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We consider a channel coding for sending classical information through a quantum channel with a given
ensemble of quantum statéstter states As is well known, it is generically possible in a quantum channel
that the transmittable information in block coding of lengtltan exceedh times the maximum amount that
can be sent without any coding scheme. This so-called superadditivity in classical capacity of a quantum
channel is a distinct feature that cannot be found in a classical memoryless channel. In this paper, a practical
model of channel coding that shows this property is presented. It consists of a simple code-word selection and
the optimum decoding of the code words minimizing the average error probability. At first, optimization of
decoding strategy is discussed. Then the channel coding that shows the superadditivity in classical capacity is
demonstrated.S1050-294{®8)05107-5

PACS numbe(s): 03.67.Hk, 89.70tc, 42.79.Sz, 89.88:h

[. INTRODUCTION The purpose of this paper is to give some insights into
practical aspects of quantum channel coding. In quantum
Theory of quantum communication was initiated morechannel coding, block sequences are made as direct product
than 30 years ago, in order to consider the quantum nature sfates of the letter states, some of them are selected and
the signal carrier in the optical frequency domain. In thistransmitted asode-word statgsand they are then detected
region, one faces quite different features from rf band comguantum mechanically. A quantum channel made of the
munication, due to quantum noise of the signal carrier itselfcode-word states of lengthis called ann-product channel.
This theory was then developed in the 1970s, revealing newhere are two essential ingredients in using thiproduct
aspects of information transmission and signal detection. Iehannel; one is the suitable selection of code-word states
now attracts much attention since new fields such as quarirom all the possible sequences made of the letter states, and
tum computation and cryptography emerged. Being assisteiie other is &ollective decodinghat detects each code-word
by ideas and methods in these fields, significant progress waate as a single state vector rather than decoding the indi-
made in a basic and old issue on channel capacity. In pamidual letter states separately. Especially, the latter fully uti-
ticular, the theorem was established that the attainable maxiizes superposition states of the code-word states, and brings
mum rate of asymptotically error free transmission for sendan inseparable structure among the letter states, which is of-
ing classical information by using a given source of quantunten calledentanglementThis remarkable feature cannot be
states(letter statepsis precisely the Holevo bound,2] [let  found in classical channel coding. As a consequence, the
us call it the quantum channel codif@CC) theoren][3—6].  n-product channel can have raemory effecin the sense
This rate is the asymptotic rate at infinite block length, that the channel matrix cannot be factorized into the
—o, and is especially called thelassical capacityof the  channel matrices corresponding to each letter, ie.,
quantum channel. The teroapacityof the quantum channel P(Y1Ya- - - YnlX1Xo- - - Xo) # I 1 P(yi]X;). This is even so if
is now used in various contexts of quantum informationneither a source system emitting letter states nor a physical
theory, including not only transmission of fixed classical al-process of transmission has memory effect. This effect can
phabet but also sending intact quantum states. In this papée used to increase the reliability of information transmis-
we confine ourselves to transmission of classical informatiorsion. In fact, if the code-word states are selected suitably,
by use of a given letter-state ensemble, and hereafter thhis effect makes it possible that more classical information
term capacity is understood aglassical capacityfor this  can be sent through theproduct channel than-times the
case. amount that can be sent through a single use of the initial
The QCC theorem guarantees existence of codes that haebannel made merely of the letter states without any coding
the above asymptotic property, but does not tell directly howscheme. This so-called superadditivity in capacity is a ge-
to construct such codes from given letter states. For practicaleric nature of a quantum channel, and is indeed information
applications, simple and systematic coding-decoding meththeoretic quantum gaifL,2]. So the first step toward finding
ods at finite block length are required. Such methods wiltthe ultimate channel coding for the Holevo bound might be
immediately be applied to, for example, advanced scheme® construct codes that attain this quantum gain.
of satellite communication and ultrafast optical fiber commu- In this paper quantum channels that show the superaddi-
nication. In these cases, signal power at the receiving entvity in capacity are described. We first consider optimiza-
might be very weak due to long distance transmission otion of decoding. The collective decoding used in the proof
limited power supply so that a main source to cause erroof the QCC theorem was the so-calleguare-root measure-
will be nonorthogonality among letter states, which is justment[3]. This allows one to derive an explicit decoding ob-
the situation covered by the above theorem. servable systematically from given code-word states. In ad-
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dition, this has been known to be almost optimum when théfhe minimum average error probability is given by

guantum states to be distinguished are equally likely and )

almost orthogonal7-9], which is the case for the typical P.(opt)=1-TrY. D
sequences obtained at very long block length. Therefore it R

played a sufficient role in evaluating the upper bound of the When the signal states are pugg|p;){p;|) and linearly
decoding error. But this measurement is actually more thaindependent, the optimum detection operators can be given
that. In Sec. Il it will be pointed out that the square-rootas the projection-valued measu@VM) with rank 1 asf[i
measurement becomes precisely optimum in terms of the:|w;)(w;|. The sef{|w;)} forms a complete orthonormal set
average error probability in certain cases of pure and linearlyh the Hilbert space, spanned by the signal statéi;)}
independent quantum states that are even neither equiproband each of them is calledraeasurement staténtroducing

ble nor almost orthogonal. The optimality of decoding strat-g matrix X = (X;;)=((wi|p;)), the above conditions are re-
egy should be pursued in order to achieve performance agritten as

high as possible, especially in a practical channel coding of

finite block length. When the square-root measurement is not §iX”X]*i = g,-xijx;j- v (i,j) ("),

optimum, there is a method to construct the optimum one by

modifying it. For a practical purpose, we present a basic T<m>z(5ix”x;—gmximx;‘m)zo (i"),

scheme of the optimum collective decoding of code-word

states in the case of the pure-state channel in Sec. Ill. As for m=1,... M.

physical realizations of this scheme, the readers are referred o ) . ) o

to the subsequent paper. In general, it is a complicated job to derive explicit expres-

In order to quantify the superadditivity in capacity, the sions for th_e_ optimum measurement states satisfying the
attainable maximum mutual information without any coding@Pove conditions. Only in certain cases have they been
must be known. This quantity is usually denotedCas The kn_own [14]. Otherwise, one has to _rely on n.umencal simu-
optimum solutions of the prior probabilities and the decoding@tions like the Bayes-cost-reduction algorithih5]. The
observable that maximize the mutual information have beef0St tedious part in such a method is to check the second
known only in a few casefl0—12. In this paper the most condition (||.’)._ But when the signal states are linearly inde-
basic case of binary and pure letter states is considered. Rendent, this is ensured more simply, if
Sec. IV we define ghreshold pointwhere all the sequences . % -
are used as the code-word states and the accessible informa- Y'=(&XiXj)>0 (ii")
tion (the maximum mutual information attained by optimiz-
ing the decoding observable with prior probabilities fixat
block lengthn is exactlynC;. At this point, the optimum be
decoding is not like a collective fashion but rather reduces t%s
the separate measurement which detects each letter state in-
dividually, that is, there is no room for generating entangle- |M'>EIA371/2|~I3'> (2a)
ment correlation among letter states. This threshold point ! e
will be a useful guide for quantitative discussions. Section V M
is devoted to concluding remarks. ;)EZl |5i><7)i|, (2b)

is satisfied. Its proof was given in the Appendix of Raf5].

Now let us consider when the square-root measurement
comes optimum. The square-root measurement is defined
follows:

II. DISTINGUISHING LINEARLY-INDEPENDENT -
QUANTUM STATES [p1)=Velpi). (20

To begin with, we shall describe the conditions for opti- A is well known, the conditional probability based on this
mality in a general decision problem dfl-ary quantum measuremer®(j|i)=|(x;|p;)|* can be calculated in the fol-

states. An ensemble of quantum stafgt is given with  lowing way. First make the Gram matrR=((pi[p;)). Sec-
respective prior probabilitiest;}. Decision process of these ond diagonalize it as

signal stateﬁ»i} can be described by a probability operator
meAasu[e(POM) {I1,} satisfying the resolution of the identity r-o . Q' @
>iIl;=1. The POM effecting the decision needs ory ' ;
componentd1,,I1,, ... ITy, which are usually calledle- Im

tection operatorsWhat_vye are seeking here are the Opt'm.u.mwhereQ is a unitary matrix. Third and finally, calculate
detection operators minimizing the average error probability.

J1

Defining the risk operatorﬁvizgiﬁi and the Lagrange op- \/a
eratorY=3,WiII,, the optimum conditions are written as T— t 4
719 r=Q Q" @)

Vam

Then the {,j) components of \T are just {u[p;)
i =(uilp;)V&. Here we give a useful theorem in considering
Y-W,=0 V i (ii). the optimum collective decoding.

LW, -W)T;=0 vV (i,j) (i),
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Thus, for linearly independent states, the{$gt)} is always

If {|p;)} are linearly independent, the measurement by? complete orthonghaI set ﬂ_‘ls. So it cr_;m be connected via
{|xi)} becomes optimum when all of the diagonal compo-a unitary operatol mAHS with the optimum measurement
nents of \T are equal, that is, when probability of correctly states{|w;)} as|w;)=V|u;). Such an operator can be con-

identifying the letter is independent of the letter sent.

Proof

DefineY =(Y;;)=((ui|p;)). The measurement byu;)}
is optimum if
EYaYi=&YyYS Y (i)

Y'=(6Y;Y5)>0 (i)

i,

are satisfied. DenotingT = (Vij), they can be rewritten as

YiYi=Y,¥s v ) (),

Y'=(Y;Y)>0 (ii").

SinceI is nonnegative and Hermitian, so {d". Therefore
the above conditions reduce to

vii:Y“‘ v ('.J) (il)’

Y'=(Y;Yij)>0 (ii").

structed, for example, as a series of two-dimensional rota-
tions by applying the Bayes-cost-reduction algorithb5].

This algorithm consists of steps of solving a binary decision
problem of a chosen pair of signal stafgp;),|p;)} on the
plane spanned by the corresponding pair of basis vectors
{lmi),lmj)}. At every step, two basis vectors are revised, and
the average error would decrease or, at worst, remain the
same. These two-dimensional rotations are continued till
reaching the optimum point where the previous conditions
(i") and (ii") are satisfied. The resulting series of their prod-

ucts is just the required unitary operatér

lll. OPTIMUM COLLECTIVE DECODING
OF CODE WORDS

Deriving the analytic expression of the optimum measure-
ment basis vector§|w;)} is a difficult job, but these basis
vectors can be constructed somehow as explained in the pre-
ceding section, and at the same time the channel matrix can
be obtained. Thus only for evaluating performance, is it suf-
ficient to derive thes€|w;)}. From a practical point of view,
however, the basis vectoffw;)} hardly imply a correspond-
ing physical process. Although the gétv;)} forms a stan-

Under the first condition, the second one further reduces tgard von Neumann measurement, its physical implementa-

Y..Y>0. This is automatically satisfied sincd'=Y>0.

(Y>0 impliesY;;>0 V i.) Thus for the square-root mea-
surement, the first condition just above is enough for the,S

optimum condition and this means the theorem. |

Thus the square-root measurement plays a practical rol
not only in the case of equally probable and almost orthogo-
nal states but also the case that the signal states satisfy tl
above condition. The related discussion was given by Bag
et al. in the case of equally probable and symmetric state
[16]. Even if the signal states do not satisfy the above con
dition, {|»;)} can be good initial states in searching the op-
timum measurement states. At first, note the following re

mark.

Remark

If {|p;)} are linearly independeng|u;)} are orthonormal.

Proof

The optimum measurement stdte;)} is a complete or-
thonormal set inHs. Define )A(EEi,injlwi)(w” so that
|piy=X|w;). Because of the linear independence|pf)}, X
is nonsingular an& ! exists. Then

<Mi|Mj>:<73i|;)_1|7Jj>: \/gi<wi|5(T;J_15(|wj> \/g,
-1
= \/Ei(wi|(§k: gkkl|9k><pk|le) |wj>\/gj

:\/Ei<wi|(§k: §k|wk><wk|)_ |wi)VE=8; .

tion usually remains a nontrivial problem. In this section we

present a useful scheme for realizing the optimum collective

decoding. In the case where the letter states are binary, this

cheme naturally leads to an implementation based on a

uantum circuit and a well-defined physical measurement.
Let binary letter states bg+),| —)} whose state overlap

=(+|—) is assumed to be real and to lie ik <1. They

Ban the two-dimensional Hilbert spagg. By nth exten-

ion, we pick upM-ary code-word state§S;), ... ,|Su)}

?M <2") from the 2' possible sequences of lengthin the

nth extended Hilbert spack,”" and use them with respec-
tive input probabilities{{;, ... ,{u}. The rest of the se-
quences are denoted Sy, 1), - - . ,|Sn)}. Since the code-
word states are linearly independent, they span the
M-dimensional Hilbert spaceé(,C#,°". The optimum col-
lective decoding is described by the orthonormal basis vec-

tors{|wy), ..., o)} in H derived in such a way as men-
tioned in the preceding section. An orthonormal set
{lw1), . .. Jwon)} in the extended spack " can be made

by adding the other basis vectors obtained by using the
Schmidt orthogonalization,

i—-1

|Si>_k§1 | (wS)

(i=M+1,...,2). (5

|wi>:

i—1

1—21 Koyl S

We denote the expansion of all the sequences by the above
basis vectors as
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|S1) |wy) Collective decoding
: =B : (63) Received Unitary Separate
' code words | transformation measurement
|52”> |w2”> —~
|S1> U|S1> E |A1>=|aaa>
B=(Bjj)=((w;|S))- (6b) —~ N
|52 Uls,) = > |A)=laab)
Making two orthonormal basis vector§a),|b)} from - )
{|+),]=)}, we introduce the 2 product basis vectors, s, Uls,) < = |A)=laba)
A)=la)®la)® - - ®|a)o|a), Is.) Uls.,) < ~ |A)=labb) |

[A2)=[a)®la)®- - ®[a)®|b),

(7)
|Azn-1)=[b)®[b)®- - - ®|b)®]a),
|Azn)=|b)®|b)® - - ®|b)®|b),

and denote another expansion by them as
S1) A1)
iol=cl ¢ |, (8
|San) |Agn)
C=(Cij)=(A|lS)). (8b)

The two basis sets are connected via a unitary opethton
H" as

lo))=U0TA) (i=1,....2), (9a)
where
2n
OT:ZJ, Uil AAIlL U =(B71C)y;. (9b)

FIG. 1. The channel model obtained by decomposing the col-
lective decoding into the unitary transformation and the separate
measurement in the case 3 andM=4.

eratorU constructed by Eq(9) transforms the code-word
states adaptively to the chosen basis vedigks,)} such that
the minimum average error probability is attained by the

separate measurement. Note thal acts on the
2"-dimensional Hilbert spaceH"" rather than the
M-dimensional spacé{. After the unitary transformation
has been carried out, the resulting sequences at the final mea-
surement always lie in the space spanned by
{IA), ... |A; )} If the transformation is skipped, all the

product basis vectors will come out. The channel model of
this scheme is illustrated in the casenot 3 andM =4 (see
Fig. 2).

This kind of decomposition makes it easier to design the
collective decoding systematically. As the final measurement
on each letter-state system, each process of which is de-
scribed by the sef|a),|b)}, the most suitable and imple-
mentable method may be chosen. The main problem is the
realization of the unitary transformation as asaptorto the
final measurement. Corresponding physical processes are
sometimes subtle. The difficulty of finding them may be case
by case depending on what kind of letter-state system is pro-
vided. However, if a 2-bit gate acting on quantum His-

Here the optimum collective decoding can be described byits) made of the two basis vectofs),|b)} is available, the
the set{UT|A,), ..., U"Ay)}. The minimum error prob- required unitary transformation can be, in principle, effected

ability is obtained as

M
Po(opY=1— m; Lol Sl O T|AR 2. (10)

as a quantum circuit used in quantum computation.
Barencoet al. already showed that an exatmulationof

any discrete unitary operator can be carried out by using a

guantum computing netwoikL9]. This story can be directly

translated into the real operation &f on the code-word

This clearly means that the optimum collective decodingstates. At firstU is decomposed into (2) operators'AI'[j,i] by
{lom)} can be effected byi) transforming the code-word applying the algorithm proposed by Reck and otH@@] as

states]|S,)} by the unitary transformatiod, and(ii) apply-

ing the von Neumann measureméjh,)(A,|} to the trans- U=TyTea - Tenao-2)Tena-1, (113
formed code-word states. This type of detection scheme is

called the received quantum state confrbf,18. The final ~ where

measurement is actually a separate measurement distinguish- .

ing each output letter state &) or |b) sequentially. Triip=exd — ;i ([AD(A = [AADT. (11b

Now the measurement basis vectors need not be the above

combination but may be chosen as any combinatioMof  Then the above two-dimensional rotatiofi ; are con-
distinct elements of product basis vect§f&; ), ... [A; )}.  verted into quantum circuits by using the formula established
Depending on the choice, the matshould be redefined by Barencoet al. [19]. Here the following point should be

by rearranging the order of elements of the vectorsoted. Since qubits are letter states themselves constituting
of the rightthand side in Eq. (8a, as the code-word states, the gates should consist of the single
{AD, A AL, Dy - [ALD T Then the unitary op-  physical species from which the letter states are made. Such

TM+1
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gates known so far are Sleator and Weinfurter's gate consistittainable rate of asymptotically error free transmission,
ing of two-state atompg21] and the quantum phase gate act-hence thentrinsic capacityof the initial quantum channel,
ing on two photon-polarization statgd2]. In the following  and is exactly equal to the Holevo bound,

paper, examples of the required quantum circuits are de-

scribed based on such gates. C(§)=su;{H(2i gigi) _Z EHEE |, 16
3
IV. SUPERADDITIVITY IN CAPACITY
OF QUANTUM CHANNEL whereH(s;)=—Tr(s; log, s) is the von Neumann entropy

The purpose of this section is to demonstrate simple code@f the density operatas; . This theorem ensures that there
that show the superadditivity in capacity. Let us introduceeXist such codes that the decoding error vanishes asymptoti-
some definitions. Prepare an ensemble of letter states C@lly asn—< if the transmission rat&k=(1/n)log, M is
—{5;,....§} in a Hilbert space, . They represent input X€Pt belowC(s). . _
letters {1,...]}. Let &={&,....&} be corresponding A remaining big problem is to find such codes. For

prior probabilities. A decoding process is described by 4his purpose, the first thing to be understood is the superad-
ditivity in capacity. It should be stressed that the strict super-

probability operator measure 6, @={my, ...,m} rep- o 2 . SR o
resenting output letter$l, ... |’}. We call the mapping additivity C,(5)>nC4(9) is definitely impossible in a clas-
{1,...1%—>{1,...]'} the initial quantum channel. Fixing sical memoryless channel. In contrast, a quantum channel

has a memory effect seen in channel matrix as
P(y1Y2 - YalX1Xo - - Xn) #II_; P(yilx;), even when the
source of letter states and the physical transmission channel

£ s, and @, the mutual information is defined as

| I’ o
~n PGl do not have an ff ' i
SO : s y memory effects. Thimemory effectis
l1(§5:mm) 21 g'gl P(i[)log, ' (12 caused by the decoding process itself. That is, wheola
E &p(jlk) lective decodings applied to the code words, the entangle-
k=1 ment structure among the letter states prevents, in general,

o the channel matrix from being factorized as above. For at-
wherep(j|i)=Tr(m;s;) is a conditional probability that the taining the strict superadditivity, an appropriatemory ef-
letter j is chosen when the lettérhas been sent. The maxi- fectneeds to be generated by an appropriate selection of code
mum value of this quantity optimized with respecrg{and% words and a collective decoding for them. This property is

is usually denoted a€,, thus indeed quantum gain in information transmission.
The essential role of entanglement for the information
C.(s)=supl(&s ). (13)  theoretic quantum gain can be stressed rigorously by the fol-
pye lowing theorem.

A basic channel coding consists Gj concatenation of
the letter states into thié' block sequence§i1® e ®§in},

Theorem 2

Suppose that two ensembles of letter stat®s={s(")} in
H(D andsP={s{®} in H(? are given, and the first order
capacitiesC, (") and C,(s?) are attained for the prior
probabilities £ and £2), and the detection operatorg®)
and#(®, respectively. Then the accessible information of the

(i) pruning of them into M-ary code words S
={S,, ... .Sy} which can encode lo# classical bits, and
(i) finding an appropriate decoding POMII
={I1,, ... IIy/} in the extended Hilbert spack ®". The
obtained channel is called timth extended channel. Assign-

ing input distributiong={{,, . . . ,{u} to the code words, the Chla””e; with the inputs™®s® and the prior probabilities
mutual information is defined also for this channel as Ve €2 is given as
oMW PGli) supl (Y@ 2,885 M)=Cy(8V) +Cy(8?),
(68D =2 ¢ P(jlhlogy————, (14 i
== | (17)
> LGPk
k=M when
whereP(j|i)=Tr(I1;S). Let us define theith order capac- =nYe a2,
ity as
The proof is given in Appendix A23].
Cn(g)zsupn(g,é;f[)_ (15) Now suppose that the supremum in Ef3) is attained
it when £&=¢& and m==*. If all of the I" sequences

{§i1® e ®§in} are used as the code words with fixed prior

Then generallyCy(s)=nCy(s) holds for a quantum channele probabilities{gi*lx . ><§i*n}, according to the above theo-

[1,2]. This property is the superadditivity in capacity. On ’
can define the limitC(s)=lim, ...C,(S)/n. The quantum rem, the optimum dgcodinﬂ maximizing the mutual infor-
channel coding theorei8—6] says that thi<(s) is just the  mationl (& ®",s*"1I) is
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if =t .@nF

I, =m® e . (18 loy)= . | | (233
K

The accessible information is simphytimesC4(s), —
p 1-p
[02)=—\ 1= t)+ V=2l =) (23D
supl o(£°°",s7", 1) =nCy(9). (19
il where p=(1—1-«%)/2 is the minimum average error

probability. The first order capacity is given simply as
Thus in this restricted case, there is no room for entangle- R
ment to be generated. So this case providégseshold point Ci(s)=1+(1—p)log,(1—p)+p log,p. (24
for the information theoretic quantum gain. Once the input
probabilities are redistributed so as to reduce weights of Inthenth order extension, half of all the"Zequences are
some code words, the entanglement becomes possible, aHged as the code-word states and are input to the channel
the quantum gain can be obtained by an appropriate decotvith equal prior probabilities. Such"2* code-word states
ing . Concerning the threshold point, it might be worth are generated in a recursive manner from the four code-word
mentioning a similar theorem in terms of the average erroptates| + +,+> [+ = —)[=—+)[=+=)} in the third or-
probability. der extension, wherg+ — —)=[+)®|-)®|—-), etc. That
is, defining vectors consisting of bra-state vectors of code-
word states,

Theorem 3
- +++ -———
For given states{s;} with prior probabilities {&;}, ( | { |
let {m,} be the optimum POM minimizing the average error SO= (+—-| NE= (=++] (25)
probability. Then in distinguishing the product states (=+-1 (+—+|’
{s,©---®s } associated with the prior probabilities (——+| (++—|
{& x---Xx§ }, the optimum POM minimizing the average .
error probability is they are given as
ﬁil ..... =T O @ (20) (S 1)
o (Sl | _[(+ley ) 29
and the minimum average error probability is given as : (—leA D)’
(Son—1|
—1_ ~\n
Pe(oph=1=(Tr v)%, 21 This code-word selection can be specified by the notation
A A [[n,n—1,2]] according to the nomenclature of coding
wherev=3,¢;m; is a Lagrange operator. theory.
Its proof is given in Appendix B23]. It should be noted These code words are decoded by the square-root mea-

that the optimum POM for the letter states;} need not, in  Surement. The measurement basis vectors are defined as
general, coincide with the one for the mutual information, -1

{m*} in Eq. (18), even for the same ensembjs,}. The I PO 5
result of this theorem will be discussed later with the ex- ) =p~1S),  p= 2‘1 IS)(SH, @
ample of the channel coding.

The simple example of a channel coding showing the suwhere the prior probabilities are not included in the density
peradditivity in capacity was already given by the authors inmatrix p unlike Eg. (2), simply for mathematical conve-
the case of the third extension of the binary pure-state chamience. As it will become clear soon, these basis vectors
nel [24]. Here we generalize this example intth order  effect theoptimum collective decodinfpr the above code
extension, and demonstrate the relation words. We have to evaluate the channel matfigj|i)

=[(x;|S))|?. The Gram matrix of the code words is given by

Suplo(¢,8°", 1) >nCy(3), (22 TN

1 L= 'J/(n)T:(KZA(nl) -1 ) (283
which ensures the strict superadditivity. The initial channel is

. - . where

made of binary letters={|+){(+|,| = ){(—|} whose inner
productk=(+|—) is assumed to be real. It is well known 1 rn-2 A(M-2
that the first order capacity is achieved by the symmetric A<“‘1)=;7f(”_1)-?\("_m:(Am2) rn-2
channel with the detection operatdrs,,,} which mini- (28b)

mizes the average error probabili0—12. These operators
are given asr=|w;)(w;| with and
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@ 2 1 K2 K2
F = 2 K2 1 K2 I} (28C)

K2 K2 K21

¥ 1 1 1

@ 1 «k¥* 1 1
A=l 1 e (289

1 1 1 k2

'™ andA™ can be diagonalized by &2'x 2"~ ! matrix

QW=Han-1/y2" 1, (299
whereH,n-1 is the Hadamard matrix defined by
H, Hg 1 1 "
Ha=|y g )r He=|y _q)- @D
The diagonalized matrices,
G(n)EQ(n)TF(n)Q(n), (309
F(”)EQ(”)TA(”)QW), (30b)

can be decomposed intd"2°x 2"~? matricesG(""1) and
F~1 as

- GV 4 K2R 0
G= 0 G-V _ (2F(h-1) ]
(313
o G DD 0
FV= 0 G- _ pn-1) |- (31b

PRA 58
1+ 3«2
_ 2
G = Lo 34
1_K2 ’ ( a
1—«?
3+ k2
- — 14 K2
Fo= — 14 K2
—1+«2
(34b)

The coefficients in Eq(33) are determined by the following
recursive formula fok=1, ...,2""%,

a(n,k)=a(n—1Kk)+ «c(n—1K),
a(n,2" *+k)=a(n—1k)— k%c(n—1k),
b(n,k)=b(n—1k)+ «?d(n—1K),

b(n,2""*+k)=b(n—1k)— «2d(n—1k),
(359

c(n,k)=a(n—1k)+c(n—1k),
c(n,2" *+k)=a(n—1k)—c(n—1k),
d(n,k)=b(n—1k)+d(n—1k),

d(n,2"*+k)=b(n—1k)—d(n—1k),

with the initial values

a(4,)=a(4,2=1,

After recursive decompositions, they can be represented as

A(n,l)
GM= , (32a

A(n,2""3)

B(n,1)
F = : (32b)

B(n,2"" %)

whereA(n,k) andB(n,k) (k=1,...,23) are 4<4 block
matrices defined by

A(n,k)=a(n,k)G® +b(n,k)F®, (33a

B(n,k)=c(n,k)G®+d(n,k)F®, (33b)

with

b(4,1)=—b(4,2) = «?, (35b)

c(4,)=c(4,2=d(4,)=-d(4,2=1.

Thus the diagonal matriceA(n,k) are obtained, and the
square root of the Gram matrix is given as

VA(Nn,1)
W: Q(n) Q(n)T.
JA(n, 27 3)

(36)

For representing the result, let us define

a(n,k)=(1+3«?%a(n,k)+(3+«?)b(n,k), (37a

B(n,k)=\(1-«*)[a(n,k)—b(n,k)], (37b)

and
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D(n,k)=Q®JA(n,k)Q®1* (370 where
w(nk) v(nk) w(nk) w(nk) p(nk)= z[a(n,k)+38(n,k)], (379
v(n,k)  w(n,k) w»(n,k) v(nk)
n,k)= 7 [a(n,k)—B(n,k)]. 37
WK vk a(nk)  p(nk) (370 v(n,k)= z[a(n,k)—B(nk)] (37f)
v(n,k)  v(n,k) w»(nk) wu(nk) Then JT™ can be represented as
|
R(n,1) R(n,2) R(n,3) R(n,4)
R(n,2) R(n,1) R(n,4) R(n,3)
R(n,3) R(n,4) R(n,1) R(n.2)
JIW=| R(n,4) R(n,3) R(n,2) R(n,1) , (383
R(n,2"3-1) R(n,2" 3 R(n,2""3-3) R(n,2" 3-
R(n,2""3%) R(n,2"3-1) R(n,2"3-2) R(n,2"3-3)
|
where is plotted as functions ot in Fig. 2. The dashed line corre-
sponds to the case of=2 where the two code-word states
R(n,1) 1 D(n,1) {|++),]——)} are sent with the same prior probabilities and
: = Hon 1 (38p  are detected by the optimum measurement minimizing the
R(n,2"3) 2n-3 D(n,2-3) average error probability. In this case, the positive quantum
' ' gain was not found in the whole region ef Forn=3-13
R(n,k) can be further arranged in the form (solid lines, the difference becomes positive at the larger
side of k. This positive gain clearly shows the superadditiv-
u(n,k) wv(n,k) wv(nk) wv(nk) ity in capacity. Letk, be the value ofc(<1) for which the
v(nk) unk vk ov(nk _difference bego_mes zero. '_I'hen foy <x<1 the difference
R(n,k)= . (39 is always positive, and as increasesx, decreases so that
v(n,k) wv(nk) u(nk) wv(nk) the positive gain appears in a wider regionxofThis relation
v(n,k) v(n,k) wv(nk) u(nk) is plotted in Fig. 3. The circles represent the poimisk(, ).

The solid line is just a guide for the eye. The dashed line
corresponds to the curve of=2«~ 1. This figure may pro-
vide a rough estimate fan in order to obtain the positive
gain. That is, for a givem, one may guess that the superad-

The two kinds of componenta(n,k) and v(n,k) can be
calculated by

u(n,1) m(n,1) ditivity will appear when the order of extension for our
: =—Hon-s| , (409 [[n,n—1,2]] code is taken as an integer larger than
u(n,2"-3) 2 w(n, 213 2«15 Unfortunately we did not succeed in giving a more
o(n.1) »(n,1) - 0.015 9 8T ;
: = _2n73 H2n—3 (40b) é 0.01 - 1110 m n=3
v(n,2"3) v(n,2"73) - \W//
G 0005 12
After squaring each component T, the channel matrix ! J//// //
P(j|i) can be obtained. According to the symmetry seen in § OF n=l ,
Eqg.(398), it is easy to see that the mutual information is given = 7///// !
a5 % -0.005 e
= !
. /////// '
n—-3 - i
2 001552 04 06 08 1

(Sip)=n—1+ kgl [u(n,k)2log, u(n,k)?

+3v(n,k)?log, v(n,k)?]. (42 FIG. 2. The difference between the mutual information per letter
statel ,(S:u)/n and Cl(s) for n=2-13. The dashed line corre-
In order to see the quantum gain, the difference bew"eegponds to the case of=2, while the solid lines correspond to the

the mutual information per letter statg(S: u)/n and C,(9) case ofn=3-13.
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FIG. 3. The relation betweem and «, (<1) at which K
In(S:p)/n=Cy(s) holds.«,s are denoted by the circles. The solid |G, 5. The minimum average error probabilities corresponding
line |SJustagu1(jleE)forthe eye. The dashed line corresponding to thgy the code[[n,n—1,2]] (solid lines, the initial channel, i.e.p
curve ofn=2x""". (dashed ling and thethreshold pointgdotted lineg as functions of

K.

rigorous condition. The maximum amount of the positive _ .
gain is still quantitatively unsatisfactory compared with theused with equal prior probabilities. Then the square-root
gap between the intrinsic capaci§(s) and the first order measurement is again the optimum collective decoding for

capacityC,(s). Actually it is less than 10% of the maximum them. Defining
gap. In the case afi=9 for which the maximum gain was

obtained,C(s), 19(S: )/9 andC,(s) versusk are plotted in a(n)=V1+(M-1)x"?, (423
Fig. 4.
As far as the minimum average error probability is con- ﬁ(n)Em, (42b

cerned, the square-root measurement we (iEed (27)] is
the optimum for ouf[n,n—1,2]] code[Eg. (26)] because
all of the diagonal components ™ are equal tai(n,1)

as seen from Eq$38) and(39), for which Theorem 1 holds. L
The minimum average error probabilities versusre plot- -

ted forn=3, 5, 7, 9, 11, 13 by the solid lines in Fig. 5. For (\/W)”:u(n)=M[a(n)+(M—1),8(n)], (439
a fixed k, they increase as with. The dotted lines represent

the minimum average error probabilities corresponding to 1

the threshold points that is, Eq.(21). Although the error DN _ S
probabilities ofpour cod@[n,n—g,Z]] are smal?er than those (I, svm=glam=am], i#j. (43
of the threshold points they are still larger tharp=(1

—\1—«?)/2 (the minimum bit errorat the larger side ok. ~ The mutual information is then given by

In spite of this, the quantum galn(S: x)/n>C,(s) reveals
itself within such regions.

it is straightforward to see

| (S:w)=log, M+u(n)?log, u(n)?

The same tendency pould be se?n in otrhielr codes. Let us +(M=1)v(n)2og, v(n)2 (44
consider the so-called simplex code"— 1,2~ ~]], for ex-
ample. All the code words are the same distance apart. Let P
n=2"-1 andM=2". Suppose thaM-ary code words are _ IR N oy
7 N
1 é 0.8 j : j,“ \ £ < C 4
—_ N o [[17.6,2]] codeN_ X
2 08 L ToAX" < - O 06! N 8
= ¢ &) N
L 06" N ~ 04117347 code \
N - r NG
- I \( \ \l\ : N
O 04f NN ~ 02} \\\‘
& \\\ [ : X\
~ A i \
0.2 \ 1 1
~ N %02 04 06 08 1
K

0 L
0 02 04 06 08 1

K -
FIG. 6. C(9), | ;(S: u)/7 for both the[[7,3,4]] simplex code and
FIG. 4. C(9), 19(S:1)/9, andC4(s) as functions ofx. the[[7,6,2)] code, andC,(s) as functions ofx.
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FIG. 8. The mutual information per letter corresponding to the
,3,4]] simplex code(solid line) and the codd[3,2,2] (dashed
line) as functions ofk.

FIG. 7. The minimum average error probabilities corresponding[
to the[[7,3,4]] simplex code, th€7,6,2]] code, and the initial chan- [7
nel, i.e.,p (dashed lingas functions ofx.

V. CONCLUDING REMARKS
This code is compared with the previous onenat7 in _ . o . .
terms of both the mutual information per letter state and the 1 N€ initial channel considered in this paper is the binary

minimum average error probability in Figs. 6 and 7, reSpec_symmetnc pure-state channel which is the simplest quantum

tively. The [[7.3.4]] simplex code has higher distinguish- channel. When the binary letter states are orthogonal, the

. channel is error free, and there is no quantum regime, that is,
ab.'“.ty of the code words 'than t¢7,6,2]] code S0 .that the nth order capacity obviously satisfies the strict additivity
minimum average error is much smaller, while its mutual

inf tion i ; v | than the latter. Th C,=nC,. When they are nonorthogonal, i.e<&<1, the
information 1S not necessartly farger than the 1ater. 1he€qy ey superadditivity G>nC,, in turn, reveals itself. What
former overcomes the latter only in the region G:82<1.

, ) o .. we have shown in this paper is a demonstratioh.,0fnC,
Around_ this region, the minimum average error probability ihat ensures the strisuperadditivity
is, again, larger than the minimum bit errpr The first part of this paper was devoted to the optimum
This tendency may be understood as a result from th@ojiective decoding of the code-word states at the minimum
facts that in order to produce the quantum gain a quanturgyerage error probability. The scheme we proposed consists
interference among the code-word states must occur to rsf the unitary transformation and the separate measurement.
duce certain components of the channel matrix, and that sucfne unitary transformation generates appropriate superposi-
a quantum interference occurs more drastically when th@on states among the code-word states such that the mini-
nonorthogonality of the code-word states is larger, hence ofyym average error is attained at the separate measurement.
the larger side ofk. On the other hand, the nonorthogonality These output states are not separable into the letter states any
causes a certain amount of decoding error as well. This denore. Minimization of decoding error is just a manifestation
creases the amount of transmittable information, while thef the optimum use of quantum interference associated with
quantum gain may appear if the quantum interference reis kind of superposition states. The required unitary trans-
duces certain components of the channel matrix in & prop&prmation is essentially a conditional dynamics in a higher-
manner. Thus at shorter block length, the quantum gain agimensional Hilbert space, and is realized by a quantum cir-
the differencel ,/n—C;>0 is likely to appear on the larger cyit which is capable of manipulating each letter state in a
side of x being accompanied by a certain amount of decodzonditional manner depending on the other letter states. Thus
ing error. A rough guide in order to construct a channeloyr scheme suggests a state-of-the-art quantum decoder
attaining the quantum gain for a givenis as follows: the  strycture.
ratio of the number of the message Hitto the block length Quantum channels involving the above collective decod-
n should be taken larger tha(hl(é) at this « first, and then ing have amemory effegti.e., P(y1Y2: - - YnlX1X2* * - Xp)
code-word states should be selected with a distance asII,P(y;|x;). This inseparability of quantum channel is a
equally apart as possible. Asbecomes closer to the unity, it direct origin of the quantum gail,>nC,. Only when code-
becomes more effective in obtaining the quantum gain tavord states are selected suitably does this inseparability lead
take the ratiok/n small and to select the code-word statesto the quantum gain. We gave a heuristic approach to attain
being distant. As an example, the simplex c§fg,3,4]] is  this gain for a given letter-state ensemble. Our examples are
compared with the codd 3,2,2]] in the region 0.75 k<1 always accompanied by a larger amount of decoding error
in Fig. 8. Fork>0.85, thd[7,3,4]] code(solid line) is more  than the minimum average error in the initial channel. As
efficient in terms of the mutual information than the mentioned in the preceding section, this dilemma is because
[[3,2,2]] code(dotted ling. For constructing codes such that both decoding error and the quantum gain are originated
the decoding error can be as small as possible and the raf®m the nonorthogonality of the letter states.
can reach the Holevo bound, a larger block length at which Although some basic aspects for realizing the quantum
the typical subspace can be well defined is necessary. Pragain were clarified by this paper, practical codes that transmit
tical methods for obtaining larger quantum gain must beclassical alphabet faithfully at the maximum rate are still
studied in great detail along this direction. completely unknown. Even in classical information theory,
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APPENDIX A: PROOF OF THEOREM 2

We first prove the following lemma.

Lemma

sup 1(£Ve£?,8Ves?:11)= supl (£, sV ) +sup 1(£2,82:4?). (A1)

1) 2

Proof of lemma
(1) Clearly,

sup (V@82 dVes2: )= sup 1(£Ve&?,dVe52:0)=sud (&Y, sV a1 +sud (£2,52: #2). (A2)
il

fi= 7 Ve n? e 2

(2) Representing(j |i1,i2)=Tr(ﬂj§i(ll)®§i(§)), wherell; is a POM onH Mo H (2,

(EVe 2 30e8=3 3, d242P(liziolog it
e E G 8GRk k)
> &Pk i)
_E 2 51) 2P(J||1:'2) logy| ——— P(”ILIZ) 4
Eﬁ)PJ“(l i2) E kl Ky P(j|k1,k2)
P(jlis,
O D | DA

2 &Pl iz
LE éﬁ?P(jlkl,iz)}

x| 2 &7P(liz i) log, (A3)
: S 4|3 rilain
ko kg
|
We introduce two kinds of POM ot (") and® (? as where TF) means taking the trace over the spa¢g’, and

10 is the identity operator i {" . Representing the condi-
. R tional probabilities in Eq(A3) as
(), =Tr2ILT M es?), (A4)
P(jliz.io)=TrD(I() 80, (AB)

MP=3 &} T el ), (A5) 2 EVP(lin i) =TPs?), (A7)

1 I
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we see that EQ(A3) is equivalent to %j(WJ—Wk)%k=0 v oGk (),
A~ ~ ~ ~ A~ - _ ~ = . .
|(§“>®§<2),s<1>®s<2>:11):i22 gfzz)l(g(l),s(l):r[ﬁilg)) v=w;=0 V¥ j (i),

B wherew; = &;s; andv= 3w, ; are the risk operators and the
+1(£2,42:119). (A8) I:agrange op?rator, respectively. We would like to prove that

I .. (=m,® - @m) satisfy
Hence
sup |(§(1)®§(2),§(1)®§2):ﬁ) l_[jl" J'I(\le"'J'I_\Nkl'"k|)l_[k1“'k|:0 (",
i ~ A
B Y-W, .. ;=0 (ii"),
= éPsupl (£, sV:11Y) + supl (£2),82:11?) . A A )
] f fi where Wi =W, @ 0w, and Y
<supl (&Y, 8V: #V) +supl (£2,§2: #2). A9) =i Wi, .. 3, ;=v"" Here note that the fol-
) 2 lowing formulas:
The two inequalitiegA2) and (A9) prove the lemma. A® - -®A—Bi® - -®B=(A;—B))®A,® - - QA+ By
OISO o
.NOV\q) suppose tp(;a)l(g( ,s0: 7)) is maximized when S(Ay—By) - DA+
&) =£D and 7)=7{) . Then the lemma means that
+B1®B,® - @ (B —A)).
supl (Y@ £ sV =C,(sV)+Cy(s2). (B1)
i
(A10)  Then to ensure (), we rearrange the left-hand side as
On the other hand, G (Wi Wag, k) kg,
(Y2 E? sVes?:aVe ?) =i W) Ty @ @7 Wi Ty
—1(ED 3V 4D +1(£2,§2: 72)) = Wi, T - @ T Wi T, (B2)
=C,(sV)+Cy(s?). (A1)  and setAn=m; W; m_andBy=m W, m . Since(i) is

equivalent toA,,—B,=0, after Eq.(B1) is applied to Eq.
(B2) we obtain(i’). Similarly, to show(ii’), we setA,=uv
and Bm=\7vjm. From the definitions,A,,=0 and B,,=0.
In addition, (ii) is nothing but A,=B,. So when

These two equations prove the theorem.

APPENDIX B: PROOF OF THEOREM 3

The necessary and sufficient condition tHat} is the Y —W; .. is decomposed by EqBI1), its nonnegative
optimum POM are definiteness is obvious.
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