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We present a comprehensive theory of nuclear spin polarizatiGiiefand'>*>Xe gases by spin-exchange
collisions with optically pumped alkali-metal vapors. The most important physical processes considétgd are
spin-conserving spin-exchange collisions between like or unlike alkali-metal at@jrspin-destroying colli-
sions of the alkali-metal atoms with each other and with buffer-gas at@ns|ectron-nuclear spin-exchange
collisions between alkali-metal atoms afHe or *?*Xe atoms;(4) spin interactions in van der Waals mol-
ecules consisting of a Xe atom bound to an alkali-metal at&ymptical pumping by laser photon@) spatial
diffusion. The static magnetic field is assumed to be small enough that the nuclear spin of the alkali-metal atom
is well coupled to the electron spin and the total spin is very nearly a good quantum number. Conditions
appropriate for the production of large quantities of spin-polariZide or 1?°Xe gas are assumed, namely,
atmospheres of gas pressure and nearly complete quenching of the optically excited alkali-metal atoms by
collisions with N, or H, gas. Some of the more important results of this work are as follglydviost of the
pumping and relaxation processes are sudden with respect to the nuclear polarization. Consequently, the
steady-state population distribution of alkali-metal atoms is well described by a spin temperature, whether the
rate of spin-exchange collisions between alkali-metal atoms is large or small compared to the optical pumping
rate or the collisional spin-relaxation rat€2) The population distributions that characterize the response to
sudden changes in the intensity of the pumping light are not described by a spin temperature, except in the limit
of very rapid spin exchang€3) Expressions given for the radio-frequer(cf) resonance linewidths and areas
can be used to make reliable estimates of the local spin polarization of the alkali-metal @pDifusion
effects for these high-pressure conditions are mainly limited to thin layers at the cell surface and at internal
resonant surfaces generated by radio-frequency magnetic fields when the static magnetic field has substantial
spatial inhomogeneities. The highly localized effects of diffusion at these surfaces are described with closed-
form analytic functions instead of the spatial eigenmode expansions that are appropriate for lower-pressure
cells.[S1050-294{@8)07408-3

PACS numbegs): 32.80.Bx, 32.80.Cy, 32.70.Jz

. INTRODUCTION 12%e atoms;(4) spin exchange with the angular momentum
of molecular rotation and with the nuclear spin of*&Xe
Spin-exchange optically pumped systems are of growingitom bound to an alkali-metal atom in a van der Waals mol-
importance for producing large amounts of hyperpolarizedecule;(5) optical pumping by laser photon&) spatial dif-
3He and 1?°Xe for medical imaging and other applications fusion. For the high-pressure conditions of spin-exchange
[1]. Such systems need to be optimized, but we have found @ptical pumping, the main effects of spatial diffusion are
impossible to make realistic computer models of their perconfined to a thin layer near the cell surface. Also, diffusion
formance because of uncertainties in the basic physics of thef transverse polarization in such systems limits the spatial
optical pumping, spin-exchange, and spin-relaxation profesolution that can be obtained from the internal resonant
cesses. Although there is an extensive experimental and theurfaces of gradient imagini®]. To describe those highly
oretical literature on optical pumping and related physicsjocalized effects would require hundreds of diffusion eigen-
going back many years, the reported values of important ratmodes[3], so localized solutions are used instead. The ex-
coefficients often differ by factors of two or even much perimental papers that form part of this study include thor-
more, and some key aspects of the physics are not discussedgh measurements of all the fundamental rate coefficients
at all or are discussed in a misleading way. We have thereaeeded to describe these gas-phase processes.
fore carried out a series of experimental and theoretical stud- The theory summarized here is based on our previous
ies of the key physical processes in spin-exchange opticallwork and that of others, especially the following: Anderson,
pumped systems to determine the parameters with sufficie®ipkin, and Baird[4], who introduced the important spin-
accuracy to support reliable modeling. This paper summatemperature distribution for alkali-metal atoms in the limit-
rizes the essential theoretical framework of spin-exchanging case of very rapid spin exchange; Barrat and Cohen-
optical pumping. It is followed by papers summarizing our Tannoudji[5], who first made systematic use of the density
experimental studies. The theory describes the main gasnatrix to describe optical pumping; Bouchid], who first
phase phenomen#él) spin-conserving spin-exchange colli- demonstrated the importance of nuclear slowing-down fac-
sions between like or unlike alkali-metal atom&) spin-  tors for spin relaxation in alkali-metal vapors; Gross{&],
destroying collisions of the alkali-metal atoms with eachwho made the first detailed studies of spin-exchange between
other and with buffer-gas atom§3) electron-nuclear spin- like and unlike alkali-metal atoms; and Bouchiat, Brossel,
exchange collisions between alkali-metal atoms dHe or  and Pottief8], who demonstrated the key role played by van
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der Waals molecules for the spin relaxation of alkali-metalthe fundamental spin interactions known to be important for
atoms in heavy noble gases. spin-exchange optical pumping. Section IV reviews the den-
Systems to spin polarize the nuclei tifle and'?%Ke by  sity matrix and its representation in Liouville space. Sections
spin-exchange optical pumping are almost always designed—VIlI review the relaxation produced by the fundamental
to operate at quite high gas pressures, typically one to tefollisional interactions. Section VIII reviews optical pump-
atmospheres, and also with such high number densities &fd for high-pressure, heavily quenched conditions. The
alkali-metal atoms that the vapor is optically thick at the PUMping and relaxation processes are discussed together in
center of theD, optical pumping lines. To avoid radiation S€C- X, where we show that they normally lead to a spin-

trapping, enough nitrogen or hydrogen buffer gas is added t mperature dis'tribu_tion for sFeady—state conditjons Wit.h neg-
nonradiatively deexcitéquench the excited atoms before |g|ble spatlall d|ffu3|qn. Section IX also 'contaln.s a'd|scus-
they can reradiate a photon. The high gas pressure causes fig" ©f the thin diffusion layers of low spin polarization that
hyperfine structure of thé®, absorption line to be com- 'OM near v_valls O.f the optical pumping cell. Section X In-
pletely unresolved. As a consequence, the act of absorbingGudes @ discussion of the radio-frequency resonances of

photon may change the electron polarization but not thé ali-metal atoms. Section Xl contains an analysis of relax-

nuclear polarization. The optically excited atoms have theidtion In the dark, an important experimental method for de-

electron polarization nearly completely destroyed by colli-ducing key parameters that determine the performance of

sions in the high-pressure gas before they are deexcited bysgln-exghange_ optu;alrlly pumped system?. Se(_:tllo;_ﬁXII_ con-
collision with a nitrogen or hydrogen molecule. Even thought&/NS & discussion of the consequences of spatial diffusion on

the electron polarization is destroyed before the atom is d(—:-qr""d'e”t Imaging. Two appendices contain important Qetans
excited, thenuclear polarization of the excited atom is on the rela?<at|on dug to van def Waals molecigspendix
hardly affected. Sudden binary collisions of ground-stateA) and optical pumpingAppendix B.

alkali-metal atoms are of such short duration that they

modify the electron polarization with negligible effects on [l. COLLISION-FREE SPIN HAMILTONIANS

:)huem;)1il#]c3ez:1 dpct):lglrlliz;aotg}. rglzx Zggzstm Zl(lzhgfnig;r?s ':%F?‘);t;:f During the intervals between collisions with other atoms
. . 9 L or photons, the spin wave functidg) of an atom evolves
exchange optical pumping are “sudden” with respect to the : - '
T L according to the Schdinger equation
nuclear polarization. The nuclear polarization changes only
because of its hyperfine coupling to the electron polarization d
in the time intervals between photon absorptions or spin-flip i —|y=H|p). )
collisions. dt
Because the pumping and relaxation processes are sudden , o
with respect to the nuclear polarization, the steady-state FOF @n alkali-metal atom the ground-state Hamiltonian
probability of finding an alkali-metal atom in a ground-state OPerator is10]
sgblevel of azimuthal quantum number is very nearly “
ef™M/z, where B8 is the spin-temperature parameter and —Al. _=
=>efM is the partition function(Zustandssumme The Hy=Agl- S+ gsueS,B,~ 77158, @
simple spin-temperature distribution prevaihether the
rate of spin-exchange collisions between alkali-metal atomavhereAl - S describes the coupling of the nuclear spito
is large or small compared to optical pumping rates or spin-the electron spirS. The isotropic magnetic-dipole coupling
relaxation rates Without the high gas pressures characteris-coefficient isAy. The magnetic-dipole coupling of the elec-
tic of spin-exchange optical pumping, Anderson and Ramseron spin to the static magnetic fieRl,, which defines the
[9] have shown that the spin-temperature distribution occuréxis of the coordinate system, is described by the term
only if the rate of spin-exchange collisions greatly exceedgsugS,B,, wheregs=2.00232 is theg value of the elec-
the optical pumping rate and other relaxation rates in thdron, andug=9.2741x 10 ?* erg G ! is the Bohr magne-
system. The existence of a spin temperature for the steadyen. The magnetic-dipole coupling of the nuclear spin to the
state population distribution greatly simplifies the analysis ofstatic field is given by the term-u,1,B,/l, wherey, is the
these systems. nuclear momentoften tabulated in units of the nuclear mag-
A collision between a Xe atom and an alkali-metal atomnetonu,= wg/1836). The nuclear-spin quantum numbel.is
in the presence of a third body can lead to the formation of a The eigenstatefm) of Eq. (2) will be labeled byf, the
van der Waals molecule, which lives until it is broken up bytotal angular momentum quantum number of the state in the
a subsequent collision. A very few van der Waals moleculedimit B,—0 and bym, the rigorously good azimuthal quan-
escape collisional breakup for so long that the electron antum number and eigenvalue Bf,=1,+S,, the longitudinal
nuclear spins are depolarized by comparable amounts. Thisomponent of the total angular momentum operator. Then
is the main relaxation mechanism that is not sudden with

respect to nuclear polarization. However, because of rapid Hg|fm)=E(fm)|fm). (3)
collisional breakup of the molecules in the high gas pressures
used for spin-exchange optical pumping, most of the mol-The possible values df aref=1+1/2=a or f=1-1/2=b.

ecules break up before there is time for much depolarizatiofror transitions withAm=1 andAf=0, the resonance fre-
of the nucleus. So most of the molecular-induced relaxatiomuencies are given by
is also sudden with respect to the nuclear polarization.

Sections lI(free atom$ and Il (colliding atoms review hoim=E(fm)—E(f,m—1), (4)
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simple Zeeman sublevelg) with g= =+ 1/2 being the eigen-

3000 m - 1350 value ofK,, the projection of the nuclear spin operator along
I > the z axis:
2000 s T4 1300
S A — Hnela) =fiwkala). 9)
1000 :
< o 2 e 1250
; 0 H——T_H‘ [ll. COLLISIONAL HAMILTONIANS
i 3 ;i q 1200 , . . .
'q:.’; P During a binary collision of a ground-state alkali-metal
Q -1000- EEREEEE atom with a buffer-gas atom or during the lifetime of a van
g 24 L P der Waals molecule formed from a ground-state alkali-metal
E 2000 T H 13" atom and a xenon atom, there will be two interactions in
2 [ L e addition to the free-atom interactioi®) and (7). The spin-
2 '3000_ R N +1800 rotation interactiorf11—14
-4000| f | i J -1850 Vys=YN-S (10)
-5000 — 260' 200" 660' 00 7900 e 51900 cou?lis thelﬁ:(ljgctron 'spE?to the relarfive anlgular Imomentur.n
magnetic field (G) magnetic field (G) N of the colliding pair of atoms. The nuclear-electron spin-

exchange interactiofil5]

FIG. 1. Energy levels of théS,, ground state of an alkali-metal Vee=aK-S (11)
atom €°Rb with 1=5/2). Resonance&iscussed in Sec. XIfor KS

radio-frequency transitions between ground-state sublevels ar@ouples the nuclear spi of a 3He or 12%e atom to the

sketched. electron spinS of the alkali-metal atom. The coupling coef-

ficients y=y(R) and a= «(R) depend on the internuclear
separatiorR between the alkali-metal atom and the buffer-
gas atom. Both coefficients approach zero very rapidly with
increasingr.

The spin relaxation caused by collisions between pairs of
(5) alkali-metal atoms with electron spi$ andsS; is dominated

wherem=m-1/2 is the mean azimuthal quantum number of
the transition. Solving Eq.3) by perturbation theory to sec-
ond order inB, we find that the resonance frequencies are

B.(gsie—2u) BIMA(gsust i /1)?

@Cam™ Afl] [113hA, ’ by the exchange interactidri6]
— Ver=JS- S 12
o BiQsua*{2+2M)u) BIMA(Gsuetm /1)’ SR 12
bm i[l] [11%hA, ' where the coupling coefficient=J(R) is of electrostatic

(6) origin. The exchange interaction conserves the internal spin
. . - , of the colliding atoms.
Here and in the future we will denote the statistical weight of  Also acting during a collision between alkali-metal atoms
a spin quantum number [y J=21+1. is an interaction that couples the electron spins to the orbital

An alkali-metal atom in the first excitedPy;, state  angular momentunN of the atoms about each other. This
evolves under the influence of an analogous Hamiltonian interaction is hypothesized to be of the fof7—19

M Vse= 20 (3S,S,—2), 13
He:Ael'J"'gJMBJsz_I_lsz- (7) ss= 35N (355~ 2) (13

where A=\ (R) is the coupling coefficient, an&,= (S
The well-known Zeeman splitting of the energy levels of the+ S;) - R/R is the projection of the total electronic spin along
23,,, ground state of a typical alkali-metal atom is shown inthe internuclear axis. There is experimental evidence that the
Fig. 1. interaction(13) or some similar interaction that couples the
In the time intervals between collisions, the spins of theinternal spin to the orbital angular momentnof the col-
noble gases®He and ?°Xe evolve by simple precession liding atoms, causes significant losses of spin angular mo-
about the applied field,, as described by spin Hamilto- mentum at high densities of the alkali-metal vapor. Initial

nians of the form theoretical estimates of the magnitudexdf20] are much too
small to account for the observed losses.
Mk The hyperfine coupling coefficiend; of Eq. (2) also
Hne=— ?KZBZ' ®) changes during a collision, and the resulting collisional in-

teraction can be described in terms of a potenkialyl - S,
Here uy is the magnetic moment of the noble-gas nucleuswhereAA;=AA((R) is a rapidly decreasing function of the
andK is the nuclear spin quantum number. In this paper wenternuclear separatidR. This collisional modification oA\,
are only interested in the noble gastide and 1?*Xe, for s the source of the pressure shifts of the frequencies of gas-
both of whichK=1/2. The precession frequencies per unitcell atomic clocks[21], and the interaction can also cause
magnetic field are— ux/(hK)=wy/(27B,)=3243 and Am=0 transitions between the statasn) and|bm) at large
1178 Hz/G, respectively. The eigenstates of E8). are  applied magnetic field8,, wheref is not a good quantum
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number{22]. However,AAgl - Swill have a negligible effect 1

on a spin state characterized by a spin temperature, which pP= ﬁzn: )l (16)

normally prevails for spin-exchange optical pumping. The

buffer gas atom will also induce small, higher-order hyper-  According to the Schidinger equatior(1), the collision-

fine interactions, for example, anisotropic magnetic-dipolefree evolution of the density operator is given by the Liou-

hyperfine interactions or electric-quadrupole interactionsyille equation

Walter [23] has estimated the effects of these higher-order

interactions and has shown that they are of negligible impor-

tance for spin-exchange optical pumping. The magnetic- EPZE[H’P]’ (17)

dipole interactions that occur foiHe*He collisions, and the

nuclear spin-rotation interactions that occur for gas-phaswhere the square brackets and comma denote the commuta-

collisions of *?°Xe cause very slow nuclear spin relaxation. tor [H,p]=Hp— pH.

We will ignore this gas-phase collisional relaxation since itis Liouville space The analysis of optical pumping and spin

so slow compared to the relaxation caused by collisions withielaxation is notationally simpler when described in “Liou-

alkali-metal atoms. ville space” rather than the more customary Sclinger
The collisional spin relaxation is critically dependent on space discussed above. In Sclinger space the density ma-

the spin-independent potenti}, which determines the in- trix p;;=(i|p|j) of an alkali-metal atom is a square, Hermit-

ternuclear force-dV,/dR that acts during a collision. For ian matrix with Z1] rows and 2I] columns. In Liouville

collisions between alkali-metal atoms and noble-gas atomspace we write the density matrix as a “state vector”

the spin-dependent potentidl)) and(11) are so small com-

pared toV,, thatVy completely determines the classical tra- _ AT

barec ey o | : lp)=2 lii)(iilp), (18

jectories needed for a semiclassical calculation of spin relax- ]

ation. In like manner, for a partial-wave calculation of spin .

relaxation with the distorted-wave Born approximatiah, ~ Where the §1] basis vectors are

determines the distorted partial waves. Because the interac-

tions (10) and(11) decrease so rapidly with increasing inter- i) =[i)il, (19
nuclear separation, small uncertainties\ig(R) cause as 4nd the amplitudes are

much uncertainty in the calculated spin-relaxation rates as do

uncertainties in the coupling coefficierdsand y. For colli- (ij|p)=Tr(|i){j |)Tp]=pij . (20)
sions between alkali-metal atoms, the exchange coupling co-

efficient J of Eq. (12) is comparable in size t&, so the For describing the detailed buildup of spin polarization or

starting point for calculations of spin relaxation due to theits relaxation, it is convenient to work with the special basis
spin-destroying potentialssof Eq. (13) is the triplet poten-  vectors of Liouville space,

tial Vo+ J/4. _
[ff'mAm)=|fm)(f'm’|, (22)

IV. THE DENSITY MATRIX with |fm) defined by Eq(3). The mean azimuthal quantum

The average value of some spin observadiidor an en- numberm and the azimuthal increment are

semble ofN identical atoms, each described by a wave func- — / ,
. L =(m+ =m—m’.
tion [y, n=12, ... N, is m=(m+m’)/2 and Am=m-m (22
The basis vector§21) have total azimuthal spidm. They
1 ) o are particularly appropriate for the commonly encountered
(M)= N; (M) = ; (iIM[j)ilpli)=Tr Mp. situation of axial symmetry about an externally applied mag-
(14) netic field.
Any pair of matricesM andN of Schralinger space can
' be represented by a corresponding pair of Liouville-space
The first sum extends over the labelf the N atoms and vectors|M) and|N), defined in analogy to Eq18)—(20).

the second SL_Jm.e_xtends (’)ve,r the possnblg values of the qu Je define a scalar product between these vectors, in analogy
tum numbers (i,j=fm,f'm’ for an alkali-metal atom or to Eq. (20), by

i,j=q,q’ for a noble-gas atojn From Eq.(14), one can
readily see that the density matfi4] is (M|N)=Tr MTN=(N|M)*. (23)

1 The squared lengthp(p) is a measure of the spin polar-
(jlpli)y= NZ (Gl ey i) (15  ization. For completely unpolarized alkali-metal atoms the
" state vector is

The diagonal elemedi|p|i) is the occupation probability of _ LZ . 24
the stateli), and the off-diagonal elemeff|pli) is the co- [po) = 2[114 i), (24
herence between the stat¢s and|i). From Eq.(15) we see

that the density matrix may be thought of as the matrix elewith the squared lengthpg|po) =(2[1]) ~2. For completely

ments of the density operator polarized atoms, all in some Scliinger spin statéi),
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[p) =lii). (25) The|\) are analogous to oblique lattice vectors of a crystal.
As long as theé\) form a complete set, the left eigenvectors
The squared length of Eq25) is (p|p)=1. {\|, which are analogous to reciprocal lattice vectors, can be

The commutatofH, p] of the Liouville equation17) can  normalized such that
be described in Liouville space by an operdtdr] acting on

|p) from the left, that is, (NN =8y 10 - 33
[H1lp)=|[H.p]). (26) Because thé\) may not be orthogonal to each other, it is
normally not true thatX|\') =5, ,,, where §|=|\)".
We will use the square-bracket notation defined in @) We will be concerned with spin-relaxation processes that

to denote a Liouville-space operator, which is equivalent taconserve the number of atoms, that is, processes for which
an operator used in a Schiinger-space commutator. For

example, the Liouville equatiofl7) becomes Tr dp/dt=—2 (ffmO|A|p)=0, (34)
fm
. d
'ﬁa|P):[H]|P)’ 27 where @ fmo0| is the Hermitian conjugate ¢f fm0), defined
by Eg. (21). This means that the columns of the matrix
formally equivalent to the Schdinger equatior(1). (ffmO|A|ffm’0) sum to zero, or equivalently that

From Egs.(23) and(26) we deduce the simple identity

(M[[H]IM)=(M,MT][H). (28) {0[A=0, where {0|=f§n; (ffmo]. (35)

For a Hermitian Schidinger operator, sajl=p=p', Eq.  One eigenvalue of\ is always\=0, and it corresponds to
(28) implies that p|[H]|p)=0. Thus, the evolution gov- the simple left eigenvectdi0|, defined by Eq(35). A con-
erned by the Schobinger equatior{27) does not change the sequence of Eq.33) with special physical significance is
length of|p),

{0|)\)=f§:(ffm0|)\)=0, if N#0. (36)

dt

d 1
a(plp)=(p p)+C-C-=m(p|[H]|p)+C-C-=0-
(290  The populations {fmO|\) of relaxing (\#0) right eigen-
vectors must sum to zero. In Sec. XI we discuss some
Here c.c. denotes the complex conjugate of the precedingimple, explicit examples of the relaxation matd, the
number. eigenvalues\, and the left{\| and right|\) eigenvectors.

The simple Liouville equatiori27) with the commutator Parts ofp with and without electron polarizatiors dis-
operator[H] is inadequate to describe changes in spin pocussed in the Introduction, the dominant optical pumping and
larization, since it cannot cause the length @f to change. collisional processes are “sudden” with respect to the
However, an excellent description of the spin polarizationnuclear polarization. Such processes are most conveniently
and relaxation of atoms can often be obtained with a simplejescribed if the density operator of the alkali-metal atoms is
generalization of Eq(27), the relaxation equation written as the sum of a part without electron polarization,

which is unaffected by these sudden processes,

d
gilP) =—Alp). (30 ¢=3p+S-pS, (37

The relaxation operatok can be defined by its matrix ele- @nd an electron-polarized part,
ments in Liouville space, 3
0-S=3p—SpS, (38)

A=Z lij)(ij|Alrs)(rs|. (31)  whichis destroyed. In Eq37) ¢ is a purely nuclear operator
1rs with no electronic polarization. Similarly, in Eq38) the
Cartesian vecto® has three purely nuclear operators as
components®,, ©,, and®,. From Eqs(37) and(38) we

find the simple identity

A will include terms due to optical pumping that maks 4)
increase with time, and it will contain terms due to various
relaxation mechanisms that make|4) decrease with time.
Despite its formal simplicity, Eq(30) contains nonlinear p=¢+0O-S. (39
terms. The parts ofA describing spin-exchange collisions
between like alkali-metal atoms include terms proportional The density operator of &He or 2°Xe atom, both of
|to the electron spin polarization. Sb depends linearly on  which haveK =1/2, is simply
p).

The relaxation operatoh will have left, {\|, and right, p=3+2(K)-K, (40)
I\), eigenvectors with the common eigenvaluedefined by

which is analogous to Eq39) with ¢—1/2 and®— 2(K)
INA={\IN and A|N)=\|N). (32 andS—K.



PRA 58 THEORY OF SPIN-EXCHANGE OPTICAL PUMPING OF ... 1417

It is convenient to describe relaxation and pumping pro- For Li, K, or Rb vapors, which contain several stable
cesses that are sudden with respect to the nuclear polarizsotopes(e.g., ®Rb and 8Rb), or for vapors containing
tion in terms of the uncoupled multipole tens¢2s,26| alkali-metal atoms of several different chemical species,

(e.g., Cs and Rb Eq. (45) can be generalized to
INulm) =T, ,(INTx(SS, (41

d 1 1
which are linear combinations of the basis vect@$¥ with api=2 ?((Pi{l+4<5j>'$}_pi)+ E[&‘ex,ij 21,
Am=u+m. The basis vector§41) are an orthonormal set I Texd)

S0 (48)
where the exchange rate of an alkali-metal atom of spécies
|p):2 IAmim)(Auim|p), (42)  with atoms of specieg and number densityA,] is
1
where the sum extends over all possible values of the multi- =[Aj{voedi (49
pole indicesn=0,1,...,2; u=—\,—A+1,...\; 1=0,1 Texii
and m= —I,—I_+1, ...l. The parts of the _denS|ty matrix 4nd the frequency-shift operator is
without and with electron polarization are simply
P NSO (50
|©) =2 [\u00)(\£00lp), I Ty
y23

There is strong experimental evidence that some interac-
tion, presently believed to have the forth3), causes spin
angular momentum to be lost to the rotational angular mo-
mentumN of a colliding pair of alkali-metal atoms, for ex-
ample, in a process like

|®-S>=§ IAulm)(Aplm|p). (43)
um

V. BINARY COLLISIONS BETWEEN ALKALI-METAL
ATOMS AT +AD—= A +A(]). (51)
The interaction(12) leads to very efficient spin exchange

for collisions between a pair of alkali-metal aton#s, and
A;, as indicated symbolically by

The detailed physics of the process described by(&d.
is still uncertain. Experiments at the University of Wisconsin
[29] have shown that the relaxation described by E)
AT +A (D —A)+A(T). (44)  can be slowed down by tens of percent by magnetic fields of
a few thousand Gauss or less, so not all of the relaxation can
The atomsA; and A; could be the same isotope, e.g,  be due to binary collisions, for which much larger magnetic
=A| =8RDb, they could be different isotopes of the samefields would be needed to have an appreciable effect on the
chemical species, e.g\;=%Rb, A;=2'Rb, or they could be spin relaxation rate.
isotopes of different chemlcal species, e.g\,=%Rb, For an electron-electron interaction like E@3) the spin
,——133Cs The arrows in Eq44) denote the direction of the evolution due to sudden binary collisions will be sudden with
electron spins. The binary spin-exchange collisiofd) is  respect to the nuclear polarization, and the density operator
sudden with respect to the nuclear polarization. For awill evolve at the rate
monoisotopic vapor of alkali-metal atoms like Na or Cs,
Grossette [7] has shown that the exchange proc¢4d) d 1

causes the density matrix to evolve as dt?~ T_ss["o_p]’ (52
d with
P —{<p<1+4<8> S)—p}+ iy [5sex,p] (45
1
The spin-exchange rate is proportional to the number density 1'_SS:[A]<UUSS>' (53)

of the alkali-metal atoms
Experiments show that the rate coefficiéntrsg is several
orders of magnitude smaller than the rate coeffici@nte,)
_ex:[A]<UUeX>' (46)  of the spin-conserving exchange procé44).
We shall refer to a relaxation process like that of Exp)
Balling et al. [27,28 have shown that the frequency-shift wheredp/dtx¢—p as an “S-damping” process, that is, a

operator of Eq(45) is process that destroys the p&8) of p with electron polar-
ization but does not affect the pa®7) with purely nuclear
_2hk polarization. S damping occurs when the spin-interaction po-
559X_T_ex<s> 'S @47 tential couplesS andN but does not contain the nuclear spin

I explicitly. To be in the S-damping limit, the correlation
where the dimensionless parametds quite small, typically time of the collisional interaction must be very short com-
only a few percent. The rate coefficiefio,) and «x are  pared to the hyperfine precession period of the atomic
expected to have some temperature dependence. ground state.
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VI. BINARY COLLISIONS BETWEEN ALKALI-METAL
ATOMS AND NOBLE-GAS ATOMS

Binary collisions between an alkali-metal atom and a
buffer-gas atom are sudden with respect to the nuclear pola
ization. During such collisions, the spin-rotation interaction
(10) will cause the density operator of the alkali-metal atom
to evolve at a rate

a,-1 54
rrid T—NS(<P—P)- (54
The rate is proportional to the dens[tX] of the buffer-gas
atoms

1
T—NS=[X]<UUN3>- (59)

The rate coefficienfv o) depends strongly on temperature
[30].

For collisions of an alkali-metal atom with the noble-gas
atoms *He or 12%Xe, the nuclear-electron exchange interac-
tion (11) will cause the density operator of the alkali-metal
atoms to evolve as

% (14 4(K) S Lrse
ap—m{so( +4(K)-S)—p}+ o 6ksap].
(56)
The binary rate per alkali-metal atom is
1
—=[XKvoks) (57)
TK&a

and the atomic fraction of the noble gas, which®de or
12%e, is

n«=[3He]/[He] or nc=['?**Xe]/[Xe]. (58
The frequency-shift operator for collisions withHe or

12%¢e atoms is

_ 8mQsupuk

3K (59

6&ks,a (ko= K1) Pk[ X](K)-S.

The dimensionless coefficienks and «, depend weakly on
temperature, and are a measure of the ensemble average
the interaction(11) for binary collisions[31].
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8mgsup

3 (62

5BKs,x:_ (KO_Kl)[A]<S>'

r VIl. RELAXATION DUE TO van DER WAALS

MOLECULES

In the case of spin-exchange optical pumping'®¥e, a
significant fraction of the spin relaxation of alkali-metal at-
oms A occurs because of the formation #iXe van der
Waals molecules. These molecules are created and destroyed
by the collisional process

A+ Xe+ YA Xe+Y,. (63
Scanned from left to right, Ed63) represents the formation
of a van der Waals molecule with the binding energy carried
off by the third bodyY;. Scanned from right to lefttime-
reversefl (63) represents the collisional breakup of the van
der Waals molecule, with breakup energy supplied by the
third-bodyY;. The van der Waals molecules are so weakly
bound that nearly every collision breaks them apart into at-
oms again.

The three-body formation ratesTl{y » per A atom and
UTyw xe Per Xe atom are

=2 Z[Y;][Xe] and =2 Z[Y][A]

(64)

TVW,A VW, Xe

The number density of the the xenon atom§Xe] and the
number density of the third body needed to form or break up
the molecule is[Y;]. For example, we might havgY,]
=[He], [Y,]=[N,], and[Y3]=[Xe] in a typical gas mix-
ture for spin-exchange optical pumping &°Xe. The rate
coefficients for the three-body proces$68) areZ; .
Assume that

p(t)ydt=e V7dt/7 (65)
is the probability that a van der Waals molecule is broken up
by a collision with a third-body in the time intervalt at a
timet after formation. The mean lifetime is given by

of (66)

1
;:Ei (vowilYil-

Conversely, the nuclear-electron exchange interaction

(112) will cause the nuclear spin polarization of the noble-ga
atom to evolve as

d _ 1 MK
a<K>— TS’)(((S>_<K>)_ WﬁBKS,XX<K>' (60)

The rate for collisions with alkali-metal atoms of number
density[A] is

=[Al{voks)- (61)

X

Tks

n chemical equilibrium at a temperatuiig the chemical
equilibrium coefficientC of the van der Waals molecules is
related to the three-body formation rate coefficients the
breakup rate coefficientsvo,y)i, the formation rates
1T,y a per alkali-metal atom, and Tjy x. per xenon
atom, and to the mean molecular lifetinreby

[AXe] Z

T [AIIXel  (voww)i  TwwalXel Tuw xdAl
67)

T T

During the lifetime of a van der Waals molecule, the in-

The effective magnetic field produced by the spin-polarizederaction(10) couples the electron spi8 to the rotational

alkali-metal atoms is

angular momentuniN of the molecule, and the interaction
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(1) couples the nuclear spk of the noble-gas atom to the d &2k fe
electron spinS. The molecular breakup ratelivill nor-  GrP=57 fd@(1+4(K)-S)—p]+ W[F'PF—F'FP
mally be so fast that e

1
+({F.p}=2iFX pF)-(K)] | + [ 86w ap). (73

yN7
fi

aT
<1 and 7«1, (68)
where {F,p}=Fp+pF is an anticommutator. The mean

) squared phase evolution angles for the van der Waals mol-
so the spin$ andK rotate by only a very small angle due to ecyles are

the interactiong10) and (11), even in the relatively long-

lived van der Waals molecule. ’ (aT 2

N7\?2
_ 2_|7
For the heavier alkali-metal atoms, the ground-state hy- ba=|7 and ¢’v‘( % (74)

h
perfine frequency

In this paper the phase anglgs and ¢, are the same a$
[11A and ¢/x in Zenget al.[33]. The gas pressure is assumed to

Wp= " (69 be sufficiently high thatp?<1 and ¢><1. The frequency-
shift operator is
is large enoughte.g., w,=5.78x 10'° sec ! for 13%Cs) that 8Tyt MK
wn7~1, even for very high buffer gas pressures and corre- SEw.A= 3K 17k XI(K)-S. (79

spondingly short molecular lifetimes. The power spectrum of
the interactiong10) and (11) will therefore be more intense

at the low frequencies that cauad =0 transitions than at Vil OPTICAL PUMPING

frequencies on the order af,;, which causeAf=1 transi- For spin-exchange optical pumping 8fle or 1?°Xe, the
tions between the sublevellm). In Appendix A, we show  buffer gas pressure is always very high, for example, several
that a fraction, atmospheres of 8He-N, mixture, or several atmospheres of
a 12%e-*He-N, mixture. The number density of alkali-metal
1 atoms is also high enough that the vapor is quite optically
=, (70)  thick. Therefore, nitrogen, hydrogen, or some other quench-
1+ (wpere)? ing gas must be present to ensure that an excited atom has

little chance of reradiating a photon, which could be multiply

of the van der Waals molecules have such a short correlatiofcattered before escaping from the pumping cell, thereby
time . that the formation and breakup of the van der Waalscausing significant spin depolarization. A collision with a N

molecule is sudden with respect to the nuclear polarizatiorer H, molecule allows the excited atom to transfer its energy
The remaining fraction to vibrational and rotational degrees of freedom in the di-

atomic molecule. The energy eventually equilibrates with the
translational degrees of freedom to heat the gas.

2

F:M (71) We describe the pumping or probing light as a superposi-

1+ (wp7e)? tion of monochromatic plane waves, for which the electric
field is

of molecules has correlation times, which are so long that
only Af =0 transitions can be induced, and the process is not

sudden with respect to the nuclear polarization. The correlarhe transverse complex field amplitulie=E(¢) is a func-

tion time 7., of the spin-rotation interactiofiL0) in a van Qer' tion of the distance&=r - £ of propagation through the vapor
Waals molecule cannot be longer than the molecular lifetimeg;, e directiond=k/k of the photon wave vectdr. Neglect-

7. Because most collisions violent enough to cause an appréyg the small phase retardation due to the buffer gas, we find

ciable change in the direction ®f have enough energy t0 g | obey an evolution equation analogous to the Sehro
break up the molecule, we will henceforth assume that dinger equatior(1)

=71.. We may think off as the fraction of molecules with
“short” lifetimes and fg as the fraction of molecules with d .
“very short” lifetimes, as discussed i[82]. ﬁ—§E=2mk[A](a>E. (77)
As shown in Eq.(A30), the relaxation due to the spin-
rotation interactior(10) is given by The dielectric polarizability tensax, which plays the role of
the Hamiltonian(2), depends on the mean electron spin po-
d 2 2y fe larization(S) of the alkali-metal atoms and is given by
Gt a1 | fde—rl+ mz[FpF— F- Fp])-
vW A

(72)

Eelkr-ietycc. (76)

a=a(1-2iSX). (79)

It is to be understood that components on the right of Eq.
The relaxation due to the nuclear-electron spin-exchange in77) that are parallel ta} (longitudina) are to be omitted
teraction(11) is given by Eq.(A31) as (since electric dipoles do not radiate along their axis of os-
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cillation). The real and imaginary parts of the complex po-Inserting Eq.(78) into Eq.(87) and using Eqs(83) and(85)
larizability coefficient a=a'+ia” are Kramers-Kronig we find that the light absorption operator is
transforms of each other:

I'=R(1-2s-9), (89
o (= a”(V’)dV’ . . .
a'(v)= P I where the mean pumping rate per unpolarized alkali-metal
v atom is
a'(v')dy’ o
a"(v)= e (79 R=f Doy dv. (89
T)- ' —vp 0

Here p denotes the principal part of the integral. The pres-Using Eq.(87) and the Kramers-Kronig transfornig9 we
sure broadening eliminates complicated contributionsrto find that the light-shift operator is

from the hyperfine observable S and the quadrupole ob-

servables that are important at low pressures for the heavier 88,=h60,(—3+s9), (90
alkali-metal atoms, especially Rb and 3. The oscillat- . _

ing electric field of Eq(76) will induce an oscillating elec- Where frequency shift parameter is

tric dipole moment
b
j (V)O'op(V ) dvdy’ . (91)

(py={(a)Ee'* "1+ c.c. (80) =—
The mean optical power absorbed by the oscillating electric

dipole moment is The depopulation pumping rate of the ground-state is de-

scribed by
—iwE* - (@)E+c.c=(a)hvddr. (81 d
s
4 _ - _ospty— _ >
Inserting the expressiof78) for ainto Eq.(81) we find that  gt°~ i (6Hp—pdH')=—Re(1-2s 5 +R 2 S) -0
the absorption cross section of ight is L
(0)=0o)(1—25:(9)), (82) +7[08,.p]. (92
where the cross section for unpolarized atoms is It is often assumed that before the excited atoms produced

o= Amka 83) by optical pumping are transformed back into ground-state
op ' atoms, typically by a quenching collision with a, Nnol-
The photon flux® = () of the light wave(76) is ecule, their spin is completely depolarized because of colli-
sions in the high-pressure buffer gas. While this is certainly a
CE? good approximation for the electron polarization, it is not a
Pdv=5——, (84  good approximation for the nuclear polarization, where most

of the spin angular momentum is stored. The excited-state

wherev= w/21 is the optical frequency in Hz, and the units €lectronic angular momenturh changes directions so fre-

is interactions have insufficient time to depolarize the nuclear

spin before the atom is quenched. The passage through the
1 excited state is very nearly sudden with respect to the nuclear
= gp2ETXE. (85  polarization[35]. As described in more detail in Appendix B,
the repopulation pumping rate, given by EB24), is

We will assume that the oscillator strendgthdefined by q

s0
aP:R(¢‘T

which represents the return of pure nuclear polarization to
is unaffected by the properties of the gas. Hege=2.82  the ground state. Shifts due to the real transitions are de-
X 1072 cm is the classical electron radius=3.00x10'°  scribed by the term proportional f&¢, ,p]. Summing Egs.
cm sec! is the speed of light, and to good approximation (92) and(93) we find the net evolution due to optical pump-
for D, light, f=1/3. For D, light, the oscillator strength is ing
very nearly f=2/3, and in Egs(78) and (82) we should
make the replacemexs)— —(S)/2. d 1
The effects of the absorbed light on the alkali-metal atom giP~Rle(1+2s 9= pl+ [ 60, p], (94)
can be described by an effective Hamiltonian

1
+_ﬁ[55r1p]1 (93)

f oodv=r Cf, (86)

where

i%
= —_— =—F*.
SH=068,~ 5 o'=—E*-ak. (87) OE o= 0, + 5E; . (95



PRA 58 THEORY OF SPIN-EXCHANGE OPTICAL PUMPING OF ... 1421

Comparing Eq(94) with Eq. (45) we see that optical pump- 1

ing causes the density matrix to evolve in exactly the same 5—=[Alvos9 +[X]({vong+ n(voks) + 2 [Yil

way as spin exchange at a r&ewith fictitious alkali-metal b '

atoms of electronic spig2. More details of the pumping and fg / an;i 2¢2

light shifts are contained in Appendix B. X(vongit Towal 2 + 37 . (97
VW,

Contributions from spin-depolarizing binary collisions be-
tween alkali-metal atoms occur at the rateTdd
=[Alvosg, discussed in connection with E¢53). For

For spin-exchange optical pumping, the evolution of thesPin-exchange pumping ofHe or ***Xe, binary collisions
spin polarization of the alkali-metal atoms is determined bywith He or Xe atoms makes the contributioqv¢ys)
six dominant processesl) the hyperfine interactions and +[XI#7«(voks))[X] to theS damping rate, as discussed in
interactions with external static or radio-frequeridy mag- ~ connection with Eqs54) and(56). The coefficienty is the
netic fields, for whichdp/dt is given by Eq(17); (2) binary ~ atomic fraction of*He or ***Xe in the He or Xe gas®He is
collisions between pairs of alkali-metal atorfisr example, normally isotopically pure, which would correspond g
8Rb and®Rb) for whichdp/at is given by the sum of Egs. =1. For pumping'?*Xe in a gas of natural isotopic abun-
(48) and (52); (3) binary collisions between alkali-metal at- dance, we would havey,=0.264. Contributions from the
oms and buffer gas atoms, for whil/4t is given by the ~much smaller nuclear moment 6#*Xe to the S-damping or
sum of Egs.(54) and (56); (4) relaxation due to van der S-eéxchange rates have been ignored. Relaxation due to bi-
Waals molecules, for whiclap/dt is given by the sum of nary collisions with buffer gases of number densi] not
Egs.(72) and(73); (5) optical pumping, for whichop/dt is  directly involved in spin-exchange optical pumping, for ex-
given by Eq.(94); and (6) spatial diffusion of the polarized ample, the quenching gas,Nor the optical pressure-
atoms for whichdp/dt=DV2p, with appropriate boundary broadening gas'He for a xenon accumulator systei86],
conditions. The diffusion coefficient for the alkali-metal at- occurs at the ratgY;](voyg);, in close analogy to Eq55).
oms isD. We assume that experimental conditions are sucffhe contribution of van der Waals molecules to S damping is
that evolution due to other processes—for example, radiatiofescribed by the last term i®7), where the formation rate
trapping—can be neglected. Adding the evolution rates ofl/Tuw.a iS given by Eq.(64), the phase angles by E(74),

IX. LONGITUDINAL OPTICAL PUMPING
AND SPIN TEMPERATURE

these six processes, we find and the fractiorf 5 of van der Waals molecules that break up
quickly enough to caus&f= +1 transitions is given by Eq.
(70).

The S-exchange rate for the transfer of sgil{,) from
ap , 1 1 3He or ¥?%Xe of atomic number density,[ X] to the spin of
5~ DV P+E[Hgap]+§j: T Le(1+4(S)-5)—p] the alkali-metal atom has contributions from binary colli-

el sions and short-lived van der Waals molecules,
1 4
+—le=pl+Rle(1+25 9 —p]+ +—(K)-Se
sD SE 1 fodb?
=—=nk| (vokg[X]+ ) (98)
TSE 2TVWA
+ [F-pF—F-Fp]+ ’
[11°Tep [11°Tee
X(K)-({F,p}—2iFX pF). (96) The last two terms of E(96) represent relaxation due to
long-lived van der Waals molecules. The F-damping rate is
In Eq. (96) H denotes the free-atom Hamiltonig@) to 1 f /W(ﬁi 247 (90
which we have added the small, frequency-shift Hamilto- Teo Twwal 2 3 ) )
nians 6¢ associated with the collisional and pumping pro-
cesses, for example, th&,, ;; of Eq.(48). These cause rela-
tively small shifts of the center frequenci€® and(6) of the  and the F-exchange rate is
Zeeman resonances. Also included Hj are interactions
with a resonant radio-frequency field, which we will discuss
in more detail in Sec. X. The sum onextends over all 1 fr %7k
isotopes of the alkali-metal atoms including the isotope T_FE_ 2Towa (100

whose evolution is described by E(6). To avoid index

clutter in Eq.(96) we have suppressed the isotope labeh

p=pi, Hy=Hy, ¢=¢;, S,=S;, etc. The distribution of the alkali-metal atoms between the
In Eq. (96) the rate IT;; of spin exchange of the alkali- sublevels|fm) and also their response to resonant radio-

metal isotope with the isotopg was given by Eq(49). The  frequency magnetic fields, can be found by writing E2f)

S-damping rate is more explicitly as
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ap 5 1 , . . each Zeeman sublevéfm). The density matrix for such
5t ~DVp+ i [Hg p]+ R (SpS,—2p+2[S:pS- longitudinally polarized atoms can be described by the
Liouville-space vector
+Sfp5+])+R’S£(%{Sz,p}+%[S+p57—37p8+])
[p)=2, [fm)(fmlp), (1079
L [(S.)(AS. p}+S_pS;— SpS_) +(S.)

Texi where the notation for the Liouville basis vectdgl) with

X(3{S; ,p}—S; pS,+S,pS,)] f’=f andAm=0 has been simplified tif fm0)=|fm).
Then Eq.(101) can be written, in accordance with Eq.
(30), as

———(F,pF,~F-Fp+3[F.pF_+F_pF,])

[I] TFD 9
2K, 1P ={DVZ=A}[p). (108
— = (3{F,.p}+3[F.pF_—F_pF.,]). (10D

[ Tee The nonzero matrix element§rg|A|f'm’) can be found by

inspection of Eq(101) to be
In passing from Eq(96) to Eq.(101), we have eliminateg P a(10D

of Eq. (37) with the identity 3a2—2ams(—1)* f—m?
. (fm|A|fm)=R’
©S={p,S}/4—iSXpS/2, (102 4a?
and we have written the vector cross product explicitly as . f(f+1)—-m? (K,)m

2 2 ’
—2i(SXpS)=(S,;pS_—S_pS;)z 4a“Tep 2a°Te

—(S4pS;=SpS1)(x—ly) , ,az_mz

(Fm[A]f'm)=—R'———,
+(S_pS,—S,pS_)(x+iy). (103

(109
We have also assumed a longitudinal mean photon spin,
s=s,z. The effective pumping rate of EqL0D) is (fm|A|fm’)=— 1 R (1+Amsz)+ 2Am(KZ>
D Tfe
1 1
R’ =T—+T—+R (104 X(f=mo)(f+m.),
SD
. . . . R’
and the effective photon spsj is given by (fm|A|f'm’)=— p(l+Amsz’)(a+mAfAm)
a
s ASp) | AKY
R's;=2 2—=+—F—+Rs. (109 X (a+m’AmAT),
] ex,ij SE
The electron-electron spin exchange rate with all species o here
alkali-metal atomge.g., both®Rb and®'Rb) is Af=f—f'=+1, and Am=m-m'=+1, (110
i: 1 (106) and wherem. is the algebraically smaller of the pair

Tex T Texij (m,m’") andm.. is the larger. One can verify that E@5) is
satisfied by Eq(109.

Equation(101) describes the evolution of the density ma-  We will describe the parts of Eg109 proportional toR’
trix p=p; of the alkali-metal isotopg, which is undergoing as the relaxation due tsudden processgand the parts of
spin-exchange with other alkali-metal isotopes withi, and  Eq. (109 proportional to 1Ty and 1T as the relaxation
with identical isotopes with) =i. We assume the other iso- due toslow processesThe sudden processes have such a
topes are out of resonance with the applied rf field, so theshort correlation time that they can cause transitions between
electron spins are longitudinal, that{§;) =(S;)zif j#i. A different hyperfine multiplet§=a andf=b, while the slow
resonant rf field, if present, can excite transverse componentgocess have such long correlation times that they only cause
of the electron spin of the isotope These transverse spin transitions within a given hyperfine multipldt van der
componentgS..) contribute to the spin-exchange relaxation Waals molecules and possibly some fraction of the spin re-
due to collisions with like isotopes, as we shall discuss inlaxation (51) due to collisions between alkali-metal atoms
more detail in Sec. X. contribute to the slow processes.

Longitudinal pumping In the absence of any radio-  Spin temperaturelLet us first consider the steady-state
frequency magnetic fields, the density matrix will have nosolution of Eq.(108 for a location far enough from the
coherences <§+> 0), and the polarization of the alkali- depolarizing walls that the effects of diffusion can be ne-
metal atoms is determined by the occupation probabilities oflected DV2p=0). Then we seek the solution of
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Alp)=0. (112 TABLE |. Expressions fore(l,P), defined by the formula
1+€(l,P)=(F,I{S,) for atoms described by a spin temperature
Evidently the steady-state soluti(}p) of Eq. (111 is the distribution, as a function of nuclear spin quantum numkserd the
right eigenvector ofA with the eigenvalue.=0. Consider ~°Verall spin polarizatiore.
first the practically important situation of negligible slow

e(1,P)
processes, where we can neglect all but the terms propor-
tional toR’ in Eq. (109. Then the solution to Eq111) turns 0 0
out to be the spin-temperature distribution 1/2 1
1 8/(3+P?)
_effz eflef% 11a 32 (5+P2)/(1+P?)
P="7 ""z2Zs - 112, (40+ 24P?)/(5+ 10P2+ P?)
5/2 (35+42P%+ 3P%)/(3+ 10P?+ 3P%)
The Zustandssumme=Z,Z is the product of a nuclear part 3 (112+ 224P?+ 48P%) /(7 + 35P2+ 21P*+ P®)
Z, and an electronic pa#s. For a spin of integer or half- 7/2 (21+63P2+ 27P*+ P®)/(1+ 7P%+ 7P*+ P®)
integer quantum numbek,
J sinhB[3112  (1+P)—(1—p)l] For atoms described by the spin-temperature distribution
Z;= E efM=— = >3 . (112 we shall find it convenient to introduce a paramagnetic
m=-J sinh g/2 2P(1—P%) (113 coefficient, defined by

. . o . F
We have characterized the spin-temperature distribution with 1+ ¢(1,P)= (F2)
an overall spin polarizatio®, defined in terms of the mean (S2)
electron spin and the spin-temperature paramgtby

=2(F-F—F2)=1+2(l-1—12).
(118

The functionse(l,P) depend on the nuclear spin quantum
numberl of the alkali-metal atom and are listed for the low
1-pP values ofl in Table I. They are related to the Brillouin func-

(1149 tions B,(x) by €(I,P)=21B,(I 8)/By(8/2) [37]. We note
thate(l ,00=41(1+1)/3 ande(l,1)=2I.

We may use Eq96) directly to deduce the rate of change
of the total angular momentut,) per alkali-metal atom.
The rates(97)—(100) are the same for all alkali-metal iso-
topes of the same chemical species. For a chemically pure
efD>) (fm|A|f'm+1)+ >, (fm|A|f'm) alkali-metal vapor, the isotopically averaged longitudinal

T T spin polarizations are

1+P

P=2<Sz>ztanh§, or conversely B=

To show that the sudden processes lead to a spin-
temperature distribution, we substitute H412) into Eq.
(112). SinceA|p)=EfmA|fm)eﬁm/Z, Eq.(111) implies that

+e P2, (fmlAlf'm-1)=0. (119 (Fy=> m(F) and (S)=3 n(Sy). (119

The sums of Eq(115 can be evaluated with E¢109 to

give The isotopic fractions arey;=[A;]/[A], where[A;] is the

atomic number density of the isotope of spedieand[A]
R’ m(—1) =3[A] is the t.otal number density of aIkaIi—metaI atoms.
> (fm|A[f'm*1)=——(1Fs r)[ ;—}, The expectation values of the photon, atomic, and nuclear
g a spins are all longitudinal, ss,, (S,), (F,), and({K,) are the
only nonzero components of the respective vectors. Adding
R’ ms,(—1)2"" an isotope label subscriptto p, Hé, ¢, S,, |, andF in Eq.
> (fm|A|f’m)=7 1=—————| (116  (96), multiplying Eq.(96) by 7;Fi, , taking the trace for each
r isotope, and summing the result for all alkali-metal isotopes

Using Egs(116) and(114) we find that Eq(115) is satisfied I we find

provided thats, =tanhg/2=P. d
Thus, we have shown that when spatial diffusion is neg- _<|:Z> (Sz>+R

lible, sudden optical pumping processes generate the spm

temperature distributioil12) first introduced by Anderson

<Sz>) E |_]2<F|z>

et al. The spin temperature is inversely proportional to the +<Kz> ! — 2<|: Fi— F|z>)
spin-temperature paramef@r One can readily show that Eq. TFE L ]
(112 can be written as a special case of E2p), (120
eBlz . . . I . .
p=o(1+4(S)S,) where o= -7 (117) The hyperfine HamiltoniarH is axially symmetric so

[Hg,F,]=0 andH; makes no contribution to Eq120).
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Spin-exchange collisions make no contribution because the

exchange term from Eq96) can be written as

1
[A] (voelil ATATTY Filgi(1+4(S,)S,) —pi]
1
“taje (voedilATIAIS,) —(S1=0. (12D

since(v oeyij = (v oeyji by detailed balance.

We can also show directly that the spin temperature dis

tribution (112 is the steady-state solution of E(P6) for
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v(P)zzi: %[1+e(li,P)].

The steady-state solution of EQL.24) is

(126

S;RTep+ 2(K)[ Tsp/ Tset v(P) Tsp/ Teel
1+ RTSD+ U(P)TSD/TFD '

(127
which can be solved foP with the aid of Eq.(126). For
spin-exchange optical pumping df%e at high pressures,
the slow processes make a very small contribution to the

P=2(S,)=

longitudinal pumping in the absence of diffusion, rf fields, relaxation Tep>Tsp), and the value ofP given by Eq.
and slow processes. Let us assume that the spin state of edd®? is very nearly the same as that given by EtR3).

isotopej of the alkali-metal atoms is described by a spin-
temperature distributiol12) with the same value oB for
each isotope. The axially symmetric Hamiltoni&f], will
commute with the axially symmetrie of Eq. (112). In view
of Egs.(114) and(117), the exchange term on the right of
Eq. (96) vanishes since for all isotopgs we have(S;,)
=(1/2)tanhf3/2). In steady statép/dt=0, and Eq.(96) be-

comes
=
~|=—+R

2
T +R|2AS) R+ (K |268,,

(122
which has the solution

S;RTspt+2(K) Tsp/Tse
1+RTgp

P=2(S)= (123

Now let us consider the equilibrium polarization in the

Diffusion layer At the high gas pressures used for spin-
exchange optical pumping the spatial diffusion coefficient
for the alkali-metal atoms is normally very small. For ex-
ample, in high-density £10 amagat He gas D~0.04
cn? sec 1 [38]. Near the input wall of the cell representative
optical pumping rates af@=10* sec *. To a good approxi-
mation, the cell walls are nearly completely depolarizing for
the alkali-metal atoms. The walls are often coated with a thin
film of the metal, so that an atom impinging on the wall from
the gas is replaced by a completely unpolarized atom evapo-
rating from the metal film. Therefore, the spin polarization of
the alkali-metal atoms can be expected to grow from zero at
the wall to the equilibrium valu€l23) or (127) in a distance
of order \D/R~2x10 3 cm [19]. For very optically thick
vapors, a sizable fraction of the spin from the optical pump-
ing photons can be lost to the cell walls in the diffusion
layer.

The polarization will vary with distance from the cell
wall in accordance with the steady-state solution of Eg.

absence of diffusion when some of the relaxation is due t¢108):

slow processes, as will be the case t6¥Xe, where van der

Waals molecules are important. As the buffer-gas pressure

increases, Eqg.70) and (71) imply that fc—1 andf—0
and the slow processes—proportionalfto—would vanish.
The steady-state solution in this limit is the spin temperatur
distribution (112), as we have outlined above. Since spin-
exchange optical pumping of?®Xe is most conveniently

lived van der Waals molecules, that is the slow processe
will be very small compared to the sudden processes, and t
spin-temperature distributioff12) will remain a good de-
scription of the polarization. Then we can write Efj20) as

done at high buffer gas pressures, the relaxation due to Iong,

v(P)
+R+—
TFD

d — 1
a[1+e<P>J<sz>=—(—

Tsp

Jis)

Toe T |2

(124

The isotopically averaged paramagnetic coefficient is

€(P)=2 nie(l;,P). (125

The coefficienty(P), which accounts for relaxation in long-
lived van der Waals molecules is

2

D a2 A (128

|

}lp)=0-

én spite of its formal simplicity, Eq(128) is a nonlinear

equation, since the relaxation operathr depends on the
atomic spin polarizatioqS;,) through the ternR’s; of Eq.
105). The solution of Eq(128) can be obtained by an itera-
ive method, analogous to the use of Hartree self-consistent
gelds for finding electron wave functions of many-electron
atoms. A first approximation, adequate for most purposes,
can be obtained bgl) neglecting the slow processes propor-
tional to 1Ty and 1T ¢; (2) neglecting the spin-exchange
terms in Egs.(104 and (1095, proportional to 1T,
1Teyj» and 1Tsg; (3) neglecting any change iR due to
attenuation of the pumping light in the diffusion layer. Then
the relaxation matriXA will be independent of position in the
diffusion layer, and the solution of E¢128 can be conve-
niently found with the aid of the eigenvectdi@?) of A. For
the longitudinal polarization under consideration here, the
eigenvalues\ are real and non-negative.

We multiply Eq.(128 on the left by{\| to find the dif-
ferential equation for the-dependent amplitudg\ |p),

d2
[Dd?—)\]{)\“)):o

The solution of Eq(129) that does not diverge for largeis

(129
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{\p)={\|po)e 2P, (130

where p, is the unpolarized state of E4) with (fm|pg) . m O |
=1/(2[1]). Using the completeness [dfm) and|\,,) we find ) l10) 1) 1) - )

that thez-dependent spin-polarization near the walls is ’ ' | 00)

1 h=0) o -

()=Qdp) =57 2 QJfm)(fmin)
N fm,f'm’

X{\[f'm")e NP, (131) |10) 110
m m - m
wherel,=S, or J,=1,. From the projection theorem, 1) 11) l11) - 1)

_ _ | 00) | 00)

m(—1)2" m(—1)2~" o |00) R W

(Sdfm)= =g (Jfm=m- = =2 |

(132
FIG. 2. Eigenvalues\, from Eq. (135 and eigenvector§\,,)

m Eq. (136) for populations of a hypothetical alkali-metal atom
with nuclear spin quantum numbeé# 1/2. The effective pumping

As a simple example, consider a hypothetical aIkaIi-metalfro
atom withl =1/2. There will be four population basis states

[fm), so rate (104 is R’ =R and the effective photon spin of E4L05) is
(11lp) s,=1. Collisional relaxation processes have been neglected. In the
P absence of spatial diffusion, the population distributionsi|¢,,)
(10p) decay exponentially at the raks, .
(tmlo)=| (og1p) (133
.-1le) (S)=(1)=}(1- e =FD), (39

For simplicity, neglect all relaxation processes and assume

perfect circular polarization for the pumping light. Then The extension to nonzero collisional relaxation rates and to
UTep=0, 1Tee=0, R'=R, s,=1, and the relaxation ma- |>1/2 is straightforward.

trix of Eq. (109 becomes

0 -2 -2 0 X. RADIO-FREQUENCY RESONANCES

RIO 3 -1 -2 Suppose that the atoms are subject to a weak magnetic
A= alo -1 3 —» (134  field 2B, coswt, oscillating along thex axis of the coordi-
nate system with a radio frequenay The low-field Larmor
0 O 0 4 frequency is given by

The rows and columns of Eq134) are labeled in the same
order as the column matrigl33. The eigenvalues of Eq.
(134) are readily found to be

w [2m=2.88,/[1] MHZ/G. (139

We assume thdB,>0, so for resonant rf we will also have

(N, A2,A3,0)=(0,R12R,R). (135 w~w >0. The interaction of an alkali-metal atom with the
rf field is
(See Fig. 2. The corresponding right eigenvectdrs,) are
1 2 1 1 H=20sugSB; coswt, (140
-1 1 -1

(136) where we have ignored the thousandfold smaller interaction
0 -1 -3 -1/’ with the nuclear moment.

0 0 1 1 In the steady state, the density matrix can be written as a
sum of harmonics of the rf frequenay,

where thenth column is the right eigenvector corresponding
to \,. The left eigenvectors are

(fm|)\n):

pzz p(n)einwt_ (141)
1 1 1 1 n

0 —-12 -1/2 -1

{\g|fm)= , (137 To lowest order inB, p™~BIN . We substitute Eq(141)
0 V4 -14 0 into Eqg. (101) and neglect the effects of spatial diffusion,
0 —-1/4 14 1 which we will discuss in more detail in Sec. XIl. Taking

matrix elements between the resonantly coupled stétes
where thenth row is the left eigenvector corresponding to and |f,m—1), and retaining only the terms linear if"
N\, . Substituting Eqs(132—(137) into Eq.(131) we find (n==1) orB; we find
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. 1
inwe"Y{fm|p™|f,m—1)= EgSﬂBBl(meSX,p(O)]H,m— 1)2 coswt
1

n==*
1 3 si(—1)2°f

_ Mg _Z myy =2 7 (n)

[I]ZFZP FZ 4p + 2[|] {anp }

) 1
+ 2 e'““’t(fm|[.—[Hg,p(“)]+R’
n=x1 i%

1 ( Teo
+ ——| Fp"F,—f(f+1)p™W+ —(K){F,,p™ )
[l]ZTFD zP —f( p TFE< z>{ z:P }
' 1 1 2(Ky
+ 1+, F pWF_+[1-s,]F_p"F +—( — 2 }F ME_
2[|]2([ Z] +p [ Z] p +) 2[|]2 TFD TFE +p
1 2K
1 A »}Fp(%) [f,m—1)+ Z(S_)(fm|3{S, ,p®} S, p©s,
TFD TFE Tex
+S,0 98, |f,m—1). (142

Passing from Eq(101) to Eq. (142 we have neglected the wherem=m-—1/2 is the mean azimuthal quantum number of

couplings of Zeeman coherences of different multiplets, the coupled state® is the polarization of Eq(114), and

and b, since the evolution frequencies,; and oy, are

nearly equal and opposite. ehm 2P(1+ P)I+n_"|(1_ P)|—E
We will assume that the zeroth-order density matrix is the == T T

spin temperature distributiop®=efFz/Z of Eq. (112). Z (1+P)=(1-P)

Then the matrix element of the term proportional to the rf
field in Eq. (142 is Physically,Q is the probability that the nuclear spin has the

azimuthal quantum numben for the spin-temperature dis-
tribution (112). One can readily show th&@;—1/[1] asP
PQm —0, andQy— &7, asP—1. SinceS,S, =—-S,S,=S. and
(0) _1\— _ m ) m m,| . + + +
(fml[Sc.p™]If.m—1) (fm[S,|f.m—1) ' [S,,efS]=0 we can write the matrix element in the last
(143  term of Eq.(142) as

(144

ehlz

(fml 2{S+ .p'7} =8, p @S+ 5,p'9'S, |f,m—1)=(fm|>-{S. ,e’S}|f.m—1)

pm | gB(m-1)

=(fm|S, |f,m—1) 7,74

=(fm|S, |f,m—1)Qm. (145
For further analysis, it is convenient to use the Liouville basis ve¢is for the special cast =f andAm=1. To simplify
subsequent notation we wrifefm1)=|fm). Setting(fm|p(™|f,m—1)=(fm|p™) in Eq. (142 and equating coefficients of
e, we find

(A+inw)|[p™)=]0). (146)
The components of the source vector are
(fﬂa):iQWBBlpziﬂfﬂS+)’ (147)
with the matrix element
(-

(fﬂ5+)—WV([f]2—4ﬁz)- (148

The Liouville vectorgp™) and|o) of Eq.(146) and subsequent discussion are understood to include only the projections with
azimuthal quantum numbérm=1.
The matrix elements of the relaxation operatohave real parts
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_ 3[112+1—4m? m (fmS,)2  2(K,ym
Re(fm|A|f'm’)=6{ S| R ————— —R's,—(—-1) "+ -
q §| | ) ff { mm 4[|]2 Z[|]( ) TFD TFE[|]2
Omm 1 2p(K _ fm|S,)(S,|fm’
_ m,m’ +p R’+pR’SZ’+—+ p(K2) (fﬁls+)(s+|fm’)— 7Qm( T +)( +| ) ,
p==*1 2 Trp Tre Tex
(149
|
and imaginary parts S, |[fm)(fm
B <S_>(fnﬁ): (7+|. )’( TU) . (156
i Im(fFmA|f'M’) =i wmdesr S - (150 Yimt i (0fmtnw)

It is convenient to discusA, as defined by Eq$149 and o )
(150), in terms of its left and right eigenvectofs| and|\) When the magnetic field is small enough that Bip3) is
and their common eigenvalues defined by Eq.(32). The NO longer valid, the elgenvectors will become sup_erposmons
eigenvalues for the transverse coherence will be comple®f the zeroth-order eigenvectors of E354), that is, |A()
numbers with positive real parts Redescribing the damp- — Zmlfm)(fm|\¢). The damping rates Re; will undergo
ing of the free coherence. Under the conditions of interessubstantial relative changes, but there will be little change of
here, the imaginary parts Iin, representing the precession the precession frequencies, which will remain Ay
frequencies of the coherence, will be several orders of mag-— 1) 'w_ . Thus, whether or not the Zeeman resonances
nitude larger than the real parts. We can partition the eigenare well resolved, Eq.152) gives two resonantly enhanced
values\ and their associated eigenvectors into a groupeof 2 parts,

eigenvalues\,,\} . . ., associated with the Zeeman multip-
let a, for which Im A ,~ w, with o, given by Eq.(139), and
a second group of [2 eigenvalues\y ,\;, . . ., associated (S,)“l):Z (S+|)‘a){)‘a|a)
with the Zeeman multipleb, for which ImA,~—w, . We a Na N~ lw ’
multiply Eq. (146) on the left by{\| to find
AMp™={\|o)(A+inw) . 151)
{Np™)={\]o)( ) (151 (S-S (S+|)\b){-)\b|a')' 157
Np )\b+lw

Imaging signals, observed as the rf modulation of a trans-
verse probe beam, are linear combinations of the electron

spin projections . o
The resonant, transverse electron spin polarizations are there-

fore the sum of a postively rotating part from the multiget
<Sf><“>=Tr[<s+)*p<”>]=§ (SN p™)

(S+|)\){)\|0') <S > — l<s >(*l)(x+i —iwt
= R =-(S_ y)e '“*+c.c.
2;‘ AMine (152 T2 :
=ReS_ ) Y(x coswt+y sin wt
For magnetic fields large enough that the Zeeman reso- AS-)a wt+y sinwt)
nance frequencies are well resolved, that is, +Im(S_){ V(x sin wt—y coswt), (159

. and a negatively rotating part from the multiphet
with m"=m=1, we may think of Eq(150 as a nondegen-
erate, zeroth-order part &f with Eq. (149 as a small per-
turbation. The zeroth-ordéprthogonal eigenvectors are 1 ,
(Si)b=§(8_>§,1)(x+iy)e'“’t+ c.c.

{\il=(fm|, and [rp)=|fm). (154
=Re(S_){Y(x coswt—y sin t)
The eigenvalues, correct to first order in E449), are
—Im(S_){Y(x sin wt+y coswt). (159
A=iomt v, With ym=Refm[A[fm).

(159
o _ _ For the special case of well-resolved Zeeman resonances,
Substituting Eqs(154) and(155) into Eq.(152), we fmd_the the sum of Eqs(158 and (159 can be evaluated explicitly
transverse spin for a well-resolved Zeeman resondnte from Eqgs.(156), (147), and(148) to give
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QJS/%'_D’l([‘,i]z_452)(3a which we hgve evglqated using the definitidl8 of the
(SQzPZ > > [(wam— o) paramagnetic coefficieng(l,P). Then Eq.(163 becomes
m 8[1]A[(wam— @)+ ¥aml the purely imaginary expression

X(X cos wt+Yy sin wt) + v m(X Sin wt—y coswt)]
f da(S_)iM= %{[W—m% 1+2¢€(1,P)},
(169

PE QSMBBl([b]Z m%)Qm

B[ [(wpmt ©)2+ 72 [(womt @)

bm

X(x coswt—y sin wt) = ypm(X Sin wt+y coswt)].  which when substituted into Eq162) yields the total reso-
(160) nance area of the transverse spin

The experimental signals are obtained with a lock-in mQsugBiP
(phase-sensitijeamplifier with an offsetd between the f ((S)at(SL)p)dw= W(X[Hsm 0
phase of the rf-drive field and the light-modulation signal,
and with an integration time constamt such thatw>1. —y{1+€(l,P)}cos g).
The signals from the the lock-in amplifier are proportional to

n-(S,) wheren is the direction of propagation of the probe
beam and

(166)

Thus, for either resolved, partially resolved, or unresolved
2 (= / Zeeman resonances, the total resonance area, when probed
(S,)= —f dt’e V"'"(S, (t—t"))codw(t—t")— 6. along the directiorx of the rf field, is strictly proportional to
7Jo the longitudinal electron polarizatidd. Since the part of the
(16D transverse spifS,) that contributes to the resonance area is

Substituting Eqs(158 and (159 into Eq. (161 we find 90° out of phase with the rf field, the lock-in phase must be

6= +90° for maximum response amplitude. The “area theo-
(S1)=(S1)at(Si)p where rem” (166) for Zeeman resonances is an analog of various
_ _ ) _ oscillator-strength sum rules from atomic and nuclear phys-
(S,)a=ReS_), Y(x cos+y sin ) +Im(S_) "V ics.
We will often be interested in the limit of intense, circu-
larly polarized pumping light whenP—1, s,—1, Qm
P — ) — 61, and when all relaxation rates are negligible except
<Sl>b:Re<S*>E’1)(X Cos 6~y sin 0)—Im(S,>§,1) for FF\la optical pumping rat® and the spin-egcﬁange ratep
X (X sin +y cos f). (162  Te. Then one can verify by inspection of EQL49 that
the elements of the matrixf () A|fm’) with m<m’ will be
The amplitudes(s,>$“) may vary on a time scale much negligible compared to nonzero matrix elements
longer than the time constanmtof the lock-in amplifier, for ~ (fm|A|fm’) with m=m’. That is, for high polarizatiorP,
example, during a relatively slow scan @for By across a (fm|A|fm’) will be very nearly upper triangulawith the
spectrum of Zeeman resonance lines. rows and columns labeled in order of decreasing values of
For poorly resolved Zeeman resonances, the frequencyngm’y. The eigenvalues will be very nearly the diagonal
dependence ofS,); is complicated, but the resonance elements {m|A|fm) of the triangular matrix. These high-
“area” is relatively simple to interpret. The resonance areaspolarization eigenvalues are valid whether the resonances are

X (X sin §—y cos 0),

are proportional to well resolved, poorly resolved, or completely overlapping.
They are formally the same as the eigenval{igsb) for well
do(S VM= S, IO o resolved resonances. One can also verify thaPasl, all
fo (S-)1 fo S componenents of the source vect@d7) will be negligibly

small except for the “top” componenta(|o). With such a
=7 (S, |fm)(fm|a). (163  source vector and withh given by an upper triangular ma-
o trix, the solution of Eq(146) is simply

Carrying out the integral oven of terms from Eq(157), a

sum of 2a poles in the complex» plane just below the real Ip)= al)(allo) ' (167
axis, and a sum ofl2 poles just above the real axis, both sets Yarti(wy— o)

of poles at Raw~w;, amounts to replacing the factors

1
Jdo(\i=iw)™" by . Substituting Eqs(147 and (148  £orp_,1 we may neglect all but the optical-pumping and
into the last term of Eq(163), we find, aside from a multi- spin-exchange contributions to the width, and we find from
plicative factor, the sum Egs. (155 and (149

EQ%[f]Z 4m?)=[f12=[112+1+2¢(1,P), 1
) 166 Yo m (1) (168
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The spin-exchange contribution to the resonance width is In summary, for resolved, partially resolved, or com-
diminished by the fractiom of like isotope. For a monoiso- pletely overlapping Zeeman resonances, the time-dependent
topic alkali metal, there will be no spin-exchange broadeningransverse spin for the limlP—1 is given by the first term

at all. of (9.21):

OsueBi[(wa— @) (X COSwt+y Sin wt) + y4(X Sin wt—Yy coswt)]

(S))= (169
2[4 (wa— @)%+ ¥2]
|
The lock-in signal162) can be obtained by lettingt— 6 in The relaxation equations are obtained by evaluating
the right side of Eq(169). Tr f,dp/dt, with dp/dt given by Eqg. (96), and f,
=3 ,m|fm)(fm| to find
XI. RELAXATION IN THE DARK d
Important information about the relaxation mechanisms of &<fi2>: N le (Rl CE - (171

alkali-metal atoms can be obtained by measurements of the

relaxation of the spin polarization in the dark, an experimen-—pnea relaxation matrix is the sum of contributions from
tal method introduced by Franz€89). In such experiments, gnin_exchange collisions between alkali-metal atoms, from

the pumping light is suddenly removed and the polarizatiors_dampmg collisions, and from F-damping collisions.
of the vapor is monitored by such a weak optical probe beam

that optical pumping effects on the relaxation can be ignored =Tt TentTen. (172
or extrapolated to zero. According to E(2) the photon ex’ 7 SDTTFD

absorption cross section depends on the isotopically aveggcqyse we are interested in relaxation in the dark, the terms
aged, longitudinal spin polarization, from Eq. (96) proportional to the optical pumping raf
have been neglected in EAQ.72).
The F-damping contributions come from the terms of Eq.

i
<Sz> = Z 77i<Siz> = ZI m((aiz> _<biz>)v (170 (96) proportional to 1T ¢p

so analyzing relaxation in the dark amounts to analyzing the TFD%<fZ>: [i“:. f,F—F-Ff,)=— ﬁ“Z)_

relaxation of the spin-projection&;,) == ,m(am|p;lam), 17?
and(b;,), defined in like manner, wheidabels one of thé 173
different isotopic species in the vapor of alkali-metal atoms.

Because of spin-exchange collisions between the aIkaIiThe well-known commutation relations for angular momen-

metal atoms, the relaxation equati@®) is a non-linea(Ri- f[um operators were used in S'”.‘p"fy'”g I_E(q_73). Compar—
catti equation. Therefore, the general decay cannot be dd?9 Ed- (173 with Eq. (171) we find the diagonal matrix
scribed by a finite sum of exponentials.

However, experiments show that in the final stages of
relaxation in the dark, all of théf;,) decay with the same
time constanfl;. This is to be expected since the nonlinear

terms from Eq.(96) become negligibly small compared t0 \,are the F-damping rate T, is given by Eq.(99).

the linear terms in the low-polarization limit. The single ex- 10 S-damping contributions come from the terms of Eq.
ponential decay that is observed experimentally correspond@@ proportional to IT<p, which give, with the aid of Eq.
to the slowest ofundamentatelaxation mode of the linear- (39)

ized form of Eq.(96).

The symmetry of Eq(96) ensures that the density matrix, d
if not already longitudinal, will become longitudinal and re- Tsp—(f)=(S-f,S— gfz>_ (175
main that way as the polarization decays to zero in the dark. dt
We will also assume that the pumping light is never kept on ) N
long enough for appreciable nuclear polarization to build up~rom rotational symmetr§- f,S must be a superposition of
in 3He or 1*°Xe, so we will neglect the terms proportional to @z, b;, and hyperfine coherences between the multipets
(K) in Eq. (96). Because the density matrix is longitudinal, @nd b, which can be neglgcfted. Thus, we may use the pro-
the HamiltoniarH,, has no direct influence on the relaxation, jction theorems,— (—1)*"'f,/[1] etc., to write Eq(175
and we account for its presence by ignoring the hyperfiné'S
coherences that are generated by the spin-exchange and
S-damping terms of Eq(96) but that oscillate rapidly be-
cause oﬂ—lé and therefore average to zero.

(filCeplf{,) = b¢¢ Siiv , (174

[1i1°Tep

a(a+1)—1
[17°

d 3
Toogp(a) = ~@ae, o
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b(b+1)—1 3 3 a@+rn-1 1
—pE gl 7D A<ZT T T

The coefficientsA andB can be determined with the substi- gng
tution f,—F,=a,+b, in Eq. (175, which gives

d
TSD& < bz> = A< az> +

d 1 3 bb+1)—-1 1
B=-———7——"-+—.
TSD&(<aZ>+<bZ>)=_<SZ>:_m(<az>_<bz>)' 4 [I]Z [1]

178
(79 Comparing Eqs(176) and(177) with Eq. (1721 and mak-
Substituting Egs(176) and (177) into the left of Eq.(178  ing the substitutiona=[1]/2, b=[1]/2—1, andl—I; we

(179

and equating coefficients ¢f,) and({b,), we find find
|
(&|Tsplay) <ai|FSD|bi>) _ 1 ( [L12=[11+2  —[11?=3[1;]-2 (180
(bilTsplai) (bi|Tsplbi)/  2[1,12Tgp\ —[Hi12+3[11—2  [1i12+[1;]+2

The S-damping rate Tk is given by Eq.(97). S damping couples the angular momentum componenis and(b;,) of a
given isotope to each other, but it does not couple components of different isotopes.
The spin-exchange contributions come from the terms of(&).proportional to 1T, ;; . With the aid of Eq(39) we find

d
Texa<fz>:<s’fzs_%fz>+4; 77J'<SJ'Z>-I-r‘prSZ' (183

The second term on the right of Ed.81) is nonlinear, but it can be linearized by settipg- (2[1]) ~%, the uniform population
distribution for unpolarized atoms. Then we have

2 2f(f+1)(2f+1 i
42 (ST f,S=(- 1 T 52 m(S)=(-1*" : 3[1(]2 )2 —[f‘]<<ajz>—<b;z>>. (182
J

The first term on the right of Eq.181) is of the same form as the right side of E4.75, and will make a contribution
analogous to Eq(180). Thus, the linearized contribution to the relaxation matrix from spin exchange is

<ai|rex|aj> <ai|Fex|bj>> 5” ( [Ii]z_[li]+2 _[Ii]2_3[|i]_2

(bi|Teda;) (bi|Teby) :2[Ii]2Tex —[L12+3[11-2  [L2+([1]+2

+L<_[Ii12_3[l‘]_2 [112+3[1,]+2
6[|i][|j]Tex [Ii]2_3[|i]+2 _[Ii]2+3[|i]—2

. (183

) o ) =1/y,. HereN is the number of different species of alkali-
The spin-exchange rateTl is given by Eq.(106). Spin-  mnetal atoms, coupled by spin exchange in the vapor. For
exchange collisions couple the angular momenta of d|fferen‘1:,xamp|e N=2 for the natural isotopic mixture d°Rb and

isotopes to each other. 87Rb.

Fundamental rate for relaxation in the dario find the For a monoisotopic alkali-metal vapor like Na or Cs, the
fundame_ntal relaxation rate we assume exponentially dampy, 4¢rix equatior(185) is only two dimensional, and it can be
ing solutions of the form solved to yield an explicit formula for the fundamental re-

_ laxation rate,
(fiz)=(filnje ™" (184
- . . . 1 1 1 2
Substituting Eq.(184) into Eq. (171) we find the eigen- y= + + 1+ —
value equation [11°Tep \2Tsp  3Tex (1]
Lo 1 1)? 2 \?
Z <fi|r|fi’><fi’|n>:7n<fi|n>v (189 - 2T8D+3Tex 1+W
f,

1/2

which can be solved numerically for the eigenvalugs

2 1 1
<y,<..-<y,y. The fundamental time constant i§; [11°Tsp\ 'sD lex
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a magnetic field gradient that causes the Larmor frequency of
the atoms to vary across the pumping cell. As first shown by
171 Rubidium Tam [40], when resonant 1f fields are applied to high-
pressure, optically pumped vapors, “resonant surfaces” of
precessing atoms are produced. The resonant surfaces are the
15 loci of points where the applied rf frequenayis equal to a
Zeeman resonance frequeney of the alkali-metal atoms.
For high field gradients, the precessing atoms can be so lo-
131 calized that they diffuse away from the resonant surface be-
124 fore they relax due to optical pumping or spin-flip collisions.
To account for effects of spatial diffusion on the rf reso-
nances, we reinsert the diffusion term into E§46), which

0.001  0.01 0.1 1 10 100 becomes

Relative Spin Exchange Rate, T, /T (A+ino— sz)lp(n)) _ | ). (189
ral Egé;g;;;ﬁ:ggg ggzgégéoilé Tg?égﬂﬁfiggf‘gf’;tgd”;‘;“a HereD is the spatial diffusion coefficient of the alkali-metal
function of the ratioT¢p/T,, of the spin exchange rateTy, to the ~ atoms in the gas, and we now think of the relaxation operator
S-damping rate Tsp. The F-damping rate Tép was assumed to A =A(r), the density vectofp™)=[p((r)) and the source
be negligibly small. vector |o)=|c(r)) as functions of the positiom of the
alkali-metal atoms in the cell.

Under the conditions of spin-exchange optical pumping, The thicknes® (half width at half maximumof the layer
van der Waals molecules are negligible ffe, and for  of atoms precessing near a resonant surface decreases as the
129Ke, the gas pressures are sufficiently high that the Fmagnetic-field gradien¥ B, increases. The gradient is nor-
damping rates are relatively small. So fdHe—and to a mally chosen to ensure that<L, whereL is a characteristic
good approximation for'?®e—the fundamental time con- linear dimension of the cell. Define a unit vector, normal to
stantT, is determined by the S-damping ratel 44 and by  the resonance surface, by
the spin-exchange rateTy,. We define the “slowing-down
factor” as the ratiol' ; / Tgp of the fundamental time constant u=VB,/|VB,
T, to the S-damping rat@gy. For example, in Fig. 3 we
have plotted the slowing-down factor for Rb vapor of naturalwith the gradient evaluated at a poing on the resonant
isotopic abundance, as obtained from the smallest eigenvalgirface. The displacementnormal to the surface, of a point
v1=1/T, of Eq. (185 with 1/T,p=0. The horizontal scale is I nearrg is
the relative spin-exchange rafiesp/ T, the ratio of the spin-
exchange rate to the S-damping rate. u=(r—rg-u. (190

For fast relative spin-exchange rafBsy /T 1 the lim-
iting value of the slowing-down factors of Fig. 2 can be We assume that the transverse density maix ) de-
obtained from the following simple arguments. When thePends strongly om but that its variation for displacements
spin-exchange ratgg9) are large enough compared to other parallel to the resonant surface is negligible.
relaxation rates of the system, the alkali-metal atoms will In accordance with Eq150), A has diagonal imaginary
continue to be described by the spin-temperature distributioparts Infm|A|fm) = w;5. These are very nearly equal and
(112 as the spin angular momentum is removed by the Sepposite for the two Zeeman multiplet®,m~ — w,ry. For
damping and F-damping collisions. We can find the limitingmost situations of interest in spin-exchange optical pumping
relaxation rate by taking the limit of Eq124 asP—0, R  we can neglect the dependence on the mean azimuthal quan-
—0, and(K,)—0. The limiting longitudinal relaxation rate tum numbem and write
1/T, is then

Slowing Down Factor, T, /T _,
a

) (189

dw=lau=kn,, where k=2%1yB (192

, (187 All]

In Eqg. (191) we have assigned a precession-direction number
so the high-temperature slowing-down factor for negligible Fn;=(—1)2"' to each multiplet. Thus, we can approximate
damping is simplyT;/Tsp=1+ €(0). Forrubidium of natu-  the spatial dependence of the relaxation operator near a reso-
ral isotopic composition ggs= 0.7215 andyg,=0.2785), we  hant surface as
can use Table | together with E¢425 and(126) to find the
high-temperature slowing-down factor+le(0)=10.81 and
the F-damping coefficient(0)=0.3583.

1 1 ( 1  v(0)
T 1+ €(0)

Ty Tso Teo

A(r)=A(rg)+iukN, (192

where the operataN is defined byN|fm)=n¢|fm). As in-
XII. SPATIAL DIFFUSION AND GRADIENT IMAGING dicated in Eq(192), it is possible to ignore the dependence
of all but the imaginary, diagonal matrix elements A&f
One of the most convenient ways to measure the polamwhich determine the magnetic resonance frequencies of the
ization of an optically pumped alkali-metal vapor is to apply atoms. Then Eq(188 becomes
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d2
A+i(nw+ukN)—DWhp(“)):hr), (193

where the relaxation operatdr and the source vectdrr)
are taken to be independentwfand equal to their values at
rs. Multiplying Eq. (193 by the left eigenvectof\¢|, we
obtain a set of scalar equations, one for each eigenvalue
of A,

. d?
)\f+|(nw+uknf)—DW}{)\f|p<”f))z{)\f|0).

(199

As discussed in connection with E4.57), there are resonant
enhancements of the density matg¥” in the multiplet f
whenn= —n;. Each eigenvalua; defines a resonant sur-
face such that

Im \¢(rg) = wn; (195
for each pointrg on the surface.
We introduce a dimensionless complex variapléefined

by

[Au=—iun;—ys/k, where y;=Re\(rg).

(196
The characteristic length is the positive cube root

Au=(D/k)3, (197
where the diffusion coefficier® and the Larmor-frequency
gradientk of Eq. (191) are both positive. Then the solution
of Eq. (194 subject to the boundary conditioi ;| p(~"?)
—0 as|u|—w is

™ .
Mlp' ™) =zl HICD), (198
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Comparing Eq.(202 with the discussion of Eq163), we

see that the area theorem remains rigorously valid when dif-
fusion is taken into account and the simple poles of(E§1)

are replaced by Hi in Eq198).

As the displacement of Eq. (190 varies, the complex
variable ¢ of Eq. (196) always lies to the left of the imagi-
nary axis in the compleX plane, and the minimum value of
|£| is y¢/(kAU). If y;/(kAu)>1, we can substitute into Eq.
(198 the asymptotic expansion

) 1 ‘ T
Hl(§)~—w—§—-~-, or arg{>z5 and |{|>1,
(203
to find
It~ i) (204

)\f-l—ikunf—iwnf'
which is the same as E¢l51).

For a given damping rate; and diffusion coefficienD
we may define a crossover gradiéntand a crossover width

b. by
3
¥t D
= and b= \/:
D ¢ Vi

Then the relative gradient and the relative widtt8 are

K= (205

x=klk, and B=b/b,. (206

In view of Eq. (198 the relative widthg of the resonating
atoms, for a given relative gradiert can be defined as the
solution of

2 Re Hi(i BxY3— k23 =Hi(— x~2B). (207

The context will make clear whethgt is the relative width

where Hi is the solution of the inhomogeneous Airy equationof Eq. (206) or the unrelated spin-temperature parameter of

(41,42
d? 1
d—gz—g HI=;, (199)
defined for all finitel by
. 1= 3
Hi(¢)= —f et~ t3gt, (200
mJo

The integral extends along the real axis of the complex
plane.
One can substitute into EqL98) the identity

f Hi(¢)dZ=i, (201
\%

where the path of integration is any “vertical” ling paral-
lel to the imaginary axis of the complexplane, to find

k J T e du=m{n o). (202

Eqg. (115. From inspection of Eq(203) and from the fact
that 2 Re Hi(1.29 =Hi(0) we find the limiting solutions

k1 for k<1

P=1 12018 for x>1.

(208

The functionB(«) defined by Eq(207) is plotted in Fig.
4. For spin-exchange optical pumping, a representative dif-
fusion coefficient would b® ~0.04 cnt sec * and a repre-
sentative damping rate would bg=3Xx10* sec!. Then
the crossover Larmor-frequency gradient would ke 2.6
x 10" sec* ecm™L. In view of Eq.(191), for 8Rb with |
=5/2, the crossover magnetic-field gradient would\b®,
=8.9 G cm L. Such large field gradients are seldom used in
practice. The crossover width would e=1.2x10"2 cm
or 12 um.

APPENDIX A: VAN DER WAALS MOLECULES

We will be interested in &>°Xe bound to an alkali-metal
atom. The rate of change of the density vector of the pair is
given by
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1000
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0.1

0.001 0.01 0.1
FIG. 4. The relative width(half width at half maximum 8
=Db/b. of the layer of resonating atoms for gradient imaging, plot-
ted as a function of the relative spatial gradientk/k, of the
Larmor frequency. For small gradientsgk., diffusion effects are
negligible ands3 decreases ag 1. For large gradientk>k., 8 is

limited by diffusion and decreases only as k2%>.

d
i g;lp)=([H]1+[VD]p). (A1)

Here the HamiltoniaH is the sum of Eqgs(2) and (8):

H=Hy+Hyg, (A2)
and the perturbation is the sum @f0) and (11)
V=9yN-S+aK-S. (A3)

The Liouville-space operatofdi] and[V] of Eq. (Al) are
defined in terms of corresponding Schimger-space opera-
tors by Eq.(26).

We transform from the Schdinger-picture density vector
|p) to the interaction-picture density vector

[p)=€lMIV%]p). (A4)
When Eq.(A4) is substituted into Eq(A1) we find
ih %ITJ) =[V1/p), (A5)
where
[V]=e/HMvi[\]e-ilHIvA, (A6)

For an ensemble of molecules formed at titlpghe mean
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The increment has been averaged over the distribi6én
of molecular breakup times. In EA7) the density operator

p=p(t) at the timet of formation of the molecule is a
simple product of the density operatp=pa(t) of the

alkali-metal atoms and the density operapge=pxe(t) of
the 12%Ke atoms

P=PaPxe- (A8)

The lowest-order terms of the increment operator are

= dt 1 (tm ~
AL — LU (S TE ' '
A ft e ihft dUv']  (A9)
and
~ = dt 1 tm - t _
A(Z):f _me—(tm—t)/T i f drrv” j di'Tv'1.
- ! (V'] : (V']

(A10)

Here[V']=[V(t")] and[V"]=[V(t")].

To find the evolution of alkali-metal atoms we multiply
Alp) by the formation rate Ti,y . per alkali-metal atom,
trace over the spin states of tHé°Xe nucleus, and take an
ensemble average over the vibrational and rotational states of
the van der Waals molecules to fiice matrix spacg

dpa .

W_ m (All)

<TrxA PAPXe) n-

We have reverted to the Schiiager picture in Eq(A11), as
signified by dropping the “tilde” symbol over the operators.
The corresponding rate of change of the density matrix for
the 12%e atoms is obtained from E¢A11) by interchanging
the atom indiceg anda. The averages over the directions of
N, denoted by - - -), are

N2
(N;)»,=0, and <NiNj>n:?5ij : (A12)
wherei andj denote projections on the Cartesian axesd
j of a laboratory-fixed coordinate system.
In view of Eq. (A12) the ensemble average of the first-
order increment EqLA9) is simply

A“E%a[KS]. (A13)
We label the 1B ]? independent basis operatofd)
=|fim;q;)(f/m/q/| by a single indexi and we label the
eigenfrequencies by the same indeXQ;=E(f;m;)
—E(fim{)+%wk(gi—q/), whereq; and g/ are azimuthal
guantum numbers of the nucleus, as defined by(®gThen

change inp after the molecule has been broken up by a

collision at timet,,, can be found from the perturbation-
series solution of EqLA5),

~ o~ = dt, ~ ~
Ap)= [ et ) - )

=(AD+AD 4 .. H[p). (A7)

[H][))=AQi). (A14)

Using the completeness propelyi)(i|=1, we may evalu-
ate the expressiofA10) for A(?) by steps:

el Qit" _ giQt

a, (A15)

ft‘"dt'[v']=|j)[vmi|
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where The bras and kets in E¢A22) are defined by Eq.3). Terms
in the sum are omitted unless the indices are within their
Q;=Q;—-;, (A16) permissible range, for examplé+n=1+1/2, |m|<f+n,
andm’<f=1x1/2, etc.
with the characteristic frequenci€l and(}; defined by Eq. We may write Eq.(A20) as the sum of four terms
(Al4).
In like manner AP=AD+ AP+ AP +AP, (A23)
tm - " - where
f dt//[vll]j dtl[vl]
t t AP =— Tz—fs[V][V] (A24)
=K [ V][ V]ji s 72 :
eiQkitI eiQki(tm—t)_ 1 eiij(tm—t)_ 1 2f
X (i - - - A17 TTE
(70, a, T R AP =T voqver, (n25)
Carrying out the final integral of EQA10) over the dis- _ 3172
i i i i |l WhT
tribution of molecular breakup times, we find Ag(z)zl :f )2([v<1>][v<-1>]—[v<—1>][v<1>]),
+ WhiT

[V]i[V]jie' it

~ ' (A26)
(2) — _
Aki B h ; (1_|Qk|7')(1_|QkJT)

(A18)

A<2>_72 S vy 1
Define a hyperfine coherence operafo] and coherence Y _h2n+m¢o[ I ] 1+ (wyr)?2  1+imoyr '
numbern,=0,= 1 for the polarization statgk) by (A27)
[n]|k)=nk) where n="f—f,. (A19)  The molecular fraction$s and f¢ were defined in EqH70)

and(71). The termA{?) of Eq. (A27) can be ignored, since it
In the limit of low magnetic fields, one can readily verify @dds hyperfine coherence that averages to zero because of
thatA=F-F/[1]. Since it is used in a commutatat,is de- N 'apid, incoherent oscnlanon(sz)a_t the frequengy.
fined only to within an arbitrary, additive constant term. We shall presently show thaty” is negligible, so we set
We will be interested in spin-polarized alkali-metal va- A—A®M+A&+AP in Eq. (A7) to find
pors with no hyperfine coherence, that is, vapors for which

(ilp)=0 whenn;==1. Then we may limit the sum in Eq. _T )

(A18) to those indicek andi for which n,=0 andn;=0. Alp)= if a[K-S]|p)

The sum over intermediate statgsn Eq. (A18) is unre- )

stricted since there can be important contributions from vir- T FIVITV+ F[ VO VO A28
tually excited states with;= =1 as well as from states with h2< SLVIIVIHFlVPIIVED ). (A28)

n;=0. Under the conditions of spin-exchange optical pump-

ing (i.e., a few tens of Gauss or less fBr, and several Equivalently, in matrix space
atmospheres of buffer gasthe molecular lifetimes~

~10 1% sec, and the Zeeman spin precession frequencies '

r
wk~10 sec! and gsugB,/([114)~1C® sec! are small Ap=izalK-Sp]- T ﬁz(fs[V,[V,p]]
enough that it is a good approximation to def; 7~ (n; vW

—n;) wy7. Consequently, EqQAL8) can be written to good + [V, [V p]]). (A29)

approximation as
, Because (N;),=0, cross terms betweeryN-S and
T 1 aK - Sfrom Eq.(A28) or Eq.(A29) will average to zero. The
2= _ __ (M~ y(m ) . _ ;
A= K& [vee ]1+imwhfr[v ™1 (A20) spin-rotation interactiof10) and nuclear-electron spin ex-
change interactiofll) will contribute independently to the
We have written the perturbation as the sum of three termd€laxation. Substituting EqA29) into Eq. (A11) we find
that the contribution of the spin-rotation interactid®) is

1

v=> v, A21)  dp 245t 292
> (A2 9P_ 2018 5 b5 s 5oyt —otF
dt 3Tuwa

(F-pF—F-Fp),
(A30)

[l ]vaW,A
wheren is the hyperfine coherence number and

which is Eq.(72), with the mean squared phase angﬁlé

vim="3 [f-+n,my(f+n,m|V|fm')(fm’|. (A22)  defined by Eq(74). The density matrix in Eq(A30) is that
fmm’ of the alkali-metal atomsp=p,. In simplifying Eq. (A30)
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we made use of the angular momentum projection theoreriaking an ensemble average of E436) over the directions

S==*F/[1]; the = signs are taken for matrix elements be-

tween states withr=1=+1/2.

Similarly, the nuclear-electron spin exchange interaction

(11) causes the evolution

dp  fsp2n, :
d_€= ZSTVV\:]A(S'ps_S'SP+[{S,p}—2ISXpS]-<K>)
frd?, ~
77 @)
XpFI- (KN + G [{K) - Sipl, (A31)

which is Eq.(73), with the mean squared phase ang:lé
defined by Eq(74). The effective magnetic field of E473)
is given by

77x7< a'>

QSMB5BvW,A:T—<K)- (A32)
VWA

of N we find
(VDY (yN)2+a_2 3 a(a+l)
o3 al\a 172

a?l
x% |am><am|—WKzaz. (A37)

In like manner

(yN)2 a?\(3 b(b+1)
vt = B 320D
2
xE |bm><bm|+T:]+2i)K b, .

(A38)

Here we denote the projection Bf, in the multipletf =a by
a,=X|am)y{am|m, with an analogous definition df,. Sub-
stituting Eqgs.(A35), (A37), and (A38) into Eq. (All) we

In like manner, the evolution of the nuclear spin of thefind for the alkali-metal atoms

129 e atoms is found to be

fre? P
dt< >_—2[|]2va - (F)—(2F-F—FF-—(FF)"- X(K))
f
+2Ti¢ (S)— <K>)+h_7|:< @) (XK. (A33)

For spin exchange with alkali-metal atoms of several isoto-

pic species, like®®Rb and®Rb, Eq.(A33) is replaced by an
isotopic average; an isotopic indéxs added to the quanti-
ties representing the alkali-metal atoms,—(;,, F—F;,
S—S), and both sides of EqA33) are multiplied byZ; »; .

If the polarizations are longitudinal and the alkali-metal at-

oms have the spin-temperature distributi@i?2), Eq. (A33)
reduces to

d

P2
at'K

)= g — (st uP)FE)((SH—(K,), (A34)
VW, Xe

where the coefficient(P) was defined by Eq126).

It remains to show thah({?) of Eq. (A26) represents a
negligible frequency shift. Multiplying Eq(A26) on the
right by |p), we find
i IR

AP =7 o |[(v Vv

Hv) o).
(A35)

WhT
From Eq.(A22) we find that

VEIVES Yy

mm' m”

lam)y(am|V|bm’}(bm'|V|am”){am'|

= >, |amy(amVvV-VOVO|am’y(an|.
mnt’

(A36)

(0p7) P2(K)
i[1+ (0?11 1 Tow A

dp_
e

[{Iaz_(l + 1)bz}1P]-

(A39)

The corresponding evolution of the density matrix of the
noble-gas atoms is

() dola,— (1+1)by)
i[1+ (w2l ]ZTVW,Xe

dp
e

[Kz.pl.  (A40)

These second-order frequency shifts can be ignored since
they are smaller than the first-order shifts from E§13) by
a factor of order ¢2)?<1.

APPENDIX B: OPTICAL PUMPING AND LIGHT SHIFTS

We may think of the [ pumping light as an incoherent
superposition ofo.. circularly polarized photons. Let the
mean photon spin be=s{. Then a fraction (1-s)/2 of the
photons has circular polarizatian. with respect to the unit
vector ¢ along the direction of the mean photon sgiror-
mally the direction of propagation of the pumping lighthe
high buffer-gas density will broaden the optical absorption
line so much that the hyperfine structure is completely unre-
solved. This means that the correlation time for the absorp-
tion of a photon is very short compared to the hyperfine
coupling periods. The excitation is very nearly sudden with
respect to the nuclear polarization.

Denote by|m) and |m} electronic sublevels with azi-
muthal quantum numben= = 1/2 (with respect ta?) of the
23,), ground state and of théP,,, excited state, respec-
tively. The o~ photons will not excite the ground-state sub-
levels| = 1/2) because of angular-momentum selection rules,
but the |+ 1/2) sublevels will be excited to the sublevels
|+1/2}. Therefore, the evolution rate of the excited-state
density matrix is given by
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d d 1
dtPe™ R% (l+2m5)|m}<_m|pg|_m>{m|- (B1) &|Pe):_T_Q|Pe)- (B7)

To avoid spin depolarization due to radiative trapping,
enough quenching gas is added to ensure that excited atoms,
decaying with the natural radiative lifetime~25 nsec, are
much more likely to be quenched than to radiate a photon. A
representative quenching rate is

Using the expression(39) for py, and noting that
S|mH{m|=1 andEm|m}{m|=J,, we can rewrite Eq(B1),
the source term for excited atoms, as

d

dt/P9=1Qa) =2 [Au00)(Au00Qo) .

_I_—Q=109 sec !, (B8)

+ Aul0)(Anl0Qy), B2
AEM A1) R10Qe) (B2 which would correspond to a fluorescent branching rate of

about 2.5%.

where the nuclear part of the source term is Hyperfine coupling ofl and J in the excited state and

magnetic-dipole coupling of to the longitudinal fieldB,

will cause some coupling of the nuclear and electronic spin

polarization. The corresponding evolution of the density ma-

trix is given in analogy to Eq(27) by

2 Np00)(A100Q)=RI¢=50,/2),  (B3)
M

and the electronic part is q
iﬁalpe):[Heﬂpe)y (B9)
> Nu10)Ap10Q0)=RI[25¢—0,3). (B4
A where the Hamiltoniar{7) for the excited state can be ap-

roximated adequately b
The Liouville-space bra and ket vectors of EqB2)—(B4) P d y oy

are quantized with respect to the azimuthal akiand the He~A.l -J. (B10)
multipole basis stateld\ ulm) were defined by Eq41).

Once created by optical pumping, the spin state of thdn most spin-exchange optical pumping experiments, the
excited atom will evolve because of three main influencesstatic fieldB, will be small enough to be neglected, as indi-
J-damping collisions of excited atoms with buffer gas atomscated in Eq.(B10). The hyperfine coupling in the first ex-
quenching collisions of excited atoms with, r H, mol-  cited Py, state is relatively large. For example, for the
ecules, and hyperfine coupling between the nucleus and tHe*P1 of ®Rb
electrons of the excited atoms.

. J—damping coIIisio.ns vyith buffer gas atoms or molecules Ez?.ex 108 sec 1~ i< i (B11)
will randomize the direction of at a rate If;. As an ex- fi o T
ample, consider a cell with a He density of 10 amagats and a . o )
temperature of 100 C. Takingdamping cross section for 1N€ net rate of change of the density mafyix) is obtained
collisions of Rb($P,, atoms with He atoms to be PY Summing the right-hand sides of Eq82), (B6), (B7),
23x 10716 cn? [43] and a mean relative RbHe velocity of @nd(B9) to find
v=1.40x10° cm sec!, we would have

d 1
a|Pe): _I‘+?[He])|l)e)+|Qe)- (B12)
1 |
—=8.7x10% sec?, (B5) . .
T The relaxation operator is
or about 11.5 psec betwedrdamping collisions. As a result
of J-damping collisions, the excited-state density matrix will szgm A plm)(xpliml, (B13)

evolve as

and the decay rateg, for purely nuclear polarization ang,

d 1 i izati
@pe): _ T_J )\Em I Im)( w1l po). (B6) for electronic polarization are
o

yo=i~10g sec !,

The J-damping process described by EB6) is completely Tq
analogous to the S-damping procé€s4), which can be writ-
ten in a form analogous to E¢B6) with the aid of Eqs(39) _i+ 1 101 sect (B14)
and (43). The relaxation due td damping of Eq.(B6) is yl_TQ T ’
sudden with respect to nuclear polarization.

Quenching collisions with molecular buffer gases like N Denote a Laplace transform—for example,gef—by
or H, will deexcite the atoms at a rateTy, which is inde- .
pendent of the excited-state spin polarization, so the evolu- ;e:j peetdt. (B15)
tion rate is simply 0
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The well-known inverse transformation is

1 atio_
pee’do,

2’7T| a—iw

Pe (B16)

Herep, andp, are functions ot ando, respectively, and in

Eq. (B16) a is a constant such that all singularitiesflie
to the left of the vertical path of integration in the comptex
plane. Then the Laplace transform of EB12) has the for-
mal solution

|Z’e) =

1 -1
F+0—_E[He]) |Qe)+|pe0)- (B17)

Henceforth, we shall neglegt,, the value of the excited-
state density matrix at time=0. This is because we will be
interested in values of the density matrix at tintesTg,
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o) = w

= 1p)y. (B23

If we approximatep(eo) with the purely nuclear operator of
Eq. (B21), the first-order correction will be purely electronic
and of orderA.To/fi~1 compared to the zeroth-order,
purely nuclear contributior(B21). However, the timeTq
~10" 2 sec of a quenching collision is long enough for the
spin-orbit and anisotropic Coulomb interactions to destroy
most of the electronic polarization of the atoms during the
deexcitation collisions, so we will neglect the electronic first-
order correctionB23) and all higher-order corrections from
Eq. (B19).

The hyperfine interactions, which have characteristic evo-
lution times <10 !0 sec, cannot appreciably change the
nuclear polarization during the time of a quenching collision,
so the nuclear polarization E(B21) is transferred with neg-

when initial transients have decayed away to negligible valdigible change to the ground state at a ratégl/ The repopu-

ues. Sincdl +o|=|[H]/i%|, we may expand the inverse
operator of Eq(B17) in a power series to find

- w [(T+o) H,
FESJEUELE
n=0

<r+o>-l|ée)=n§0 [pM).
(B18)

Combining Eqs(B13) and(B18) we see that to zeroth order

|Bg°>):<r+a>*l|ée)=§ (y1+0) Y ul0)(A ! 0] Q).
M
(B19)

Using Eq.(B16) we may invert Eq(B19), which has simple
poles ato=—,, to find

t ~ ’
p0)=3, o) [ (upofBppe e tar,
Al —o
(B20)

whereQ;=Qq(t’) is the source term at time.

In view of Eq. (B14), for comparable nuclear and elec-

tronic source terms the purely nuclear part|of”) with |

lated ground state is produced with no electronic polariza-
tion, and the repopulation pumping makes the ground-state
density matrixp evolve at the rate

d 1
JiP) =7 2 lg.\u00) e\ 100pL”)
Q A

=Rlo-s ®/Z)+%[55r]|p), (B24)

which is equivalent to Eq93). In Eq. (B24) we have added
the labelsg and e to distinguish ground-state and excited-
state basis vectors of the for(l).

Light shifts due to real transitiong-or steady-state pump-
ing with no rf coherence, the retardation correction of Eq.
(B22) vanishes, since’ = ¢ and® ;=0 . When an rf field
is generating coherence in the ground state, the nuclear part
of the coherence very nearly ceases to evolve after the atom
has been optically excited. This is because of the collisional
decoupling of the excited-state hyperfine interactions dis-
cussed above. When the nuclear coherence returns to the
ground state after a quenching collision it will partially re-
generate rf coherence, and the regenerated coherence will be

=0 is about 100 times larger than the electronic part withretarded in phase with respect to the coherence of atoms that

=1, so a good approximation of E¢B20) is
t fd !
p”) =2 |\ 100) f (Au00/Qg)e ) Tedt’
A —

1
=RTo|e—50,2)+ E[éé}]TQho). (B21)

To correct for writing the excited state at tinhén terms of
the source termp—s® /2 at exactly the same timg we
have added the “retardation correction”

1 t
E[asr]TQ|p)=Rf_w<qo'—qo—s[®g—®g]/2>

x e~ (=t Togt’ (B22)

have not been excited. The resulting small shift of the reso-
nant frequency of the ground-state atoms was first recog-
nized and studied by Cohen-Tannoudj#] who called it the
“light shift due to real transitions.”

One can use the identity

i
SiSj:%5ij+§§ €ijk Sk (B25)

(where €;j is the antisymmetric unit tenspto show that
2{s-S,0-S}=s-0. Using Egs.(37), (38) and additional ap-
plications of Eq(B25) we find that the purely nuclear part of
the sources term of Eq&B3) and(B21) is

¢—350=3p+S pS—3{s S pl—is- SxpS. (B26)

As discussed further in Sec. X, we assume that a resonant rf

From Eq.(B18) we see that the first-order contribution is field has excited coherence between the ground-state sublev-
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els|fm) and|f,m—1) (now quantized along) so that the for the double-quantum transition, as required i6& cor-
coherent parp;— of the ground-state density matrix at time responding td 5&,] existed. This failing is irrelevant as long
t'is as we limit our attention to single-quantum Zeeman transi-
tions. Thendé, , constructed as outlined above, correctly de-
pi==|fm)(fm|p|f,m— 1)(f,m—1|e"femt' -0, scribes thg light shifts du_e to real transitions. No such limi-
(B27)  tations exist for the matrix-space opera#é#, of Eqgs.(87)
and(90), which represents the light shift due to virtual tran-
The amplitude(fm|p|f,m—1) is the value at time. The sitions to the excited state.
mean azimuthal quantum number fis=m—1/2. For the Light shifts due to virtual transitionsExperiments show
evolution with timet’ over time interval§t—t’|~Tq, itis  that in high-pressure helium gas the optical absorption cross
an excellent approximation to replace the rf drive frequencysectiono,, of D, light is well described by a simple Lorent-
o with the rf resonant frequency;;, since the amplitude zian line profile
(B27) will be negligibly small unlessv~ w;r. Substituting
Eq. (B27) into Eq.(B26) and assuming a longitudinal mean reCf(Sva/2)
photon spins=s,z, we find aop—(v_ D)2 F (6v2)2 (B31

[112+4m>—1-4(-1) TI]s,m ,

o' = §S~' = 5 pimt -~ where the full width at half maximumv, of the line profile

4[] is proportional to the helium pressy#5]. For an absorption

(B28) profile like Eq.(B31), one can readily show that the mean

Other coherences in addition to the self-coupling term writ-PUmping rateR of Eq. (89) and the frequency shift parameter
ten out explicitly in Eq(B28) are represented by - - -. The 6Q), of Eq._(91) can be conS|de_red as real and imaginary
additional terms are needed to ensure that the right-hand sidrts of a single complex rate, given by
of Eq. (B28) is a purely nuclear operator, like the left-hand
side, but they do not contribute to the light shift. _ D(v)
~ Substituting Eq(B28) into Eq. (B22) and evaluating the R+'5Qv:reCff md”- (B32)
integral, we find to a good approximation

1 . A serviceable approximation for the spectral profileof the
m[5<‘3r]|P)=—l5Qr,fm|Pfa), (B29)  laser light is a Gaussian function with a central frequency
vy=c/\, and a full width at half maximumm:cﬁ)q/)\l2

where the light shift due to real transitions is

o o =@ e*4(V*V|)2 In 2/(§V|)2. B33
[172+4m2—1—4(—1)® I ]s,;m () =®x) (B33
0 tm= — omRTg > : _ _ .
4[17] For a laser beam of intensity (units: W cm 2) we would
(B30 have

For the conditions of spin-exchange optical pumping, the 21\ In 2

light shift due to real transitions is always a small fraction, of ®(v)= % (B34)
ThNyY oy

order wsmTq of the optical pumping rat&.
The Liouville-space operati&, ] is uniquely defined by P ; :

Egs. (B29) and(B30), and to simplify the notation of Sec. Substituting Eq(B33) into Eq. (B32), we find

VIII we have used square brackets as though a matrix-space 3

operatorsé€, existed, in accordance with E¢€6). Although 2y In 2rfafhw

this is permissible for our applications, it is not generally hcon, '

true. It is simple to construct an operatéf, that gives the

correct light shifts forAm=1, single-quantum Zeeman tran- Where the complex functiow is

sitions, for example, by spacing the diagonal matrix elements

such that(fm|8&,|fm)—(f,m—1| & |f,m—1) =46, 1. 1 [

However, an operator constructed in this way will fail to give ~ w([ir —s]yIn 2)= —f

the correct light shifts for multiple-quantum Zeeman transi- 1) =

tions. An example is an atom with=1/2, for which the  ir4isl?in 2 .

double-quantum transition froid,1) to |1,— 1) has no light =l el Zerfe([r +is]yIn 2).

shift due to real transitions. This is because the nuclear co- (B36)

herencegB26) associated with a double-quantum transition is _ ) _

quadrupolar and cannot exist foe=1/2. The light shifts The last .eqtial]ty can be proved by expressing the simple

(B30) for the two single-quantum transitions, froj,1) to pole{ x—1) L in terms of_ its spatial Fourier transform. The

11,00 and from|1,0) to|1,— 1) sum to— RTow,/4, wherew, ~ elative atomic linewidth is

is the unperturbed resonance frequency of the double-

guantum transition. So the light shifts of the two single- r=—2,

guantum Zeeman transitions do not add up to the light shift oy

R+i60,= (B35)

e—[rx—s]zln 2dX

X—Ii

_ Ovg

(B37)
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and the relative detuning is

V= Va

S= Tllz (838)

Tables of the complex functiow of Egs.(B35) and (B36)
have been compiled by Abramowitz and Ste¢da]. Alter-
nately, the complimentary error function of E@36)

THEORY OF SPIN-EXCHANGE OPTICAL PUMPING OF ...
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erfaz)=1—erf(z)=1— ifzetzdt (B39)
Jato

can be readily evaluated by carrying out the numerical inte-
gration on the right of Eq(B39) for the relatively small
values ofz=(r +is)In 2 of interest for spin-exchange op-
tical pumping.
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