(r)28(r—r') +{— 27— 16mal — 2{ o+ Vo(r) + Ve(r')

+16wa[|&>(r)|2+|cT>(r')|2]}Ko(r,r')+8waf dr”d* (r")?Ko(r,r")Ko(r',r")
=87raN‘1{@(r)ﬁ)(r’)[|@(r)|2+|EI3(r’)|2—Z]+EI3(r)j dr”Ko(r',r")|®(r")|2d* (r")

+EI'>(r')f dr"Ko(r,r")|EI'>(r")|261'>*(r”)]. 4.9

In Egs.(4.2)-(4.9), the volume() does not appear anywhere. in R, Furthermore, sincé(r) is necessarily continuous,
In the next section, Eqg4.8) and (4.9) will be studied

under the assumption that the external potentigl) is suf-
ficiently slowly varying. This case is of interest because in
the experiment$1,2] the magnetic traps are necessarily of gn the boundary oR,.

macroscopic dimensions. Note that in the following section, Multiolvina Ea. (5.2) by ®(r) and inteqrating over give
only the simpler time-independent cases are treated. plying Eq. (5.2) by ®(r) d g ¢

Vo(r)=4mal+E (5.5

E={.+4mal. (5.6
V. CONDENSATE IN A TRAP
When the condensate is in the lowest state, its wave funcGivenN, the value of is determined by Eqg4.2) and(4.3).

tion ®(r) can be chosen to be non-negative. Thus, B® With Eg. (5.6), the approximate solutio(b.3) is

) B(r)— {{+(8ma) [ Le—Ve(n)]}H? insideR,
[~ V24 Ve(r)+8mad(r)2—4mal—E]D(r)=0. D=0 outsideR,.

(5.9

WhenV(r) is slowly varying, a first approximation to Eq.

(5.1) is obtained by neglecting the first termV2®(r) [14],
ie.,

[Ve(r)+8mad(r)2—4mal—E]D(r)=0. (5.2

This means that

O(r)={[4mal+E—V(r)]/(87a)}*? (533
in some region, saR,, and
d(r)=0 (5.3b

outside ofR,. It follows from Eg.(5.33 that

Vo(r)<4mal+E (5.4)

(5.7)

As mentioned above, in writing down E¢b.2), the term

—V2d(r) has been neglected. However, if the approximate
solution (5.3), or equivalently Eq.(5.7), is used, this ne-

glected term—V2d(r) is in general not even bounded on

FIG. 1. Geometry for the condensate wave function.
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the boundary ofR,. An improved solution is thus needed
near this boundary. Let be the rectangular coordinate nor-
mal to the boundary, chosen such that the positivaxis
points toward the interior oR,. The geometry is shown
schematically in Fig. 1. Instead of neglectingv2®(r), re- 1.0
place it by the corresponding second derivative with respect )
to x. Expand the potentid¥,(r) nearx=0 on the boundary

of Ry to get

15 —

0.5 —
Vo(X,Y,2)=V(0y,2) — k(y,Z)x+ 0(X), (5.8 I

where «(y,z) is assumed to be positive. By E(b.5 and
suppressing the variablgsandz, Eq. (5.9 is

Vo(X)~4mal+E— kx. (5.9 _ _ _ _
FIG. 2. The universal function(#) that describes the behavior

The substitution of Eq(5.9) into Eq.(5.1) gives the ordinary of the condensate wave function near the boundary of the region
differential equation Ro.

d? = ~ Equation (5.12 with the boundary condition$5.13 and
- @“LSW""CD(X) — kX P(x)=0. (510 (5.14 defines a unique universal functietiz). It is plotted
in Fig. 2 and describes through E§.11) the behavior of the

This differential equation can be put in a canonical form bycondensate wave function near the boundarR@fThis re-
the scaling sult is similar to the findings of Dalfovo, Pitaevskii, and

x= K13y Stringari[15] using the chemical potential as a parameter.
Note the important point that E@5.12) is a special case
and of the Painlevesquation of the second typé6].
o 1 13 The next step is to study the integro-differential equation
b (x)=(4ma)” k(). (51D (4.9 when the external potentis,(r) is slowly varying. In

this case, it is convenient to use the “center-of-mass” coor-

The equation forr is then dinate by defining

7'(9)—27(n)3+ n7(n)=0, (5.12

with the boundary conditions P(R,r)=Ko(rs,ra), (5.15
lim 7(7)=0 (5.13  where
n— —®
lim 5~ Y2r(p)=2"22 (5.14
P In terms of these coordinates, E4.9) is

|
—1V2ZP(R,1)—2V?P(R,r)+8mad(R)28(r) +{—2{— 16mal — 2{e+ Ve(R+ 1)+ Vo(R—3r) + 167a[ | B (R+ 1r)|?

+|<T>(R—%r)|2]}P(R,r)+8waf dr'®* (R+r")2P(R+ir+4r" Ar—r)P(R—ir+ir’,—ir—r")
=8maN~! &n(R+%r)&S(R—%r)[|&>(R+§r)|2+|&>(R—%r)|2—2]+&>(R+%r)f dr'P(R—ir+ir’, —3r—r")

><|<T>(R+r')|23>*(R+r')+c~1>(R—%r)j dr’P(R+%r+%r’,%r—r’)|<~b(R+r’)|23>*(R+r’)], (5.16

whereV?2 meansV?. g , ) )
Motivated by Eq(5.2), simplify Eq.(5.16) by the follow- 87Taf dr'®*(R)*P(R,zr —r")P(R,—3r—r’);
ing approximations(i) neglect the first term- %VZRP(R,r);
(ii) replaceV(R+3r)+Vo(R—3r) by 2V.(R), and simi-
larly replace|® (R+ 2r)|2+|®(R—1r)|? by 2|®(R)|?; (i)  and, finally,(iv) neglect the entire right-hand side because of
in the same spirit, simplify the last term on the left-hand sidethe factorN 2.
to With (i)—(iv), Eq. (5.16 becomes
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—V2P(R,1)+47a®(R)28(r)+[— {—8mal — Lo+ V&R)
+16ma|D(R)|?]P(R,r) + 4mad* (R)?

XJdr’P(R,r—r’)P(R,r’)=0. (5.1
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VI. DISCUSSION AND CONCLUSION

In the case of the system of hard-sphere bosons with pe-
riodic boundary conditions and without any external poten-
tial, the Bose-Einstein condensate is in the single-particle
zero-momentum state and the many-body ground state is
characterized by the pair-excitation functiph-9,13. This

In this approximationR can be considered to be a parameterpair excitation is essential for the existence of phonons and

and the ideas of Lee, Huang, and Yddg can be applied.
Since there is translational invariance in the variahle
define the Fourier transform

5(R,k)=f dr ek "P(R,r). (5.19

In terms of thisP, Eq. (5.17) is a quadratic equation

47ad* (R)2P(R,k)2+[k2+ko(R)2]P(R,k) + 4mad(R)2
=0, (5.19
where

ko(R)2= —{—8mal— {o+ Ve(R) + 16ma|D(R)|2.
(5.20

Therefore
P(R,k)=[8ma®* (R)2]1(—k®—ko(R)2+{[k2+ko(R)?]?

—(8ma)? B (R)|}?). (5.21)

sound vibrations. Therefore, the minimal description of
Bose-Einstein condensation of a dilute system in an external
potential consists of the condensate wave function and the
pair-excitation function. The former is a function of one spa-
tial variable, while the latter is that of two spatial variables.
In this paper, the equations satisfied by these two fundamen-
tal functions are given in the lowest-order approximation by
Egs. (2.22 and (3.30, respectively. More precisely, Eq.
(2.22 is the nonlinear Schrdinger equation for the conden-
sate wave function, whilé3.30 is the integro-differential
equation for the pair-excitation function.

It should perhaps be emphasized that, since Bose-Einstein
condensation is a quantum phenomenon, the present treat-
ment is also entirely quantum in nature, without the introduc-
tion of any classical concepts.

These lowest-order equations acquire corrections in
higher orders, the leading corrections being of order
[p(r,t)a%]*? wherep is the local particle density, which is
assumed to be small. As the simplest example, the pair ex-
citation necessarily acts back on the wave function for the
Bose-Einstein condensate, and therefore modifies the equa-
tion of motion for this condensate. While the first correction
to Eq.(2.22 is manageable, higher corrections are likely to

So far, no property ofb has been used except that it is involve the logarithms of the expansion param¢&fi8,19
slowly varying. Let us now use the approximate solutionand therefore pose a challenge to our physical insight.

(5.7). With this approximation, it follows from Eq(5.19
that
Ko(r,r')=0 (5.22

if %(r_—i—r’) is outside of the regiolR,. If it is inside, then,

with ¢ negligible becaus@ is slowly varying, Eq.(5.20

reduces simply to
ko(R)?=8mad®(R)?, (5.23

and the substitution into E@5.21) gives

P(R,k) = —ko(R) ~2{k2+ko(R)2— k[ K2+ 2ko(R)2]Y3,
(5.24

very similar to the result of Lee, Huang, and Y arg.

A word of caution should be added about the equations
for the condensate wave function and the pair-excitation
function. The approximate Hamiltonian used in this paper
does not contain, for example, the decay of a phonon into
two phonons. Therefore, in the present treatment, as well as
those of Lee, Huang, and Yafg] and Lee and Yanfp], the
phonons are stable. This implies, as previously discussed in
Sec. 6C of Ref[3], that Eqs(2.22 and(3.30 are valid only
on a moderate time scale. There are many open questions
both for shorter time scales and for longer time scales.

When the external potential is time-independent and
slowly varying, as is often the case because of the macro-
scopic nature of the trap, both the nonlinear Sdiwger
equation and the integro-differential equation are solved ap-
proximately in terms of known functions. Since the bosons
are kept inside the trap, strictly speaking thermodynamics
does not apply. However, since the number of atoms in the

It is of some interest to carry out the inverse Fourier transcondensate ranges from the thousands to the mil[iby2, it

form to getP(R,r) explicitly. The result is

P(R,r)=m"%(4ma)*?D(R)®x~*Im[ Soa(i x) — Soolix)1,
(5.25

where
x=(167a)Y?D(R)|r/, (5.26

and Sy, and Sy are Lommel’s function$17].

is not unreasonable to use approximations based baing
large. On the other hand, for future technological applica-
tions, it is likely that the case of a moderate valueNotvill

be most important. One example of such applications is per-
haps to quantum computiri@O0].

Since the present treatment is limited to zero temperature,
the most important next step is to remove this limitation so
that the properties of Bose-Einstein condensation at nonzero
temperatures can also be studied in the presence of an exter-
nal potential. An equivalent way of stating this generaliza-
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tion is to deal with a mixture of superfluids and normal flu- H' = ga@*b* g aa*b* (A2)
ids. '
where the constant remains to be chosen. Thid’ is of
ACKNOWLEDGMENTS course not Hermitian. The result is
| am greatly indebted to Professor Chen Ning Yang for H'=(}—ay)(a*a+Db*b)+yab
numerous discussions, including those concerning his recent
papers with Chou and Y(Ref. [21]). | would also like to —ay+(y—a+a’y)a*b*. (A3)
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Theory Division at CERN, where a part of this work was This gives
carried out, for their kind hospitality. The work was sup-
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APPENDIX which is Eq.(A12) of Lee, Huang, and Yanf#]. With this

a, H' is
Consider the Hamiltonian
H =—-1+1(1-4y>)Y(a*a+b*b+1)+yab. (A6)
H=1(a*a+b*b)+y(a*b*+ab), (A1)
Since the last terrgab has no effect on the energy spectrum,
where @*,a) and (b*,b) are a pair of independent creation H' leads immediately to the ground-state energy per particle
and annihilation boson operators. Let us calculate and the phonons.
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