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Laser catalysis with pulses
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We present a time-dependent theory of laser catalysis, a process in which a strong light source is used to
affect tunneling through a potential barrier by inducing a transient electronic excitation to a bound state. We
have performed detailed calculations of pulsed laser catalysis on a one-dimensional Eckart potential as a
function of the collision energy and the laser’s central frequency. As in the cw case, the barrier transmission
coefficients range from 100% tunneling on the blue side to complete suppression of tunneling on the red side
of the radiatively broadened line. The point of perfect transmission is explained in the dressed state picture in
terms of the equivalence between adiabatic laser catalysis and transmission through a double-barrier potential.
The point of complete suppression of tunneling is shown to result from nonadiabatic destructive interference
between the nonradiative tunneling and the optically assisted @&t650-294{8)02708-5

PACS numbgs): 34.50.Rk, 42.50.Vk

I. INTRODUCTION stronger bound-free nuclear factors. For an excited surface
possessing no reaction barriers, such schemes give rise to

Over the past two decades a number of scenarios for lasétaser catalysis” [14—16, because the reagents, once ex-
acceleration and suppression of dissociation processes aoied, remain in the transition state region and shuttle freely
chemical reactions have been propogéd-21]. A theme between the reactants’ side and the products’ side of the
common to many of these schemes is that lasers affeground-state barrier. If the energy available to the nuclei on
chemical reactivity by forming in conjunction with the mol- the excited state is insufficient to break any bond, the system,
ecule new(“dressed”) potentials. The dressed potentials not being able to escape the transition-state region, eventu-
may be more amenable to promoting a given reaction. Thally relaxes (radiatively or nonradiatively back to the
main difference between laser enhancement of chemical reground state. In doing so, it haspriori similar probabilities
actions and ordinary photochemistry is that the former isof landing on the products’ side as on the reactants’ side of
envisaged to involve no net absorption of laser photons. Théhe barrier. If the laser is strong enough, the stimulated ra-
concept of “laser catalysis[14-14, i.e., a process in which diative relaxation route, yielding back the same photon ab-
a laser field after altering a reaction returns tceactinitial sorbed, overcomes the nonradiative channels, resulting in
state, is a refinement of such scenarios. true laser catalysis.

Most of the past laser enhancement schemes require very Detailed quantum-mechanical dressed-state computations
high laser powers because the dressing of the potential suof the cw laser catalysis of the symmetrictHi,—H,+H
faces[5,6,8 is ineffective due to the rather wedkollision-  reaction were performefll5,16. These computations have
ally or optically) induced nuclear dipole moments involved shown that, whereas, as expected, the system relinquishes
[9,11]. Thus, the use of ir radiation to overcome reactionback the photon absorbed, if laser catalysis is performed with
barriers on the ground electronic surfd€l1] necessitates coherentlight, the resulting molecular effect is not symmet-
powers in the order of TW/cfn At these powers nonreso- ric: The reaction probability follows a “Fano-typel22]
nant multiphoton absorption, which invariably leads to ion-curve, in which the reaction probability is enhanced on the
ization and/or dissociation, becomes dominant and drastblue side of the absorption band and hindered on the red
cally reduces the yield of the reaction of interest. side. As a result, at a certain energy all the reagents end up

Free-free transitions involving excited electronic stateson the products’ side of the barrier, leading to a barrier trans-
[10] ought to require less power than those occurring on thenission coefficient of unity, whereas at another energy tun-
ground state, because the laser in this case couples to strongling is suppressed and the reaction probability is zero. The
electronic transition dipoles. However, even in this case thesuppression of tunneling was interpreted as being due to de-
free-free nuclear factors reduce the transition-dipole matristructive interference between nonradiative tunneling and the
elements, and moreover, once the system is deposited on aptical process.
unbounded excited electronic surface, it is impossible to pre- Another scheme involving free-bound transitions to ex-
vent the reaction on that surface, and the resultant retentiocited potential surfaces employs a two-pulse sequence
of the absorbed photon, from taking place. Such a chain df23,24. According to this scenario, one can control ex-
events resembles that of conventiorfeleak-field photo- change or bond breaking reactions on the ground potential
chemistry where the laser is used to impart energy to thesurface by varying the delay between the excitation and de-
reaction and not to catalyze it. excitation laser pulses. The lasers in such a two-pulse

Scenario§14-16 employing transitions between a scat- scheme do not act as catalysts since the first pulse is ab-
tering state on the ground electronic surface and a bounsiorbed while the second pulse may be further strengthened,
excited electronic state may ease the above power requiréhough not by the same amount.
ments, primarily because of the involvement of the much The experimental implementations of laser catalysis were
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hampered by the lack of calculations wiflulsedsources. 10>
Though the cw calculationsl 5,16 have indicated that per-
fectly reasonable powers of hundreds of MWfcmay be
enough to bring about the desired effect, such powers can ® ®
only be realized with pulsed lasers. The dressed-state meth-
odology developed in Refl15] does not allow for the con-
sideration of pulses and it was not known whether the effects
noted for cw laser catalysis would be observed with pulses.
In particular, because pulses are finite, itipriori possible
for some population to remain trapped in the excited bound
state and never be deexcited down to the ground state.
Recently, we have developed an exact time-dependent
formalism for treating dissociatiof5—27 and recombina-
tion [28] due to the action of strong pulses. Both cases in-
volve a bound manifold belng coupled to a Contlnuum by FIG. 1. Energy levels of the resonantly enhanced laser catalysis
one or two laser pulses. In this pag&ec. I) we extend this  ¢.heme.
theory to the case of laser catalysis in which the strong laser
pulse coupleswo continua(that of the reactants and that of from statedE,1*) to a set of “incoming” scattering states
the products to a single bound manifold. In Sec. Il we |g 2-) with the asymptotic behavior,
apply the theory to pulsed laser catalysis on a simple one-
dimensional potential surface, for which analytic molecular
eigenenergies and eigenfunctions are known. We present thelim (X|E,27)=

12
exp(ik,x) +R5 (E)exp( —ikox) ,

koh
evolution of the laser catalysis process with time and show *~~ 2 (3a)
that all the qualitative features of the cw case are obtained in
the pulsed case, thus paving the way to the experimental : -\ _ :
realigation of this I’OCGSS ) y P lim (x|E,27) =T (E)explikyx). (3b)
p " X— — 0
Il. THEORY OF PULSED LASER CATALYSIS Writing the total Hamiltonian of the system as
We consider artA+BC—AB+ C exchange reaction de- Hio=H—24- ee(t)cog wt), 4

scribed by a smooth one-dimensional potential barrier alon
the reaction coordinate. The eigenstates of the system form
continuum of “outgoing” scattering statesE,1") and
|E,2"), with E being the total collision energy. The"land
2" indices are reminders that the reaction has originated i
either arrangement channel 1, the-BC channel, or in i0| W) dt=H V), 5
channel 2, theAB+ C channel.

The asymptotic behavior of tH&,1") and|E,2") states by expanding the material wave functipl) as
is given by

géhereH is the radiation-free Hamiltoniar(t) is a “slowly
varying” electric field amplitude, angl is an (electronig
transition dipole operator, we solve the dynamics embodied
ij the time-dependent Schiimger equation

m 1/2
lim <x|E,1+>=(ﬁ) exp(ik1x)+ Ry (E)exp(—ik;X),
X 1 19 +be (1) |E, 2" )] exp( —iEt/R), 6)
lim (X|E,1%)=T,(E)explik,x) (1p  Where
o [Eo—H]|0)=[E—H]|E,n*)=0, n=12. (7
and Substitution of the expansion of Ed6) into the time-
|12 dependent Schdinger equation, and use of the orthogonal-
; + + ; ;
lim (x|E, 2" :(_ expl — ik,X) + Ro(E)ex(ik x) | ity of the |0), |E,17), and|E,2") basis states, results in an
wa | ) koh " 2X)+ Ro(E)explikzx) (indenumerableset of first-order differential equations for
(2a)  the expansion coefficients. In the rotating-wave approxima-
tion, this set of equations is of the form
lim (x|E,2")=T,(E)exp —ikx), (2b)
X — dby

i dE S Qo qvexmiatbe,®.  ®

wherek; ;= V2m[E—V(Fx)]/A.
The laser catalysis scenario is shown in Fig. 1: Under the  dbgq . _
action of a laser pulse of central frequensyassumed to be dt =100 m(DEXp(—iAet)bo(t), m=12, (9
in near resonance with the transition from the continuum to
an intermediate bound staté), population is transferred where
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Qoen(O=(0|u[E,n")e(t)/h, n=12 (10
and

Substituting the formal solutions of E(P),

t
bE,n('f):bE,n('[o)"'ift dt’ Qg e n(t)exp(—iAgt’)bg(t"),
0
(12
into Eq. (8), we obtain

db, ,
T anﬂde Qoe n(t)exp(iAgt)bg n(t=0)

-2

n=1,2

Xexp (iAg(t—t")]bg(t"). (13)

t
f dEft dt’ Qoe n()Q5en(t)
0
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¢ Fy(t) +Fy(t!
¢(t)=iJ Fat)+F0t) U)(t,)Z( ) av (20)

to

In the laser-catalysis process, the initial conditions are
such thaty(tp) =0 andbg 5(to) =0 for all E. Therefore, we
obtain for theby(t) coefficient,

t t
bo(t)zif Fl(t’)ex;{—J' [Ql(t”)+92(t”)]dt”)dt’.
tg t
(21
Given bg(t), the continuum population distributions
be 4(t) andbg (t) are obtained directly via E¢12). Typical

potentials and eigenfunctions used to simulate one-photon
laser catalysis are plotted in Fig. 2.

Ill. PULSED LASER CATALYSIS WITH A PAIR
OF ECKART POTENTIALS

As a first application of the formalism of Sec. Il we con-

If both molecular continua are unstructured, we can in-sider laser catalysis with an Eckart poten{i29,30,

voke the slowly varying continuum approximati¢8VCA)

[25-28. In this approximation we replace the energy-

dependent bound-free dipole-matrix elements at energies Varound X) = V[ £(X)]= — A B
. . . groun _f (1_§)Zv
spanning the laser profile by their value at the pulse center, 22)

given (in the A configuration of Fig. 1asE, =E,~ % w,
(0| | E, 1) |2+ (O] w|E,2")?

~KOlw[EL17)P+KOulEL27). (14

E=—exp2mx/)

for the ground state and an inverted Eckart potential,

The use of the SVCA greatly simplifies the equations be-

cause upon substitution of Eq4.0) and (14) into Eq. (13
we can perform the integration ov& andt’ analytically.
We obtain that

%=nElyziFn<t>—nn(t)bo<t>, (15
where
Q. ()=7[0|u|EL,nT)e(t)[P/h, n=12. (16)
The source termE ,(t) are given as
Fa(t)=e(t)un(t)/hi, n=12, 17

where

Fn(t):f dE<0|,u|E,n+>eX[Z(iAEt)bE’n(t0), n:1,2.
We can obtain analytical solutions of E4.5) in the form

bo(t)=v (1) é(t) +bo(to)v (1), (18

where

t
v(t)zexp( —ft [Q,(t")+Qy(t")]dt’ (19)
0

and

Vexcited X) = E— V[ &(X) ] (23

=
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FIG. 2. Eckart potentials and wave functions used in the simu-
lation of the laser catalysis process. Potential parameters Avere
=0a.u.,B=6.247 a.u.l]=4.0 a.u., andn=1060.83 a.u.
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FIG. 3. Free-bound transition matrix elements vs collision en- FIG. 4. Nonradiative reactive probability as a function of colli-
ergy. sion energy.

having a well for the excited state. The asymptotic values for=107*~10"2 cm™™. Itis evident from Fig. 3 that the bound-

the Eckart potential are continuum matrix elements do not vary appreciably with ki-
netic energy over these widths. Therefore, we rewrite Eq.
V(x=—®)=0, V(x=+w)=A 24 (ADas

and the barrier height is given as .
gntisg Fl(t)=QO’Ei,1(t)f dE ex{—iAgtbl, (28

(A+B)?
ma AR

(25) and obtain from Eqs(27) and (28) that

212
The Schrdinger equation with the Eckart potential has — (452 \1/4 _ 5Lt_-
well known analytical solutions for both bound and con- Fat)=(40em) QO’Ei‘l(t)eXp{ 2h? IAEit}' 29
tinuum |E,n") states[29,30. Theses solutions are spelled
out in detail in the Appendix, where some errors that hav
persisted in the literature have been corrected. The param-

eters of Eq.(22) chosen for the ground Eckart potential are 0 t—t, 2
A=0, B=6.247x10 2 a.u., andl=40a.u. The particle’s e)=eexp —| 3| [
massm was chosen as that of thetHH,—H,+H reaction,

i.e., m=1060.83 a.u. The intermediate state was ghe0  We can write Eq(29) as

level of the inverse Eckart potential given in E§3), with

eChoosing a Gaussian pulse of the form

(30

the same parameters. Potential parameters were chosen to (482m)Y4

resemble the energy profile along the reaction path for the Fal)=——— (Ol u|E;,17) €

linear H+H,—H,+H reaction[31,32. The resulting poten-

tial curves are plotted in Fig. 2. Given these parameters, t—t, 2 6Et2
eigenfunctions and eigenenergies were obtained using the X ex _(T) —IAEit—W . (3D

formulas of the Appendix, and the bound-continuum dipole
matrix elements(0|u|E,n™), which enter Eq.(10), were Having computed all input matrix elements, the dynam-
calculated using high-order Gauss-Legendre quadrature. ligs, embodied in Eq(15), is solved using either a Runge-
Fig. 3, the magnitude of the free-bound transition dipole moKutta-Merson(RKM) algorithm for direct numerical integra-
ments is plotted as a function of the continuum eneggy tion or the exact expression of E@Q1). Both methods give
The initial state of the system is described by a normaldidentical results, thus confirming the validity of the analytical
ized Gaussian wave packet of incoming scattering states solution. The resultindpy(t) coefficient is then used to cal-
culate the continuum population distributiots (t) and
be »(t) according to Eq(12).
|\If(t:0)>=f dE b%1|E,1+>, (26) The energy dependence of the nonradiative reaction prob-
ability is presented in Fig. 4 and the time dependence of the
expansion coefficients are shown in Fig. 5. Initial collision
energy for this calculation was 0.01 atomic units. From Fig.
4 it is evident that the nonradiative reaction probability at
3 (E-E)? 27) this energy is negligible. The effect of the laser pulse is to
25’@ ' induce a near-complete>99%) population transfer from
the wave packet ofE,1") states(localized to the left of the
Simulations were made for initial collision energies potential barrierto a wave packet di,2") stateqlocalized
of E;=0.0-0.03 a.u. and wave packet widthég to the right of the barrigr while keeping the population of

where

b2 ;=bg 1(to) =(852m)  Yex
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FIG. 5. Integrated populations of incoming and outgoing con- g0 z
tinuum states and the population of the0 intermediate state vs 0.2 2 X
time. Dashed line is the intensity profile of the Gaussian pulse 7 -
whose maximum intensity is $10° W/cn?. The FWHM of the %50 —f00 200 0 200 00 600

pulse is 30 nsec and its central frequency was chosen smﬂ?at
=0. The initial reactant collision energy is 0.01 a.u. and initial
wave packet width ige=10"3 cm™%.

t (nsec)
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FIG. 6. Integrated populations of incoming and outgoing con-
tinuum states and the population of the0 intermediate state vs

o ) time. Dashed lines are pulse intensity profiles. The initial reactant
the |0) states to a bare minimum. In this way spontaneougoliision energy is 0.014 a.ua) Initial wave packet width ofsg

emission losses are essentially eliminated.
Due to an exact scaling relation in Ed.5), it is possible

to use pulses of different duration and intensity. When thesity is 8.3 MW/cnt and its FWHM is 200 nsec.

initial wave packet width, laser detuning, and pulse intensity
are scaled down as

=103 cm % Pulse intensity is 83 MW/cfnand its FWHM is 20
nsec.(b) Initial wave packet width oBz=10"* cm™. Pulse inten-

come increasingly more difficult to fulfill the longer the

pulse, because the peak power must go down exactly as

e

Sg——, Ag——, €
E s B s

1/At, whereas in most practical devices the power goes
0_, —_ down much faster with increasing pulse durations.
As mentioned above, by keeping the population of the

intermediate resonance loyas is the case in Fig.)5ve

and pulse duration and time are scaled up as

effectively eliminate the spontaneous emission losses. In Fig.

7, we plot the intermediate level population as a function of

At— Ats, tp—1tps.

It follows from Egs.(31) and(16) that under these transfor-
mations
F.(t/s)

O, At/s)

L QA= A=

Fi(t)—Fa(t)= :

and Eq.(15) becomes

.15

collision
1

energy 0.01 (a.u.)
1 1

t at four different pulse intensities. Radiative reaction prob-
ability for all plotted intensities is near unity. However, it is
evident that the intermediate state population throughout the
process decreases with increasing pulse intensity. Thus, to
avoid spontaneous emission losses, high pulse intensities
should be used.
Calculated reactive line shap@®., the reaction probabil-

d e e TO (L O+l (Y 50 MW/cm®
dus bo=iF1(t/s) —[Q4(t/s)+Qy(t/s)]by. (320 | 00 /e’ %
_ 500 MW/czmz ;

We see that the scaled coefficients at titr@re identical to 10+ tensem .
the unscaled coefficients at timgs. Therefore, pulse dura- e [
tion and intensity may be varied as long as the integrated f; N
pulse power €°|?At is not changed. This behavior is dem- = S
onstrated in Figs. @) and &b). A short-pulse case is illus- 057 i
trated in Fig. 6a), whereas a long-pulse case, with a nar-
rower bandwidth(longer duratioh initial wave packet, is o
shown in Fig. @b). It is evident that the time evolution of the 00 il ‘ BN
system is scaled up by a factor of 10, whereas pulse intensity —20 —10 . (Ifsec) 10 20

is scaled down by the same factor. The advantage of long
pulses is that only reactants that will collide during the laser

FIG. 7. Intermediate state population vs time at pulse intensities

pulse will react. Thus, longer pulses would increase the numef 50 Mw/cn?, 100 MW/cn?t, 500 MW/cntf and 1 GW/cm. Pulse
ber of product molecules formed within a single pulse dura-duration and central frequency and initial kinetic energy of the re-
tion. The disadvantage is that the power requirements beactants are as in Fig. 5.
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FIG. 8. Calculated reactive line shapes at 21, 83, and 3
338 MW/cnf. The FWHM of the pulse is 20 nsec. Reactants colli- o 040+ -
sion energy is 0.014 a.u. and the initial wave packet widtldds e
=103cmL
ity as a function of the pulse center frequenaythree pulse 035 | | | | |
intensities are shown in Fig. 8. The initial collision energy is -6 -4 2 0 2 4 6
0.014 a.u., i.e., slightly closer to the barrier maximum than r (a.u)

before. According to Fig. 4, the nonradiative reaction prob-
ability is now about 9%. This causes the line shapes to as- FIG. 10. Dressed state potentials for the laser catalysis process
sume an asymmetric form due to the interference betweeat maximum pulse intensity. Initial kinetic energy is 0.01 a.u.
the nonradiative tunneling pathway and the laser catalyzed
pathway. We see that the reaction probability is enhanced fof (photor) dressed states” picture. When the<2 dressed-
a positive(blue) detuning and suppressed for a negaties) potential matrix composed of th@iagonal dressed poten-
detuning. This result is similar to the findings in the cw casetials and the(off-diagona) field-dipole coupling terms is di-
accept that the power requirements can be easily met arafjonalized, the two field-matter eigenvalues shown in Fig.
spontaneous emission is essentially nonexistent. 10 result. As demonstrated in Fig. 10, the ground field-matter
The effects noted above are absent in the weak field limiteigenvalue assumes the shape of a double-barrier potential
namely when the field is too weak the maximal reactionand the excited eigenvalue—the shape of a double-well po-
probability is less than unity. As shown in Fig. 9, before tential. The separation between these eigenvalues gets larger
reaching saturation, marked by unit reaction probability atas the coupling field strength is increased.
the right frequency, the reaction probability increases mono- In the adiabatic approximation, particles starting out in
tonically with increasing laser intensity. This is in contrastthe remote past in the ground state remain on the lowest
with the cw result§15], where the sole effect of the reduc- eigenvalue at all times. These particles experience resonance
tion in laser power is to narrow down the asymmetric linescattering by a double-barrier potential, admitting tunneling
shapes of Fig. 8 while leaving one point of perfect transmisprobability of unity, irrespective of the details of the poten-
sion at the center of the line. tial [34—40, when the incident energy is near a quasibound
The existence of a point where the reaction probabilitystate of the well within the barriers. Similar phenomena have
assumes the value of 1 is best understood by adopting the®een noted for semiconductor devid@—4(Q, in the con-
text of the Ramsauer-Townsend eff¢dtl] and for Fabry-
collision energy 0.01 (a.u.} Paot interferometerg42]. In addition, field-induced trans-

Lo parency, observed when a high-frequency field acts on a
single barrier, was explained as a result of the emergence of
0.8 i an average field-dressed double-barrier potehial.
= The point of tunneling suppressidie., when the tunnel-
5 0.6 - ing probability of Fig. 8 assumes the value ofdppears, in
g the dressed-states picture, as a result of the breakdown of the
'§ 0.41 - adiabatic approximation: At the energy of tunneling suppres-
< sion, the flux leaking to the excited double-well eigenvalue
0.2 L interferes destructively with the flux remaining on the low
double-barrier potential.
0.0 T T T T
0 20 40 60 80 100
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APPENDIX: THE WAVE FUNCTIONS OF THE ECKART POTENTIAL

The eigenfunctions of a Hamiltonian with an Eckart poteritid). (22)] are given in terms of hypergeometric functions
(29,30,

ab a(a+1)b(b+1)

24...
xc Y T xaxecrn YT (A1)

F(a,b,c,y)=1+

in terms of which the outgoing scattering wave functions are given as

o E N . ) ) 1
<x|E,1+)=T1(1—§)'ﬁ(—) F|%+I(a—,8+5),%+|(a—,3—5),1—2|,8, —, (A2)
&1 1-¢
where
I I h?2
a= E/4C=Zk1, ﬁz\/(E—A)/4 :Zkz, 52\/(B—C)/4C; CIW. (A3)

In Eq. (A2) we have corrected a sign error in the expression fobtharameter that appeared at 20| and persisted in Ref.
[30]. SinceF(a,b,c,0)=1, itis evident that the asymptotic condition for large positivgargeé) given in Eq.(1b) is fulfilled,

lim (x|E,1")=T,(— &)"P=T expik,x). (A4)

X— 00
To determine asymptotic behavior for large negativismall ¢), we use the linear transformation formy28]

I'(c)I'(c—a—Db) I'(c)I'(a+b—c)

T . Lo — — __-\c—a—-b _ _ A _
F(c—a)l(c—b) F(a,b,a+b—c+1,1-2)+ T(a)T'(b) (1-2) F(c—a,c—b,c—a—b+1,1-2).

(A5)

F(a,b,c,z)=

Application of identity(A5) to Eq. (A2) results in an expression for the incoming scattering states in terms of two series that
converge for smalk values,

E,1")= ( ¢ ial— O L i am Bt o), S ti(a—po) 1t 2ia, —
(X[E.I7)=c¢; g=1) (-9 gtilamptd), s +ila=f=0)1+20a, w77
v 2 - 1 O PF| S i a— B 0), s +i(—a Bt 12, A6
C2 §—1 ( g) 2 I( a ﬂ )! 2 I( 43 B )l la, g_l ’ ( )
where
6=T, | F(1—2i,8)1“(—2-ia) A7)
I3+i(—a=B=9IL[s+i(—a—p+0)]
and

T(1-2i8)T(+2i)

© T +i(a - )I[E+i(a— B+ 6)]
For large negative values af (small £) we have
lim (x|E,1")=c1(— &)'*+co(— &) "' *=c explik X) + coexp( —ikqX). (A9)
X— —
By comparison with Eq(1a),
m 1/2
C1= (kl_h) y sz Rl y (AlO)
and we can determine the constafisand R, to be
T[3+i(—a—B=)IT[F+i(—a—p+8)] [ m )12
T,= . - — (Al
ra-2ip)r(-2ia) k.h
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_F(+2ia)1“[%+i(—a—,8—5)]F[%+i(—a—,8+5)] ( m )1/2 AL
Y D=2t +i(a—B-)IT[L+i(a—p+0)] \kih (A2
The nonradiative reflection coefficient is thus given as
k.h TA+i(—a—B—0)(:+i(—a—p+0))|°
SRy L e L R )| 13
F(3+i(a—B=)I (i +i(a=p+0) |
and the nonradiative transmission coefficient is
Ckoh o B|TIE+i(—a= -9 [}+i(—a-p+)]|"
o(T)=—-ITul*=7 T(1-2iB)(-2i) | - (A14)

The intermediate state was taken to be one of the vibrational states of an inverse Eckart giver(28). Bpund-state
energies for the time-independent Sainger equation with this potential are given as

E,.=& A [6'—(n+3)]°C ! A (A15)
=£—-—[8—-(n+3 - =,
T2 2 4’ ~(n+3)1] C
where 8’ = \[(B+C)/4C, C=h?/8mI?, and
n=0,1,2...<68 —%—\A/4C. (A16)
Corresponding eigenfunctions are given as
_ & |\ o 1
Pn(X)=N(1—¢&) Fn —) F —n,25’—n,1+2,3n,r§ : (A17)
where
B g_En 1/2. B 5_EH_A 1/2 Als
“=2c| ¢+ Pl Tae ) (AL8)
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