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Nonadiabatic cooling and optimal control in off-resonance dipole optical potentials

A. Bulatov,1 B. Vugmeister,1 A. Burin,2 and H. Rabitz1
1Department of Chemistry, Princeton University, Princeton, New Jersey 08544
2Department of Chemistry, Northwestern University, Evanston, Illinois 60208

~Received 7 August 1997!

We investigate coherent control of atomic translational motion in an applied off-resonance dipole optical
potential. Since spontaneous emission can be neglected in this regime, the problem is treated as one of coherent
momentum transfer. We consider both adiabatic and nonadiabatic regimes of cooling in the framework of the
Wigner function formalism. For the adiabatic case, an approximate solution is obtained corresponding to the
cooling envelope for an arbitrary time dependence of the external field. The nonadiabatic cooling process is
formulated in terms of optimal control theory in order to define the most favorable regime of cooling under
imposed constraints on the intensity of the control field. We find that the applied control field yields a
significant reduction of the effective temperature of the atoms.@S1050-2947~98!01808-3#

PACS number~s!: 32.80.Pj
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I. INTRODUCTION

The manipulation of the atomic center-of-mass mom
tum distribution is important for the adiabatic cooling
atomic beams@1# and atomic clouds in optical lattices@2#.
For atomic beams, the experimental realizations of adiab
cooling are based on the effects of trapping and channe
of atoms in the field of an intense standing wave@3#. The
effects of localization of atoms on the scale less than
optical wavelength@4# and of quantization of the atomic mo
tion in one-dimensional~1D!, 2D, and 3D optical molasse
has also been observed and extensively studied@5#.

A detailed theoretical account of the adiabatic cooli
process is available for atoms undergoing no spontane
emission in microcavities and optical traps@6,7#. By apply-
ing band theory to a two-level atom in a periodic optic
dipole potential@2,8,9#, a lower limit of the order of the
recoil energy was predicted for the minimum temperature
the atomic cloud. The approach in@6,7# is based on the nu
merical simulation of two-level atoms in the dipole potent
and it is difficult to analyze the dependence of the cool
process on the parameters of the optical potential. The a
batic regime of cooling corresponds to the case when
effective optical potential is changing slowly in comparis
to the oscillation frequency of the atom trapped in t
standing-wave dipole potential and the constraint to s
dynamics can be a serious restriction since the spontan
emission should be negligible during the cooling process.
the other hand, the use of the nonadiabatic time-depen
off-resonance dipole potentials was shown to be extrem
successful for interacting with the atomic center-of-mass m
tion @10,11#. The manipulation of the atomic distribution i
optical lattices with nonadiabatic potentials was studied
der various circumstances@12,13#.

The goal of the present theoretical analysis is to de
optical characteristics of a radiation field in order to achie
a cooling of an atomic system. We propose a general
proach, valid for both the adiabatic and nonadiabatic lim
of cooling in the framework of density-matrix formalism
This approach enables the formulation of the problem
terms of optimal control theory in order to identify the mo
PRA 581050-2947/98/58~2!/1346~6!/$15.00
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favorable regime of cooling under imposed laboratory co
straints.

We assume that the atoms are subjected to off-reson
laser field and experience the energy shift of the ground s
V(x,t) proportional to the intensity of the field

V~x,t !5V0~ t !@12cos~2qx!#, ~1!

wherex denotes the atomic center-of-mass coordinate,V0(t)
is the amplitude of the dipole potential~proportional to the
intensity of the laser field!, andq is the wave vector of the
laser field.

One should note that the arguments of@14# are applicable
here and the phase density of the atomic system is conse
If the goal is a redistribution in momentum space, then t
limitation is not significant. Since the phase-space density
the system is conserved, this implies that the compressio
momentum space will cause an increase in the coordin
spread for the atomic cloud.

II. BASIC EQUATIONS

We will employ the Wigner function formalism, which
enables one to study both coordinate and momentum p
ability distributions simultaneously. The evolution of th
Wigner function has to be followed for the noninteractin
particles in the external potential given by Eq.~1!. The
Wigner function is defined as a Fourier transform of the d
sity matrix with respect to the relative momentum variabl

r~p,x,t !5E d~p2p8!exp@ ix~p2p8!#rS p1p8

2
,p2p8,t D .

~2!

For the atomic system moving in the potentialV(x,t), the
time evolution of the Wigner functionr(p,x,t) is given by
1346 © 1998 The American Physical Society
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S ]

]t
1

p

m

]

]xD r~p,x,t !

52
1

2p ih E dp8E dz exp@ iz~p2p8!#

3H VS x1h
z

2
,t D2VS x2h

z

2
,t D J r~p8,x,t !. ~3!

In the case when the atom is in the vicinity of one of t
minima of the dipole potential, it is reasonable to expand
effective potential to second order around the minimum. T
is a good approximation in many situations, such as in a
batic cooling @6#. It is required that each atom be locate
around one of the minima of the potential given by Eq.~4!
and then the effective potential becomes quadraticV(x,t)
5k(t)x2/2, wherex is a distance from the minimum an
k(t)54/mV0(t)q2. In this case, Eq.~6! for the Wigner func-
tion exactly reduces to the Liouville equation for the dist
bution function of the classical harmonic oscillator. The
fore, we obtain

S ]

]t
1

p

m

]

]x
2k~ t !x

]

]pD r~p,x,t !50. ~4!

The initial condition corresponding to the squeezing osci
tions of the atomic phase-space distribution can be obta
from the thermal distribution by means of the abrupt no
diabatic change of the dipole potential. The nonadiab
change of the dipole potential produces the class
squeezed states@16# and initiates the squeezing oscillation
of the atomic phase-space distribution. In this case, the in
condition for Eq.~4! is given by@6#

r0~p,x!5
1

A2psp
2~0!

1

A2psx
2~0!

3expF2
p2

2sp
2~0!GexpF2

x2

2sx
2~0!G . ~5!

The solution of Eq.~5! with this initial condition is obtained
in the form

r~p,x,t !5
1

A2psp
2~0!

1

A2psx
2~0!

3exp@2a~ t !p22b~ t !px2g~ t !x2#. ~6!

Indeed, the substitution of Eq.~6! into Eq. ~4! gives us the
closed set of equations

da~ t !

dt
52

1

m
b~ t !, ~7a!

db~ t !

dt
52k~ t !a~ t !2

2

m
g~ t !, ~7b!

dg~ t !

dt
5k~ t !b~ t !, ~7c!
e
is
a-

-

-
ed
-
ic
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Taking into account Eq.~5!, we obtain the initial conditions
for Eq. ~7!,

1

a~0!
52sp

2~0!,
1

g~0!
52sx

2~0!, b~0!50. ~8!

One should note that the system given by Eq.~7! has an
integral of motion

J[a~ t !g~ t !2
b2~ t !

4
, ~9!

whereJ is a constant determined by the initial condition
Combining Eqs. ~6!, ~8!, and ~9!, one can verify that
*dx*dp r(p,x,t)[1, i.e., the distribution~6! is normalized.
Making use of the distribution~9!, we obtain the information
entropyS in the form

S52E dxE dp r~p,x,t !ln@r~p,x,t !#

52 1
2 ln~J!1~12 ln p!. ~10!

From Eq.~10! it follows that J is related to the information
entropy of the atomic system, which is conserved in acc
dance with the Liouville theorem@14#.

According to Eq.~6!, the dispersion of the momentum
and coordinate probability distributions at timet are given
by

sp
2~ t ![^p2&5

1

2

g~ t !

J
, sx

2~ t ![^x2&5
1

2

a~ t !

J
, ~11!

where angular brackets denote the averaging with the di
bution given by Eq.~9!. Differentiating Eq.~7a!, we reduce
Eqs.~7! to

d2a~ t !

dt2
1

2k~ t !

m
a~ t !5

2

m2 g,
~12!

dg~ t !

dt
52mk~ t !

da~ t !

dt
,

with the initial conditions defined by Eq.~8!.

III. NONADIABATIC REGIME OF COOLING

The traditional mechanism of laser cooling based on
squeezing of the atomic phase-space distribution is an a
batic mechanism of cooling that has been discussed in de
in the literature@6#. In this case, the frequency of the atom
oscillations is decreasing adiabatically slowly by means
the reduction of the effective dipole potential. The resulti
evolution of the momentum and coordinate distributions c
be found from Eq.~12!, assuming the equilibrium initial con
ditions. Looking for the envelope solution of Eq.~12!, we
neglect the term with the second derivatived2a/dt2. Taking
into account Eq.~11!, we obtain
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sx
2~ t !

sx
2~0!

5S k~ t !

k~0! D
21/2

,
sp

2~ t !

sp
2~0!

5S k~ t !

k~0! D
1/2

. ~13!

It is easy to verify that Eq.~16! is equivalent to the following
change of temperature:T(t)/T(0)5Ak(t)/k(0). In Ref. @6#
the adiabatic regime of cooling with exponentially decayi
effective potentialk(t)5k0exp(2st) has been studied b
means of the numerical simulations. The envelope analyt
solution given by Eq.~13! reproduces the results of simula
tion @Ref. @6#, Fig. 1~d!# with remarkably good accuracy.

As opposed to the adiabatic one, the nonadiabatic reg
opens the possibility of achieving a significant cooling effe
within a short-time interval. The simplest nonadiabatic co
ing scheme corresponds to the abrupt change of the effe
potential

k~ t !5 H k0 ,
k1 ,

t<0
t.0. ~14!

Assuming that fort,0 the system is in equilibrium, we ob
tain from Eqs.~12! and ~8!

sp
2~ t !5

1

2
sp

2~0!F S 11
k1

k0
D1S 12

k1

k0
D cos~2v1t !G ,

~15!

sx
2~ t !5

1

2
sx

2~0!F S 11
k0

k1
D1S 12

k0

k1
D cos~2v1t !G ,

where v0
25k0 /m and v1

25k1 /m. One can see that fork1

!k0 a substantial reduction of the momentum dispersion
be achieved att5p/2v1 . The oscillations of the momentum
and coordinate dispersions of the atomic distribution
scribed by Eq.~15! are known@15,18,19#.

In order to demonstrate the crossover from the adiab
to the nonadiabatic regime of cooling, we will employ a
exact solution for the power-law profile of the effective p
tential k0 /(11m0v0t)2 ~m0 is a cooling rate parameter!,
valid in both adiabatic and nonadiabatic regimes. In the A
pendix we present an exact solution of Eq.~12! for this po-
tential for arbitrary initial conditions. Making use of Eq
~A2! and assuming the equilibrium initial conditions, we o
tain

sp
2~ t !

sp
2~0!

5
1

11m0v0~0!t F12~m0
2/4!cos~2t̃ !

12m0
2/4

1
~m0/2!sin~2t̃ !

A12m0
2/4

G ,

~16!

sx
2~ t !

sx
2~0!

5@11m0v0~0!t#F12~m0
2/4!cos~2t̃ !

12m0
2/4

2
~m0/2!sin~2t̃ !

A12m0
2/4

G ,

where t̃(t)5(12m0
2/4)1/2(1/m0)ln@11m0v0(0)t#. The time

evolution of the momentum dispersion is presented in Fig
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for two values of the cooling ratem0 . One can see that fo
m050.03 the amplitude of the oscillations of momentum d
persion is small enough and the exact solution deviates o
slightly from the envelope solution represented by a das
line. This corresponds to the adiabatic regime of cooling.
the same time, for the larger values of the cooling rate,
amplitude of the oscillations increases and the exact solu
deviates significantly from the envelope solution. In t
nonadiabatic regime, the decay rate of the oscillation am
tude is comparable to the frequency of the oscillations. W
the increase ofm0 , a crossover from underdamped to th
overdamped oscillations occurs and the analytical solu
~A3! becomes invald.

IV. OPTIMAL CONTROL ANALYSIS

As we discussed above, in the nonadiabatic limit the e
lution of the atomic distribution is quite sensitive to the tem
poral profile of the effective potential. Namely, the effect
the fast changing of the effective potential is twofold: T
energy and therefore the average value of the dispersio
the momentum distribution may increase, but at the sa
time the amplitude of the oscillations is also increasing. T
evolution of the distribution becomes quite complex and m
lead to decreasing or increasing of the dispersion of mom
tum distribution for different time profiles of the effectiv
potential.

For this reason it is useful to apply the formalism of o
timal control theory~OCT! ~see, e.g., Ref.@17#! to the prob-
lem of nonadiabatic cooling. The purpose of the OCT ana
sis is to define the temporal profile of the control fieldk(t)
that drives the system from a given initial state into a tar
state characterized by target valuesgg andag , which define
the target values of the momentum and coordinate dis
sions at a given moment of timetg . Taking into account Eq.
~10! for the parameters of the atomic momentum distrib
tion, we define an objective functional in the form

FIG. 1. Comparison between an exact solution for the mom
tum dispersionsp

2(t) given by Eq. ~19! with m050.03 and 0.3
~lines 1 and 2, respectively! and the envelope solution given by Eq
~16! ~lines 3 and 4, respectively!, as a function oft5v0t.



on
i-

n

n

e
iz

io

a

lu-
et
ling
the
tial
ic

s
p-
the
ini-
te

lied
ni-

de-
ion

he
n-
he
s to
ated
tive

ing
ro-
en-

3
em-
he
the
or-
the
t of
, it
the
of

on

PRA 58 1349NONADIABATIC COOLING AND OPTIMAL CONTROL IN . . .
J5
1

2 E
0

tg
dt8@k~ t8!#21

K

2
@g~ tg!2gg#2

1
K

2
b2~ tg!1

K

2
@a~ tg!2ag#2

1E
0

tg
dt8l~ t8!F d

dt8
a~ t8!1

1

m
b~ t8!G

1E
0

tg
dt8m~ t8!Fb~ t8!22k~ t8!a~ t8!1

2

m
g~ t8!G

1E
0

tg
dt8n~ t8!F d

dt8
g~ t8!2k~ t8!b~ t8!G , ~17!

where the functionsl(t), m(t), andn(t) are Lagrange mul-
tipliers and have to be defined from the extremum conditi
and the constantK controls the accuracy of the target cond
tions at t5tg . Taking into account the integral of motio
given by Eq.~12!, we conclude that the producta(tg)g(tg)
is minimal whenb(tg)50. Since we want to minimize the
increase of the coordinate dispersion, the target functio
given by Eq.~18! requires thatbg50. An additional cost
assumed in Eq.~18! is represented by the first term on th
right-hand side associated with the requirement to minim
the intensity of the control laser field. The desired solut
corresponds to the minimum of the functional~17!. The first
variation of the objective functional yields the set of equ
tions

da~ t !

dt
52

1

m
b~ t !,

db~ t !

dt
52k~ t !a~ t !2

2

m
g~ t !,

dg~ t !

dt
5k~ t !b~ t !,

dn~ t !

dt
5

2

m
m~ t !, ~18!

dm~ t !

dt
52k~ t !n~ t !1

1

m
l~ t !,

dl~ t !

dt
522k~ t !m~ t !,

k~ t !52m~ t !a~ t !1n~ t !b~ t !,

with the initial and final conditions

a~0!5a0 , b~0!50, g~0!5g0 ,
~19!

l~ tg!52KS a~ tg!2
a0g0

g~ tg! D ,

m~ tg!52Kb~ tg!, l~ tg!52K@g~ tg!2gg#.
s

al

e
n

-

In order to improve the convergence of the numerical so
tion evolving from the initial equilibrium state to the targ
state, we take advantage of the fact that a substantial coo
effect can be already achieved by an abrupt change of
potential, as we discussed in Sec. III. This steplike poten
creates the nonequilibrium initial conditions for the atom
distribution at the momentt50, which cause the oscillation
of the dispersions of the atomic distribution. With the pro
erly chosen steplike potential, such oscillations brings
system closer to the desired target state compared to the
tial equilibrium state. Driving the system into the target sta
is achieved by means of the continuous control field app
for t.0. This means that we choose the nonequilibrium i
tial conditions~19! for Eq. ~18!.

The system given by Eqs.~18! and ~19! was solved by
means of a two-point iteration method@20#. This method
avoided any divergence of the iteration by means of the
creasing of the norm of the operator in the Picard iterat
procedure.

A solution of the optimal system~18! for the target time
v1tg52 is given in Figs. 2 and 3. In Fig. 2 we compare t
evolution of the momentum dispersion with the optimal co
trol field to the reference solution with a constant field. T
solution presented in Fig. 2 with a dashed line correspond
the case when the squeezing oscillations have been initi
at t50 by means of the nonadiabatic change of the effec
potential, which remains constant att.0. The solid line cor-
responds to the optimal control solution of the squeez
oscillations. We conclude that the use of optimal control p
vides a significant reduction of the dispersion of the mom
tum distribution at a given moment of target time. Figure
presents the optimal control field. One can see that the t
poral structure of the optimal potential is nonmonotonic. T
reason for this is a competition between the reduction of
energy of oscillations favorable for cooling and the unfav
able reduction of the amplitude of the oscillations due to
decrease of the potential, combined with the requiremen
minimization of the control field. As we discussed before
is mainly this nonadiabatic regime of cooling that makes
evolution of the distribution complex and the application
OCT becomes essential.

FIG. 2. Optimal control solution for the momentum dispersi
sp

2(t) ~solid line! compared to a reference solution~dashed line!.
The initial conditions correspond tosp

2(0)/(mv1)2sk
2(0)53. The

target timev1tg52.
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According to the above discussion, the effective poten
should change nonadiabatically in order to initiate t
squeezing oscillations. The typical nonadiabatic cooling ti
is of the order of the period of the squeezing oscillations
the atomic distributiontna>1/v1 as opposed to the adiabat
cooling timeta>1/s, wheres is the typical rate of adiabatic
decay of the effective potential. In the adiabatic regimes
!v1 and thereforeta@tna. In the optical lattices,v1;106

and thereforetna;1026 s, whereasta;1024 s. For ex-
ample, in the situation considered in Figs. 2 and 3,tna5tg
52/v1 . Therefore, operating in the nonadiabatic regime p
vides a possibility of a much faster cooling than in the us
adiabatic one.

V. CONCLUSION

In conclusion, we proposed a general approach for
coherent manipulation of the dispersion of the center-
mass atomic momentum distribution, in the framework of
Wigner function formalism, valid in both the adiabatic an
nonadiabatic regimes of cooling. One should note that
extension of the above formulated results to the 3D perio
potential is straightforward since in the coherent regime
ferent degrees of freedom are completely independent. In
adiabatic regime, we obtained an analytic solution for
envelope of the momentum and coordinate distributions.
also obtained analytical results for the atomic distribut
valid beyond the adiabatic limit for some particular profil
of the time-dependent effective dipole potential. In the no
diabatic regime, the evolution of the atomic distribution b
comes complex and it is natural to employ optimal cont
theory to obtain cooling at a given target time. The gene
approach was formulated in order to define the most fav
able regime of cooling under imposed costs. We found t
the use of optimal control enables a significant reduction
the width of the momentum distribution at a given mome
of target time.
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APPENDIX: EXACT SOLUTION FOR A MODEL
TIME-DEPENDENT EFFECTIVE POTENTIAL

The cooling equations can be solved exactly for t
power-law decaying effective potential, given by

k~ t !5k~0!
1

@11m0v0~0!t#2 ~A1!

and the solution we obtained is valid in the region of para
eter 0<m0<2. With the substitutions a(t)5@1
1m0v0(0)t#ã( t̃) and g(t)5$1/@11m0v0(0)t#%g̃( t̃) and
the dimensionless time defined by t̃(t)5(1
2m0

2/4)1/2(1/m0)ln@11m0v0(0)t#, Eq. ~12! is reduced to

d3ã~ t̃ !

dt̃3 14
dã~ t̃ !

dt̃
50,

~A2!

dg̃~ t̃ !

dt̃
2lg̃~ t̃ !52m2v0

2S dã~ t̃ !

dt̃
2lã~ t̃ ! D ,

where l[m0 /A12m0
2/4. Equation~A2! should be solved

with the initial conditions given by Eq.~8!. Returning to the
variablesa(t) andg(t), a solution of Eq.~12! is obtained in
the form

a~ t !5@11m0v0~0!t#@c1sin~2t̃ !1c2cos~2t̃ !1c3#,

g~ t !5
m2v2~0!

@11m0v0~0!t#
@c4sin~2t̃ !1c5cos~2t̃ !1c6#

~A3!

and the coefficients are

c152
a0

2

m0

A12m0
2/4

,

c25
1

12m0
2/4 Fa0

2
~12m0

2/2!2
g0

2m2v0
2~0!G ,

c35
1

12m0
2/4 Fa0

2
1

g0

2m2v0
2~0!G ,

~A4!

c45
g0/2

m2v0
2~0!

m0

A12m0
2/4

,

c55
1

12m0
2/4 F g0

2m2v0
2~0!

~12m0
2/2!2

a0

2 G ,
c65

1

12m0
2/4 Fa0

2
1

g0

2m2v0
2~0!G .

In the limit m0→0 the effective potential~A1! is a constant
and the solution given by Eq.~A3! reduces to the one for th
constant effective potential, given by Eq.~15!. Note that the
dispersions of the momentum and coordinate distributi
given by Eq.~A3! contain both oscillating and power-law

l
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factors. The oscillating factors in Eq.~A3! are analogous to
the ones in Eq.~15!, but the frequency of the oscillations is
function of time. The power-law factors in Eq.~A3! describe
the adiabatic cooling of the atomic cloud when the effect
let
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potential is decreasing slowlym0!1. When the paramete
m0 is increasing, the cooling process goes faster and
oscillations of the momentum dispersion become more p
nounced.
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