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Excitation spectrum and instability of a two-species Bose-Einstein condensate
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We numerically calculate the zero-temperature density profile and excitation spectrum of a two-species
Bose-Einstein condensate for the parameters of recent experiments. We find that the ground-state density
profile of this system becomes unstable in certain parameter regimes, which leads to a phase transition to a new
stable state. This state displays spontaneously broken cylindrical symmetry. This behavior is reflected in the
excitation spectrum: As we approach the phase transition point, the lowest excitation frequency goes to zero,
indicating the onset of instability in the density profile. Following the phase transition, this frequency rises
again.[S1050-294{@8)02408-1

PACS numbd(s): 03.75.Fi

[. INTRODUCTION and in the case where the parameters satisfy conditions lead-
ing to a pure binary phase two-species BEC. Busichl. [4]

Following the observation of a two-species Bose-Einsteirhave performed a variational calculation in which they com-
condensatgBEC) by Myatt et al. [1], there has been in- pute the lowest-lying excitation frequencies. Esry and
creased interest in the properties and applications of twoGreene[5] have numerically calculated the excitation spec-
species Bose-Einstein condensates. Theoretically, twdrum of a two-species BEC in a time-averaged orbiting po-
species BECs are interesting because they allow the relativiential (TOP) trap in which gravity separates the centers of
phase between the mean-field wave functions to becomi&e two condensates. They found that the repulsive interac-
manifest, whereas the phase of a single BEC cannot be oijon between the two clouds lead to simultaneous collective
served. The original experiment of Mya¢t al. used the excitations of both species, which were significantly differ-
|F,m;)=]1,—1) and|2,2 hyperfine sublevels of’'Rb in a  ent from the single-condensate case. However, this system
cloverleaf trap. The two species formed slightly overlappingdid not display the stability properties presented here. Pu and
clouds that were offset relative to one another by gravity Bigelow[9,6] have solved for the case of mixed Rb-Na con-
Recent progress has also been made in the production @gnsate under assumptions of cylindrical symmetry of the
two-species BECs in which the two condensates share tréensity profiles and found that this system also displayed
same trap center and are therefore less like two separatestabilities of the kind presented here; however, they have
single condensatég]. This system uses thé,— 1) and|2,1) not investigated the effect of spontaneous breaking of cylin-
sublevels of’Rb, which have the same magnetic-dipole mo-drical symmetry.
ment to first order.

In this paper we consider the quasiparticle, or collective Il. GROUND-STATE DENSITY PROFILE
excitation, spectrum of this latter systd®-6]. We find an AND EXCITATION SPECTRUM
interesting dependence of the excitation frequencies, which , )
clearly shows the onset of instability in the density profile as FOr @ two-species condensate, the second quantized grand
particle number is increased and a subsequent phase tran§gnonical Hamiltonian is, in the position basis,
tion to a stable configuration. This behavior is due to the
tendency of the two species to separate out like oil and water H— f &)
in certain parameter regim¢g]. As in the two-dimensional A
(but nonzero-temperaturealculation of berg and Sten-
holm [8], our zero-temperature three-dimensional calcula- 3n t
tions show that this phase transition can take the form of a +f drg(r)
spontaneous breaking of cylindrical symmetry. The onset of
this instability as particle number is increased is indicated by
an excitation frequency that goes to zero. Following a phase
transition to a stable state, this frequency rises again to a
constant value.

Our work builds on previous studies of the excitations and
stability properties of two-species BECs. Graham and Walls
[3] have analytically solved for the excitations of a binary T 7S NS N i
phase two-species BEC in a trap, in the Thomas-Fermi limit, +UABJ AT alr) a(r), @
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whereW A(r) and¥(r) are the field annihilation operators
*Electronic address: Dan.Gordon@anu.edu.au for speciesA and B, respectively,u, g are the chemical
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potentials for the two species is the atomic masg@ssumed

here to be equal for specidsandB), V, g are the trapping Vi _J d3r ¢P(r)B(r) pR(r) Bi(r), 4
potentials for the two species, and thiyagg ap are the

scattering parameterd) ,,=4ma,qi’/m, whereasagsas  wherep and g denote the species of atof or B). The

are the scattering lengths between two atoms of spétjes stationary conditions of the energy functional subject to con-
two atoms of specieB, and an atom of species and an  straints of particle number conservation lead to the Gross-
atom of specie®). SettingW o= ¢+ 5, and ¥g=y+ 55, Pitaevskii equations for a two-species condengate4,d.
where thez,/zz(‘i’) are ¢ numbers and thé’s contain the We o_le_ter_mine the ground—state_density pr(_)file by numeri-
operator dependence, we can expand(Exjin the deviation ~ Cally minimizing the energy functional3) subject to con-

A . . . stant particle number. We do this rather than the more usual
operatorsd, g. Assuming that the condensate is approxi- d tationally simoler brocedure of solving the Gross-
mately in a coherent state allows us to discard the third- an nd computat y bier p g

itaevskii equation since any minimum of the energy func-
fourth-order terms in thes's, since these are small. The tional is a solution to the Gross-Pitaevskii equation, but the
zeroth-order term in thed's gives the energy functional, set of solutions to the latter also include maxima and saddle
whose stationary points subject to a particle number conpoints of the energy functional. In the particular case consid-
straint are given by solutions to the Gross-Pitaevskii equaered here, solutions to the Gross-Pitaevskii equation can be-
tion [10]. The first-order term vanishes if the Gross- come unstable as parameters are varied and we need to take
Pitaevskii equation is satisfied and the second-order term cahis into account. This instability is a result of the tendency
be diagonalized with a Bogoliubov transformation, giving of two-species condensates to form two separate clouds in
the quasiparticle or excitation energies for the BEC. certain parameter regimes.

We use a variation of the well-known basis set method The excitation spectrum is then calculated by solving the
[12] to minimize the energy functional. This method consistsBogoliubov equations. In the discrete basis used here, these
in working in a basis of harmonic-oscillator eigenfunctionsequations amount to solving the eigenproblem for a non-
for the bare trapping potential. We scale these basis vectotgermitian matrix formed from ther's and 8's. The two-
appropriately so that the expansion of the condensate due pecies condensate case generalizes readily from the single
repulsive atom-atom interactions is partially accounted forcondensate case, for which details can be four[d 2} The
The scaling factors are determined by a variational techniqugatrix to be diagonalized has the form
using Gaussian trial wave functions. This allows us to calcu-

late using fewer basis vectors or even, in certain geometries, Paa Pag —Qar —Qag
to accurately scale out the dependence in one or two dimen- ) p ~Q ~Q
sions. BA BB BA BB (5)
We define a scaled basis as Qaa Qas —Paa —Pas
QBA QBB - PBA _PBB
1/ Xy z
d’i(xryaz):()\x)\y)\z) 2CI)i NEEEUEENE (2) where
AW
wht_are thed;(r) 'are norma_l modes of the fre_e trap Haml_l- pﬁA:H%A_ﬂAJFE 2UAAV{_}G aka|+Uﬁ<?|,3k,3| ,
tonian and thex's are scaling factors determined by mini- Kl

mizing the energy functional with Gaussian trial wave func-
tions. We have found that we can generally achieve

. 4 PAB= UgVAE a8
reasonable accuracy with around 200 basis vectors, although ij T & S ABYlkj Tkl
this depends on the geometry of the problem and the param- '
eter regimes explored.

In this basis, the energy functional becomes PﬁA=% UnsVi aiBi .
' (6)
EZE H%Aaiaj-l-H?jB,Bi,Bj
] :; UaaVitiagay ,
1
+i§| ENiUAAVﬁ‘Gaiajakm e
o B= & UasVijki akBi,
1
+5N 2UggVik BiBi BB+ NaNgU apViig ai B auchy |,
(3) A= & UABVﬁkBl P .

where thea;'s and g;’s are the amplitudes in the various pBB gnd QB are defined as foP** and Q*4, respectively,
modes for specied andB, respectivelyH " are the ma-  with A<B anda« 8. The various symmetries that exist for
trix elements of the noninteracting HamlltoniapZ/Zm given trapping geometries and parameter regimes can be
+Va g(r) in the expanded basis, and th&;"®"® are the  used to simplify the problem by separating the matfx
matrix elements of the two-body potential into several smaller matrices.
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FIG. 1. Radial cross section through the density profile for the
parametersag=5.0 nm andN,=Ng=15 000 atoms. The cross
section is taken through the minimum of the trapping potential in 00 50'00 10600 15000
the longitudinal direction. The mesh plot shows the maximum den-
sity for speciesA andB and the line plots show the densities along Number of atoms N = Np
thex andy axes of the combined densitypper plot$ and species
A andB densities(solid and dotted lines, respectiviglyn this case, FIG. 2. (a) Excitation spectrum for a single species BEC with
the scattering lengtta,g is small enough compared to the two a=5.52 nm. Parameters were chosen to approxiriztas closely
single-species scattering lengths that the two species show no tefis possible(b) Excitation spectrum for the parameters of Fig. 1.
dency to form separate clouds.

other. The corresponding excitation spectrum is shown in
Fig. 2(b), and Fig. 2a) shows a single-species condensate

We consider here equal trapping potentials for spesies With a=+axaagg. We see that, as predicted by Graham and
andB. This situation has been experimentally achieved foWalls[3], the excitation spectrum of the two-species conden-
8Rb atoms in theéF,Mg)=|1,— 1) and|2,1) hyperfine sub- sate undergoes a doublet splitting as compared to the case of
levels, which we labe|A) and |B) [2]. We consider trap @ single-species condensate. We have compared our results
frequencies ofX:fy:47/\/§ Hz andf,=47 Hz, which are 10 the high a_tom number Iim_it derived by Graham and Walls
relevant to these experiments in a TOP trap. The low inelasfor @ spherically symmetric two-species condensate and
tic collision cross section for these species is consistent witfound agreement to within a few percent with less than 200
scattering lengthsiaa gg ag, Which are all similar. Recent basis vectors. o
calculations giveas,=5.68 nm andagg=5.36 nm[13]. We Figure 3 shows what happens whagg is increased to
consider the three casesg=>5.0, 5.52, and 6.0 nm, which Vaaadgs=5.52 nm. We see that at high atom number, the
are within the range of expected values for this quantity, ifowest-energy eigenvalue approaches closer to zero fre-
order to show the onset of phase instability &g is in-  duency than in the case of Fig. 2, suggesting that we are near
creased. a region of phase instability in parameter space.

As shown by Ho and Shendy], a binary condensate in ~ Indeed, in the casa,g=6.0 nm, the single-phase solu-
the high particle numbefThomas-Fernjilimit can contain  tion to the Gross-Pitaevskii equation becomes unstable at a
volumes in which 0n|y one Species is preségi'ying two critical atom number of around 4000. The minimum of the
single-particle phases, one for each speciesl volumes in ~ €nergy functional is given by a different density profile, as
which both species coexigtinary phaseseparated by phase shown in Fig. 4. It can clearly be seen that the cylindrical
boundaries. As an example, a condensate for which all pa-
rameters except the interspecies scattering length are thg
same for each species will exist as a single binary phase%
cloud only if Ugyg<Uppg- If we discard the Thomas- g
Fermi assumption, then this single-species phase or binary;
phase picture is only approximate since the kinetic-energyg 1.57
term in the Hamiltonian precludes the existence of sharpy \
phase boundaries. However, a two-species BEC can stillung* 1
dergo phase transitions in the sense that a solution to the=
Gross-Pitaevskii equation may become unstable as paran§ o5}
eters are varied and the condensate will then undergo col$

Ill. RESULTS

~ —

lapse to some other stable solution. T 0 . .
Figure 1 shows a radial cross section through the density 0 5000 10000 15000
profile fora,g=5.0 nm and\N,=Ng=15000 atoms. We see Number of atoms N = Np

that in this case the two-species condensate exists as two
highly overlapping clouds with no tendency to repel each FIG. 3. Excitation spectrum fcei,g=5.52 nm.
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g ized by the lowest excitation frequency approaching zero. Follow-
= X ing a phase transition to a symmetry-broken state, the lowest-energy
S 3 eigenvalue increases again, tending towards an asymptotic limit.
= W \\\\§
z NS 15
5 is hardly modified after the phase transition point. We inter-

pret this as being due to the fact that, in the region above the
/ phase transition, theombineddensity profile of the two spe-
Distance (um) cies looks very much like a single-species condensate, even
though the individual density profiles of each species are

FIG. 4. Density profile fom,s=6.0 nm. The top plot shows the 9reatly modifiedsee Fig. 4. The excitations in question are

densities forN=3000 and the bottom plot shows the densities forthen interpreted as the normal single-species type of excita-

N=4500. The spontaneous breaking of cylindrical symmetry istions for this combined density profile.
seen in the latter case. V. CONCLUSION

In certain parameter regimes, two-species Bose-Einstein
gondensates can show more complex density profile behavior
than single condensates. In particular, solutions to the Gross-
Stenholm[8] in a two-dimensional calculation. It illustrates Pitaevskil equatlon_can_become unstable or metastable as

arameters are adiabatically changed, leading to different

the danger in assuming spherical or cylindrical symmetr d-stat luti We h ned th this of
when solving for the density profile of a binary condensate Jrounad-staté solutions. \e have examined the way inis et-
fect shows up in the excitation spectra of experimentally re-

since in this case such an assumption leads to a state that e t . d ¢ 4 found that th ¢ of
unstable with respect to certain antisymmetric perturbations."’.l IStic two-Species condensates and toun at tne onset o
The excitation spectrum for the parameters of Fig. 4 ismstablllty is heralded by an excitation frequency that tends

shown in Fig. 5. We can clearly see that, for low atom num-l0 Zero, as would be expected. The nature of the instability is

bers, the lowestantisymmetrig excitation frequency goes to consistent with t_he parity of the corresponding excitation.
zero, suggesting the increasing instability of the condensate Note added in p.roofRecentI% Halletal. has given a
to antisymmetric perturbations. This is indeed the case, as %lalue of the scattering lengtiag=5.5(3) f?m(D- S. Hall,
shown by the breaking of cylindrical symmetry seen in Fig. =" R. Matth_ews, J. R. Ensher, C. E. Wieman, and E. A.
4. WhenN~4000 is reached, the condensate undergoes Gornell, e-print cond-mat/9804188

symmetry is spontaneously broken by the two condensate
mutual repulsion. This effect was also seen bybérg and

phase transition to an unsymmetric ground state and the ACKNOWLEDGMENTS
lowest-energy eigenvalue increases again to an asymptotic
limit. The authors would like to thank Michael Matthews for

One further interesting feature of this excitation spectrumdiscussions of current experiments. The calculations were
is the persistence of excitations that look like the single-performed at the Australian National University Supercom-
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