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Nonadiabatic cooling and optimal control in off-resonance dipole optical potentials
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We investigate coherent control of atomic translational motion in an applied off-resonance dipole optical
potential. Since spontaneous emission can be neglected in this regime, the problem is treated as one of coherent
momentum transfer. We consider both adiabatic and nonadiabatic regimes of cooling in the framework of the
Wigner function formalism. For the adiabatic case, an approximate solution is obtained corresponding to the
cooling envelope for an arbitrary time dependence of the external field. The nonadiabatic cooling process is
formulated in terms of optimal control theory in order to define the most favorable regime of cooling under
imposed constraints on the intensity of the control field. We find that the applied control field yields a
significant reduction of the effective temperature of the atdi8$050-294{®8)01808-3

PACS numbeps): 32.80.Pj

I. INTRODUCTION favorable regime of cooling under imposed laboratory con-
straints.

The manipulation of the atomic center-of-mass momen- We assume that the atoms are subjected to off-resonance
tum distribution is important for the adiabatic cooling of laser field and experience the energy shift of the ground state
atomic beamg1] and atomic clouds in optical latticdg®]. ~ V(X,t) proportional to the intensity of the field
For atomic beams, the experimental realizations of adiabatic
cooling are based on the effects of trapping and channeling
of atoms in the field of an intense standing w4@ The V(x,t)=Vy(t)[1—-cog2gx)], 1)
effects of localization of atoms on the scale less than the
optical wavelengthi4] and of quantization of the atomic mo-
tion in one-dimensional1D), 2D, and 3D optical molasses Wherex denotes the atomic center-of-mass coordindgt)
has also been observed and extensively stuiigd is the amplitude of the dipole potentigbroportional to the

A detailed theoretical account of the adiabatic coolingintensity of the laser field andq is the wave vector of the
process is available for atoms undergoing no spontaneouaser field.
emission in microcavities and optical trafg7]. By apply- One should note that the argumentq b4] are applicable
ing band theory to a two-level atom in a periodic optical here and the phase density of the atomic system is conserved.
dipole potential[2,8,9], a lower limit of the order of the If the goal is a redistribution in momentum space, then this
recoil energy was predicted for the minimum temperature ofimitation is not significant. Since the phase-space density of
the atomic cloud. The approach [i,7] is based on the nu- the system is conserved, this implies that the compression in
merical simulation of two-level atoms in the dipole potential momentum space will cause an increase in the coordinate
and it is difficult to analyze the dependence of the coolingspread for the atomic cloud.
process on the parameters of the optical potential. The adia-
batic regime of cooling corresponds to the case when the
effective optical potential is changing slowly in comparison Il. BASIC EQUATIONS
to the oscillation frequency of the atom trapped in the
standing-wave dipole potential and the constraint to slow
dynamics can be a serious restriction since the spontaneof82 s , )
emission should be negligible during the cooling process. O@Pility distributions simultaneously. The evolution of the
the other hand, the use of the nonadiabatic time-dependeMYigner function has to be followed for the noninteracting
off-resonance dipole potentials was shown to be extremelf@ticles in the external potential given by EQ). The
successful for interacting with the atomic center-of-mass mo?Vigner function is defined as a Fourier transform of the den-
tion [10,11. The manipulation of the atomic distribution in sity matrix with respect to the relative momentum variable
optical lattices with nonadiabatic potentials was studied un-
der various circumstancg$2,13. 0+ p’

The goal of the present theoretical analysis is to define _ o i o
optical characteristics of a radiation field in order to achievep(p’x’t)_J' d(p=p")exix(p—p )]p< 2 PP ’t>'

a cooling of an atomic system. We propose a general ap- 2
proach, valid for both the adiabatic and nonadiabatic limits

of cooling in the framework of density-matrix formalism.

This approach enables the formulation of the problem inFor the atomic system moving in the potenti&lx,t), the
terms of optimal control theory in order to identify the most time evolution of the Wigner functiop(p,x,t) is given by

We will employ the Wigner function formalism, which
ables one to study both coordinate and momentum prob-

1050-2947/98/5)/13466)/$15.00 PRA 58 1346 © 1998 The American Physical Society



PRA 58 NONADIABATIC COOLING AND OPTIMAL CONTROL IN. .. 1347

Taking into account Eq5), we obtain the initial conditions

g pa
i m ax/P(PX) for Eq. (7),

——=20%(0), =202(0), B(0)=0. (8)

1
¥(0)

1
1
== 5 | dp’ fdzexmz(p p")] a(0)
w2 , One should note that the system given by EfQ. has an
X[V V(X h 2 ,t)]p(p X0 @ integral of motion

In the case when the atom is in the vicinity of one of the BA(1)

minima of the dipole potential, it is reasonable to expand the J=a()y()———, 9)
effective potential to second order around the minimum. This

is a good approximation in many situations, such as in adia-
batic cooling[6]. It is required that each atom be located
around one of the minima of the potential given by E4).

+hZ
X E't

whereJ is a constant determined by the initial conditions.
Combining Egs.(6), (8), and (9), one can verify that

and then the effective potential becomes quadri(g,t) fdxf_dp p(p,x,t)El_, i.(_a., the distributiom_6) IS n_ormalize_d.

—k(t)x?/2, wherex is a distance from the minimum and Making use of the distributiof®), we obtain the information

k(t)=4/mV,(t)g?. In this case, Eq6) for the Wigner func- entropyS in the form

tion exactly reduces to the Liouville equation for the distri-

bution function of the classical harmonic oscillator. There- _

fore, we obtain S J dXJ dp p(px.0INLp(p.X,)]

St max (t)X— p(p,x,t)=0. 4
From Eq.(10) it follows thatJ is related to the information

The initial condition corresponding to the squeezing oscilla-£NtroPy of the atomic system, which is conserved in accor-

tions of the atomic phase-space distribution can be obtaine@@"ce wgh the Liouville tEeo&erﬁm] fih

from the thermal distribution by means of the abrupt nona- According to Eq.(6), the dispersion of the momentum
diabatic change of the dipole potential. The nonadiabati(gnd coordinate probability distributions at tinheare given
change of the dipole potential produces the classical y

squeezed statdd 6] and initiates the squeezing oscillations

of the atomic phase-space distribution. In this case, the initial a1y o La(t)
condition for Eq.(4) is given by[6] ap(H)=(p%)= 2 3" ox()=(x*)= 2 3 (1D
_ 1 where angular brackets denote the averaging with the distri-
po(P.X)= J27%(0) \2m5%(0) bution given by Eq(9). Differentiating Eq.(7a), we reduce
Egs.(7) to
p2 X2
X exg — - .
ex‘{ 252(0) ex’{ 220 © d2a(t)  2K(t) 2
az T Tm AWty
The solution of Eq(5) with this initial condition is obtained (12
in the form dy(t) ) da(t)
(p.xt)= . B |
p(p.X,
\2703(0) V2may(0) with the initial conditions defined by Edg).

Xexf —a(t)p?= Bt px—y(t)x?]. ()

Indeed, the substitution of E@6) into Eq. (4) gives us the
closed set of equations The traditional mechanism of laser cooling based on the

squeezing of the atomic phase-space distribution is an adia-
da(t) 1 batic mechanism of cooling that has been discussed in details
g - mPWL. (78 in the literaturd 6]. In this case, the frequency of the atomic
oscillations is decreasing adiabatically slowly by means of
da(t) 2 the reduction of the effective dipole potential. The resulting
=2k(t)ar(t)— = (1), (7p)  evolution of the momentum and coordinate distributions can
m be found from Eq(12), assuming the equilibrium initial con-
ditions. Looking for the envelope solution of E(L2), we
dy(t) _ k(D) B(D) 70 neglect the term with the second derivatiVay/dt?. Taking
=k AW, into account Eq(11), we obtain

IIl. NONADIABATIC REGIME OF COOLING
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09 b3

ox(t) _( k(t))‘l’z oa(t) _( k(t)

a%(0) |k(0) a5(0)  |k(0)

0.8

It is easy to verify that Eq(16) is equivalent to the following
change of temperaturd:(t)/T(0)= Vk(t)/k(0). In Ref.[6] 07
the adiabatic regime of cooling with exponentially decaying
effective potentialk(t) =kqoexp(—st) has been studied by ;2:(7» 06
means of the numerical simulations. The envelope analytical
solution given by Eq(13) reproduces the results of simula-
tion [Ref.[6], Fig. 1(d)] with remarkably good accuracy. 0t

As opposed to the adiabatic one, the nonadiabatic regime
opens the possibility of achieving a significant cooling effect
within a short-time interval. The simplest nonadiabatic cool-
ing scheme corresponds to the abrupt change of the effectiv
potential

Ko t<0 FIG. 1. Comparison between an exact solution for the momen-
k(t):{k ' >0 (14 tum dispersionaﬁ(t) given by Eq.(19 with wy=0.03 and 0.3
ey ’ (lines 1 and 2, respectivelynd the envelope solution given by Eq.

) o o (16) (lines 3 and 4, respectivelyas a function ofr= wt.
Assuming that fot<<O the system is in equilibrium, we ob-

tain from Eqgs.(12) and(8
9512 ® for two values of the cooling ratey,. One can see that for

Ky mo=0.03 the amplitude of the oscillations of momentum dis-

1 k

al(t)== o?(0)| | 1+ —|+[1— 2 coq2wqt) |, persion is small enough and the exact solution deviates only
p 2P Ko Ko : i
slightly from the envelope solution represented by a dashed
(15 . : . i i .

1 " K line. This corresponds to the adiabatic regime of cooling. At
0')2<(t)= - a'>2<(0) 1+ 94120 cog2wyt) |, the same time, for the I_arge_r values of the cooling rate, t_he
2 Ky Ky amplitude of the oscillations increases and the exact solution

deviates significantly from the envelope solution. In the

where w%zkolm and wizkllm. One can see that fdg nonadiabatic regime, the decay rate of the oscillation ampli-
<Kkg a substantial reduction of the momentum dispersion catude is comparable to the frequency of the oscillations. With
be achieved at= 7/2w, . The oscillations of the momentum the increase ofuy, a crossover from underdamped to the
and coordinate dispersions of the atomic distribution deoverdamped oscillations occurs and the analytical solution
scribed by Eq(15) are known[15,18,19. (A3) becomes invald.

In order to demonstrate the crossover from the adiabatic
to the nonadiabatic regime of cooling, we will employ an
exact solution for the power-law profile of the effective po-

tential Ko/(1+uowot)? (uo is a cooling rate parameter IV. OPTIMAL CONTROL ANALYSIS
valid in both adiabatic and nonadiabatic regimes. In the Ap-
pendix we present an exact solution of Efj2) for this po- As we discussed above, in the nonadiabatic limit the evo-

tential for arbitrary initial conditions. Making use of Eq. lution of the atomic distribution is quite sensitive to the tem-

(A2) and assuming the equilibrium initial conditions, we ob- poral profile of the effective potential. Namely, the effect of

tain the fast changing of the effective potential is twofold: The
5 _ energy and therefore the average value of the dispersion of
1-(pol4)cog27) the momentum distribution may increase, but at the same
1—,u(2)/4 time the amplitude of the oscillations is also increasing. The
evolution of the distribution becomes quite complex and may
lead to decreasing or increasing of the dispersion of momen-

tum distribution for different time profiles of the effective
(16) potential.
For this reason it is useful to apply the formalism of op-

o) _ 1
05(0) 1+ powo(0)t

N (mol2)sin(27)

o2(t) 1—(u2/4)cog27) timal control 'gheor_y(OCT)_ (see, e.g., Refl17)) to the prob-
200 =[1+ powo(0)t] 1.2 lem of nonadiabatic cooling. The purpose of the OCT analy-
7x(0) Ko sis is to define the temporal profile of the control fi&ld)
. that drives the system from a given initial state into a target
(1ol2)sin(27)

state characterized by target valugsand ay, which define
\/1—,u(2,/4 the target values of the momentum and coordinate disper-

sions at a given moment of tintg. Taking into account Eq.
where 7(t) = (1— u3/4)Y%(1uo) IN[1+ uowo(O)t]. The time  (10) for the parameters of the atomic momentum distribu-
evolution of the momentum dispersion is presented in Fig. Tion, we define an objective functional in the form
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1 [t K
=5 | vk 5 rtg - wol?

K 2 K 2
+ 2 B (tg)+ 2 [a(tg)_ a’g]

a7 o5k
j dt’n(t’ )[dt, a(t’ )+ = B(t’ )} ;%((_0; _
tg ! ! !/ ! ! 2 ! "
# | Cdv )] By -2kt att) + 5 ot B N
ty d
dt’v(t)| g YD) —k(A) B |, (17) ,
0 Q 0.5 1 15 2 25 3 35 4

where the functiona (t), u(t), andv(t) are Lagrange mul-

tipliers and have to be defined from the extremum conditions _ FIG. 2. Optimal control solution for the momentum dispersion
and the constar controls the accuracy of the target condi- () (solid line) compared to a reference solutigdashed ling
tions att=t,. Taking into account the integral of motion The initial conditions correspond 05(0)/ (Mw1)?0i{(0)=3. The
given by Eq (12) we conclude that the produa(tg) ¥(t,) target timew, ty=2.

is minimal whenp(tg) =0. Since we want to minimize the |y order to improve the convergence of the numerical solu-
increase of the coordinate dispersion, the target functionalon evolving from the initial equilibrium state to the target
given by Eq.(18) requires thatB,=0. An additional cost state, we take advantage of the fact that a substantial cooling
assumed in Eq(18) is represented by the first term on the effect can be already achieved by an abrupt change of the
right-hand side associated with the requirement to minimizgpotential, as we discussed in Sec. lll. This steplike potential
the intensity of the control laser field. The desired solutioncreates the nonequilibrium initial conditions for the atomic
corresponds to the minimum of the functiorial). The first  distribution at the momerit=0, which cause the oscillations
variation of the objective functional yields the set of equa-of the dispersions of the atomic distribution. With the prop-

tions erly chosen steplike potential, such oscillations brings the
system closer to the desired target state compared to the ini-

da(t) 1 tial equilibrium state. Driving the system into the target state

a m B(1), is achieved by means of the continuous control field applied

for t>0. This means that we choose the nonequilibrium ini-
tial conditions(19) for Eq. (18).

da() = 2K(t) a(t) — E Y1), The system given by Eq$18) and (19) was solved by
Sdt m means of a two-point iteration methd@0]. This method

avoided any divergence of the iteration by means of the de-

dy(t) creasing of the norm of the operator in the Picard iteration

=k(D)BM), procedure.

A solution of the optimal syster(iL8) for the target time

dv(t) 2 w1tg=2 is given in Figs. 2 and 3. In Fig. 2 we compare the

i m m(t), (18  evolution of the momentum dispersion with the optimal con-

trol field to the reference solution with a constant field. The
solution presented in Fig. 2 with a dashed line corresponds to

du(t) = k() p(t)+ i (1) the case when the squeezing oscillations have been initiated
dt m ' att=0 by means of the nonadiabatic change of the effective
potential, which remains constanttat 0. The solid line cor-
di(t) responds to the optimal control solution of the squeezing
—ar - 2k®w(), oscillations. We conclude that the use of optimal control pro-

vides a significant reduction of the dispersion of the momen-

tum distribution at a given moment of target time. Figure 3
presents the optimal control field. One can see that the tem-
poral structure of the optimal potential is nonmonotonic. The
reason for this is a competition between the reduction of the

_ _ _ energy of oscillations favorable for cooling and the unfavor-
®(0)=ao,  A(0)=0. 0=, (190  able reduction of the amplitude of the oscillations due to the
decrease of the potential, combined with the requirement of

Mig)=— (a(t )— 070) _minim_izatio_n of the eontrel fieIc_;I. As we di_scussed before, it

9 9 (1) is mainly this nonadiabatic regime of cooling that makes the

evolution of the distribution complex and the application of

m(tg)=—KpB(tg), A(tg)=—K[y(ty)— gl OCT becomes essential.

k(t)=2u(t)a(t) +»(1) B(1),

with the initial and final conditions
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APPENDIX: EXACT SOLUTION FOR A MODEL
TIME-DEPENDENT EFFECTIVE POTENTIAL

The cooling equations can be solved exactly for the
power-law decaying effective potential, given by

k(t)=k(0) (A1)

[1+ powo(0)t]*
and the solution we obtained is valid in the region of param-
eter Osuos<2. With the substitutions ~a(t)=[1
"o 0?5 1' 15 é zfs 3 375 4 +/~‘“Ow0(0)t]a(;) and 7(t):{l/[1+ﬂ0w0(0)t]}ZG) and

. the  dimensionless time defined by 7(t)=(1

2/p\1/2 ;
— wol8) Y (L) In[1+ powo(O)t], Eq. (12) is reduced to
FIG. 3. Time evolution of the dimensionless optimal control #of4) (Lo I[1+ owo(O)], Eq. (12)

field k(t)/ky, wherek; is a constant reference field corresponding d%a(7) da(7)
to Fig. 2. —+4 =0,
dr dr (A2)
According to the above discussion, the effective potential o e
should change nonadiabatically in order to initiate the Bl T)_)\~(~T): _mzwz( “(T)_)\a(;))
squeezing oscillations. The typical nonadiabatic cooling time T T

is of the order of the period of the squeezing oscillations of ]

the atomic distributiort,=1/w, as opposed to the adiabatic Where A=puo/y1—ug/4. Equation(A2) should be solved
cooling timet,=1/s, wheres is the typical rate of adiabatic With the initial conditions given by Eq8). Returning to the
decay of the effective potential. In the adiabatic regime, Variablese(t) andy(t), a solution of Eq(12) is obtained in
<w,; and thereford,>t,,. In the optical latticesw,~10°  the form

and thereforet,,~10 % s, whereast,~10"“s. For ex- _ e ~
ample, in the situation considered in Figs. 2 and 3=t a()=[1+ powo(O)t]Le1SIN(27) + €004 27) +C5,

=2/w,. Therefore, operating in the nonadiabatic regime pro- m2w?(0)
vides a possibility of a much faster cooling than in the usual ~ y(t)= ——————[¢,Sin(27) + c5c04 27) + Cg4]
adiabatic one. [1+ mowo(0)t] A3)
V. CONCLUSION and the coefficients are

In conclusion, we proposed a general approach for the
coherent manipulation of the dispersion of the center-of- Cl:_ﬂL,
mass atomic momentum distribution, in the framework of the N
Wigner function formalism, valid in both the adiabatic and
nonadiabatic regimes of cooling. One should note that the 1 g ) Yo
extension of the above formulated results to the 3D periodic CZ:W 2 (1~ no/2)— WE)(O) :
potential is straightforward since in the coherent regime dif-
ferent degrees of freedom are completely independent. In the 1 ag Yo
adiabatic regime, we obtained an analytic solution for the c3=1_ 72 7+ S2w2(0 }
envelope of the momentum and coordinate distributions. We Ko m“w(0) (A4)
also obtained analytical results for the atomic distribution
valid beyond the adiabatic limit for some particular profiles C= Yol2 Ho
of the time-dependent effective dipole potential. In the nona- 4 mPwi(0) \/1_,“3/4’
diabatic regime, the evolution of the atomic distribution be-
comes complex and it is natural to employ optimal control 1 Yo ) @
theory to obtain cooling at a given target time. The general 05=1_ 24 [Zmzwz(O) (1= pol2)— 7}
approach was formulated in order to define the most favor- Ko 0
able regime of cooling under imposed costs. We found that 1
the use of optimal control enables a significant reduction of Co= . ﬂ+ 702 }
the width of the momentum distribution at a given moment 1-pugl4| 2 2mPwy(0)

of target time. o ) . )
In the limit wy— 0 the effective potentialAl) is a constant
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factors. The oscillating factors in E¢A3) are analogous to potential is decreasing slowlg,<1. When the parameter
the ones in Eq(15), but the frequency of the oscillations is a u is increasing, the cooling process goes faster and the
function of time. The power-law factors in EGA3) describe  oscillations of the momentum dispersion become more pro-
the adiabatic cooling of the atomic cloud when the effectivenounced.

[1] Jian Chen, J. D. Story, J. J. Tollett, and Randall G. Hullet, [9] M. Wilkens, E. Schumacher, and P. Meystre, Phys. RetdA

Phys. Rev. Lett69, 1344(1992. 3130(1991).

[2] A. Kastberg, W. D. Philips, S. L. Rolston, R. J. C. Spreeuw,[10] R. Graham, M. Schlautmann, and P. Zoller, Phys. Revi5A
and P. S. Jessen, Phys. Rev. L&t, 1542(1995. R19(1992.

[3] V. S. Letokhov, Pis'ma Zh. Eksp. Teor. FiZ, 348 (1968 [11] F. L. Moore, J. C. Robinson, C. Bharucha, P. E. Williams, and
[JETP Lett.7, 272 (1968 ]; A. P. Kazantsev, Zh. Eksp. Teor. M. G. Raizen, Phys. Rev. Leff3, 2974(1994; F. L. Moore,
Fiz. 66, 1599(1974 [Sov. Phys. JETR9, 784(1974]; A. P. J. C. Robinson, C. F. Bharucha, Bala Sundaram, and M. G.
Kazantsev, G. |. Surdutovich, D. O. Chudesnikov, and V. P. Raizen,ibid. 75, 4598(1995; J. C. Robinson, C. F. Bharucha,
Yakovlev, J. Opt. Soc. Am. B, 2130(1989; C. Salomon, J. K. W. Madison, F. L. Moore, Bala Sundaram, S. R. Wilkinson,
Dalibard, A. Aspect, H. Metcalf, and C. Cohen-Tannoudji, and M. G. Raizenibid. 76, 3304(1996.
Phys. Rev. Lett59, 1659(1987). [12] Hubert Ammann and Nelson Christensen, Phys. Rev. [8ft.

[4] C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. 2088(1997).
D. Phillips, P. D. Lett, and P. L. Gould, Phys. Rev. Lé®, 33 [13] P. Rudy, R. Ejnisman, and N. P. Bigelow, Phys. Rev. L&i}.

(1990; N. P. Bigelow and M. G. Prentisigid. 65, 29 (1990. 4906 (1997).
[5] P. Verkerk, B. Lounis, C. Salomon, and C. Cohen-Tannoudji,[14] Wolfgang Ketterle and David E. Pritchard, Phys. Rev4&,
Phys. Rev. Lett68, 3861(1992; P. S. Jessen, C. Gerz, P. D. 4051(1992.
Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I.[15] E. Arimondo, A. Bambini, and S. Stenholm, Opt. Commun.
Westbrook,ibid. 69, 49 (1992; G. Grynberg, B. Lounis, P. 37, 103(1981).
Verkerk, J.-Y. Courtois, and C. Salomoihid. 70, 2249  [16] V. Natarayan, F. DiFilippo, and D. Pritchard, Phys. Rev. Lett.
(1993; P. Marte, R. Dum, R. Tab, P. D. Lett, and P. Zoller, 74, 2855(1995.
ibid. 71, 1335(1993. [17] Liyang Shen, Shenghua Shi, and Herschel Rabitz, J. Phys.
[6] T. Zaugg, P. Meystre, G. Lenz, and M. Wilkens, Phys. Rev. A Chem.97, 12 114(1993.
49, 3011(1994. [18] E. Arimondo, A. Bambini, and S. Stenholm, Phys. Rev24
[7] T. Zzaugg, M. Wilkens, P. Meystre, and G. Lenz, Opt. Com- 898 (1981).
mun. 97, 189 (1993. [19] A. F. Bernhardt and B. W. Shore, Phys. Rev.28 1290

[8] M. Wilkens, E. Goldstein, B. Taylor, and P. Meystre, Phys. (1981.
Rev. A 47, 2366(1993. [20] Kin-Chue Ng, J. Chem. Phy§1, 2638(1974.



