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Theory of spin-exchange optical pumping of3He and 129Xe
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Joseph Henry Laboratory, Physics Department, Princeton University, Princeton, New Jersey 08544

~Received 17 November 1997; revised manuscript received 23 April 1998!

We present a comprehensive theory of nuclear spin polarization of3He and129Xe gases by spin-exchange
collisions with optically pumped alkali-metal vapors. The most important physical processes considered are~1!
spin-conserving spin-exchange collisions between like or unlike alkali-metal atoms;~2! spin-destroying colli-
sions of the alkali-metal atoms with each other and with buffer-gas atoms;~3! electron-nuclear spin-exchange
collisions between alkali-metal atoms and3He or 129Xe atoms;~4! spin interactions in van der Waals mol-
ecules consisting of a Xe atom bound to an alkali-metal atom;~5! optical pumping by laser photons;~6! spatial
diffusion. The static magnetic field is assumed to be small enough that the nuclear spin of the alkali-metal atom
is well coupled to the electron spin and the total spin is very nearly a good quantum number. Conditions
appropriate for the production of large quantities of spin-polarized3He or 129Xe gas are assumed, namely,
atmospheres of gas pressure and nearly complete quenching of the optically excited alkali-metal atoms by
collisions with N2 or H2 gas. Some of the more important results of this work are as follows:~1! Most of the
pumping and relaxation processes are sudden with respect to the nuclear polarization. Consequently, the
steady-state population distribution of alkali-metal atoms is well described by a spin temperature, whether the
rate of spin-exchange collisions between alkali-metal atoms is large or small compared to the optical pumping
rate or the collisional spin-relaxation rates.~2! The population distributions that characterize the response to
sudden changes in the intensity of the pumping light are not described by a spin temperature, except in the limit
of very rapid spin exchange.~3! Expressions given for the radio-frequency~rf! resonance linewidths and areas
can be used to make reliable estimates of the local spin polarization of the alkali-metal atoms.~4! Diffusion
effects for these high-pressure conditions are mainly limited to thin layers at the cell surface and at internal
resonant surfaces generated by radio-frequency magnetic fields when the static magnetic field has substantial
spatial inhomogeneities. The highly localized effects of diffusion at these surfaces are described with closed-
form analytic functions instead of the spatial eigenmode expansions that are appropriate for lower-pressure
cells. @S1050-2947~98!07408-3#

PACS number~s!: 32.80.Bx, 32.80.Cy, 32.70.Jz
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I. INTRODUCTION

Spin-exchange optically pumped systems are of grow
importance for producing large amounts of hyperpolariz
3He and 129Xe for medical imaging and other application
@1#. Such systems need to be optimized, but we have foun
impossible to make realistic computer models of their p
formance because of uncertainties in the basic physics o
optical pumping, spin-exchange, and spin-relaxation p
cesses. Although there is an extensive experimental and
oretical literature on optical pumping and related physi
going back many years, the reported values of important
coefficients often differ by factors of two or even muc
more, and some key aspects of the physics are not discu
at all or are discussed in a misleading way. We have th
fore carried out a series of experimental and theoretical s
ies of the key physical processes in spin-exchange optic
pumped systems to determine the parameters with suffic
accuracy to support reliable modeling. This paper summ
rizes the essential theoretical framework of spin-excha
optical pumping. It is followed by papers summarizing o
experimental studies. The theory describes the main
phase phenomena:~1! spin-conserving spin-exchange col
sions between like or unlike alkali-metal atoms;~2! spin-
destroying collisions of the alkali-metal atoms with ea
other and with buffer-gas atoms;~3! electron-nuclear spin
exchange collisions between alkali-metal atoms and3He or
PRA 581050-2947/98/58~2!/1412~28!/$15.00
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129Xe atoms;~4! spin exchange with the angular momentu
of molecular rotation and with the nuclear spin of a129Xe
atom bound to an alkali-metal atom in a van der Waals m
ecule;~5! optical pumping by laser photons;~6! spatial dif-
fusion. For the high-pressure conditions of spin-exchan
optical pumping, the main effects of spatial diffusion a
confined to a thin layer near the cell surface. Also, diffusi
of transverse polarization in such systems limits the spa
resolution that can be obtained from the internal reson
surfaces of gradient imaging@2#. To describe those highly
localized effects would require hundreds of diffusion eige
modes@3#, so localized solutions are used instead. The
perimental papers that form part of this study include th
ough measurements of all the fundamental rate coefficie
needed to describe these gas-phase processes.

The theory summarized here is based on our previ
work and that of others, especially the following: Anderso
Pipkin, and Baird@4#, who introduced the important spin
temperature distribution for alkali-metal atoms in the lim
ing case of very rapid spin exchange; Barrat and Coh
Tannoudji@5#, who first made systematic use of the dens
matrix to describe optical pumping; Bouchiat@6#, who first
demonstrated the importance of nuclear slowing-down f
tors for spin relaxation in alkali-metal vapors; Grossteˆte @7#,
who made the first detailed studies of spin-exchange betw
like and unlike alkali-metal atoms; and Bouchiat, Bross
and Pottier@8#, who demonstrated the key role played by v
1412 © 1998 The American Physical Society
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PRA 58 1413THEORY OF SPIN-EXCHANGE OPTICAL PUMPING OF . . .
der Waals molecules for the spin relaxation of alkali-me
atoms in heavy noble gases.

Systems to spin polarize the nuclei of3He and 129Xe by
spin-exchange optical pumping are almost always desig
to operate at quite high gas pressures, typically one to
atmospheres, and also with such high number densitie
alkali-metal atoms that the vapor is optically thick at t
center of theD1 optical pumping lines. To avoid radiatio
trapping, enough nitrogen or hydrogen buffer gas is adde
nonradiatively deexcite~quench! the excited atoms befor
they can reradiate a photon. The high gas pressure cause
hyperfine structure of theD1 absorption line to be com
pletely unresolved. As a consequence, the act of absorbi
photon may change the electron polarization but not
nuclear polarization. The optically excited atoms have th
electron polarization nearly completely destroyed by co
sions in the high-pressure gas before they are deexcited
collision with a nitrogen or hydrogen molecule. Even thou
the electron polarization is destroyed before the atom is
excited, thenuclear polarization of the excited atom i
hardly affected. Sudden binary collisions of ground-st
alkali-metal atoms are of such short duration that th
modify the electron polarization with negligible effects o
the nuclear polarization. So almost all of the importa
pumping and collisional relaxation mechanisms for sp
exchange optical pumping are ‘‘sudden’’ with respect to
nuclear polarization. The nuclear polarization changes o
because of its hyperfine coupling to the electron polariza
in the time intervals between photon absorptions or spin-
collisions.

Because the pumping and relaxation processes are su
with respect to the nuclear polarization, the steady-s
probability of finding an alkali-metal atom in a ground-sta
sublevel of azimuthal quantum numberm is very nearly
ebm/Z, where b is the spin-temperature parameter andZ
5(ebm is the partition function~Zustandssumme!. The
simple spin-temperature distribution prevailswhether the
rate of spin-exchange collisions between alkali-metal ato
is large or small compared to optical pumping rates or sp
relaxation rates. Without the high gas pressures characte
tic of spin-exchange optical pumping, Anderson and Ram
@9# have shown that the spin-temperature distribution occ
only if the rate of spin-exchange collisions greatly excee
the optical pumping rate and other relaxation rates in
system. The existence of a spin temperature for the ste
state population distribution greatly simplifies the analysis
these systems.

A collision between a Xe atom and an alkali-metal ato
in the presence of a third body can lead to the formation o
van der Waals molecule, which lives until it is broken up
a subsequent collision. A very few van der Waals molecu
escape collisional breakup for so long that the electron
nuclear spins are depolarized by comparable amounts.
is the main relaxation mechanism that is not sudden w
respect to nuclear polarization. However, because of ra
collisional breakup of the molecules in the high gas pressu
used for spin-exchange optical pumping, most of the m
ecules break up before there is time for much depolariza
of the nucleus. So most of the molecular-induced relaxa
is also sudden with respect to the nuclear polarization.

Sections II~free atoms! and III ~colliding atoms! review
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the fundamental spin interactions known to be important
spin-exchange optical pumping. Section IV reviews the d
sity matrix and its representation in Liouville space. Sectio
V–VII review the relaxation produced by the fundamen
collisional interactions. Section VIII reviews optical pump
ing for high-pressure, heavily quenched conditions. T
pumping and relaxation processes are discussed togeth
Sec. IX, where we show that they normally lead to a sp
temperature distribution for steady-state conditions with n
ligible spatial diffusion. Section IX also contains a discu
sion of the thin diffusion layers of low spin polarization th
form near walls of the optical pumping cell. Section X in
cludes a discussion of the radio-frequency resonance
alkali-metal atoms. Section XI contains an analysis of rel
ation in the dark, an important experimental method for d
ducing key parameters that determine the performance
spin-exchange optically pumped systems. Section XII c
tains a discussion of the consequences of spatial diffusion
gradient imaging. Two appendices contain important det
on the relaxation due to van der Waals molecules~Appendix
A! and optical pumping~Appendix B!.

II. COLLISION-FREE SPIN HAMILTONIANS

During the intervals between collisions with other atom
or photons, the spin wave functionuc& of an atom evolves
according to the Schro¨dinger equation

i\
d

dt
uc&5Huc&. ~1!

For an alkali-metal atom the ground-state Hamiltoni
operator is@10#

Hg5AgI•S1gSmBSzBz2
m I

I
I zBz , ~2!

whereAgI•S describes the coupling of the nuclear spinI to
the electron spinS. The isotropic magnetic-dipole couplin
coefficient isAg . The magnetic-dipole coupling of the elec
tron spin to the static magnetic fieldBz , which defines thez
axis of the coordinate system, is described by the te
gSmBSzBz , wheregS52.00232 is theg value of the elec-
tron, andmB59.2741310221 erg G21 is the Bohr magne-
ton. The magnetic-dipole coupling of the nuclear spin to
static field is given by the term2m I I zBz /I , wherem I is the
nuclear moment~often tabulated in units of the nuclear ma
netonmn5mB/1836). The nuclear-spin quantum number isI .

The eigenstatesu f m& of Eq. ~2! will be labeled byf , the
total angular momentum quantum number of the state in
limit Bz→0 and bym, the rigorously good azimuthal quan
tum number and eigenvalue ofFz5I z1Sz , the longitudinal
component of the total angular momentum operator. The

Hgu f m&5E~ f m!u f m&. ~3!

The possible values off are f 5I 11/25a or f 5I 21/25b.
For transitions withDm51 andD f 50, the resonance fre
quencies are given by

\v f m̄5E~ f m!2E~ f ,m21!, ~4!
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1414 PRA 58S. APPELTet al.
wherem̄5m21/2 is the mean azimuthal quantum number
the transition. Solving Eq.~3! by perturbation theory to sec
ond order inBz we find that the resonance frequencies ar

vam̄5
Bz~gSmB22m I !

\@ I #
2

Bz
2m̄4~gSmB1m I /I !2

@ I #3\Ag

, ~5!

vbm̄52
Bz~gSmB1$212/I %m I !

\@ I #
1

Bz
2m̄4~gSmB1m I /I !2

@ I #3\Ag

.

~6!

Here and in the future we will denote the statistical weight
a spin quantum number by@ I #52I 11.

An alkali-metal atom in the first excited2P1/2 state
evolves under the influence of an analogous Hamiltonian

He5AeI•J1gJmBJzBz2
m I

I
I zBz . ~7!

The well-known Zeeman splitting of the energy levels of t
2S1/2 ground state of a typical alkali-metal atom is shown
Fig. 1.

In the time intervals between collisions, the spins of t
noble gases3He and 129Xe evolve by simple precessio
about the applied fieldBz , as described by spin Hamilto
nians of the form

HNG52
mK

K
KzBz . ~8!

Here mK is the magnetic moment of the noble-gas nucle
andK is the nuclear spin quantum number. In this paper
are only interested in the noble gases3He and 129Xe, for
both of whichK51/2. The precession frequencies per u
magnetic field are2mK /(hK)5vK /(2pBz)53243 and
1178 Hz/G, respectively. The eigenstates of Eq.~8! are

FIG. 1. Energy levels of the2S1/2 ground state of an alkali-meta
atom (85Rb with I 55/2). Resonances~discussed in Sec. XI! for
radio-frequency transitions between ground-state sublevels
sketched.
f

f

e

,
e

t

simple Zeeman sublevelsuq& with q561/2 being the eigen-
value ofKz , the projection of the nuclear spin operator alo
the z axis:

HNGuq&5\vKquq&. ~9!

III. COLLISIONAL HAMILTONIANS

During a binary collision of a ground-state alkali-met
atom with a buffer-gas atom or during the lifetime of a v
der Waals molecule formed from a ground-state alkali-me
atom and a xenon atom, there will be two interactions
addition to the free-atom interactions~2! and ~7!. The spin-
rotation interaction@11–14#

VNS5gN•S ~10!

couples the electron spinS to the relative angular momentum
N of the colliding pair of atoms. The nuclear-electron sp
exchange interaction@15#

VKS5aK•S ~11!

couples the nuclear spinK of a 3He or 129Xe atom to the
electron spinS of the alkali-metal atom. The coupling coe
ficients g5g(R) and a5a(R) depend on the internuclea
separationR between the alkali-metal atom and the buffe
gas atom. Both coefficients approach zero very rapidly w
increasingR.

The spin relaxation caused by collisions between pairs
alkali-metal atoms with electron spinsSi andSj is dominated
by the exchange interaction@16#

Vex5JSi•Sj , ~12!

where the coupling coefficientJ5J(R) is of electrostatic
origin. The exchange interaction conserves the internal s
of the colliding atoms.

Also acting during a collision between alkali-metal atom
is an interaction that couples the electron spins to the orb
angular momentumN of the atoms about each other. Th
interaction is hypothesized to be of the form@17–19#

VSS5
2
3 l~3SzSz22!, ~13!

where l5l(R) is the coupling coefficient, andSz5(Si
1Sj )•R/R is the projection of the total electronic spin alon
the internuclear axis. There is experimental evidence that
interaction~13! or some similar interaction that couples th
internal spin to the orbital angular momentumN of the col-
liding atoms, causes significant losses of spin angular m
mentum at high densities of the alkali-metal vapor. Init
theoretical estimates of the magnitude ofl @20# are much too
small to account for the observed losses.

The hyperfine coupling coefficientAg of Eq. ~2! also
changes during a collision, and the resulting collisional
teraction can be described in terms of a potentialDAgI•S,
whereDAg5DAg(R) is a rapidly decreasing function of th
internuclear separationR. This collisional modification ofAg
is the source of the pressure shifts of the frequencies of
cell atomic clocks@21#, and the interaction can also cau
Dm50 transitions between the statesuam& andubm& at large
applied magnetic fieldsBz , where f is not a good quantum

re



hi
he
er
ol
ns
de
o
tic

as
n
t is
it

on
-
r
m

a-
la
in

ra
r-

s d

c

he

nc

u

f

le

u-

uta-

in
-

-
it-

or
sis

red
g-

ace

logy

r-
he

PRA 58 1415THEORY OF SPIN-EXCHANGE OPTICAL PUMPING OF . . .
number@22#. However,DAgI•S will have a negligible effect
on a spin state characterized by a spin temperature, w
normally prevails for spin-exchange optical pumping. T
buffer gas atom will also induce small, higher-order hyp
fine interactions, for example, anisotropic magnetic-dip
hyperfine interactions or electric-quadrupole interactio
Walter @23# has estimated the effects of these higher-or
interactions and has shown that they are of negligible imp
tance for spin-exchange optical pumping. The magne
dipole interactions that occur for3He-3He collisions, and the
nuclear spin-rotation interactions that occur for gas-ph
collisions of 129Xe cause very slow nuclear spin relaxatio
We will ignore this gas-phase collisional relaxation since i
so slow compared to the relaxation caused by collisions w
alkali-metal atoms.

The collisional spin relaxation is critically dependent
the spin-independent potentialV0, which determines the in
ternuclear force2dV0 /dR that acts during a collision. Fo
collisions between alkali-metal atoms and noble-gas ato
the spin-dependent potentials~10! and~11! are so small com-
pared toV0, thatV0 completely determines the classical tr
jectories needed for a semiclassical calculation of spin re
ation. In like manner, for a partial-wave calculation of sp
relaxation with the distorted-wave Born approximation,V0
determines the distorted partial waves. Because the inte
tions ~10! and~11! decrease so rapidly with increasing inte
nuclear separation, small uncertainties inV0(R) cause as
much uncertainty in the calculated spin-relaxation rates a
uncertainties in the coupling coefficientsa andg. For colli-
sions between alkali-metal atoms, the exchange coupling
efficient J of Eq. ~12! is comparable in size toV0 so the
starting point for calculations of spin relaxation due to t
spin-destroying potentialVSS of Eq. ~13! is the triplet poten-
tial V01J/4.

IV. THE DENSITY MATRIX

The average value of some spin observableM for an en-
semble ofN identical atoms, each described by a wave fu
tion ucn&, n51,2, . . . ,N, is

^M &5
1

N(
n

^cnuM ucn&5(
i j

^ i uM u j &^ j uru i &5Tr Mr.

~14!

The first sum extends over the labelsn of the N atoms and
the second sum extends over the possible values of the q
tum numbersi ( i , j 5 f m, f 8m8 for an alkali-metal atom or
i , j 5q,q8 for a noble-gas atom!. From Eq. ~14!, one can
readily see that the density matrix@24# is

^ j uru i &5
1

N(
n

^ j ucn&^cnu i &. ~15!

The diagonal element^ i uru i & is the occupation probability o
the stateu i &, and the off-diagonal element^ j uru i & is the co-
herence between the statesu j & andu i &. From Eq.~15! we see
that the density matrix may be thought of as the matrix e
ments of the density operator
ch
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r5
1

N(
n

ucn&^cnu. ~16!

According to the Schro¨dinger equation~1!, the collision-
free evolution of the density operator is given by the Lio
ville equation

d

dt
r5

1

i\
@H,r#, ~17!

where the square brackets and comma denote the comm
tor @H,r#5Hr2rH.

Liouville space. The analysis of optical pumping and sp
relaxation is notationally simpler when described in ‘‘Liou
ville space’’ rather than the more customary Schro¨dinger
space discussed above. In Schro¨dinger space the density ma
trix r i j 5^ i uru j & of an alkali-metal atom is a square, Herm
ian matrix with 2@ I # rows and 2@ I # columns. In Liouville
space we write the density matrix as a ‘‘state vector’’

ur)5(
i j

u i j )~ i j ur!, ~18!

where the 4@ I #2 basis vectors are

u i j )5u i &^ j u, ~19!

and the amplitudes are

~ i j ur!5Tr@~ u i &^ j u!†r#5r i j . ~20!

For describing the detailed buildup of spin polarization
its relaxation, it is convenient to work with the special ba
vectors of Liouville space,

u f f 8m̄Dm)5u f m&^ f 8m8u, ~21!

with u f m& defined by Eq.~3!. The mean azimuthal quantum
numberm̄ and the azimuthal increment are

m̄5~m1m8!/2 and Dm5m2m8. ~22!

The basis vectors~21! have total azimuthal spinDm. They
are particularly appropriate for the commonly encounte
situation of axial symmetry about an externally applied ma
netic field.

Any pair of matricesM andN of Schrödinger space can
be represented by a corresponding pair of Liouville-sp
vectorsuM ) and uN), defined in analogy to Eqs.~18!–~20!.
We define a scalar product between these vectors, in ana
to Eq. ~20!, by

~M uN!5Tr M†N5~NuM !* . ~23!

The squared length (rur) is a measure of the spin pola
ization. For completely unpolarized alkali-metal atoms t
state vector is

ur0)5
1

2@ I #(i
u i i ), ~24!

with the squared length (r0ur0)5(2@ I #)22. For completely
polarized atoms, all in some Schro¨dinger spin stateu i &,



t t
r

-
e

din

po

io
p

-

us
.

s
na

tal.
rs
be

is

hat
ich

ix

me

nd
he
ntly
is

n,

r

as

1416 PRA 58S. APPELTet al.
ur)5u i i ). ~25!

The squared length of Eq.~25! is (rur)51.
The commutator@H,r# of the Liouville equation~17! can

be described in Liouville space by an operator@H# acting on
ur) from the left, that is,

@H#ur)5u@H,r#). ~26!

We will use the square-bracket notation defined in Eq.~26!
to denote a Liouville-space operator, which is equivalen
an operator used in a Schro¨dinger-space commutator. Fo
example, the Liouville equation~17! becomes

i\
d

dt
ur)5@H#ur), ~27!

formally equivalent to the Schro¨dinger equation~1!.
From Eqs.~23! and ~26! we deduce the simple identity

~M u@H#uM !5~@M ,M†#uH !. ~28!

For a Hermitian Schro¨dinger operator, sayM5r5r†, Eq.
~28! implies that (ru@H#ur)50. Thus, the evolution gov
erned by the Schro¨dinger equation~27! does not change th
length of ur),

d

dt
~rur!5S rU d

dtUr D1c.c.5
1

i\
~ru@H#ur!1c.c.50.

~29!

Here c.c. denotes the complex conjugate of the prece
number.

The simple Liouville equation~27! with the commutator
operator@H# is inadequate to describe changes in spin
larization, since it cannot cause the length ofur) to change.
However, an excellent description of the spin polarizat
and relaxation of atoms can often be obtained with a sim
generalization of Eq.~27!, the relaxation equation

d

dt
ur)52Lur). ~30!

The relaxation operatorL can be defined by its matrix ele
ments in Liouville space,

L5 (
i j ;rs

u i j )~ i j uLurs!~rsu. ~31!

L will include terms due to optical pumping that make (rur)
increase with time, and it will contain terms due to vario
relaxation mechanisms that make (rur) decrease with time
Despite its formal simplicity, Eq.~30! contains nonlinear
terms. The parts ofL describing spin-exchange collision
between like alkali-metal atoms include terms proportio
to the electron spin polarization. SoL depends linearly on
ur).

The relaxation operatorL will have left, $lu, and right,
ul), eigenvectors with the common eigenvaluel, defined by

$luL5$lul and Lul!5lul!. ~32!
o

g

-

n
le

l

The ul) are analogous to oblique lattice vectors of a crys
As long as theul) form a complete set, the left eigenvecto
$lu, which are analogous to reciprocal lattice vectors, can
normalized such that

$lul8!5dl,l8 . ~33!

Because theul) may not be orthogonal to each other, it
normally not true that (lul8)5dl,l8 , where (lu5ul)†.

We will be concerned with spin-relaxation processes t
conserve the number of atoms, that is, processes for wh

Tr dr/dt52(
f m

~ f f m0uLur!50, ~34!

where (f f m0u is the Hermitian conjugate ofu f f m0), defined
by Eq. ~21!. This means that the columns of the matr
( f f m0uLu f f m80) sum to zero, or equivalently that

$0uL50, where $0u5(
f m

~ f f m0u. ~35!

One eigenvalue ofL is alwaysl50, and it corresponds to
the simple left eigenvector$0u, defined by Eq.~35!. A con-
sequence of Eq.~33! with special physical significance is

$0ul!5(
f m

~ f f m0ul!50, if lÞ0. ~36!

The populations (f f m0ul) of relaxing (lÞ0) right eigen-
vectors must sum to zero. In Sec. XI we discuss so
simple, explicit examples of the relaxation matrixL, the
eigenvaluesl, and the left$lu and rightul) eigenvectors.

Parts ofr with and without electron polarization. As dis-
cussed in the Introduction, the dominant optical pumping a
collisional processes are ‘‘sudden’’ with respect to t
nuclear polarization. Such processes are most convenie
described if the density operator of the alkali-metal atoms
written as the sum of a part without electron polarizatio
which is unaffected by these sudden processes,

w5 1
4 r1S•rS, ~37!

and an electron-polarized part,

Q•S5 3
4 r2S•rS, ~38!

which is destroyed. In Eq.~37! w is a purely nuclear operato
with no electronic polarization. Similarly, in Eq.~38! the
Cartesian vectorQ has three purely nuclear operators
components:Qx , Qy , andQz . From Eqs.~37! and~38! we
find the simple identity

r5w1Q•S. ~39!

The density operator of a3He or 129Xe atom, both of
which haveK51/2, is simply

r5 1
2 12^K &•K , ~40!

which is analogous to Eq.~39! with w→1/2 andQ→2^K &
andS→K .
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It is convenient to describe relaxation and pumping p
cesses that are sudden with respect to the nuclear pola
tion in terms of the uncoupled multipole tensors@25,26#

ulm lm)5Tlm~ II !Tlm~SS!, ~41!

which are linear combinations of the basis vectors~21! with
Dm5m1m. The basis vectors~41! are an orthonormal se
so

ur)5( ulm lm)~lm lmur!, ~42!

where the sum extends over all possible values of the m
pole indicesl50,1, . . . ,2I ; m52l,2l11, . . . ,l; l 50,1
and m52 l ,2 l 11, . . . ,l . The parts of the density matri
without and with electron polarization are simply

uw)5(
lm

ulm00)~lm00ur!,

uQ•S)5 (
lmm

ulm1m)~lm1mur!. ~43!

V. BINARY COLLISIONS BETWEEN ALKALI-METAL
ATOMS

The interaction~12! leads to very efficient spin exchang
for collisions between a pair of alkali-metal atoms,Ai and
Aj , as indicated symbolically by

Ai~↑ !1Aj~↓ !→Ai~↓ !1Aj~↑ !. ~44!

The atomsAi and Aj could be the same isotope, e.g.,Ai
5Aj5

85Rb, they could be different isotopes of the sam
chemical species, e.g.,Ai5

85Rb, Aj5
87Rb, or they could be

isotopes of different chemical species, e.g.,Ai5
85Rb,

Aj5
133Cs. The arrows in Eq.~44! denote the direction of the

electron spins. The binary spin-exchange collision~44! is
sudden with respect to the nuclear polarization. For
monoisotopic vapor of alkali-metal atoms like Na or C
Grosseteˆte @7# has shown that the exchange process~44!
causes the density matrix to evolve as

d

dt
r5

1

Tex
$w~114^S&•S!2r%1

1

i\
@dEex,r#. ~45!

The spin-exchange rate is proportional to the number den
of the alkali-metal atoms

1

Tex
5@A#^vsex&. ~46!

Balling et al. @27,28# have shown that the frequency-sh
operator of Eq.~45! is

dEex5
2\k

Tex
^S&•S, ~47!

where the dimensionless parameterk is quite small, typically
only a few percent. The rate coefficient^vsex& and k are
expected to have some temperature dependence.
-
za-

ti-

a
,

ity

For Li, K, or Rb vapors, which contain several stab
isotopes~e.g., 85Rb and 87Rb), or for vapors containing
alkali-metal atoms of several different chemical speci
~e.g., Cs and Rb!, Eq. ~45! can be generalized to

d

dt
r i5(

j

1

Tex,i j
~w i$114^Sj&•Si%2r i !1

1

i\
@dEex,i j ,r#,

~48!

where the exchange rate of an alkali-metal atom of specii
with atoms of speciesj and number density@Aj # is

1

Tex,i j
5@Aj #^vsex& i j ~49!

and the frequency-shift operator is

dEex,i j 5
2\k i j

Tex,i j
^Sj&•Si . ~50!

There is strong experimental evidence that some inte
tion, presently believed to have the form~13!, causes spin
angular momentum to be lost to the rotational angular m
mentumN of a colliding pair of alkali-metal atoms, for ex
ample, in a process like

Ai~↑ !1Aj~↑ !→Ai~↑ !1Aj~↓ !. ~51!

The detailed physics of the process described by Eq.~51!
is still uncertain. Experiments at the University of Wiscons
@29# have shown that the relaxation described by Eq.~51!
can be slowed down by tens of percent by magnetic field
a few thousand Gauss or less, so not all of the relaxation
be due to binary collisions, for which much larger magne
fields would be needed to have an appreciable effect on
spin relaxation rate.

For an electron-electron interaction like Eq.~13! the spin
evolution due to sudden binary collisions will be sudden w
respect to the nuclear polarization, and the density oper
will evolve at the rate

d

dt
r5

1

TSS
@w2r#, ~52!

with

1

TSS
5@A#^vsSS&. ~53!

Experiments show that the rate coefficient^vsSS& is several
orders of magnitude smaller than the rate coefficient^vsex&
of the spin-conserving exchange process~44!.

We shall refer to a relaxation process like that of Eq.~52!
wheredr/dt}w2r as an ‘‘S-damping’’ process, that is,
process that destroys the part~38! of r with electron polar-
ization but does not affect the part~37! with purely nuclear
polarization. S damping occurs when the spin-interaction
tential couplesS andN but does not contain the nuclear sp
I explicitly. To be in the S-damping limit, the correlatio
time of the collisional interaction must be very short com
pared to the hyperfine precession period of the ato
ground state.
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VI. BINARY COLLISIONS BETWEEN ALKALI-METAL
ATOMS AND NOBLE-GAS ATOMS

Binary collisions between an alkali-metal atom and
buffer-gas atom are sudden with respect to the nuclear po
ization. During such collisions, the spin-rotation interacti
~10! will cause the density operator of the alkali-metal ato
to evolve at a rate

d

dt
r5

1

TNS
~w2r!. ~54!

The rate is proportional to the density@X# of the buffer-gas
atoms

1

TNS
5@X#^vsNS&. ~55!

The rate coefficient̂vsNS& depends strongly on temperatu
@30#.

For collisions of an alkali-metal atom with the noble-g
atoms 3He or 129Xe, the nuclear-electron exchange intera
tion ~11! will cause the density operator of the alkali-me
atoms to evolve as

d

dt
r5

hK

TKS,a
$w~114^K &•S!2r%1

1

i\
@dEKS,a,r#.

~56!

The binary rate per alkali-metal atom is

1

TKS,a
5@X#^vsKS& ~57!

and the atomic fraction of the noble gas, which is3He or
129Xe, is

hK5@3He#/@He# or hK5@129Xe#/@Xe#. ~58!

The frequency-shift operator for collisions with3He or
129Xe atoms is

dEKS,a5
8pgSmBmK

3K
~k02k1!hK@X#^K‹–S. ~59!

The dimensionless coefficientsk0 andk1 depend weakly on
temperature, and are a measure of the ensemble avera
the interaction~11! for binary collisions@31#.

Conversely, the nuclear-electron exchange interac
~11! will cause the nuclear spin polarization of the noble-g
atom to evolve as

d

dt
^K &5

1

TKS ,x
~^S&2^K &!2

mK

\K
dBKS ,x3^K &. ~60!

The rate for collisions with alkali-metal atoms of numb
density@A# is

1

TKS ,x
5@A#^vsKS&. ~61!

The effective magnetic field produced by the spin-polariz
alkali-metal atoms is
r-

-
l

of

n
s

d

dBKS ,x52
8pgSmB

3
~k02k1!@A#^S&. ~62!

VII. RELAXATION DUE TO van DER WAALS
MOLECULES

In the case of spin-exchange optical pumping of129Xe, a
significant fraction of the spin relaxation of alkali-metal a
oms A occurs because of the formation ofAXe van der
Waals molecules. These molecules are created and destr
by the collisional process

A1Xe1Yi↔A Xe1Yi . ~63!

Scanned from left to right, Eq.~63! represents the formation
of a van der Waals molecule with the binding energy carr
off by the third bodyYi . Scanned from right to left~time-
reversed!, ~63! represents the collisional breakup of the v
der Waals molecule, with breakup energy supplied by
third-bodyYi . The van der Waals molecules are so wea
bound that nearly every collision breaks them apart into
oms again.

The three-body formation rates 1/TvW ,A per A atom and
1/TvW , Xe per Xe atom are

1

TvW ,A
5(

i
Zi@Yi #@Xe# and

1

TvW , Xe
5(

i
Zi@Yi #@A#.

~64!

The number density of the the xenon atoms is@Xe# and the
number density of the third body needed to form or break
the molecule is@Yi #. For example, we might have@Y1#
5@He#, @Y2#5@N2#, and @Y3#5@Xe# in a typical gas mix-
ture for spin-exchange optical pumping of129Xe. The rate
coefficients for the three-body processes~63! areZi .

Assume that

p~ t !dt5e2t/tdt/t ~65!

is the probability that a van der Waals molecule is broken
by a collision with a third-body in the time intervaldt at a
time t after formation. The mean lifetimet is given by

1

t
5(

i
^vsvW& i@Yi #. ~66!

In chemical equilibrium at a temperatureT, the chemical
equilibrium coefficientK of the van der Waals molecules
related to the three-body formation rate coefficientsZi , the
breakup rate coefficientŝvsvW& i , the formation rates
1/TvW ,A per alkali-metal atom, and 1/TvW , Xe per xenon
atom, and to the mean molecular lifetimet by

K5
@AXe#

@A#@Xe#
5

Zi

^vsvW& i
5

t

TvW ,A@Xe#
5

t

TvW , Xe@A#
.

~67!

During the lifetime of a van der Waals molecule, the i
teraction~10! couples the electron spinS to the rotational
angular momentumN of the molecule, and the interactio
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~11! couples the nuclear spinK of the noble-gas atom to th
electron spinS. The molecular breakup rate 1/t will nor-
mally be so fast that

gNt

\
!1 and

at

\
!1, ~68!

so the spinsS andK rotate by only a very small angle due
the interactions~10! and ~11!, even in the relatively long-
lived van der Waals molecule.

For the heavier alkali-metal atoms, the ground-state
perfine frequency

vhf5
@ I #Ag

2\
~69!

is large enough~e.g.,vhf55.7831010 sec21 for 133Cs) that
vhft;1, even for very high buffer gas pressures and co
spondingly short molecular lifetimes. The power spectrum
the interactions~10! and ~11! will therefore be more intense
at the low frequencies that causeD f 50 transitions than a
frequencies on the order ofvhf , which causeD f 51 transi-
tions between the sublevelsu f m&. In Appendix A, we show
that a fraction,

f S5
1

11~vhftc!
2

, ~70!

of the van der Waals molecules have such a short correla
time tc that the formation and breakup of the van der Wa
molecule is sudden with respect to the nuclear polarizat
The remaining fraction

f F5
~vhftc!

2

11~vhftc!
2

~71!

of molecules has correlation timestc , which are so long tha
only D f 50 transitions can be induced, and the process is
sudden with respect to the nuclear polarization. The corr
tion time tc of the spin-rotation interaction~10! in a van der
Waals molecule cannot be longer than the molecular lifet
t. Because most collisions violent enough to cause an ap
ciable change in the direction ofN have enough energy t
break up the molecule, we will henceforth assume that
5tc . We may think off F as the fraction of molecules with
‘‘short’’ lifetimes and f S as the fraction of molecules with
‘‘very short’’ lifetimes, as discussed in@32#.

As shown in Eq.~A30!, the relaxation due to the spin
rotation interaction~10! is given by

d

dt
r5

2fg
2

3TvW ,A
S f S@w2r#1

f F

@ I #2 @F•rF2F•Fr# D .

~72!

The relaxation due to the nuclear-electron spin-exchange
teraction~11! is given by Eq.~A31! as
-

-
f

on
s
n.

ot
a-

e
re-

n-

d

dt
r5

fa
2hK

2TvW ,A
S f S@w~114^K &•S!2r#1

f F

@ I #2 @F•rF2F•Fr

1~$F,r%22iF3rF!•^K &# D1
1

i\
@dEvW ,A ,r#, ~73!

where $F,r%5Fr1rF is an anticommutator. The mea
squared phase evolution angles for the van der Waals m
ecules are

fa
25S at

\ D 2

and fg
25S gNt

\ D 2

. ~74!

In this paper the phase anglesfg andfa are the same asf
andf/x in Zenget al. @33#. The gas pressure is assumed
be sufficiently high thatfg

2!1 andfa
2!1. The frequency-

shift operator is

dEvW,A5
8pgSmBmK

3K
k1hK@X#^K‹–S. ~75!

VIII. OPTICAL PUMPING

For spin-exchange optical pumping of3He or 129Xe, the
buffer gas pressure is always very high, for example, sev
atmospheres of a3He-N2 mixture, or several atmospheres
a 129Xe-4He-N2 mixture. The number density of alkali-meta
atoms is also high enough that the vapor is quite optica
thick. Therefore, nitrogen, hydrogen, or some other quen
ing gas must be present to ensure that an excited atom
little chance of reradiating a photon, which could be multip
scattered before escaping from the pumping cell, ther
causing significant spin depolarization. A collision with a N2
or H2 molecule allows the excited atom to transfer its ene
to vibrational and rotational degrees of freedom in the
atomic molecule. The energy eventually equilibrates with
translational degrees of freedom to heat the gas.

We describe the pumping or probing light as a superpo
tion of monochromatic plane waves, for which the elect
field is

Eeik•r2 ivt1c.c. ~76!

The transverse, complex field amplitudeE5E(z) is a func-
tion of the distancez5r•z of propagation through the vapo
in the directionz5k/k of the photon wave vectork. Neglect-
ing the small phase retardation due to the buffer gas, we
E will obey an evolution equation analogous to the Sch¨-
dinger equation~1!

]

]z
E52p ik@A#^a&E. ~77!

The dielectric polarizability tensora, which plays the role of
the Hamiltonian~2!, depends on the mean electron spin p
larization ^S& of the alkali-metal atoms and is given by

a5a~122iS3 !. ~78!

It is to be understood that components on the right of E
~77! that are parallel toz ~longitudinal! are to be omitted
~since electric dipoles do not radiate along their axis of
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cillation!. The real and imaginary parts of the complex p
larizability coefficient a5a81 ia9 are Kramers-Kronig
transforms of each other:

a8~n!5
`

pE2`

` a9~n8!dn8

n82n
,

a9~n!52
`

pE2`

` a8~n8!dn8

n82n
. ~79!

Here ` denotes the principal part of the integral. The pre
sure broadening eliminates complicated contributions toa
from the hyperfine observableI•S and the quadrupole ob
servables that are important at low pressures for the hea
alkali-metal atoms, especially Rb and Cs@34#. The oscillat-
ing electric field of Eq.~76! will induce an oscillating elec-
tric dipole moment

^p&5^a&Eeik•r2 ivt1c.c. ~80!

The mean optical power absorbed by the oscillating elec
dipole moment is

2 ivE* •^a&E1c.c.5^s&hnFdn. ~81!

Inserting the expression~78! for a into Eq.~81! we find that
the absorption cross section of D1 light is

^s&5sop~122s•^S&!, ~82!

where the cross section for unpolarized atoms is

sop54pka9. ~83!

The photon fluxF5F(n) of the light wave~76! is

Fdn5
cE2

2phn
, ~84!

wheren5v/2p is the optical frequency in Hz, and the uni
of F are photons cm22 sec21 Hz21. The mean photon spin
is

s5
1

iE2 E* 3E. ~85!

We will assume that the oscillator strengthf , defined by

E sopdn5pr ec f , ~86!

is unaffected by the properties of the gas. Herer e52.82
310213 cm is the classical electron radius,c53.0031010

cm sec21 is the speed of light, and to good approximati
for D1 light, f 51/3. For D2 light, the oscillator strength is
very nearly f 52/3, and in Eqs.~78! and ~82! we should
make the replacement^S&→2^S&/2.

The effects of the absorbed light on the alkali-metal at
can be described by an effective Hamiltonian

dH5dEv2
i\

2
dG52E* •aE. ~87!
-

-

ier

ic

Inserting Eq.~78! into Eq. ~87! and using Eqs.~83! and~85!
we find that the light absorption operator is

dG5R~122s•S!, ~88!

where the mean pumping rate per unpolarized alkali-m
atom is

R5E
0

`

Fsopdn. ~89!

Using Eq.~87! and the Kramers-Kronig transforms~79! we
find that the light-shift operator is

dEv5\dVv~2 1
2 1s•S!, ~90!

where frequency shift parameter is

dVv5
`

pE F~n!sop~n8!

n2n8
dndn8. ~91!

The depopulation pumping rate of the ground-state is
scribed by

d

dt
r5

1

i\
~dHr2rdH†!52Rw~122s•S!1RS s

2
2SD •Q

1
1

i\
@dEv ,r#. ~92!

It is often assumed that before the excited atoms produ
by optical pumping are transformed back into ground-st
atoms, typically by a quenching collision with a N2 mol-
ecule, their spin is completely depolarized because of co
sions in the high-pressure buffer gas. While this is certain
good approximation for the electron polarization, it is no
good approximation for the nuclear polarization, where m
of the spin angular momentum is stored. The excited-s
electronic angular momentumJ changes directions so fre
quently due to collisions that the relatively weak hyperfi
interactions have insufficient time to depolarize the nucl
spin before the atom is quenched. The passage through
excited state is very nearly sudden with respect to the nuc
polarization@35#. As described in more detail in Appendix B
the repopulation pumping rate, given by Eq.~B24!, is

d

dt
r5RS w2

s•Q

2 D1
1

i\
@dEr ,r#, ~93!

which represents the return of pure nuclear polarization
the ground state. Shifts due to the real transitions are
scribed by the term proportional to@dEr ,r#. Summing Eqs.
~92! and~93! we find the net evolution due to optical pump
ing

d

dt
r5R@w~112s•S!2r#1

1

i\
@dEop,r#, ~94!

where

dEop5dEv1dEr . ~95!
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Comparing Eq.~94! with Eq. ~45! we see that optical pump
ing causes the density matrix to evolve in exactly the sa
way as spin exchange at a rateR with fictitious alkali-metal
atoms of electronic spins/2. More details of the pumping an
light shifts are contained in Appendix B.

IX. LONGITUDINAL OPTICAL PUMPING
AND SPIN TEMPERATURE

For spin-exchange optical pumping, the evolution of t
spin polarization of the alkali-metal atoms is determined
six dominant processes:~1! the hyperfine interactions an
interactions with external static or radio-frequency~rf! mag-
netic fields, for which]r/]t is given by Eq.~17!; ~2! binary
collisions between pairs of alkali-metal atoms~for example,
85Rb and87Rb) for which]r/]t is given by the sum of Eqs
~48! and ~52!; ~3! binary collisions between alkali-metal a
oms and buffer gas atoms, for which]r/]t is given by the
sum of Eqs.~54! and ~56!; ~4! relaxation due to van de
Waals molecules, for which]r/]t is given by the sum of
Eqs.~72! and ~73!; ~5! optical pumping, for which]r/]t is
given by Eq.~94!; and ~6! spatial diffusion of the polarized
atoms for which]r/]t5D¹2r, with appropriate boundary
conditions. The diffusion coefficient for the alkali-metal a
oms isD. We assume that experimental conditions are s
that evolution due to other processes—for example, radia
trapping—can be neglected. Adding the evolution rates
these six processes, we find

]r

]t
5D¹2r1

1

i\
@Hg8 ,r#1(

j

1

Tex,i j
@w~114^Sj&•S!2r#

1
1

TSD
@w2r#1R@w~112s•S!2r#1

4

TSE
^K &•Sw

1
1

@ I #2TFD

@F•rF2F•Fr#1
1

@ I #2TFE

3^K &•~$F,r%22iF3rF!. ~96!

In Eq. ~96! Hg8 denotes the free-atom Hamiltonian~2! to
which we have added the small, frequency-shift Hamil
nians dE associated with the collisional and pumping pr
cesses, for example, thedEex,i j of Eq. ~48!. These cause rela
tively small shifts of the center frequencies~5! and~6! of the
Zeeman resonances. Also included inHg8 are interactions
with a resonant radio-frequency field, which we will discu
in more detail in Sec. X. The sum onj extends over all
isotopes of the alkali-metal atoms including the isotopi
whose evolution is described by Eq.~96!. To avoid index
clutter in Eq.~96! we have suppressed the isotope labeli on
r5r i , Hg85Hig8 , w5w i , Sz5Siz , etc.

In Eq. ~96! the rate 1/Tex,i j of spin exchange of the alkali
metal isotopei with the isotopej was given by Eq.~49!. The
S-damping rate is
e

e
y

h
n
f

-

1

TSD
5@A#^vsSS&1@X#~^vsNS&1hK^vsKS&!1(

i
@Yi #

3^vsNS& i1
f S

TvW,A
S hKfa

2

2
1

2fg
2

3 D . ~97!

Contributions from spin-depolarizing binary collisions b
tween alkali-metal atoms occur at the rate 1/TSS
5@A#^vsSS&, discussed in connection with Eq.~53!. For
spin-exchange pumping of3He or 129Xe, binary collisions
with He or Xe atoms makes the contribution (^vsNS&
1@X#hK^vsKS&)@X# to theS damping rate, as discussed
connection with Eqs.~54! and~56!. The coefficienthK is the
atomic fraction of3He or 129Xe in the He or Xe gas.3He is
normally isotopically pure, which would correspond tohK
51. For pumping129Xe in a gas of natural isotopic abun
dance, we would havehK50.264. Contributions from the
much smaller nuclear moment of131Xe to the S-damping or
S-exchange rates have been ignored. Relaxation due to
nary collisions with buffer gases of number density@Yi # not
directly involved in spin-exchange optical pumping, for e
ample, the quenching gas N2 or the optical pressure
broadening gas4He for a xenon accumulator system@36#,
occurs at the rate@Yi #^vsNS& i , in close analogy to Eq.~55!.
The contribution of van der Waals molecules to S damping
described by the last term in~97!, where the formation rate
1/TvW,A is given by Eq.~64!, the phase angles by Eq.~74!,
and the fractionf S of van der Waals molecules that break u
quickly enough to causeD f 561 transitions is given by Eq
~70!.

The S-exchange rate for the transfer of spin^Kz& from
3He or 129Xe of atomic number densityhK@X# to the spin of
the alkali-metal atom has contributions from binary col
sions and short-lived van der Waals molecules,

1

TSE
5hKS ^vsKS&@X#1

f Sfa
2

2TvW,A
D . ~98!

The last two terms of Eq.~96! represent relaxation due t
long-lived van der Waals molecules. The F-damping rate

1

TFD
5

f F

TvW,A
S hKfa

2

2
1

2fg
2

3 D , ~99!

and the F-exchange rate is

1

TFE
5

f Ffa
2hK

2TvW,A
. ~100!

The distribution of the alkali-metal atoms between t
sublevelsu f m& and also their response to resonant rad
frequency magnetic fields, can be found by writing Eq.~96!
more explicitly as
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]r

]t
5D¹2r1

1

i\
@Hg8 ,r#1R8~SzrSz2

3
4 r1 1

2 @S1rS2

1S2rS1# !1R8sz8~
1
2 $Sz ,r%1 1

2 @S1rS22S2rS1# !

1
1

Tex,i i
@^S1&~ 1

2 $S2 ,r%1S2rSz2SzrS2!1^S2&

3~ 1
2 $S1 ,r%2S1rSz1SzrS1!#

1
1

@ I #2TFD

~FzrFz2F•Fr1 1
2 @F1rF21F2rF1# !

1
2^Kz&

@ I #2TFE

~ 1
2 $Fz ,r%1 1

2 @F1rF22F2rF1# !. ~101!

In passing from Eq.~96! to Eq. ~101!, we have eliminatedw
of Eq. ~37! with the identity

wS5$r,S%/42 iS3rS/2, ~102!

and we have written the vector cross product explicitly a

22i ~S3rS!5~S1rS22S2rS1!z

2~S1rSz2SzrS1!~x2 iy!

1~S2rSz2SzrS2!~x1 iy!. ~103!

We have also assumed a longitudinal mean photon s
s5szz. The effective pumping rate of Eq.~101! is

R85
1

Tex
1

1

TSD
1R, ~104!

and the effective photon spinsz8 is given by

R8sz85(
j

2^Sjz&
Tex,i j

1
2^Kz&
TSE

1Rsz . ~105!

The electron-electron spin exchange rate with all specie
alkali-metal atoms~e.g., both85Rb and 87Rb) is

1

Tex
5(

j

1

Tex,i j
. ~106!

Equation~101! describes the evolution of the density m
trix r5r i of the alkali-metal isotopei , which is undergoing
spin-exchange with other alkali-metal isotopes withj Þ i , and
with identical isotopes withj 5 i . We assume the other iso
topes are out of resonance with the applied rf field, so
electron spins are longitudinal, that is,^Sj&5^Sjz&z if j Þ i . A
resonant rf field, if present, can excite transverse compon
of the electron spin of the isotopei . These transverse spi
componentŝS6& contribute to the spin-exchange relaxati
due to collisions with like isotopes, as we shall discuss
more detail in Sec. X.

Longitudinal pumping. In the absence of any radio
frequency magnetic fields, the density matrix will have
coherences (^S6&50), and the polarization of the alkali
metal atoms is determined by the occupation probabilitie
in,

of

e

ts

n

f

each Zeeman sublevelu f m&. The density matrix for such
longitudinally polarized atoms can be described by
Liouville-space vector

ur)5(
f m

u f m)~ f mur!, ~107!

where the notation for the Liouville basis vectors~21! with
f 85 f andDm50 has been simplified tou f f m̄0)5u f m).

Then Eq.~101! can be written, in accordance with Eq
~30!, as

]

]t
ur)5$D¹22L%ur). ~108!

The nonzero matrix elements (f muLu f 8m8) can be found by
inspection of Eq.~101! to be

~ f muLu f m!5R8
3a222amsz8~21!a2 f2m2

4a2

1
f ~ f 11!2m2

4a2TFD

2
^Kz&m

2a2TFE

,

~ f muLu f 8m!52R8
a22m2

4a2 ,

~109!

~ f muLu f m8!52
1

8a2H R8~11Dmsz8!1
1

TFD
1

2Dm^Kz&
Tfe

J
3~ f 2m,!~ f 1m.!,

~ f muLu f 8m8!52
R8

8a2
~11Dmsz8!~a1mD f Dm!

3~a1m8DmD f !,

where

D f 5 f 2 f 8561, and Dm5m2m8561, ~110!

and wherem, is the algebraically smaller of the pa
(m,m8) andm. is the larger. One can verify that Eq.~35! is
satisfied by Eq.~109!.

We will describe the parts of Eq.~109! proportional toR8
as the relaxation due tosudden processes, and the parts of
Eq. ~109! proportional to 1/TFD and 1/TFE as the relaxation
due to slow processes. The sudden processes have such
short correlation time that they can cause transitions betw
different hyperfine multipletsf 5a and f 5b, while the slow
process have such long correlation times that they only ca
transitions within a given hyperfine multipletf . van der
Waals molecules and possibly some fraction of the spin
laxation ~51! due to collisions between alkali-metal atom
contribute to the slow processes.

Spin temperature. Let us first consider the steady-sta
solution of Eq. ~108! for a location far enough from the
depolarizing walls that the effects of diffusion can be n
glected (D¹2r50). Then we seek the solution of
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Lur)50. ~111!

Evidently the steady-state solutionur) of Eq. ~111! is the
right eigenvector ofL with the eigenvaluel50. Consider
first the practically important situation of negligible slo
processes, where we can neglect all but the terms pro
tional toR8 in Eq. ~109!. Then the solution to Eq.~111! turns
out to be the spin-temperature distribution

r5
ebFz

Z
5

ebI zebSz

ZIZS
. ~112!

TheZustandssumme Z5ZIZS is the product of a nuclear pa
ZI and an electronic partZS . For a spin of integer or half-
integer quantum numberJ,

ZJ5 (
m52J

J

ebm5
sinh b@J#/2

sinh b/2
5

~11P! [J]2~12P! [J]

2P~12P2!J
.

~113!

We have characterized the spin-temperature distribution w
an overall spin polarizationP, defined in terms of the mea
electron spin and the spin-temperature parameterb by

P52^Sz&5tanh
b

2
, or conversely b5 ln

11P

12P
.

~114!

To show that the sudden processes lead to a s
temperature distribution, we substitute Eq.~112! into Eq.
~111!. SinceLur)5( f mLu f m)ebm/Z, Eq. ~111! implies that

eb(
f 8

~ f muLu f 8m11!1(
f 8

~ f muLu f 8m!

1e2b(
f 8

~ f muLu f 8m21!50. ~115!

The sums of Eq.~115! can be evaluated with Eq.~109! to
give

(
f 8

~ f muLu f 8m61!52
R8

4
~17sz8!F17

m~21!a2 f

a G ,
(
f 8

~ f muLu f 8m!5
R8

2 F12
msz8~21!a2 f

a G . ~116!

Using Eqs.~116! and~114! we find that Eq.~115! is satisfied
provided thatsz85tanhb/25P.

Thus, we have shown that when spatial diffusion is n
lible, sudden optical pumping processes generate the s
temperature distribution~112! first introduced by Anderson
et al. The spin temperature is inversely proportional to t
spin-temperature parameterb. One can readily show that Eq
~112! can be written as a special case of Eq.~39!,

r5w~114^Sz&Sz! where w5
ebI z

2ZI
. ~117!
r-

th

n-

-
in-

For atoms described by the spin-temperature distribu
~112! we shall find it convenient to introduce a paramagne
coefficient, defined by

11e~ I ,P!5
^Fz&

^Sz&
52^F•F2Fz

2&5112^I•I2I z
2&.

~118!

The functionse(I ,P) depend on the nuclear spin quantu
numberI of the alkali-metal atom and are listed for the lo
values ofI in Table I. They are related to the Brillouin func
tions BI(x) by e(I ,P)52IBI(Ib)/B1/2(b/2) @37#. We note
that e(I ,0)54I (I 11)/3 ande(I ,1)52I .

We may use Eq.~96! directly to deduce the rate of chang
of the total angular momentum̂Fz& per alkali-metal atom.
The rates~97!–~100! are the same for all alkali-metal iso
topes of the same chemical species. For a chemically p
alkali-metal vapor, the isotopically averaged longitudin
spin polarizations are

^Fz&5(
i

h i^Fiz& and ^Sz&5(
i

h i^Siz&. ~119!

The isotopic fractions areh i5@Ai #/@A#, where @Ai # is the
atomic number density of the isotope of speciesi , and @A#
5( i@Ai # is the total number density of alkali-metal atoms

The expectation values of the photon, atomic, and nuc
spins are all longitudinal, sosz , ^Sz&, ^Fz&, and^Kz& are the
only nonzero components of the respective vectors. Add
an isotope label subscripti to r, Hg8 , w, Sz , I , andF in Eq.
~96!, multiplying Eq.~96! by h iFiz , taking the trace for each
isotope, and summing the result for all alkali-metal isotop
i we find

d

dt
^Fz&52

1

TSD
^Sz&1RS sz

2
2^Sz& D2

1

TFD
(

i

h i

@ I i #
2 ^Fiz&

1^Kz&S 1

TSE
1

1

TFE
(

i

h i

@ I i #
2 2^Fi•Fi2Fiz

2 & D .

~120!

The hyperfine HamiltonianHg8 is axially symmetric so
@Hg8 ,Fz#50 and Hg8 makes no contribution to Eq.~120!.

TABLE I. Expressions fore(I ,P), defined by the formula
11e(I ,P)5^Fz&/^Sz& for atoms described by a spin temperatu
distribution, as a function of nuclear spin quantum numberI and the
overall spin polarizationP.

I e(I ,P)

0 0
1/2 1
1 8/(31P2)
3/2 (51P2)/(11P2)
2 (40124P2)/(5110P21P4)
5/2 (35142P213P4)/(3110P213P4)
3 (1121224P2148P4)/(7135P2121P41P6)
7/2 (21163P2127P41P6)/(117P217P41P6)
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Spin-exchange collisions make no contribution because
exchange term from Eq.~96! can be written as

1

@A#(i j ^vsex& i j @Ai #@Aj #Tr Fiz@w i~114^Sjz&Siz!2r i #

5
1

@A#(i j ^vsex& i j @Ai #@Aj #@^Sjz&2^Siz&#50, ~121!

since^vsex& i j 5^vsex& j i by detailed balance.
We can also show directly that the spin temperature

tribution ~112! is the steady-state solution of Eq.~96! for
longitudinal pumping in the absence of diffusion, rf field
and slow processes. Let us assume that the spin state of
isotope j of the alkali-metal atoms is described by a sp
temperature distribution~112! with the same value ofb for
each isotope. The axially symmetric HamiltonianHg8 will
commute with the axially symmetricr of Eq. ~112!. In view
of Eqs. ~114! and ~117!, the exchange term on the right o
Eq. ~96! vanishes since for all isotopesj we have ^Sjz&
5(1/2)tanh(b/2). In steady state]r/]t50, and Eq.~96! be-
comes

05F2S 1

TSD
1RD2^Sz&1Rsz1

2

TSE
^Kz&G2wSz ,

~122!

which has the solution

P52^Sz&5
szRTSD12^Kz&TSD/TSE

11RTSD
. ~123!

Now let us consider the equilibrium polarization in th
absence of diffusion when some of the relaxation is due
slow processes, as will be the case for129Xe, where van der
Waals molecules are important. As the buffer-gas press
increases, Eqs.~70! and ~71! imply that f S→1 and f F→0
and the slow processes—proportional tof F—would vanish.
The steady-state solution in this limit is the spin temperat
distribution ~112!, as we have outlined above. Since sp
exchange optical pumping of129Xe is most conveniently
done at high buffer gas pressures, the relaxation due to lo
lived van der Waals molecules, that is the slow proces
will be very small compared to the sudden processes, and
spin-temperature distribution~112! will remain a good de-
scription of the polarization. Then we can write Eq.~120! as

d

dt
@11 ē~P!#^Sz&52S 1

TSD
1R1

y~P!

TFD
D ^Sz&

1
Rsz

2
1S 1

TSE
1

y~P!

TFE
D ^Kz&.

~124!

The isotopically averaged paramagnetic coefficient is

ē~P!5(
i

h ie~ I i ,P!. ~125!

The coefficienty(P), which accounts for relaxation in long
lived van der Waals molecules is
e

-

ach
-

o

re

e
-

g-
s,
he

y~P!5(
i

h i

@ I i #
2 @11e~ I i ,P!#. ~126!

The steady-state solution of Eq.~124! is

P52^Sz&5
szRTSD12^Kz&@TSD/TSE1y~P!TSD/TFE#

11RTSD1y~P!TSD/TFD
,

~127!

which can be solved forP with the aid of Eq.~126!. For
spin-exchange optical pumping of129Xe at high pressures
the slow processes make a very small contribution to
relaxation (TFD@TSD), and the value ofP given by Eq.
~127! is very nearly the same as that given by Eq.~123!.

Diffusion layer. At the high gas pressures used for sp
exchange optical pumping the spatial diffusion coefficientD
for the alkali-metal atoms is normally very small. For e
ample, in high-density (;10 amagat! He gas D'0.04
cm2 sec21 @38#. Near the input wall of the cell representativ
optical pumping rates areR>104 sec21. To a good approxi-
mation, the cell walls are nearly completely depolarizing
the alkali-metal atoms. The walls are often coated with a t
film of the metal, so that an atom impinging on the wall fro
the gas is replaced by a completely unpolarized atom eva
rating from the metal film. Therefore, the spin polarization
the alkali-metal atoms can be expected to grow from zero
the wall to the equilibrium value~123! or ~127! in a distance
of orderAD/R;231023 cm @19#. For very optically thick
vapors, a sizable fraction of the spin from the optical pum
ing photons can be lost to the cell walls in the diffusio
layer.

The polarization will vary with distancez from the cell
wall in accordance with the steady-state solution of E
~108!:

H D
d2

dz2 2LJ ur)50. ~128!

In spite of its formal simplicity, Eq.~128! is a nonlinear
equation, since the relaxation operatorL depends on the
atomic spin polarization̂Sjz& through the termR8sz8 of Eq.
~105!. The solution of Eq.~128! can be obtained by an itera
tive method, analogous to the use of Hartree self-consis
fields for finding electron wave functions of many-electr
atoms. A first approximation, adequate for most purpos
can be obtained by~1! neglecting the slow processes propo
tional to 1/TFD and 1/TFE; ~2! neglecting the spin-exchang
terms in Eqs. ~104! and ~105!, proportional to 1/Tex,
1/Tex,i j , and 1/TSE; ~3! neglecting any change inR due to
attenuation of the pumping light in the diffusion layer. The
the relaxation matrixL will be independent of position in the
diffusion layer, and the solution of Eq.~128! can be conve-
niently found with the aid of the eigenvectors~32! of L. For
the longitudinal polarization under consideration here,
eigenvaluesl are real and non-negative.

We multiply Eq.~128! on the left by$lu to find the dif-
ferential equation for thez-dependent amplitude$lur),

H D
d2

dz2 2lJ $lur!50. ~129!

The solution of Eq.~129! that does not diverge for largez is
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$lur!5$lur0!e2zAl/D, ~130!

wherer0 is the unpolarized state of Eq.~24! with ( f mur0)
51/(2@ I #). Using the completeness ofu f m) anduln) we find
that thez-dependent spin-polarization near the walls is

^Jz&5~Jzur!5
1

2@ I # (
l, f m, f 8m8

~Jzu f m!~ f mul!

3$lu f 8m8!e2zAl/D, ~131!

whereJz5Sz or Jz5I z . From the projection theorem,

~Szu f m!5
m~21!a2 f

@ I #
, ~ I zu f m!5m2

m~21!a2 f

@ I #
.

~132!

As a simple example, consider a hypothetical alkali-me
atom with I 51/2. There will be four population basis stat
u f m), so

~ f mur!5F ~11ur!

~10ur!

~00ur!

~1,21ur!

G . ~133!

For simplicity, neglect all relaxation processes and assu
perfect circular polarization for the pumping light. The
1/TFD50, 1/TFE50, R85R, sz851, and the relaxation ma
trix of Eq. ~109! becomes

L5
R

4S 0 22 22 0

0 3 21 22

0 21 3 22

0 0 0 4

D . ~134!

The rows and columns of Eq.~134! are labeled in the sam
order as the column matrix~133!. The eigenvalues of Eq
~134! are readily found to be

~l1 ,l2 ,l3 ,l4!5~0,R/2,R,R!. ~135!

~See Fig. 2.! The corresponding right eigenvectorsuln) are

~ f muln!5S 1 2 1 1

0 21 1 21

0 21 23 21

0 0 1 1

D , ~136!

where thenth column is the right eigenvector correspondi
to ln . The left eigenvectors are

$lnu f m!5S 1 1 1 1

0 21/2 21/2 21

0 1/4 21/4 0

0 21/4 1/4 1

D , ~137!

where thenth row is the left eigenvector corresponding
ln . Substituting Eqs.~132!–~137! into Eq. ~131! we find
l

e

^Sz&5^I z&5 1
2 ~12e2zAR/2D!. ~138!

The extension to nonzero collisional relaxation rates and
I .1/2 is straightforward.

X. RADIO-FREQUENCY RESONANCES

Suppose that the atoms are subject to a weak magn
field 2B1 cosvt, oscillating along thex axis of the coordi-
nate system with a radio frequencyv. The low-field Larmor
frequency is given by

vL/2p52.8Bz /@ I # MHz/G. ~139!

We assume thatBz.0, so for resonant rf we will also hav
v'vL.0. The interaction of an alkali-metal atom with th
rf field is

H rf52gSmBSxB1 cosvt, ~140!

where we have ignored the thousandfold smaller interac
with the nuclear moment.

In the steady state, the density matrix can be written a
sum of harmonics of the rf frequencyv,

r5(
n

r~n!einvt. ~141!

To lowest order inB1, r (n);B1
unu . We substitute Eq.~141!

into Eq. ~101! and neglect the effects of spatial diffusio
which we will discuss in more detail in Sec. XII. Takin
matrix elements between the resonantly coupled statesu f m&
and u f ,m21&, and retaining only the terms linear inr (n)

(n561) or B1 we find

FIG. 2. Eigenvaluesln from Eq. ~135! and eigenvectorsuln)
from Eq. ~136! for populations of a hypothetical alkali-metal ato
with nuclear spin quantum numberI 51/2. The effective pumping
rate ~104! is R85R and the effective photon spin of Eq.~105! is
sz851. Collisional relaxation processes have been neglected. In
absence of spatial diffusion, the population distributions (f muln)
decay exponentially at the rateln .
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(
n561

inveinvt^ f mur~n!u f ,m21&5
1

i\
gSmBB1^ f mu@Sx ,r~0!#u f ,m21&2 cosvt

1 (
n561

einvt^ f mu H 1

i\
@Hg ,r~n!#1R8S 1

@ I #2 Fzr
~n!Fz2

3

4
r~n!1

sz8~21!a2 f

2@ I #
$Fz ,r~n!% D

1
1

@ I #2TFD
S Fzr

~n!Fz2 f ~ f 11!r~n!1
TFD

TFE
^Kz&$Fz ,r~n!% D

1
R8

2@ I #2
~@11sz8#F1r~n!F21@12sz8#F2r~n!F1!1

1

2@ I #2S F 1

TFD
1

2^Kz&
TFE

GF1r~n!F2

1F 1

TFD
2

2^Kz&
TFE

GF2r~n!F1D J u f ,m21&1
h

Tex
^S2&^ f mu 1

2 $S1 ,r~0!%2S1r~0!Sz

1Szr
~0!S1u f ,m21&. ~142!
e
,

th

r

of

he
-

st
Passing from Eq.~101! to Eq. ~142! we have neglected th
couplings of Zeeman coherences of different multipletsa
and b, since the evolution frequenciesvam̄ and vbm̄ are
nearly equal and opposite.

We will assume that the zeroth-order density matrix is
spin temperature distributionr (0)5ebFz/Z of Eq. ~112!.
Then the matrix element of the term proportional to the
field in Eq. ~142! is

^ f mu@Sx ,r~0!#u f ,m21&52^ f muS1u f ,m21&
PQm̄

2
,

~143!
e

f

wherem̄5m21/2 is the mean azimuthal quantum number
the coupled states,P is the polarization of Eq.~114!, and

Qm̄5
ebm̄

ZI
5

2P~11P! I 1m̄~12P! I 2m̄

~11P! [ I ]2~12P! [ I ]
. ~144!

Physically,Qm̄ is the probability that the nuclear spin has t
azimuthal quantum numberm̄ for the spin-temperature dis
tribution ~112!. One can readily show thatQm̄→1/@ I # as P
→0, andQm̄→dm̄,I asP→1. SinceSzS152S1Sz5S1 and
@Sz ,ebSz#50 we can write the matrix element in the la
term of Eq.~142! as
f

s with
^ f mu 1
2 $S1 ,r~0!%2S1r~0!Sz1Szr

~0!S1u f ,m21&5^ f mu
ebI z

Z
$S1 ,ebSz%u f ,m21&

5^ f muS1u f ,m21&
ebm1eb~m21!

ZIZS
5^ f muS1u f ,m21&Qm̄ . ~145!

For further analysis, it is convenient to use the Liouville basis vectors~21!, for the special casef 85 f andDm51. To simplify
subsequent notation we writeu f f m̄1)5u f m̄). Setting^ f mur (n)u f ,m21&5( f m̄ur (n)) in Eq. ~142! and equating coefficients o
einvt, we find

~L1 inv!ur~n!)5us). ~146!

The components of the source vector are

~ f m̄us!5
igSmBB1PQm̄~ f m̄uS1!

2\
, ~147!

with the matrix element

~ f m̄uS1!5
~21!a2 f

2@ I #
A~@ f #224m̄2!. ~148!

The Liouville vectorsur (n)) andus) of Eq. ~146! and subsequent discussion are understood to include only the projection
azimuthal quantum numberDm51.

The matrix elements of the relaxation operatorL have real parts
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Re~ f m̄uLu f 8m̄8!5d f f 8H dm̄m̄8S R8
3@ I #21124m̄2

4@ I #2
2R8sz8

m̄

@ I #
~21!a2 f1

~ f m̄uS1!2

TFD
2

2^Kz&m̄

TFE@ I #2 D
2 (

p561

dm̄,m̄81p

2 S R81pR8sz81
1

TFD
1

2p^Kz&
TFE

D ~ f m̄uS1!~S1u f m̄8!2
hQm̄~ f m̄uS1!~S1u f m̄8!

Tex
J ,

~149!
le
-
e
n
a
e
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d
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ces,
and imaginary parts

i Im~ f m̄uLu f 8m̄8!5 iv f m̄d f f 8dm̄m̄8 . ~150!

It is convenient to discussL, as defined by Eqs.~149! and
~150!, in terms of its left and right eigenvectors$lu and ul)
and their common eigenvaluesl defined by Eq.~32!. The
eigenvalues for the transverse coherence will be comp
numbers with positive real parts Rel describing the damp
ing of the free coherence. Under the conditions of inter
here, the imaginary parts Iml, representing the precessio
frequencies of the coherence, will be several orders of m
nitude larger than the real parts. We can partition the eig
valuesl and their associated eigenvectors into a group ofa
eigenvaluesla ,la8 . . . , associated with the Zeeman multip
let a, for which Im la'vL, with vL given by Eq.~139!, and
a second group of 2b eigenvalueslb ,lb8 , . . . , associated
with the Zeeman multipletb, for which Im lb'2vL . We
multiply Eq. ~146! on the left by$lu to find

$lur~n!!5$lus!~l1 inv!21. ~151!

Imaging signals, observed as the rf modulation of a tra
verse probe beam, are linear combinations of the elec
spin projections

^S2&~n!5Tr@~S1!†r~n!#5(
l

~S1ul!$lur~n!!

5(
l

~S1ul!$lus!

l1 inv
. ~152!

For magnetic fields large enough that the Zeeman re
nance frequencies are well resolved, that is,

uv f m̄2v f m̄8u@uRe~ f m̄uLu f m̄8!u, ~153!

with m̄85m̄61, we may think of Eq.~150! as a nondegen
erate, zeroth-order part ofL with Eq. ~149! as a small per-
turbation. The zeroth-order~orthogonal! eigenvectors are

$l f u5~ f m̄u, and ul f !5u f m̄!. ~154!

The eigenvalues, correct to first order in Eq.~149!, are

l f5 iv f m̄1g f m̄ , with g f m̄5Re~ f m̄uLu f m̄!.
~155!

Substituting Eqs.~154! and~155! into Eq. ~152!, we find the
transverse spin for a well-resolved Zeeman resonancef m̄
x

st

g-
n-

s-
n

o-

^S2& f m̄
~n!5

~S1u f m̄!~ f m̄us!

g f m̄1 i ~v f m̄8 1nv!
. ~156!

When the magnetic field is small enough that Eq.~153! is
no longer valid, the eigenvectors will become superpositio
of the zeroth-order eigenvectors of Eq.~154!, that is, ul f)
→(m̄u f m̄)( f m̄ul f). The damping rates Rel f will undergo
substantial relative changes, but there will be little change
the precession frequencies, which will remain Iml f'
(21)a2 fvL . Thus, whether or not the Zeeman resonan
are well resolved, Eq.~152! gives two resonantly enhance
parts,

^S2&a
~21!5(

la

~S1ula!$laus!

la2 iv
,

^S2&b
~1!5(

lb

~S1ulb!$lbus!

lb1 iv
. ~157!

The resonant, transverse electron spin polarizations are th
fore the sum of a postively rotating part from the multipleta,

^S'&a5
1

2
^S2&a

~21!~x1 iy!e2 ivt1c.c.

5Rê S2&a
~21!~x cosvt1y sin vt !

1Im^S2&a
~21!~x sin vt2y cosvt !, ~158!

and a negatively rotating part from the multipletb,

^S'&b5
1

2
^S2&b

~1!~x1 iy!eivt1c.c.

5Rê S2&b
~1!~x cosvt2y sin vt !

2Im^S2&b
~1!~x sin vt1y cosvt !. ~159!

For the special case of well-resolved Zeeman resonan
the sum of Eqs.~158! and ~159! can be evaluated explicitly
from Eqs.~156!, ~147!, and~148! to give
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^S'&5P(
m̄

gSmBB1~@a#224m̄2!Qm̄

8@ I #2\@~vam̄2v!21gam̄
2 #

@~vam̄2v!

3~x cosvt1y sin vt !1gam̄~x sin vt2y cosvt !#

1P(
m̄

gSmBB1~@b#224m̄2!Qm̄

8@ I #2\@~vbm̄1v!21gbm̄
2 #

@~vbm̄1v!

3~x cosvt2y sin vt !2gbm̄~x sin vt1y cosvt !#.

~160!

The experimental signals are obtained with a lock
~phase-sensitive! amplifier with an offsetu between the
phase of the rf-drive field and the light-modulation sign
and with an integration time constantt, such thatvt@1.
The signals from the the lock-in amplifier are proportional

n•^S' &̄ wheren is the direction of propagation of the prob
beam and

^S' &̄5
2

tE0

`

dt8e2t8/t^S'~ t2t8!&cos$v~ t2t8!2u%.

~161!

Substituting Eqs.~158! and ~159! into Eq. ~161! we find

^S' &̄5^S' &̄a1^S' &̄b where

^S' &̄a5Rê S2&a
~21!~x cosu1y sin u!1Im^S2&a

~21!

3~x sin u2y cosu!,

^S' &̄b5Rê S2&b
~1!~x cosu2y sin u!2Im^S2&b

~1!

3~x sin u1y cosu!. ~162!

The amplitudeŝ S2& f
(n) may vary on a time scale muc

longer than the time constantt of the lock-in amplifier, for
example, during a relatively slow scan ofv or B0 across a
spectrum of Zeeman resonance lines.

For poorly resolved Zeeman resonances, the freque
dependence of̂ S'&̄ f is complicated, but the resonanc
‘‘area’’ is relatively simple to interpret. The resonance are
are proportional to

E
0

`

dv^S2& f
~n!5p(

l f

~S1ul f !$l f us!

5p(
m̄

~S1u f m̄!~ f m̄us!. ~163!

Carrying out the integral overv of terms from Eq.~157!, a
sum of 2a poles in the complexv plane just below the rea
axis, and a sum of 2b poles just above the real axis, both se
of poles at Rev'vL , amounts to replacing the factor
*dv(l f6 iv)21 by p. Substituting Eqs.~147! and ~148!
into the last term of Eq.~163!, we find, aside from a multi-
plicative factor, the sum

(
m̄

Qm̄~@ f #224m̄2!5@ f #22@ I #21112e~ I ,P!,

~164!
,

cy

s

which we have evaluated using the definition~118! of the
paramagnetic coefficiente(I ,P). Then Eq.~163! becomes
the purely imaginary expression

E
0

`

dv^S2& f
~n!5

ipgSmBB1P

8@ I #2\
$@ f #22@ I #21112e~ I ,P!%,

~165!

which when substituted into Eq.~162! yields the total reso-
nance area of the transverse spin

E
0

`

~^S' &̄a1^S' &̄b!dv5
pgSmBB1P

2@ I #2\
~x@ I #sin u

2y$11e~ I ,P!%cosu!.

~166!

Thus, for either resolved, partially resolved, or unresolv
Zeeman resonances, the total resonance area, when p
along the directionx of the rf field, is strictly proportional to
the longitudinal electron polarizationP. Since the part of the
transverse spin̂Sx& that contributes to the resonance area
90° out of phase with the rf field, the lock-in phase must
u5690° for maximum response amplitude. The ‘‘area the
rem’’ ~166! for Zeeman resonances is an analog of vario
oscillator-strength sum rules from atomic and nuclear ph
ics.

We will often be interested in the limit of intense, circu
larly polarized pumping light whenP→1, sz8→1, Qm̄

→dm̄,I , and when all relaxation rates are negligible exce
for the optical pumping rateR and the spin-exchange rat
1/Tex. Then one can verify by inspection of Eq.~149! that
the elements of the matrix (f m̄uLu f m̄8) with m̄,m̄8 will be
negligible compared to nonzero matrix elemen
( f m̄uLu f m̄8) with m̄>m̄8. That is, for high polarizationP,
( f m̄uLu f m̄8) will be very nearly upper triangular~with the
rows and columns labeled in order of decreasing values om̄
and m̄8). The eigenvalues will be very nearly the diagon
elements (f m̄uLu f m̄) of the triangular matrix. These high
polarization eigenvalues are valid whether the resonances
well resolved, poorly resolved, or completely overlappin
They are formally the same as the eigenvalues~155! for well
resolved resonances. One can also verify that asP→1, all
componenents of the source vector~147! will be negligibly
small except for the ‘‘top’’ component (aIus). With such a
source vector and withL given by an upper triangular ma
trix, the solution of Eq.~146! is simply

ur)5
uaI)~aIus!

gaI1 i ~vaI8 2v!
. ~167!

For P→1 we may neglect all but the optical-pumping an
spin-exchange contributions to the width, and we find fro
Eqs.~155! and ~149!

gaI5
R

@ I #
1~12h!

1

@ I #Tex
. ~168!
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The spin-exchange contribution to the resonance width
diminished by the fractionh of like isotope. For a monoiso
topic alkali metal, there will be no spin-exchange broaden
at all.
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In summary, for resolved, partially resolved, or com
pletely overlapping Zeeman resonances, the time-depen
transverse spin for the limitP→1 is given by the first term
of ~9.21!:
^S'&5
gSmBB1@~vaI2v!~x cosvt1y sin vt !1gaI~x sin vt2y cosvt !#

2@ I #\@~vaI2v!21gaI
2 #

. ~169!
ing

om

rms

q.

n-

q.

f
s
ro-
The lock-in signal~162! can be obtained by lettingvt→u in
the right side of Eq.~169!.

XI. RELAXATION IN THE DARK

Important information about the relaxation mechanisms
alkali-metal atoms can be obtained by measurements of
relaxation of the spin polarization in the dark, an experim
tal method introduced by Franzen@39#. In such experiments
the pumping light is suddenly removed and the polarizat
of the vapor is monitored by such a weak optical probe be
that optical pumping effects on the relaxation can be igno
or extrapolated to zero. According to Eq.~82! the photon
absorption cross section depends on the isotopically a
aged, longitudinal spin polarization,

^Sz&5(
i

h i^Siz&5(
i

h i

@ I i #
~^aiz&2^biz&!, ~170!

so analyzing relaxation in the dark amounts to analyzing
relaxation of the spin-projectionŝaiz&5(mm^amur i uam&,
and^biz&, defined in like manner, wherei labels one of theN
different isotopic species in the vapor of alkali-metal atom
Because of spin-exchange collisions between the alk
metal atoms, the relaxation equation~96! is a non-linear~Ri-
catti! equation. Therefore, the general decay cannot be
scribed by a finite sum of exponentials.

However, experiments show that in the final stages
relaxation in the dark, all of thêf iz& decay with the same
time constantT1. This is to be expected since the nonline
terms from Eq.~96! become negligibly small compared t
the linear terms in the low-polarization limit. The single e
ponential decay that is observed experimentally correspo
to the slowest orfundamentalrelaxation mode of the linear
ized form of Eq.~96!.

The symmetry of Eq.~96! ensures that the density matri
if not already longitudinal, will become longitudinal and r
main that way as the polarization decays to zero in the d
We will also assume that the pumping light is never kept
long enough for appreciable nuclear polarization to build
in 3He or 129Xe, so we will neglect the terms proportional
^K & in Eq. ~96!. Because the density matrix is longitudina
the HamiltonianHg8 has no direct influence on the relaxatio
and we account for its presence by ignoring the hyper
coherences that are generated by the spin-exchange
S-damping terms of Eq.~96! but that oscillate rapidly be
cause ofHg8 and therefore average to zero.
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The relaxation equations are obtained by evaluat
Tr f zdr/dt, with dr/dt given by Eq. ~96!, and f z
5(mmu f m&^ f mu to find

d

dt
^ f iz&52(

f 8 i 8
^ f i uGu f i 8

8 &^ f i 8z
8 &. ~171!

The relaxation matrixG is the sum of contributions from
spin-exchange collisions between alkali-metal atoms, fr
S-damping collisions, and from F-damping collisions.

G5Gex1GSD1GFD. ~172!

Because we are interested in relaxation in the dark, the te
from Eq. ~96! proportional to the optical pumping rateR
have been neglected in Eq.~172!.

The F-damping contributions come from the terms of E
~96! proportional to 1/TFD

TFD

d

dt
^ f z&5

1

@ I #2^F• f zF2F•Ff z&52
1

@ I #2 ^ f z&.

~173!

The well-known commutation relations for angular mome
tum operators were used in simplifying Eq.~173!. Compar-
ing Eq. ~173! with Eq. ~171! we find the diagonal matrix

^ f i uGFDu f i 8
8 &5d f f 8d i i 8

1

@ I i #
2TFD

, ~174!

where the F-damping rate 1/TFD is given by Eq.~99!.
The S-damping contributions come from the terms of E

~96! proportional to 1/TSD, which give, with the aid of Eq.
~39!,

TSD

d

dt
^ f z&5^S• f zS2 3

4 f z&. ~175!

From rotational symmetryS• f zS must be a superposition o
az , bz , and hyperfine coherences between the multipleta
and b, which can be neglected. Thus, we may use the p
jection theorem,Sz→(21)a2 f f z /@ I # etc., to write Eq.~175!
as

TSD

d

dt
^az&5Fa~a11!21

@ I #2 2
3

4G^az&1B^bz&, ~176!



ti-

1430 PRA 58S. APPELTet al.
TSD

d

dt
^bz&5A^az&1Fb~b11!21

@ I #2 2
3

4G^bz&. ~177!

The coefficientsA andB can be determined with the subs
tution f z→Fz5az1bz in Eq. ~175!, which gives

TSD

d

dt
~^az&1^bz&!52^Sz&52

1

@ I #
~^az&2^bz&!.

~178!

Substituting Eqs.~176! and ~177! into the left of Eq.~178!
and equating coefficients of^az& and ^bz&, we find
e

m

A5
3

4
2

a~a11!21

@ I #2 2
1

@ I #
,

and

B5
3

4
2

b~b11!21

@ I #2 1
1

@ I #
. ~179!

Comparing Eqs.~176! and~177! with Eq. ~171! and mak-
ing the substitutionsa5@ I #/2, b5@ I #/221, and I→I i we
find
S ^ai uGSDuai& ^ai uGSDubi&

^bi uGSDuai& ^bi uGSDubi&
D 5

1

2@ I i #
2TSD

S @ I i #
22@ I i #12 2@ I i #

223@ I i #22

2@ I i #
213@ I i #22 @ I i #

21@ I i #12 D . ~180!

The S-damping rate 1/TSD is given by Eq.~97!. S damping couples the angular momentum components^aiz& and ^biz& of a
given isotopei to each other, but it does not couple components of different isotopes.

The spin-exchange contributions come from the terms of Eq.~96! proportional to 1/Tex,i j . With the aid of Eq.~39! we find

Tex

d

dt
^ f z&5^S• f zS2 3

4 f z&14(
j

h j^Sjz&Trw f zSz . ~181!

The second term on the right of Eq.~181! is nonlinear, but it can be linearized by settingw→(2@ I #)21, the uniform population
distribution for unpolarized atoms. Then we have

4(
j

h j^Sjz&Tr w f zSz5~21!a2 f
2

@ I #2Tr f z
2(

j
h j^Sjz&5~21!a2 f

2 f ~ f 11!~2 f 11!

3@ I #2 (
j

h j

@ I j #
~^ajz&2^bjz&!. ~182!

The first term on the right of Eq.~181! is of the same form as the right side of Eq.~175!, and will make a contribution
analogous to Eq.~180!. Thus, the linearized contribution to the relaxation matrix from spin exchange is

S ^ai uGexuaj& ^ai uGexubj&

^bi uGexuaj& ^bi uGexubj&
D 5

d i j

2@ I i #
2Tex

S @ I i #
22@ I i #12 2@ I i #

223@ I i #22

2@ I i #
213@ I i #22 @ I i #

21@ I i #12 D
1

h j

6@ I i #@ I j #Tex
S 2@ I i #

223@ I i #22 @ I i #
213@ I i #12

@ I i #
223@ I i #12 2@ I i #

213@ I i #22D . ~183!
i-
For
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The spin-exchange rate 1/Tex is given by Eq.~106!. Spin-
exchange collisions couple the angular momenta of differ
isotopes to each other.

Fundamental rate for relaxation in the dark. To find the
fundamental relaxation rate we assume exponentially da
ing solutions of the form

^ f iz&5^ f i un&e2gnt. ~184!

Substituting Eq.~184! into Eq. ~171! we find the eigen-
value equation

(
f
i 8
8

^ f i uGu f i 8
8 &^ f i 8

8 un&5gn^ f i un&, ~185!

which can be solved numerically for the eigenvaluesg1
<g2<•••<g2N . The fundamental time constant isT1
nt

p-

51/g1. HereN is the number of different species of alkal
metal atoms, coupled by spin exchange in the vapor.
example,N52 for the natural isotopic mixture of85Rb and
87Rb.

For a monoisotopic alkali-metal vapor like Na or Cs, t
matrix equation~185! is only two dimensional, and it can b
solved to yield an explicit formula for the fundamental r
laxation rate,

g5
1

@ I #2TFD

1S 1

2TSD
1

1

3Tex
D S 11

2

@ I #2D
2F S 1

2TSD
1

1

3Tex
D 2S 11

2

@ I #2D 2

2
2

@ I #2TSD
S 1

TSD
1

1

Tex
D G 1/2

. ~186!
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Under the conditions of spin-exchange optical pumpi
van der Waals molecules are negligible for3He, and for
129Xe, the gas pressures are sufficiently high that the
damping rates are relatively small. So for3He—and to a
good approximation for129Xe—the fundamental time con
stantT1 is determined by the S-damping rate 1/TSD and by
the spin-exchange rate 1/Tex. We define the ‘‘slowing-down
factor’’ as the ratioT1 /TSD of the fundamental time constan
T1 to the S-damping rateTSD. For example, in Fig. 3 we
have plotted the slowing-down factor for Rb vapor of natu
isotopic abundance, as obtained from the smallest eigenv
g151/T1 of Eq. ~185! with 1/TFD50. The horizontal scale is
the relative spin-exchange rate,TSD/Tex the ratio of the spin-
exchange rate to the S-damping rate.

For fast relative spin-exchange ratesTSD/Tex@1 the lim-
iting value of the slowing-down factors of Fig. 2 can b
obtained from the following simple arguments. When t
spin-exchange rates~49! are large enough compared to oth
relaxation rates of the system, the alkali-metal atoms w
continue to be described by the spin-temperature distribu
~112! as the spin angular momentum is removed by the
damping and F-damping collisions. We can find the limiti
relaxation rate by taking the limit of Eq.~124! as P→0, R
→0, and^Kz&→0. The limiting longitudinal relaxation rate
1/T1 is then

1

T1
5

1

11 ē~0!
S 1

TSD
1

y~0!

TFD
D , ~187!

so the high-temperature slowing-down factor for negligible
damping is simplyT1 /TSD511 ē(0). Forrubidium of natu-
ral isotopic composition (h8550.7215 andh8750.2785), we
can use Table I together with Eqs.~125! and~126! to find the
high-temperature slowing-down factor 11 ē(0)510.81 and
the F-damping coefficienty(0)50.3583.

XII. SPATIAL DIFFUSION AND GRADIENT IMAGING

One of the most convenient ways to measure the po
ization of an optically pumped alkali-metal vapor is to app

FIG. 3. The slowing-down factorsT1 /TSD for Rb vapor of natu-
ral isotopic abundance 72.15%85Rb and 27.85%87Rb, plotted as a
function of the ratioTSD/Tex of the spin exchange rate 1/Tex to the
S-damping rate 1/TSD. The F-damping rate 1/TFD was assumed to
be negligibly small.
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a magnetic field gradient that causes the Larmor frequenc
the atoms to vary across the pumping cell. As first shown
Tam @40#, when resonant rf fields are applied to hig
pressure, optically pumped vapors, ‘‘resonant surfaces’’
precessing atoms are produced. The resonant surfaces a
loci of points where the applied rf frequencyv is equal to a
Zeeman resonance frequencyv f of the alkali-metal atoms.
For high field gradients, the precessing atoms can be so
calized that they diffuse away from the resonant surface
fore they relax due to optical pumping or spin-flip collision

To account for effects of spatial diffusion on the rf res
nances, we reinsert the diffusion term into Eq.~146!, which
becomes

~L1 inv2D¹2!ur~n!)5us). ~188!

HereD is the spatial diffusion coefficient of the alkali-met
atoms in the gas, and we now think of the relaxation opera
L5L(r ), the density vectorur (n))5ur (n)(r )) and the source
vector us)5us(r )) as functions of the positionr of the
alkali-metal atoms in the cell.

The thicknessb ~half width at half maximum! of the layer
of atoms precessing near a resonant surface decreases
magnetic-field gradient¹Bz increases. The gradient is no
mally chosen to ensure thatb!L, whereL is a characteristic
linear dimension of the cell. Define a unit vector, normal
the resonance surface, by

u5¹Bz /u¹Bzu, ~189!

with the gradient evaluated at a pointr s on the resonant
surface. The displacementu, normal to the surface, of a poin
r nearr s is

u5~r2r s!•u. ~190!

We assume that the transverse density matrixur (61)) de-
pends strongly onu but that its variation for displacement
parallel to the resonant surface is negligible.

In accordance with Eq.~150!, L has diagonal imaginary
parts Im(f m̄uLu f m̄)5v f m̄ . These are very nearly equal an
opposite for the two Zeeman multiplets,vam̄'2vbm̄ . For
most situations of interest in spin-exchange optical pump
we can neglect the dependence on the mean azimuthal q
tum numberm̄ and write

]v f m̄ /]u5knf , where k5
gSmB

\@ I #
u¹Bzu. ~191!

In Eq. ~191! we have assigned a precession-direction num
nf5(21)a2 f to each multiplet. Thus, we can approxima
the spatial dependence of the relaxation operator near a r
nant surface as

L~r !5L~r s!1 iukN, ~192!

where the operatorN is defined byNu f m̄)5nf u f m̄). As in-
dicated in Eq.~192!, it is possible to ignore theu dependence
of all but the imaginary, diagonal matrix elements ofL,
which determine the magnetic resonance frequencies of
atoms. Then Eq.~188! becomes
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FL1 i ~nv1ukN!2D
d2

du2G ur~n!)5us), ~193!

where the relaxation operatorL and the source vectorus)
are taken to be independent ofu and equal to their values a
r s . Multiplying Eq. ~193! by the left eigenvector$l f u, we
obtain a set of scalar equations, one for each eigenvalul f
of L,

Fl f1 i ~nv1uknf !2D
d2

du2G$l f ur~2nf !!5$l f us!.

~194!

As discussed in connection with Eq.~157!, there are resonan
enhancements of the density matrixr (n) in the multiplet f
when n52nf . Each eigenvaluel f defines a resonant su
face such that

Im l f~r s!5vnf ~195!

for each pointr s on the surface.
We introduce a dimensionless complex variablez defined

by

zDu52 iunf2g f /k, where g f5Re l f~r s!.
~196!

The characteristic length is the positive cube root

Du5~D/k!1/3, ~197!

where the diffusion coefficientD and the Larmor-frequency
gradientk of Eq. ~191! are both positive. Then the solutio
of Eq. ~194! subject to the boundary condition$l f ur (2nf ))
→0 asuuu→` is

$l f ur~2nf !)5
p

kDu
$l f us!Hi~z!, ~198!

where Hi is the solution of the inhomogeneous Airy equat
@41,42#

S d2

dz2 2z DHi5
1

p
, ~199!

defined for all finitez by

Hi~z!5
1

pE0

`

ezt2t3/3dt. ~200!

The integral extends along the real axis of the complet
plane.

One can substitute into Eq.~198! the identity

E
V
Hi~z!dz5 i , ~201!

where the path of integration is any ‘‘vertical’’ lineV paral-
lel to the imaginary axis of the complexz plane, to find

kE
2`

`

$l f ur~2nf !!du5p$l f us!. ~202!
n

Comparing Eq.~202! with the discussion of Eq.~163!, we
see that the area theorem remains rigorously valid when
fusion is taken into account and the simple poles of Eq.~151!
are replaced by Hi in Eq.~198!.

As the displacementu of Eq. ~190! varies, the complex
variablez of Eq. ~196! always lies to the left of the imagi
nary axis in the complexz plane, and the minimum value o
uzu is g f /(kDu). If g f /(kDu)@1, we can substitute into Eq
~198! the asymptotic expansion

Hi~z!;2
1

pz
2•••, for arg z.

p

3
and uzu@1,

~203!

to find

$l f ur~2nf !!;
$l f us!

l f1 ikunf2 ivnf
, ~204!

which is the same as Eq.~151!.
For a given damping rateg f and diffusion coefficientD

we may define a crossover gradientkc and a crossover width
bc by

kc5Ag f
3

D
and bc5AD

g f
. ~205!

Then the relative gradientk and the relative widthb are

k5k/kc and b5b/bc . ~206!

In view of Eq. ~198! the relative widthb of the resonating
atoms, for a given relative gradientk, can be defined as th
solution of

2 Re Hi~ ibk1/32k22/3!5Hi~2k22/3!. ~207!

The context will make clear whetherb is the relative width
of Eq. ~206! or the unrelated spin-temperature parameter
Eq. ~115!. From inspection of Eq.~203! and from the fact
that 2 Re Hi(1.29i )5Hi(0) we find the limiting solutions

b→H k21 for k!1

1.29k21/3 for k@1.
~208!

The functionb(k) defined by Eq.~207! is plotted in Fig.
4. For spin-exchange optical pumping, a representative
fusion coefficient would beD'0.04 cm2 sec21 and a repre-
sentative damping rate would beg f533104 sec21. Then
the crossover Larmor-frequency gradient would bekc52.6
3107 sec21 cm21. In view of Eq. ~191!, for 85Rb with I
55/2, the crossover magnetic-field gradient would be¹Bz
58.9 G cm21. Such large field gradients are seldom used
practice. The crossover width would bebc51.231023 cm
or 12 mm.

APPENDIX A: VAN DER WAALS MOLECULES

We will be interested in a129Xe bound to an alkali-meta
atom. The rate of change of the density vector of the pai
given by
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i\
d

dt
ur)5~@H#1@V# !ur). ~A1!

Here the HamiltonianH is the sum of Eqs.~2! and ~8!:

H5Hg1HNG, ~A2!

and the perturbation is the sum of~10! and ~11!

V5gN•S1aK•S. ~A3!

The Liouville-space operators@H# and @V# of Eq. ~A1! are
defined in terms of corresponding Schro¨dinger-space opera
tors by Eq.~26!.

We transform from the Schro¨dinger-picture density vecto
ur) to the interaction-picture density vector

ur̃)5ei [H] t/\ur). ~A4!

When Eq.~A4! is substituted into Eq.~A1! we find

i\
d

dt
ur̃)5@Ṽ#ur̃), ~A5!

where

@Ṽ#5ei [H] t/\@V#e2 i [H] t/\. ~A6!

For an ensemble of molecules formed at timet, the mean
change inr̃ after the molecule has been broken up by
collision at time tm , can be found from the perturbation
series solution of Eq.~A5!,

D̃ur̃)5E
t

` dtm
t

e2~ tm2t !/tur̃~ tm!)2ur̃)

5~D̃~1!1D̃~2!1••• !ur̃). ~A7!

FIG. 4. The relative width~half width at half maximum! b
5b/bc of the layer of resonating atoms for gradient imaging, pl
ted as a function of the relative spatial gradientk5k/kc of the
Larmor frequency. For small gradients,k!kc , diffusion effects are
negligible andb decreases ask21. For large gradients,k@kc , b is
limited by diffusion and decreases only as 1.29k21/3.
The increment has been averaged over the distribution~65!
of molecular breakup times. In Eq.~A7! the density operator
r̃5 r̃(t) at the time t of formation of the molecule is a
simple product of the density operatorr̃A5 r̃A(t) of the
alkali-metal atoms and the density operatorr̃Xe5 r̃Xe(t) of
the 129Xe atoms

r̃5 r̃Ar̃Xe . ~A8!

The lowest-order terms of the increment operator are

D̃~1!5E
t

` dtm
t

e2~ tm2t !/t
1

i\Et

tm
dt8@Ṽ8# ~A9!

and

D̃~2!5E
t

` dtm
t

e2~ tm2t !/t
1

~ i\!2E
t

tm
dt9@Ṽ9#E

t

t9
dt8@Ṽ8#.

~A10!

Here @V8#5@V(t8)# and @V9#5@V(t9)#.
To find the evolution of alkali-metal atoms we multipl

Dur) by the formation rate 1/TvW,A per alkali-metal atom,
trace over the spin states of the129Xe nucleus, and take an
ensemble average over the vibrational and rotational state
the van der Waals molecules to find~in matrix space!

drA

dt
5

1

TvW,A
^TrxDrArXe&n . ~A11!

We have reverted to the Schro¨dinger picture in Eq.~A11!, as
signified by dropping the ‘‘tilde’’ symbol over the operator
The corresponding rate of change of the density matrix
the 129Xe atoms is obtained from Eq.~A11! by interchanging
the atom indicesx anda. The averages over the directions
N, denoted bŷ •••&n are

^Ni&n50, and ^NiNj&n5
N2

3
d i j , ~A12!

wherei and j denote projections on the Cartesian axesi and
j of a laboratory-fixed coordinate system.

In view of Eq. ~A12! the ensemble average of the firs
order increment Eq.~A9! is simply

D~1!5
t

i\
a@K•S#. ~A13!

We label the 16@ I #2 independent basis operatorsu i )
5u f imiqi&^ f i8mi8qi8u by a single indexi and we label the
eigenfrequencies by the same index,\V i5E( f imi)
2E( f i8mi8)1\vK(qi2qi8), whereqi and qi8 are azimuthal
quantum numbers of the nucleus, as defined by Eq.~9!. Then

@H#u i )5\V i u i ). ~A14!

Using the completeness property( i u i )( i u51, we may evalu-
ate the expression~A10! for D̃ (2) by steps:

E
t

t9
dt8@Ṽ8#5u j )@V# j i ( i u

eiV j i t92eiV j i t

iV j i
, ~A15!

-
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where

V j i 5V j2V i , ~A16!

with the characteristic frequenciesV j andV i defined by Eq.
~A14!.

In like manner

E
t

tm
dt9@Ṽ9#E

t

t9
dt8@Ṽ8#

5uk)@V#k j@V# j i

3( i u
eiVkit

V j i
H eiVki~ tm2t !21

iVki
2

eiVk j~ tm2t !21

iVk j
J . ~A17!

Carrying out the final integral of Eq.~A10! over the dis-
tribution of molecular breakup timestm we find

D̃ki
~2!52

t2

\2(
j

@V#k j@V# j i e
iVkit

~12 iVkit!~12 iVk jt!
. ~A18!

Define a hyperfine coherence operator@ n̂# and coherence
numbernk50,61 for the polarization stateuk) by

@ n̂#uk)5nkuk) where nk5 f k2 f k8 . ~A19!

In the limit of low magnetic fields, one can readily verif
that n̂5F•F/@ I #. Since it is used in a commutator,n̂ is de-
fined only to within an arbitrary, additive constant term.

We will be interested in spin-polarized alkali-metal v
pors with no hyperfine coherence, that is, vapors for wh
( i ur)50 whenni561. Then we may limit the sum in Eq
~A18! to those indicesk and i for which nk50 andni50.
The sum over intermediate statesj in Eq. ~A18! is unre-
stricted since there can be important contributions from
tually excited states withnj561 as well as from states with
nj50. Under the conditions of spin-exchange optical pum
ing ~i.e., a few tens of Gauss or less forBz and several
atmospheres of buffer gas! the molecular lifetimest
;10210 sec, and the Zeeman spin precession frequen
vK;105 sec21 and gSmBBz /(@ I #\);108 sec21 are small
enough that it is a good approximation to setV i j t'(ni
2nj )vhft. Consequently, Eq.~A18! can be written to good
approximation as

D~2!52
t2

\2(
nm

@V~n!#
1

11 imvhft
@V~m!#. ~A20!

We have written the perturbation as the sum of three ter

V5 (
n521

1

V~n!, ~A21!

wheren is the hyperfine coherence number and

V~n!5 (
f mm8

u f 1n,m&^ f 1n,muVu f m8&^ f m8u. ~A22!
h

-

-

es

s

The bras and kets in Eq.~A22! are defined by Eq.~3!. Terms
in the sum are omitted unless the indices are within th
permissible range, for example,f 1n5I 61/2, umu< f 1n,
andm8< f 5I 61/2, etc.

We may write Eq.~A20! as the sum of four terms

D~2!5DS
~2!1DF

~2!1DX
~2!1DY

~2! , ~A23!

where

DS
~2!52

t2f S

\2 @V#@V#, ~A24!

DF
~2!52

t2f F

\2 @V~0!#@V~0!#, ~A25!

DX
~2!5

ivhft
3/\2

11~vhft!2
~@V~1!#@V~21!#2@V~21!#@V~1!# !,

~A26!

DY
~2!5

t2

\2 (
n1mÞ0

@V~n!#@V~m!#S 1

11~vhft!2
2

1

11 imvhft
D .

~A27!

The molecular fractionsf S and f F were defined in Eqs.~70!
and~71!. The termDY

(2) of Eq. ~A27! can be ignored, since i
adds hyperfine coherence that averages to zero becau
the rapid, incoherent oscillations at the frequencyvhf .

We shall presently show thatDX
(2) is negligible, so we set

D→D (1)1DS
(2)1DF

(2) in Eq. ~A7! to find

Dur)5
t

i\
a@K•S#ur)

2
t2

\2 ^ f S@V#@V#1 f F@V~0!#@V~0!#&ur). ~A28!

Equivalently, in matrix space

Dr5
t

i\
a@K•S,r#2

t2

TvW\2
~ f S†V,@V,r#‡

1 f F†V
~0!,@V~0!,r#‡!. ~A29!

Because ^Ni&n50, cross terms betweengN•S and
aK•S from Eq.~A28! or Eq.~A29! will average to zero. The
spin-rotation interaction~10! and nuclear-electron spin ex
change interaction~11! will contribute independently to the
relaxation. Substituting Eq.~A29! into Eq. ~A11! we find
that the contribution of the spin-rotation interaction~10! is

dr

dt
5

2fg
2 f S

3TvW,A
~S•rS2S•Sr!1

2fg
2 f F

3@ I #2TvW,A

~F•rF2F•Fr!,

~A30!

which is Eq. ~72!, with the mean squared phase anglefg
2

defined by Eq.~74!. The density matrix in Eq.~A30! is that
of the alkali-metal atoms,r5ra . In simplifying Eq. ~A30!
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we made use of the angular momentum projection theo
S56F/@ I #; the 6 signs are taken for matrix elements b
tween states withF5I 61/2.

Similarly, the nuclear-electron spin exchange interact
~11! causes the evolution

dr

dt
5

f Sfa
2hx

2TvW,A
~S•rS2S•Sr1@$S,r%22iS3rS#•^K &!

1
f Ffa

2

2@ I #2TvW,A

~F•rF2F•Fr1@$F,r%22iF

3rF#•^K &!1
hxt^a&
i\TvW,A

@^K &•S,r#, ~A31!

which is Eq. ~73!, with the mean squared phase anglefa
2

defined by Eq.~74!. The effective magnetic field of Eq.~73!
is given by

gSmBdBvW,A5
hxt^a&
TvW,A

^K &. ~A32!

In like manner, the evolution of the nuclear spin of t
129Xe atoms is found to be

d

dt
^K &5

f Ffa
2

2@ I #2TvW, Xe

~^F&2^2F•F2FF•2~FF!†
•&^K &!

1
f Sfa

2

2TvW, Xe
~^S&2^K &!1

t^a&
\TvW,Xe

^S&3K . ~A33!

For spin exchange with alkali-metal atoms of several iso
pic species, like85Rb and87Rb, Eq.~A33! is replaced by an
isotopic average; an isotopic indexi is added to the quanti
ties representing the alkali-metal atoms, (I→I i , F→Fi ,
S→Si), and both sides of Eq.~A33! are multiplied by( ih i .
If the polarizations are longitudinal and the alkali-metal
oms have the spin-temperature distribution~112!, Eq. ~A33!
reduces to

d

dt
^Kz&5

fa
2

2TvW,Xe
~ f S1y~P! f F!~^Sz&2^Kz&!, ~A34!

where the coefficienty(P) was defined by Eq.~126!.
It remains to show thatDX

(2) of Eq. ~A26! represents a
negligible frequency shift. Multiplying Eq.~A26! on the
right by ur), we find

DX
~2!ur)5

ivhft
3/\2

11~vhft!2
u@~V~1!V~21!2V~21!V~1!!,r#).

~A35!

From Eq.~A22! we find that

V~1!V~21!5 (
mm8m9

uam&^amuVubm8&^bm8uVuam9&^am9u

5 (
mm9

uam&^amuVV2V~0!V~0!uam9&^am9u.

~A36!
m

n

-

-

Taking an ensemble average of Eq.~A36! over the directions
of N we find

^V~1!V~21!&n5S ~gN!2

3
1

a2

4 D S 3

4
2

a~a11!

@ I #2 D
3(

m
uam&^amu2

a2I

@ I #2 Kzaz . ~A37!

In like manner

^V~21!V~1!&n5S ~gN!2

3
1

a2

4 D S 3

4
2

b~b11!

@ I #2 D
3(

m
ubm&^bmu1

a2~ I 11!

@ I #2 Kzbz .

~A38!

Here we denote the projection ofFz in the multipletf 5a by
az5(uam&^amum, with an analogous definition ofbz . Sub-
stituting Eqs.~A35!, ~A37!, and ~A38! into Eq. ~A11! we
find for the alkali-metal atoms

dr

dt
5

~vhft!fa
2^Kz&

i @11~vhft!2#@ I #2TvW,A

@$Iaz2~ I 11!bz%,r#.

~A39!

The corresponding evolution of the density matrix of t
noble-gas atoms is

dr

dt
5

~vhft!fa
2^Iaz2~ I 11!bz&

i @11~vhft!2#@ I #2TvW,Xe

@Kz ,r#. ~A40!

These second-order frequency shifts can be ignored s
they are smaller than the first-order shifts from Eq.~A13! by
a factor of order (fa

2)1/2!1.

APPENDIX B: OPTICAL PUMPING AND LIGHT SHIFTS

We may think of the D1 pumping light as an incoheren
superposition ofs6 circularly polarized photons. Let the
mean photon spin bes5sz. Then a fraction (16s)/2 of the
photons has circular polarizations6 with respect to the unit
vector z along the direction of the mean photon spin~nor-
mally the direction of propagation of the pumping light!. The
high buffer-gas density will broaden the optical absorpti
line so much that the hyperfine structure is completely un
solved. This means that the correlation time for the abso
tion of a photon is very short compared to the hyperfi
coupling periods. The excitation is very nearly sudden w
respect to the nuclear polarization.

Denote by um& and um% electronic sublevels with azi
muthal quantum numberm561/2 ~with respect toz) of the
2S1/2 ground state and of the2P1/2 excited state, respec
tively. Thes6 photons will not excite the ground-state su
levelsu61/2& because of angular-momentum selection rul
but the u71/2& sublevels will be excited to the subleve
u61/2%. Therefore, the evolution rate of the excited-sta
density matrix is given by
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d

dt
re5R(

m
~112ms!um%^2murgu2m&$mu. ~B1!

Using the expression~39! for rg , and noting that
(um%$mu51 and(mum%$mu5Jz , we can rewrite Eq.~B1!,
the source term for excited atoms, as

d

dt
ure)5uQe)5(

lm
ulm00)~lm00uQe!

1(
lm

ulm10)~lm10uQe!, ~B2!

where the nuclear part of the source term is

(
lm

ulm00)~lm00uQe!5Ruw2sQz/2), ~B3!

and the electronic part is

(
lm

ulm10)~lm10uQe!5Ru@2sw2Qz#Jz). ~B4!

The Liouville-space bra and ket vectors of Eqs.~B2!–~B4!
are quantized with respect to the azimuthal axisz, and the
multipole basis statesulm lm) were defined by Eq.~41!.

Once created by optical pumping, the spin state of
excited atom will evolve because of three main influenc
J-damping collisions of excited atoms with buffer gas atom
quenching collisions of excited atoms with N2 or H2 mol-
ecules, and hyperfine coupling between the nucleus and
electrons of the excited atoms.

J-damping collisions with buffer gas atoms or molecu
will randomize the direction ofJ at a rate 1/TJ . As an ex-
ample, consider a cell with a He density of 10 amagats an
temperature of 100 C. Taking aJ-damping cross section fo
collisions of Rb(52P1/2) atoms with He atoms to be
23310216 cm2 @43# and a mean relative RbHe velocity o
v51.403105 cm sec21, we would have

1

TJ
58.731010 sec21, ~B5!

or about 11.5 psec betweenJ-damping collisions. As a resul
of J-damping collisions, the excited-state density matrix w
evolve as

d

dt
ure)52

1

TJ
(
lmm

ulm1m)~lm1mure!. ~B6!

The J-damping process described by Eq.~B6! is completely
analogous to the S-damping process~54!, which can be writ-
ten in a form analogous to Eq.~B6! with the aid of Eqs.~39!
and ~43!. The relaxation due toJ damping of Eq.~B6! is
sudden with respect to nuclear polarization.

Quenching collisions with molecular buffer gases like2
or H2 will deexcite the atoms at a rate 1/TQ , which is inde-
pendent of the excited-state spin polarization, so the ev
tion rate is simply
e
:
,

he

a

l

u-

d

dt
ure)52

1

TQ
ure). ~B7!

To avoid spin depolarization due to radiative trappin
enough quenching gas is added to ensure that excited at
decaying with the natural radiative lifetimet'25 nsec, are
much more likely to be quenched than to radiate a photon
representative quenching rate is

1

TQ
5109 sec21, ~B8!

which would correspond to a fluorescent branching rate
about 2.5%.

Hyperfine coupling ofI and J in the excited state and
magnetic-dipole coupling ofJ to the longitudinal fieldBz
will cause some coupling of the nuclear and electronic s
polarization. The corresponding evolution of the density m
trix is given in analogy to Eq.~27! by

i\
d

dt
ure)5@He#ure), ~B9!

where the Hamiltonian~7! for the excited state can be ap
proximated adequately by

He'AeI•J. ~B10!

In most spin-exchange optical pumping experiments,
static fieldBz will be small enough to be neglected, as ind
cated in Eq.~B10!. The hyperfine coupling in the first ex
cited 2P1/2 state is relatively large. For example, for th
5 2P1/2 of 85Rb

Ae

\
57.63108 sec21;

1

TQ
!

1

TJ
. ~B11!

The net rate of change of the density matrixure) is obtained
by summing the right-hand sides of Eqs.~B2!, ~B6!, ~B7!,
and ~B9! to find

d

dt
ure)5S 2G1

1

i\
@He# D ure)1uQe). ~B12!

The relaxation operator is

G5 (
lm lm

g l ulm lm)~lm lmu, ~B13!

and the decay ratesg0 for purely nuclear polarization andg1
for electronic polarization are

g05
1

TQ
;109 sec21,

g15
1

TQ
1

1

TJ
;1011 sec21. ~B14!

Denote a Laplace transform—for example, ofre—by

r̃e5E
0

`

ree
2stdt. ~B15!
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The well-known inverse transformation is

re5
1

2p i Ea2 i`

a1 i`

r̃ee
stds, ~B16!

Herere andr̃e are functions oft ands, respectively, and in
Eq. ~B16! a is a constant such that all singularities ofr̃e lie
to the left of the vertical path of integration in the complexs
plane. Then the Laplace transform of Eq.~B12! has the for-
mal solution

ur̃e)5S G1s2
1

i\
@He# D 21

uQ̃e)1ure0). ~B17!

Henceforth, we shall neglectre0, the value of the excited
state density matrix at timet50. This is because we will be
interested in values of the density matrix at timest@TQ ,
when initial transients have decayed away to negligible v
ues. SinceuG1su>u@He#/ i\u, we may expand the invers
operator of Eq.~B17! in a power series to find

ur̃e)5 (
n50

` S ~G1s!21@He#

i\ D n

~G1s!21uQ̃e)5 (
n50

`

ur̃e
~n!).

~B18!

Combining Eqs.~B13! and~B18! we see that to zeroth orde

ur̃e
~0!)5~G1s!21uQ̃e)5(

lm l
~g l1s!21ulm l0)~lm l0uQ̃e!.

~B19!

Using Eq.~B16! we may invert Eq.~B19!, which has simple
poles ats52g l , to find

ure
~0!)5(

lm l
ulm l0)E

2`

t

~lm l0uQ̃e8!e2g l ~ t2t8!dt8,

~B20!

whereQe85Qe(t8) is the source term at timet8.
In view of Eq. ~B14!, for comparable nuclear and ele

tronic source terms the purely nuclear part ofure
(0)) with l

50 is about 100 times larger than the electronic part w
l 51, so a good approximation of Eq.~B20! is

ure
~0!)'(

lm
ulm00)E

2`

t

~lm00uQ̃e8!e2~ t2t8!/TQdt8

5RTQuw2sQz/2)1
1

i\
@dEr #TQur). ~B21!

To correct for writing the excited state at timet in terms of
the source termw2sQz/2 at exactly the same timet, we
have added the ‘‘retardation correction’’

1

i\
@dEr#TQur)5RE

2`

t

~w82w2s@Qz82Qz#/2!

3e2~ t2t8!/TQdt8. ~B22!

From Eq.~B18! we see that the first-order contribution
l-

h

ure
~1!)5

~G1s!21@He#

i\
ure

~0!). ~B23!

If we approximatere
(0) with the purely nuclear operator o

Eq. ~B21!, the first-order correction will be purely electron
and of order AeTQ /\;1 compared to the zeroth-orde
purely nuclear contribution~B21!. However, the timeTQ
;10212 sec of a quenching collision is long enough for t
spin-orbit and anisotropic Coulomb interactions to dest
most of the electronic polarization of the atoms during t
deexcitation collisions, so we will neglect the electronic fir
order correction~B23! and all higher-order corrections from
Eq. ~B18!.

The hyperfine interactions, which have characteristic e
lution times <10210 sec, cannot appreciably change t
nuclear polarization during the time of a quenching collisio
so the nuclear polarization Eq.~B21! is transferred with neg-
ligible change to the ground state at a rate 1/TQ . The repopu-
lated ground state is produced with no electronic polari
tion, and the repopulation pumping makes the ground-s
density matrixr evolve at the rate

d

dt
ur)5

1

TQ
(
lm

ug,lm00)~e,lm00ure
~0!!

5Ruw2s•Q/2)1
1

i\
@dEr #ur), ~B24!

which is equivalent to Eq.~93!. In Eq. ~B24! we have added
the labelsg and e to distinguish ground-state and excite
state basis vectors of the form~41!.

Light shifts due to real transitions. For steady-state pump
ing with no rf coherence, the retardation correction of E
~B22! vanishes, sincew85w andQz85Qz . When an rf field
is generating coherence in the ground state, the nuclear
of the coherence very nearly ceases to evolve after the a
has been optically excited. This is because of the collisio
decoupling of the excited-state hyperfine interactions d
cussed above. When the nuclear coherence returns to
ground state after a quenching collision it will partially r
generate rf coherence, and the regenerated coherence w
retarded in phase with respect to the coherence of atoms
have not been excited. The resulting small shift of the re
nant frequency of the ground-state atoms was first rec
nized and studied by Cohen-Tannoudji@44# who called it the
‘‘light shift due to real transitions.’’

One can use the identity

SiSj5
1
4 d i j 1

i

2(k
e i jkSk ~B25!

~where e i jk is the antisymmetric unit tensor! to show that
2$s•S,Q•S%5s•Q. Using Eqs.~37!, ~38! and additional ap-
plications of Eq.~B25! we find that the purely nuclear part o
the sources term of Eqs.~B3! and ~B21! is

w2 1
2 s•Q5 1

4 r1S•rS2 1
2 $s•S,r%2 is•S3rS. ~B26!

As discussed further in Sec. X, we assume that a resona
field has excited coherence between the ground-state su
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els u f m& and u f ,m21& ~now quantized alongz) so that the

coherent partr f m̄8 of the ground-state density matrix at tim
t8 is

r f m̄8 5u f m&^ f muru f ,m21&^ f ,m21ue2 iv f m̄~ t82t !.
~B27!

The amplitude^ f muru f ,m21& is the value at timet. The
mean azimuthal quantum number ism̄5m21/2. For the
evolution with timet8 over time intervalsut2t8u;TQ , it is
an excellent approximation to replace the rf drive frequen
v with the rf resonant frequencyv f m̄ , since the amplitude
~B27! will be negligibly small unlessv'v f m̄ . Substituting
Eq. ~B27! into Eq. ~B26! and assuming a longitudinal mea
photon spins5szz, we find

w82
1

2
s•Q85

@ I #214m̄22124~21!a2 f@ I #szm̄

4@ I #2
r f m̄8 1•••.

~B28!

Other coherences in addition to the self-coupling term w
ten out explicitly in Eq.~B28! are represented by1•••. The
additional terms are needed to ensure that the right-hand
of Eq. ~B28! is a purely nuclear operator, like the left-han
side, but they do not contribute to the light shift.

Substituting Eq.~B28! into Eq. ~B22! and evaluating the
integral, we find to a good approximation

1

i\
@dEr #ur)52 idV r , f m̄ur f m̄), ~B29!

where the light shift due to real transitions is

dV r , f m̄52v f m̄RTQ

@ I #214m̄22124~21!a2 f@ I #szm̄

4@ I #2
.

~B30!

For the conditions of spin-exchange optical pumping,
light shift due to real transitions is always a small fraction,
orderv f m̄TQ of the optical pumping rateR.

The Liouville-space operator@dEr # is uniquely defined by
Eqs. ~B29! and ~B30!, and to simplify the notation of Sec
VIII we have used square brackets as though a matrix-sp
operatordEr existed, in accordance with Eqs.~26!. Although
this is permissible for our applications, it is not genera
true. It is simple to construct an operatordEr that gives the
correct light shifts forDm51, single-quantum Zeeman tran
sitions, for example, by spacing the diagonal matrix eleme
such that^ f mudEr u f m&2^ f ,m21udEr u f ,m21&5\dV r , f m̄ .
However, an operator constructed in this way will fail to gi
the correct light shifts for multiple-quantum Zeeman tran
tions. An example is an atom withI 51/2, for which the
double-quantum transition fromu1,1& to u1,21& has no light
shift due to real transitions. This is because the nuclear
herence~B26! associated with a double-quantum transition
quadrupolar and cannot exist forI 51/2. The light shifts
~B30! for the two single-quantum transitions, fromu1,1& to
u1,0& and fromu1,0& to u1,21& sum to2RTQv2/4, wherev2
is the unperturbed resonance frequency of the dou
quantum transition. So the light shifts of the two sing
quantum Zeeman transitions do not add up to the light s
y
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ide

e
f

ce

ts

-

o-

e-
-
ft

for the double-quantum transition, as required if adEr cor-
responding to@dEr # existed. This failing is irrelevant as lon
as we limit our attention to single-quantum Zeeman tran
tions. ThendEr , constructed as outlined above, correctly d
scribes the light shifts due to real transitions. No such lim
tations exist for the matrix-space operatordEv of Eqs. ~87!
and~90!, which represents the light shift due to virtual tra
sitions to the excited state.

Light shifts due to virtual transitions. Experiments show
that in high-pressure helium gas the optical absorption cr
sectionsop of D1 light is well described by a simple Lorent
zian line profile

sop5
r ec f~dna/2!

~n2na!21~dna/2!2 , ~B31!

where the full width at half maximumdna of the line profile
is proportional to the helium pressure@45#. For an absorption
profile like Eq. ~B31!, one can readily show that the mea
pumping rateR of Eq. ~89! and the frequency shift paramete
dVv of Eq. ~91! can be considered as real and imagina
parts of a single complex rate, given by

R1 idVv5r ec fE F~n!

dna/21 i ~n2na!
dn. ~B32!

A serviceable approximation for the spectral profileF of the
laser light is a Gaussian function with a central frequen
n l5c/l l and a full width at half maximumdn l5cdl l /l l

2

F~n!5F~n l !e
24~n2n l !

2 ln 2/~dn l !
2
. ~B33!

For a laser beam of intensityI l ~units: W cm22) we would
have

F~n l !5
2I lAp ln 2

phn ldn l
. ~B34!

Substituting Eq.~B33! into Eq. ~B32!, we find

R1 idVv5
2Ap ln 2r ef l l

3I lw

hcdl l
, ~B35!

where the complex functionw is

w~@ ir 2s#Aln 2!5
1

ipE2`

` e2[ rx2s] 2ln 2dx

x2 i

5e[ r 1 is] 2ln 2erfc ~@r 1 is#Aln 2!.

~B36!

The last equality can be proved by expressing the sim
pole, (x2 i )21, in terms of its spatial Fourier transform. Th
relative atomic linewidth is

r 5
dna

dn l
, ~B37!
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and the relative detuning is

s5
n l2na

dn l /2
. ~B38!

Tables of the complex functionw of Eqs. ~B35! and ~B36!
have been compiled by Abramowitz and Stegun@42#. Alter-
nately, the complimentary error function of Eq.~B36!
n,

ra

J

erfc~z!512erf~z!512
2

Ap
E

0

z

e2t2dt ~B39!

can be readily evaluated by carrying out the numerical in
gration on the right of Eq.~B39! for the relatively small
values ofz5(r 1 is)Aln 2 of interest for spin-exchange op
tical pumping.
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