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Quantum channels showing superadditivity in classical capacity
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We consider a channel coding for sending classical information through a quantum channel with a given
ensemble of quantum states~letter states!. As is well known, it is generically possible in a quantum channel
that the transmittable information in block coding of lengthn can exceedn times the maximum amount that
can be sent without any coding scheme. This so-called superadditivity in classical capacity of a quantum
channel is a distinct feature that cannot be found in a classical memoryless channel. In this paper, a practical
model of channel coding that shows this property is presented. It consists of a simple code-word selection and
the optimum decoding of the code words minimizing the average error probability. At first, optimization of
decoding strategy is discussed. Then the channel coding that shows the superadditivity in classical capacity is
demonstrated.@S1050-2947~98!05107-5#

PACS number~s!: 03.67.Hk, 89.70.1c, 42.79.Sz, 89.80.1h
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I. INTRODUCTION

Theory of quantum communication was initiated mo
than 30 years ago, in order to consider the quantum natu
the signal carrier in the optical frequency domain. In th
region, one faces quite different features from rf band co
munication, due to quantum noise of the signal carrier its
This theory was then developed in the 1970s, revealing n
aspects of information transmission and signal detection
now attracts much attention since new fields such as qu
tum computation and cryptography emerged. Being assi
by ideas and methods in these fields, significant progress
made in a basic and old issue on channel capacity. In
ticular, the theorem was established that the attainable m
mum rate of asymptotically error free transmission for se
ing classical information by using a given source of quant
states~letter states! is precisely the Holevo bound@1,2# @let
us call it the quantum channel coding~QCC! theorem# @3–6#.
This rate is the asymptotic rate at infinite block length,n
→`, and is especially called theclassical capacityof the
quantum channel. The termcapacityof the quantum channe
is now used in various contexts of quantum informati
theory, including not only transmission of fixed classical
phabet but also sending intact quantum states. In this p
we confine ourselves to transmission of classical informa
by use of a given letter-state ensemble, and hereafter
term capacity is understood asclassical capacityfor this
case.

The QCC theorem guarantees existence of codes that
the above asymptotic property, but does not tell directly h
to construct such codes from given letter states. For prac
applications, simple and systematic coding-decoding m
ods at finite block length are required. Such methods w
immediately be applied to, for example, advanced sche
of satellite communication and ultrafast optical fiber comm
nication. In these cases, signal power at the receiving
might be very weak due to long distance transmission
limited power supply so that a main source to cause e
will be nonorthogonality among letter states, which is ju
the situation covered by the above theorem.
PRA 581050-2947/98/58~1!/146~13!/$15.00
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The purpose of this paper is to give some insights i
practical aspects of quantum channel coding. In quan
channel coding, block sequences are made as direct pro
states of the letter states, some of them are selected
transmitted ascode-word states, and they are then detecte
quantum mechanically. A quantum channel made of
code-word states of lengthn is called ann-product channel.
There are two essential ingredients in using thisn-product
channel; one is the suitable selection of code-word sta
from all the possible sequences made of the letter states,
the other is acollective decodingthat detects each code-wor
state as a single state vector rather than decoding the
vidual letter states separately. Especially, the latter fully u
lizes superposition states of the code-word states, and br
an inseparable structure among the letter states, which is
ten calledentanglement. This remarkable feature cannot b
found in classical channel coding. As a consequence,
n-product channel can have amemory effectin the sense
that the channel matrix cannot be factorized into t
channel matrices corresponding to each letter, i
P(y1y2•••ynux1x2•••xn)Þ) i 51

n P(yi uxi). This is even so if
neither a source system emitting letter states nor a phys
process of transmission has memory effect. This effect
be used to increase the reliability of information transm
sion. In fact, if the code-word states are selected suita
this effect makes it possible that more classical informat
can be sent through then-product channel thann-times the
amount that can be sent through a single use of the in
channel made merely of the letter states without any cod
scheme. This so-called superadditivity in capacity is a
neric nature of a quantum channel, and is indeed informa
theoretic quantum gain@1,2#. So the first step toward finding
the ultimate channel coding for the Holevo bound might
to construct codes that attain this quantum gain.

In this paper quantum channels that show the supera
tivity in capacity are described. We first consider optimiz
tion of decoding. The collective decoding used in the pro
of the QCC theorem was the so-calledsquare-root measure
ment@3#. This allows one to derive an explicit decoding o
servable systematically from given code-word states. In
146 © 1998 The American Physical Society
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PRA 58 147QUANTUM CHANNELS SHOWING SUPERADDITIVITY IN . . .
dition, this has been known to be almost optimum when
quantum states to be distinguished are equally likely
almost orthogonal@7–9#, which is the case for the typica
sequences obtained at very long block length. Therefor
played a sufficient role in evaluating the upper bound of
decoding error. But this measurement is actually more t
that. In Sec. II it will be pointed out that the square-ro
measurement becomes precisely optimum in terms of
average error probability in certain cases of pure and line
independent quantum states that are even neither equip
ble nor almost orthogonal. The optimality of decoding str
egy should be pursued in order to achieve performance
high as possible, especially in a practical channel coding
finite block length. When the square-root measurement is
optimum, there is a method to construct the optimum one
modifying it. For a practical purpose, we present a ba
scheme of the optimum collective decoding of code-wo
states in the case of the pure-state channel in Sec. III. As
physical realizations of this scheme, the readers are refe
to the subsequent paper.

In order to quantify the superadditivity in capacity, th
attainable maximum mutual information without any codi
must be known. This quantity is usually denoted asC1. The
optimum solutions of the prior probabilities and the decod
observable that maximize the mutual information have b
known only in a few cases@10–12#. In this paper the mos
basic case of binary and pure letter states is considered
Sec. IV we define athreshold pointwhere all the sequence
are used as the code-word states and the accessible info
tion ~the maximum mutual information attained by optimi
ing the decoding observable with prior probabilities fixed! at
block lengthn is exactlynC1. At this point, the optimum
decoding is not like a collective fashion but rather reduce
the separate measurement which detects each letter sta
dividually, that is, there is no room for generating entang
ment correlation among letter states. This threshold p
will be a useful guide for quantitative discussions. Section
is devoted to concluding remarks.

II. DISTINGUISHING LINEARLY-INDEPENDENT
QUANTUM STATES

To begin with, we shall describe the conditions for op
mality in a general decision problem ofM -ary quantum
states. An ensemble of quantum states$r̂ i% is given with
respective prior probabilities$j i%. Decision process of thes
signal states$r̂ i% can be described by a probability operat
measure~POM! $P̂ i% satisfying the resolution of the identit
( iP̂ i5 Î . The POM effecting the decision needs onlyM

componentsP̂1 ,P̂2 , . . . ,P̂M which are usually calledde-
tection operators. What we are seeking here are the optimu
detection operators minimizing the average error probabi
Defining the risk operatorsŴi[j i r̂ i and the Lagrange op
erator Ŷ[( i ŴiP̂ i , the optimum conditions are written a
@7,13#

P̂ i~Ŵi2Ŵj !P̂ j50 ; ~ i , j ! ~ i!,

Ŷ2Ŵi>0 ; i ~ ii !.
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The minimum average error probability is given by

Pe~opt!512TrŶ. ~1!

When the signal states are pure (r̂ i5ur i&^r i u) and linearly
independent, the optimum detection operators can be g
as the projection-valued measure~PVM! with rank 1 asP̂ i
5uv i&^v i u. The set$uv i&% forms a complete orthonormal se
in the Hilbert spaceHs spanned by the signal states$ur i&%
and each of them is called ameasurement state. Introducing
a matrix X5(Xi j )[(^v i ur j&), the above conditions are re
written as

j iXii Xji* 5j jXi j Xj j* ; ~ i , j ! ~ i8!,

T~m![~j iXii Xji* 2jmXimXjm* !>0 ~ ii 8!,

m51, . . . ,M .

In general, it is a complicated job to derive explicit expre
sions for the optimum measurement states satisfying
above conditions. Only in certain cases have they b
known @14#. Otherwise, one has to rely on numerical sim
lations like the Bayes-cost-reduction algorithm@15#. The
most tedious part in such a method is to check the sec
condition (ii8). But when the signal states are linearly ind
pendent, this is ensured more simply, if

Y8[~j iXii Xji* !.0 ~ ii 9!

is satisfied. Its proof was given in the Appendix of Ref.@15#.
Now let us consider when the square-root measurem

becomes optimum. The square-root measurement is defi
as follows:

um i&[r̂21/2ur̃ i&, ~2a!

r̂[(
i 51

M

ur̃ i&^r̃ i u, ~2b!

ur̃ i&[Aj i ur i&. ~2c!

As is well known, the conditional probability based on th
measurementP( j u i )5 z^m j ur i& z2 can be calculated in the fol
lowing way. First make the Gram matrixG[(^r̃ i ur̃ j&). Sec-
ond diagonalize it as

G5QS g1

�

gM

D Q†, ~3!

whereQ is a unitary matrix. Third and finally, calculate

AG5QS Ag1

�

AgM

D Q†. ~4!

Then the (i , j ) components of AG are just ^m i ur̃ j&
5^m i ur j&Aj j . Here we give a useful theorem in considerin
the optimum collective decoding.
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Theorem 1

If $ur i&% are linearly independent, the measurement
$um i&% becomes optimum when all of the diagonal comp
nents ofAG are equal, that is, when probability of correct
identifying the letter is independent of the letter sent.

Proof

DefineY5(Yi j )[(^m i ur j&). The measurement by$um i&%
is optimum if

j iYii Yji* 5j jYi j Yj j* ; ~ i , j ! ~ i8!,

Y8[~j iYii Yji* !.0 ~ ii 9!

are satisfied. DenotingAG5(Ỹi j ), they can be rewritten as

Ỹii Ỹj i* 5Ỹi j Ỹj j* ; ~ i , j ! ~ i8!,

Y8[~Ỹii Ỹj i* !.0 ~ ii 9!.

SinceG is nonnegative and Hermitian, so isAG. Therefore
the above conditions reduce to

Ỹii 5Ỹj j ; ~ i , j ! ~ i8!,

Y8[~Ỹii Ỹi j !.0 ~ ii 9!.

Under the first condition, the second one further reduce
Ỹ11Ỹ.0. This is automatically satisfied sinceAG5Ỹ.0.
(Ỹ.0 implies Ỹii .0 ; i .! Thus for the square-root mea
surement, the first condition just above is enough for
optimum condition and this means the theorem. j

Thus the square-root measurement plays a practical
not only in the case of equally probable and almost ortho
nal states but also the case that the signal states satisf
above condition. The related discussion was given by B
et al. in the case of equally probable and symmetric sta
@16#. Even if the signal states do not satisfy the above c
dition, $um i&% can be good initial states in searching the o
timum measurement states. At first, note the following
mark.

Remark

If $ur i&% are linearly independent,$um i&% are orthonormal.

Proof

The optimum measurement state$uv i&% is a complete or-
thonormal set inHs . Define X̂[( i , jXi j uv i&^v j u so that
ur i&5X̂uv i&. Because of the linear independence of$ur i&%, X̂

is nonsingular andX̂21 exists. Then

^m i um j&5^r̃ i ur̂21ur̃ j&5Aj i^v i uX̂†r̂21X̂uv j&Aj j

5Aj i^v i uS (
k

jkX̂
21urk&^rkuX̂†21D 21

uv j&Aj j

5Aj i^v i uS (
k

jkuvk&^vku D 21

uv j&Aj j5d i j . j
y
-

to

e

le
-

the
n
s
-

-
-

Thus, for linearly independent states, the set$um i&% is always
a complete orthogonal set inHs . So it can be connected vi
a unitary operatorV̂ in Hs with the optimum measuremen
states$uv i&% as uv i&5V̂um i&. Such an operator can be con
structed, for example, as a series of two-dimensional ro
tions by applying the Bayes-cost-reduction algorithm@15#.
This algorithm consists of steps of solving a binary decis
problem of a chosen pair of signal states$ur i&,ur j&% on the
plane spanned by the corresponding pair of basis vec
$um i&,um j&%. At every step, two basis vectors are revised, a
the average error would decrease or, at worst, remain
same. These two-dimensional rotations are continued
reaching the optimum point where the previous conditio
(i8) and (ii8) are satisfied. The resulting series of their pro
ucts is just the required unitary operatorV̂.

III. OPTIMUM COLLECTIVE DECODING
OF CODE WORDS

Deriving the analytic expression of the optimum measu
ment basis vectors$uv i&% is a difficult job, but these basis
vectors can be constructed somehow as explained in the
ceding section, and at the same time the channel matrix
be obtained. Thus only for evaluating performance, is it s
ficient to derive these$uv i&%. From a practical point of view,
however, the basis vectors$uv i&% hardly imply a correspond-
ing physical process. Although the set$uv i&% forms a stan-
dard von Neumann measurement, its physical impleme
tion usually remains a nontrivial problem. In this section w
present a useful scheme for realizing the optimum collec
decoding. In the case where the letter states are binary,
scheme naturally leads to an implementation based o
quantum circuit and a well-defined physical measuremen

Let binary letter states be$u1&,u2&% whose state overlap
k5^1u2& is assumed to be real and to lie in 0<k,1. They
span the two-dimensional Hilbert spaceHl . By nth exten-
sion, we pick upM -ary code-word states$uS1&, . . . ,uSM&%
(M<2n) from the 2n possible sequences of lengthn, in the
nth extended Hilbert spaceHl

^ n and use them with respec
tive input probabilities$z1 , . . . ,zM%. The rest of the se-
quences are denoted as$uSM11&, . . . ,uS2n&%. Since the code-
word states are linearly independent, they span
M -dimensional Hilbert spaceHs,Hl

^ n . The optimum col-
lective decoding is described by the orthonormal basis v
tors $uv1&, . . . ,uvM&% in Hs derived in such a way as men
tioned in the preceding section. An orthonormal s
$uv1&, . . . ,uv2n&% in the extended spaceH l

^ n can be made
by adding the other basis vectors obtained by using
Schmidt orthogonalization,

uv i&5

uSi&2 (
k51

i 21

uvk&^vkuSi&

A12 (
k51

i 21

z^vkuSi& z2

~ i 5M11, . . . ,2n!. ~5!

We denote the expansion of all the sequences by the ab
basis vectors as
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S uS1&

A

uS2n&
D 5BS uv1&

A

uv2n&
D , ~6a!

B5~Bi j !5~^v j uSi&!. ~6b!

Making two orthonormal basis vectors$ua&,ub&% from
$u1&,u2&%, we introduce the 2n product basis vectors,

uA1&[ua& ^ ua& ^ •••^ ua& ^ ua&,

uA2&[ua& ^ ua& ^ •••^ ua& ^ ub&,

A ~7!

uA2n21&[ub& ^ ub& ^ •••^ ub& ^ ua&,

uA2n&[ub& ^ ub& ^ •••^ ub& ^ ub&,

and denote another expansion by them as

S uS1&

A

uS2n&
D 5CS uA1&

A

uA2n&
D , ~8a!

C5~Ci j !5~^Aj uSi&!. ~8b!

The two basis sets are connected via a unitary operatorÛ on
H l

^ n as

uv i&5Û†uAi& ~ i 51, . . . ,2n!, ~9a!

where

Û†5(
i , j

2n

uji uAj&^Ai u, uji 5~B21C! i j . ~9b!

Here the optimum collective decoding can be described
the set$Û†uA1&, . . . ,Û†uAM&%. The minimum error prob-
ability is obtained as

Pe~opt!512 (
m51

M

zmz^SmuÛ†uAm& z2. ~10!

This clearly means that the optimum collective decod
$uvm&% can be effected by~i! transforming the code-word
states$uSm&% by the unitary transformationÛ, and~ii ! apply-
ing the von Neumann measurement$uAm&^Amu% to the trans-
formed code-word states. This type of detection schem
called the received quantum state control@17,18#. The final
measurement is actually a separate measurement disting
ing each output letter state asua& or ub& sequentially.

Now the measurement basis vectors need not be the a
combination but may be chosen as any combination ofM
distinct elements of product basis vectors$uAi 1

&, . . . ,uAi M
&%.

Depending on the choice, the matrixC should be redefined
by rearranging the order of elements of the vect
of the right-hand side in Eq. ~8a!, as
$uAi 1

&, . . . ,uAi M
&,uAi M11

&, . . . ,uAi 2n&%. Then the unitary op-
y

g

is

sh-

ve

s

erator Û constructed by Eq.~9! transforms the code-word
states adaptively to the chosen basis vectors$uAm&% such that
the minimum average error probability is attained by t
separate measurement. Note thatÛ acts on the
2n-dimensional Hilbert spaceH l

^ n rather than the
M -dimensional spaceHs . After the unitary transformation
has been carried out, the resulting sequences at the final
surement always lie in the space spanned
$uAi 1

&, . . . ,uAi M
&%. If the transformation is skipped, all th

product basis vectors will come out. The channel model
this scheme is illustrated in the case ofn53 andM54 ~see
Fig. 1!.

This kind of decomposition makes it easier to design
collective decoding systematically. As the final measurem
on each letter-state system, each process of which is
scribed by the set$ua&,ub&%, the most suitable and imple
mentable method may be chosen. The main problem is
realization of the unitary transformation as anadaptorto the
final measurement. Corresponding physical processes
sometimes subtle. The difficulty of finding them may be ca
by case depending on what kind of letter-state system is
vided. However, if a 2-bit gate acting on quantum bits~qu-
bits! made of the two basis vectors$ua&,ub&% is available, the
required unitary transformation can be, in principle, effec
as a quantum circuit used in quantum computation.

Barencoet al. already showed that an exactsimulationof
any discrete unitary operator can be carried out by usin
quantum computing network@19#. This story can be directly
translated into the real operation ofÛ on the code-word
states. At first,Û is decomposed into U~2! operatorsT̂[ j ,i ] by
applying the algorithm proposed by Reck and others@20# as

Û5T̂[2,1]T̂[3,1]•••T̂[2n,2n22]T̂[2n,2n21] , ~11a!

where

T̂[ j ,i ]5exp@2g j i ~ uAi&^Aj u2uAj&^Ai u!#. ~11b!

Then the above two-dimensional rotationsT̂[ j ,i ] are con-
verted into quantum circuits by using the formula establish
by Barencoet al. @19#. Here the following point should be
noted. Since qubits are letter states themselves constitu
the code-word states, the gates should consist of the si
physical species from which the letter states are made. S

FIG. 1. The channel model obtained by decomposing the
lective decoding into the unitary transformation and the sepa
measurement in the case ofn53 andM54.
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gates known so far are Sleator and Weinfurter’s gate con
ing of two-state atoms@21# and the quantum phase gate a
ing on two photon-polarization states@22#. In the following
paper, examples of the required quantum circuits are
scribed based on such gates.

IV. SUPERADDITIVITY IN CAPACITY
OF QUANTUM CHANNEL

The purpose of this section is to demonstrate simple co
that show the superadditivity in capacity. Let us introdu
some definitions. Prepare an ensemble of letter stateŝ
5$ŝ1 , . . . ,ŝl% in a Hilbert spaceHl . They represent inpu
letters $1, . . . ,l %. Let j5$j1 , . . . ,j l% be corresponding
prior probabilities. A decoding process is described by
probability operator measure onHl , p̂5$p̂1 , . . . ,p̂ l 8% rep-
resenting output letters$1, . . . ,l 8%. We call the mapping
$1, . . . ,l %°$1, . . . ,l 8% the initial quantum channel. Fixing
j, ŝ, andp̂, the mutual information is defined as

I 1~j,ŝ:p̂!5(
i 51

l

j i (
j 51

l 8

p~ j u i !log2

p~ j u i !

(
k51

l

jkp~ j uk!

, ~12!

wherep( j u i )5Tr(p̂ j ŝi) is a conditional probability that the
letter j is chosen when the letteri has been sent. The max
mum value of this quantity optimized with respect toj andp̂
is usually denoted asC1,

C1~ ŝ![sup
j,p̂

I 1~j,ŝ:p̂!. ~13!

A basic channel coding consists of~i! concatenation of
the letter states into thel n block sequences$ŝi 1

^ •••^ ŝi n
%,

~ii ! pruning of them into M -ary code words Ŝ
5$Ŝ1 , . . . ,ŜM% which can encode log2M classical bits, and
~iii ! finding an appropriate decoding POMP̂

5$P̂1 , . . . ,P̂M8% in the extended Hilbert spaceH l
^ n . The

obtained channel is called thenth extended channel. Assign
ing input distributionz5$z1 , . . . ,zM% to the code words, the
mutual information is defined also for this channel as

I n~z,Ŝ:P̂!5(
i 51

M

z i (
j 51

M8

P~ j u i !log2

P~ j u i !

(
k5M

l

zkP~ j uk!

, ~14!

whereP( j u i )5Tr(P̂ j Ŝi). Let us define thenth order capac-
ity as

Cn~ ŝ![sup
z,P̂

I n~z,Ŝ:P̂!. ~15!

Then generally,Cn( ŝ)>nC1( ŝ) holds for a quantum channe
@1,2#. This property is the superadditivity in capacity. O
can define the limitC( ŝ)[ limn→`Cn( ŝ)/n. The quantum
channel coding theorem@3–6# says that thisC( ŝ) is just the
t-
-

e-

es
e

a

attainable rate of asymptotically error free transmissi
hence theintrinsic capacityof the initial quantum channel
and is exactly equal to the Holevo bound,

C~ ŝ!5sup
j

FHS (
i

j i ŝi D 2(
i

j iH~ ŝi !G , ~16!

whereH( ŝi)[2Tr( ŝi log2 ŝi) is the von Neumann entrop
of the density operatorŝi . This theorem ensures that the
exist such codes that the decoding error vanishes asymp
cally as n→` if the transmission rateR5(1/n)log2 M is
kept belowC( ŝ).

A remaining big problem is to find such codes. F
this purpose, the first thing to be understood is the supe
ditivity in capacity. It should be stressed that the strict sup
additivity Cn( ŝ).nC1( ŝ) is definitely impossible in a clas
sical memoryless channel. In contrast, a quantum cha
has a memory effect seen in channel matrix a
P(y1y2•••ynux1x2•••xn)Þ) i 51

n P(yi uxi), even when the
source of letter states and the physical transmission cha
do not have any memory effects. Thismemory effectis
caused by the decoding process itself. That is, when acol-
lective decodingis applied to the code words, the entang
ment structure among the letter states prevents, in gen
the channel matrix from being factorized as above. For
taining the strict superadditivity, an appropriatememory ef-
fectneeds to be generated by an appropriate selection of c
words and a collective decoding for them. This property
thus indeed quantum gain in information transmission.

The essential role of entanglement for the informati
theoretic quantum gain can be stressed rigorously by the
lowing theorem.

Theorem 2

Suppose that two ensembles of letter statesŝ(1)5$ŝi
(1)% in

H l
(1) and ŝ(2)5$ŝj

(2)% in H l
(2) are given, and the first orde

capacitiesC1( ŝ(1)) and C1( ŝ(2)) are attained for the prior
probabilitiesj(1) and j(2), and the detection operatorsp̂(1)

andp̂(2), respectively. Then the accessible information of t
channel with the inputsŝ(1)

^ ŝ(2) and the prior probabilities
j(1)

^ j(2) is given as

sup
P̂

I ~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!5C1~ ŝ~1!!1C1~ ŝ~2!!,

~17!

when

P̂5p̂~1!
^ p̂~2!.

The proof is given in Appendix A@23#.
Now suppose that the supremum in Eq.~13! is attained

when j5j* and p̂5p̂* . If all of the l n sequences

$ŝi 1
^ •••^ ŝi n

% are used as the code words with fixed pri

probabilities$j i 1
* 3•••3j i n

* %, according to the above theo

rem, the optimum decodingP̂ maximizing the mutual infor-

mation I n(j* ^ n,ŝ^ n,P̂) is
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P̂ i 1 , . . . ,i n
5p̂ i 1

* ^ •••^ p̂ i 1
* . ~18!

The accessible information is simplyn timesC1( ŝ),

sup
P̂

I n~j* ^ n,ŝ^ n,P̂!5nC1~ ŝ!. ~19!

Thus in this restricted case, there is no room for entan
ment to be generated. So this case provides athreshold point
for the information theoretic quantum gain. Once the inp
probabilities are redistributed so as to reduce weights
some code words, the entanglement becomes possible
the quantum gain can be obtained by an appropriate de

ing P̂. Concerning the threshold point, it might be wor
mentioning a similar theorem in terms of the average e
probability.

Theorem 3

For given states$ŝi% with prior probabilities $j i%,
let $p̂ i% be the optimum POM minimizing the average err
probability. Then in distinguishing the product stat

$ŝi 1
^ •••^ ŝi n

% associated with the prior probabilitie

$j i 1
3•••3j i n

%, the optimum POM minimizing the averag
error probability is

P̂ i 1 , . . . ,i n
5p̂ i 1

^ •••^ p̂ i n
~20!

and the minimum average error probability is given as

Pe~opt!512~Tr ŷ !n, ~21!

whereŷ[( ij ip̂ i is a Lagrange operator.
Its proof is given in Appendix B@23#. It should be noted

that the optimum POM for the letter states$p̂ i% need not, in
general, coincide with the one for the mutual informatio

$p̂ i* % in Eq. ~18!, even for the same ensemble$ŝi%. The
result of this theorem will be discussed later with the e
ample of the channel coding.

The simple example of a channel coding showing the
peradditivity in capacity was already given by the authors
the case of the third extension of the binary pure-state ch
nel @24#. Here we generalize this example intonth order
extension, and demonstrate the relation

sup
P̂

I n~z,ŝ^ n,P̂!.nC1~ ŝ!, ~22!

which ensures the strict superadditivity. The initial channe
made of binary lettersŝ5$u1&^1u,u2&^2u% whose inner
productk5^1u2& is assumed to be real. It is well know
that the first order capacity is achieved by the symme
channel with the detection operators$p̂1 ,p̂2% which mini-
mizes the average error probability@10–12#. These operators
are given asp̂ i5uv i&^v i u with
e-

t
f
nd
d-

r

,

-

-
n
n-

s

c

uv1&5A 12p

12k2u1&2A p

12k2u2&, ~23a!

uv2&52A p

12k2u1&1A 12p

12k2u2&, ~23b!

where p5(12A12k2)/2 is the minimum average erro
probability. The first order capacity is given simply as

C1~ ŝ!511~12p!log2~12p!1p log2p. ~24!

In thenth order extension, half of all the 2n sequences are
used as the code-word states and are input to the cha
with equal prior probabilities. Such 2n21 code-word states
are generated in a recursive manner from the four code-w
states$u111&,u122&,u221&,u212&% in the third or-
der extension, whereu122&[u1& ^ u2& ^ u2&, etc. That
is, defining vectors consisting of bra-state vectors of co
word states,

g~3![S ^111u

^122u

^212u

^221u
D , l~3![S ^222u

^211u

^121u

^112u
D , ~25!

they are given as

g~n!5S ^S1u

^S2u

A

^S2n21u
D [S ^1u ^ g~n21!

^2u ^ l~n21!D . ~26!

This code-word selection can be specified by the nota
@@n,n21,2## according to the nomenclature of codin
theory.

These code words are decoded by the square-root m
surement. The measurement basis vectors are defined a

um i&[r̂21/2uSi&, r̂[ (
i 51

2n21

uSi&^Si u, ~27!

where the prior probabilities are not included in the dens
matrix r̂ unlike Eq. ~2!, simply for mathematical conve
nience. As it will become clear soon, these basis vec
effect theoptimum collective decodingfor the above code
words. We have to evaluate the channel matrixP( j u i )
5 z^m j uSi& z2. The Gram matrix of the code words is given b

G~n!5g~n!
•g~n!†5S G~n21! k2L~n21!

k2L~n21! G~n21! D , ~28a!

where

L~n21!5
1

k
g~n21!

•l~n21!†5S G~n22! L~n22!

L~n22! G~n22! D ,

~28b!

and
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G~3!5S 1 k2 k2 k2

k2 1 k2 k2

k2 k2 1 k2

k2 k2 k2 1

D , ~28c!

L~3!5S k2 1 1 1

1 k2 1 1

1 1 k2 1

1 1 1 k2

D . ~28d!

G(n) andL(n) can be diagonalized by a 2n2132n21 matrix

Q~n!5H2n21 /A2n21, ~29a!

whereH2n21 is the Hadamard matrix defined by

H2k5S Hk Hk

Hk 2Hk
D , H25S 1 1

1 21D . ~29b!

The diagonalized matrices,

G~n![Q~n!†G~n!Q~n!, ~30a!

F~n![Q~n!†L~n!Q~n!, ~30b!

can be decomposed into 2n2232n22 matricesG(n21) and
F(n21) as

G~n!5S G~n21!1k2F~n21! 0

0 G~n21!2k2F~n21!D ,

~31a!

F~n!5S G~n21!1F~n21! 0

0 G~n21!2F~n21!D . ~31b!

After recursive decompositions, they can be represented

G~n!5S A~n,1!

�

A~n,2n23!
D , ~32a!

F~n!5S B~n,1!

�

B~n,2n23!
D , ~32b!

whereA(n,k) andB(n,k) (k51, . . . ,2n23) are 434 block
matrices defined by

A~n,k!5a~n,k!G~3!1b~n,k!F~3!, ~33a!

B~n,k!5c~n,k!G~3!1d~n,k!F~3!, ~33b!

with
s

G~3!5S 113k2

12k2

12k2

12k2

D , ~34a!

F~3!5S 31k2

211k2

211k2

211k2

D .

~34b!

The coefficients in Eq.~33! are determined by the following
recursive formula fork51, . . . ,2n24,

a~n,k!5a~n21,k!1k2c~n21,k!,

a~n,2n241k!5a~n21,k!2k2c~n21,k!,

b~n,k!5b~n21,k!1k2d~n21,k!,

b~n,2n241k!5b~n21,k!2k2d~n21,k!,

~35a!

c~n,k!5a~n21,k!1c~n21,k!,

c~n,2n241k!5a~n21,k!2c~n21,k!,

d~n,k!5b~n21,k!1d~n21,k!,

d~n,2n241k!5b~n21,k!2d~n21,k!,

with the initial values

a~4,1!5a~4,2!51,

b~4,1!52b~4,2!5k2, ~35b!

c~4,1!5c~4,2!5d~4,1!52d~4,2!51.

Thus the diagonal matricesA(n,k) are obtained, and the
square root of the Gram matrix is given as

AG~n!5Q~n!S AA~n,1!

�

AA~n,2n23!
D Q~n!†.

~36!

For representing the result, let us define

a~n,k![A~113k2!a~n,k!1~31k2!b~n,k!, ~37a!

b~n,k![A~12k2!@a~n,k!2b~n,k!#, ~37b!

and
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D~n,k![Q~3!AA~n,k!Q~3!† ~37c!

5S m~n,k! n~n,k! n~n,k! n~n,k!

n~n,k! m~n,k! n~n,k! n~n,k!

n~n,k! n~n,k! m~n,k! n~n,k!

n~n,k! n~n,k! n~n,k! m~n,k!

D , ~37d!
i
en

ee
where

m~n,k![ 1
4 @a~n,k!13b~n,k!#, ~37e!

n~n,k![ 1
4 @a~n,k!2b~n,k!#. ~37f!

ThenAG(n) can be represented as
AG~n!5S R~n,1! R~n,2! R~n,3! R~n,4! •••

R~n,2! R~n,1! R~n,4! R~n,3! •••

R~n,3! R~n,4! R~n,1! R~n,2! •••

R~n,4! R~n,3! R~n,2! R~n,1! •••

A A A A A

R~n,2n2321! R~n,2n23! R~n,2n2323! R~n,2n2322! •••

R~n,2n23! R~n,2n2321! R~n,2n2322! R~n,2n2323! •••

D , ~38a!
-
s

nd
the
um

er
iv-

t

ine

d-
r

re

tter

-
e

where

S R~n,1!

A

R~n,2n23!
D [

1

2n23
H2n21S D~n,1!

A

D~n,2n23!
D . ~38b!

R(n,k) can be further arranged in the form

R~n,k!5S u~n,k! v~n,k! v~n,k! v~n,k!

v~n,k! u~n,k! v~n,k! v~n,k!

v~n,k! v~n,k! u~n,k! v~n,k!

v~n,k! v~n,k! v~n,k! u~n,k!

D . ~39!

The two kinds of componentsu(n,k) and v(n,k) can be
calculated by

S u~n,1!

A

u~n,2n23!
D [

1

2n23
H2n23S m~n,1!

A

m~n,2n23!
D , ~40a!

S v~n,1!

A

v~n,2n23!
D [

1

2n23
H2n23S n~n,1!

A

n~n,2n23!
D . ~40b!

After squaring each component ofAG(n), the channel matrix
P( j u i ) can be obtained. According to the symmetry seen
Eq. ~38!, it is easy to see that the mutual information is giv
as

I n~S:m!5n211 (
k51

2n23

@u~n,k!2log2 u~n,k!2

13v~n,k!2log2 v~n,k!2#. ~41!

In order to see the quantum gain, the difference betw
the mutual information per letter stateI n(S:m)/n andC1( ŝ)
n

n

is plotted as functions ofk in Fig. 2. The dashed line corre
sponds to the case ofn52 where the two code-word state
$u11&,u22&% are sent with the same prior probabilities a
are detected by the optimum measurement minimizing
average error probability. In this case, the positive quant
gain was not found in the whole region ofk. For n53213
~solid lines!, the difference becomes positive at the larg
side ofk. This positive gain clearly shows the superaddit
ity in capacity. Letk* be the value ofk(,1) for which the
difference becomes zero. Then fork* ,k,1 the difference
is always positive, and asn increases,k* decreases so tha
the positive gain appears in a wider region ofk. This relation
is plotted in Fig. 3. The circles represent the points (n,k* ).
The solid line is just a guide for the eye. The dashed l
corresponds to the curve ofn52k21.5. This figure may pro-
vide a rough estimate forn in order to obtain the positive
gain. That is, for a givenk, one may guess that the supera
ditivity will appear when the order of extension for ou
@@n,n21,2## code is taken as an integern larger than
2k21.5. Unfortunately we did not succeed in giving a mo

FIG. 2. The difference between the mutual information per le

state I n(S:m)/n and C1( ŝ) for n52213. The dashed line corre
sponds to the case ofn52, while the solid lines correspond to th
case ofn53213.
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rigorous condition. The maximum amount of the positi
gain is still quantitatively unsatisfactory compared with t
gap between the intrinsic capacityC( ŝ) and the first order
capacityC1( ŝ). Actually it is less than 10% of the maximum
gap. In the case ofn59 for which the maximum gain wa
obtained,C( ŝ), I 9(S:m)/9 andC1( ŝ) versusk are plotted in
Fig. 4.

As far as the minimum average error probability is co
cerned, the square-root measurement we used@Eq. ~27!# is
the optimum for our@@n,n21,2## code @Eq. ~26!# because
all of the diagonal components ofAG(n) are equal tou(n,1)
as seen from Eqs.~38! and~39!, for which Theorem 1 holds
The minimum average error probabilities versusk are plot-
ted for n53, 5, 7, 9, 11, 13 by the solid lines in Fig. 5. Fo
a fixedk, they increase as withn. The dotted lines represen
the minimum average error probabilities corresponding
the threshold points, that is, Eq.~21!. Although the error
probabilities of our code@@n,n21,2## are smaller than thos
of the threshold points, they are still larger thanp5(1
2A12k2)/2 ~the minimum bit error! at the larger side ofk.
In spite of this, the quantum gainI n(S:m)/n.C1( ŝ) reveals
itself within such regions.

The same tendency could be seen in other codes. Le
consider the so-called simplex code@@2r21,r ,2r 21##, for ex-
ample. All the code words are the same distance apart.
n52r21 andM52r . Suppose thatM -ary code words are

FIG. 3. The relation betweenn and k* (,1) at which

I n(S:m)/n5C1( ŝ) holds.k* ’s are denoted by the circles. The sol
line is just a guide for the eye. The dashed line corresponding to
curve ofn52k21.5.

FIG. 4. C( ŝ), I 9(S:m)/9, andC1( ŝ) as functions ofk.
-

o

us

et

used with equal prior probabilities. Then the square-r
measurement is again the optimum collective decoding
them. Defining

a~n![A11~M21!kM /2, ~42a!

b~n![A12kM /2, ~42b!

it is straightforward to see

~AG~n!! i i 5u~n![
1

M
@a~n!1~M21!b~n!#, ~43a!

~AG~n!! i j 5v~n![
1

M
@a~n!2b~n!#, iÞ j . ~43b!

The mutual information is then given by

I n~S:m!5 log2 M1u~n!2log2 u~n!2

1~M21!v~n!2log2 v~n!2. ~44!

e
FIG. 5. The minimum average error probabilities correspond

to the code@@n,n21,2## ~solid lines!, the initial channel, i.e.,p
~dashed line!, and thethreshold points~dotted lines! as functions of
k.

FIG. 6. C( ŝ), I 7(S:m)/7 for both the@@7,3,4## simplex code and

the @@7,6,2## code, andC1( ŝ) as functions ofk.
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This code is compared with the previous one atn57 in
terms of both the mutual information per letter state and
minimum average error probability in Figs. 6 and 7, resp
tively. The @@7,3,4## simplex code has higher distinguish
ability of the code words than the@@7,6,2## code so that the
minimum average error is much smaller, while its mutu
information is not necessarily larger than the latter. T
former overcomes the latter only in the region 0.82,k,1.
Around this region, the minimum average error probabil
is, again, larger than the minimum bit errorp.

This tendency may be understood as a result from
facts that in order to produce the quantum gain a quan
interference among the code-word states must occur to
duce certain components of the channel matrix, and that s
a quantum interference occurs more drastically when
nonorthogonality of the code-word states is larger, hence
the larger side ofk. On the other hand, the nonorthogonal
causes a certain amount of decoding error as well. This
creases the amount of transmittable information, while
quantum gain may appear if the quantum interference
duces certain components of the channel matrix in a pro
manner. Thus at shorter block length, the quantum gain
the differenceI n/n2C1.0 is likely to appear on the large
side ofk being accompanied by a certain amount of dec
ing error. A rough guide in order to construct a chann
attaining the quantum gain for a givenk is as follows: the
ratio of the number of the message bitsk to the block length
n should be taken larger thanC1( ŝ) at thisk first, and then
code-word states should be selected with a distance
equally apart as possible. Ask becomes closer to the unity,
becomes more effective in obtaining the quantum gain
take the ratiok/n small and to select the code-word stat
being distant. As an example, the simplex code@@7,3,4## is
compared with the code@@3,2,2## in the region 0.75,k,1
in Fig. 8. Fork.0.85, the@@7,3,4## code~solid line! is more
efficient in terms of the mutual information than th
@@3,2,2## code~dotted line!. For constructing codes such th
the decoding error can be as small as possible and the
can reach the Holevo bound, a larger block length at wh
the typical subspace can be well defined is necessary. P
tical methods for obtaining larger quantum gain must
studied in great detail along this direction.

FIG. 7. The minimum average error probabilities correspond
to the@@7,3,4## simplex code, the@@7,6,2## code, and the initial chan
nel, i.e.,p ~dashed line! as functions ofk.
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V. CONCLUDING REMARKS

The initial channel considered in this paper is the bina
symmetric pure-state channel which is the simplest quan
channel. When the binary letter states are orthogonal,
channel is error free, and there is no quantum regime, tha
nth order capacity obviously satisfies the strict additiv
Cn5nC1. When they are nonorthogonal, i.e., 0,k,1, the
strict superadditivity Cn.nC1, in turn, reveals itself. What
we have shown in this paper is a demonstration ofI n.nC1
that ensures the strictsuperadditivity.

The first part of this paper was devoted to the optimu
collective decoding of the code-word states at the minim
average error probability. The scheme we proposed con
of the unitary transformation and the separate measurem
The unitary transformation generates appropriate superp
tion states among the code-word states such that the m
mum average error is attained at the separate measurem
These output states are not separable into the letter state
more. Minimization of decoding error is just a manifestati
of the optimum use of quantum interference associated w
this kind of superposition states. The required unitary tra
formation is essentially a conditional dynamics in a high
dimensional Hilbert space, and is realized by a quantum
cuit which is capable of manipulating each letter state in
conditional manner depending on the other letter states. T
our scheme suggests a state-of-the-art quantum dec
structure.

Quantum channels involving the above collective dec
ing have amemory effect, i.e., P(y1y2•••ynux1x2•••xn)
Þ) i 51

n P(yi uxi). This inseparability of quantum channel is
direct origin of the quantum gainI n.nC1. Only when code-
word states are selected suitably does this inseparability
to the quantum gain. We gave a heuristic approach to at
this gain for a given letter-state ensemble. Our examples
always accompanied by a larger amount of decoding e
than the minimum average error in the initial channel.
mentioned in the preceding section, this dilemma is beca
both decoding error and the quantum gain are origina
from the nonorthogonality of the letter states.

Although some basic aspects for realizing the quant
gain were clarified by this paper, practical codes that trans
classical alphabet faithfully at the maximum rate are s
completely unknown. Even in classical information theo

g FIG. 8. The mutual information per letter corresponding to t
@@7,3,4## simplex code~solid line! and the code@@3,2,2## ~dashed
line! as functions ofk.
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realization of such codes that achieve asymptotically e
free transmission at the rateC1 is very difficult. It might be
an interesting problem to consider an application of so
conventional error correcting codes to then-product quan-
tum channels described in this paper. This will lead to re
ization of asymptotically error free transmission at the r
I n /n (.C1). For the ultimate quantum channel coding, typ
cality of the Hilbert space spanned by the code-word sta
and sophisticated quantum error correction might be con
ered together.
r

e

l-
e

es
d-
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APPENDIX A: PROOF OF THEOREM 2

We first prove the following lemma.

Lemma

sup
P̂

I ~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!5sup
p̂~1!

I ~j~1!,ŝ~1!:p̂~1!!1sup
p̂~2!

I ~j~2!,ŝ~2!:p̂~2!!. ~A1!

Proof of lemma

~1! Clearly,

sup
P̂

I ~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!> sup
P̂5p̂~1!

^ p̂~2!

I ~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!5sup
p̂~1!

I ~j~1!,ŝ~1!:p̂~1!!1sup
p̂~2!

I ~j~2!,ŝ~2!:p̂~2!!. ~A2!

~2! RepresentingP( j u i 1 ,i 2)5Tr(P̂ j ŝi 1
(1)

^ ŝi 2
(2)), whereP̂ j is a POM onH l

(1)
^H l

(2) ,

I~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!5(
j

(
i 1 ,i 2

j i 1
~1!j i 2

~2!P~ j u i 1 ,i 2!log2S P~ jui1,i2!

(
k1,k2

jk1

~1!jk2

~2!P~ juk1,k2!D
5(

j
(
i1,i2

ji1
~1!ji2

~2!P~ jui1,i2!Flog2S P~ jui1,i2!

(
k1

jk1

~1!P~ juk1,i2!D1log2S (
k1

jk1

~1!P~ juk1,i2!

(
k1,k2

jk1

~1!jk2

~2!P~ juk1,k2!
DG

5(
i2

ji2
~2!F(j

(
i1

ji1
~1!P~ jui1,i2!log2S P~ jui1,i2!

(
k1

jk1

~1!P~ juk1,i2!DG1(
j

(
i2

ji2
~2!

3F(
i1

ji1
~1!P~ jui1,i2!Glog2S F(

k1

jk1

~1!P~ juk1,i2!G
(
k2

jk2

~2!F(
k1

jk1

~1!P~ juk1,i2!GD. ~A3!
-

We introduce two kinds of POM onH l
(1) andH l

(2) as

P̂~ i 2! j
~1! [Tr~2!~P̂ j Î

~1!
^ ŝi 2

~2!!, ~A4!

P̄ j
~2![(

i 1
j i 1

~1! Tr~1!~P̂ j ŝi 1
~1!

^ Î ~2!!, ~A5!
where Tr( i ) means taking the trace over the spaceH l
( i ) , and

Î ( i ) is the identity operator inH l
( i ) . Representing the condi

tional probabilities in Eq.~A3! as

P~ j u i 1 ,i 2!5Tr~1!~P̂~ i 2! j
~1! ŝi 1

~1!!, ~A6!

(
i 1

j i 1
~1!P~ j u i 1 ,i 2![Tr~2!~P̄ j

~2!ŝi 2
~2!!, ~A7!
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we see that Eq.~A3! is equivalent to

I ~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!5(
i 2

j i 2
~2!I ~j~1!,ŝ~1!:P̂~ i 2!

~1! !

1I ~j~2!,ŝ~2!:P̄~2!!. ~A8!

Hence

sup
P̂

I ~j~1!
^ j~2!,ŝ~1!

^ ŝ~2!:P̂!

5(
j

j j
~2!sup

P̂

I ~j~1!,ŝ~1!:P̂j
~1!!1sup

P̂

I ~j~2!,ŝ~2!:P̄~2!!

<sup
p̂~1!

I ~j~1!,ŝ~1!:p̂~1!!1sup
p̂~2!

I ~j~2!,ŝ~2!:p̂~2!!. ~A9!

The two inequalities~A2! and ~A9! prove the lemma.
Now suppose thatI (j( i ),ŝ( i ):p̂( i )) is maximized when

j( i )5j
*
( i ) and p̂( i )5p̂

*
( i ) . Then the lemma means that

sup
P̂

I ~j
*
~1!

^ j
*
~2! ,ŝ~1!

^ ŝ~2!:P̂!5C1~ ŝ~1!!1C1~ ŝ~2!!.

~A10!

On the other hand,

I ~j
*
~1!

^ j
*
~2! ,ŝ~1!

^ ŝ~2!:p̂
*
~1!

^ p̂
*
~2!!

5I ~j
*
~1! ,ŝ~1!:p̂

*
~1!!1I ~j

*
~2! ,ŝ~2!:p̂

*
~2!!

5C1~ ŝ~1!!1C1~ ŝ~2!!. ~A11!

These two equations prove the theorem.

APPENDIX B: PROOF OF THEOREM 3

The necessary and sufficient condition that$p̂ i% is the
optimum POM are
an

f.

ry
p̂ j~ŵj2ŵk!p̂k50 ; ~ j ,k! ~ i!,

ŷ2ŵj>0 ; j ~ ii !,

whereŵi5j i ŝi andŷ5( j ŵ j p̂ j are the risk operators and th
Lagrange operator, respectively. We would like to prove t

P̂ j 1 , . . . ,j l
(5p̂ j 1

^ •••^ p̂ j l
) satisfy

P̂ j 1••• j l
~Ŵj 1••• j l

2Ŵk1•••kl
!P̂k1•••kl

50 ~ i8!,

Ŷ2Ŵj 1••• j l
>0 ~ ii 8!,

where Ŵj 1 , . . . ,j l
5ŵj 1

^ •••^ ŵj l
and Ŷ

5( j 1••• j l
Ŵj 1 , . . . ,j l

P̂ j 1 , . . . ,j l
5 ŷ ^ n. Here note that the fol-

lowing formulas:

A1^ •••^ Al2B1^ •••^ Bl5~A12B1! ^ A2^ •••^ Al1B1

^ ~A22B2! ^ •••^ Al1•••

1B1^ B2^ •••^ ~Bl2Al !.

~B1!

Then to ensure (i8), we rearrange the left-hand side as

P̂ j 1 , . . . ,j l
~Ŵj 1 , . . . ,j l

2Ŵk1 , . . . ,kl
!P̂k1 , . . . ,kl

5p̂ j 1
ŵj 1

p̂k1
^ •••^ p̂ j n

ŵj n
p̂kn

2p̂ j 1
ŵk1

p̂k1
^ •••^ p̂ j n

ŵkn
p̂kn

, ~B2!

and setAm5p̂ j m
ŵj m

p̂km
and Bm5p̂ j m

ŵkm
p̂km

. Since~i! is

equivalent toAm2Bm50, after Eq.~B1! is applied to Eq.
~B2! we obtain~i8!. Similarly, to show~ii 8!, we setAm5 ŷ

and Bm5ŵj m
. From the definitions,Am>0 and Bm>0.

In addition, ~ii ! is nothing but Am>Bm . So when
Ŷ2Ŵj 1 , . . . ,j l

is decomposed by Eq.~B1!, its nonnegative
definiteness is obvious.
.
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