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We discuss a method of solving the time-dependent Sithger equation for atoms with two active elec-
trons in a strong laser field, which we used in a previous pggeBcrinzi and B. Piraux, Phys. Rev. %6, R13
(1997] to calculate ionization, double excitation, and harmonic generation in helium by short laser pulses. The
method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the
calculations is documented and error estimates are provided. The results for He at peak intensities up to
10" W/cn? and wavelength 248 nm are accurate to at least 10%. Similarly accurate calculations are presented
for electron detachment and double excitation of the negative hydrogefSb850-29478)00208-X]

PACS numbd(s): 32.80.Rm, 32.80.Fb

[. INTRODUCTION in range of electron energies of interest. Results have been
published on M 7].

Several programs are being pursued that aim at a descrip- Here we present in detail the method employed for the
tion of three-dimensional two-electron or multielectron at-calculation of excitation, ionization, and harmonic genera-
oms in strong laser fieldd—4]. The common motivation for tion in He published in a previous papé]. Our purpose is
these efforts is to obtain quantitative results for excitation!0 provide convergedb initio calculations for realistic laser
ionization, and generation of harmonics by laser pulses garameters, with special emphasis on electron correlation.
intensities, where more than one electron participates in th¥/e€ use an expansion in explicitly correlated two-electron
process. The various approaches emphasize different aspeb@sis functions and complex scalifg]. The range of appli-
of the problem. cation is similar to that of Ref4]. The most important dif-

The first fully correlated three-dimensional calculationsference is our use of an explicitly correlated basis, which
for two-electron atoms in nonperturbative laser fields weredives a very accurate description of atomic structure includ-
made for constant laser intensity by tRematrix Floquet ing doubly excited states with a relatively short expansion.
method[1]. Results have been published on tind He[5] The second crucial ingredient of our method is complex scal-
and Mg[6]. The advantage of the method is that it can being Which, as we will show, gives a simple implementation
applied to multielectron atoms, where existing atomic strucOf strictly outgoing wave boundary conditions by arf
ture programs can be used. At large intensities, many angul&pethod. The penalty of the method is the loss of a direct
momenta and F|0quet blocks are required, and very |arg@hySiC3.| interpretation of the continuous spectrum of the
systems of equations have to be solved. Recently an adaptgemplex scaled operator. While this may not be a fundamen-
tion of the R-matrix method to solve the time-dependenttal limitation of the complex scaling method, it does at
Schr"i]jinger equation was proposéﬂl' which maintains the present limit our results to total ionization, double excitation,
applicability to general atoms, but may be less plagued bynd harmonic generation.
expansion size problems. Compared to Ref8], we extend the calculations for He

The approach of Ref3] puts a strong emphasis on two- to higher laser intensities up to fOv/cn? at a laser wave-
electron correlation in He-like atoms at the expense of abariength of 248 nm. The foundation of the error estimates
doning the realistic description of atomic structure. Thediven in Ref.[8] is presented and discussed in detail. By
method solves the time-dependent Sdimger equation on a improvements of the basis the accuracy of the harmonic
grid for the radial electron coordinates, and with an expanspectra calculation could be enhanced to about 10%. We
sion in single-particle spherical harmonics for the angulasupplement the results by laser detachment and double exci-
degrees of freedom. By visualization of the wave function, intation of H™.
particular the process of direct double ionization could be
studied. The implementation is adjusted to a massively par- Il. COMPUTATIONAL METHOD
allel computer, but still the grid size and the length of the o )
multipole expansion of the interelectron potential is limited ~ The Schrdinger equation of a two-electron atom exposed
by computer resources. to a Ia§er f'leld'descrlbed in velocity gauge with the dipole

The method of Ref[4] describes a two-electron wave aPproximation is
function by an expansion in numerical single-electron wave q ]
functions that are calculated in a finite box. This provides a . S - I~ = e > -
realistic representation of atomic structure, and aII?)ws oneto gt v 12D =Hot CA)- (Vat Vo) (1),
adjust the wave function to the parameter range to be inves- (1)
tigated. For example, when photoelectron spectra are to be
extracted, continuous wave functions can be densely placeslith the atomic Hamiltonian
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1 7 1 space large enough such that the boundary conditions are of
Ho=— §(A1+ Ap)————+ ———, (2)  secondary importance. In our case, a more stringent method
f1 T2 [ry—ry of absorbing outgoing flux is required. Such a method is

R R complex scalind9,13]. It consists in analytically continuing
wherer, andr, denote the electron coordinates measuredhe Hamiltonian by multiplying the real coordinates by a
from the nucleus, and\; and V; are the corresponding complex number
Laplace and gradient operators. The nuclear char@e=ig L L
for He andZ=1 for the negative hydrogen ion. Atomic units H(ry,rot)—Hy=H(e'ry,e'r,;t), (4)
are used unless stated otherwise.

The vector potential of a linearly polarized laser pulse isWhere the scaling anglé is real and positive. For the time-
given by independent Schdinger equation, the mathematical theory

of complex scaling is well established. The new Hamiltonian
A(t)=h(t)sin(wt)(0,0A,), 3y  He has the same bound-state spectruntiasvhile the con-
tinuous spectrum is rotated by the angi€6 around the

where we employed césand Gaussian shaped envelopes ionization thresholds into the lower half-plane of complex
energies. This separates the continua starting from different

heo(t) =[cog 7t/ T)]?, ionization thresholds. In the wedge-shaped area between the
real axis and the rotated continua, doubly excited states ap-
heausét) =exd — (2t/T)?], pear as square-integrable eigenfunctions with complex ei-
genvalues, whose imaginary parts give one-half of the auto-
with the pulse duratiofT. ionization widths. In an exact calculation, the values of

The calculations were made in velocity gauge, since Wehound-state and resonance energies do not depend on the
found much better convergence than in length gauge, whicBcaling angled. The method is being widely applied. For
is in agreement with previous experience and with theoretimultiphoton physics it is used to calculate ionization rates
cal argumentg10]. A calculation at intensity 0 W/cn?  and ac Stark shifts of hydrogenlike systems by the Floquet
and frequencies oi»=0.4 and 0.6 was repeated in length method, and in time-dependent calculations for hydrogenlike
gauge, and gave the same results for ionization and singleystemq14,15.
excitation. Results for double excitation could not be con- There is no complete mathematical theory for the appli-
verged in length gauge. cation of complex scaling to time-dependent problems; only
Equation(1) is a (6+1)-dimensional equation, which can partial results for the time evolution of bound and resonance
be reduced to %1 dimensions because of cylindrical sym- states were founfl16]. In the Appendix we argue that the
metry, when the laser is linearly polarized. Due to the highrestriction of the complex scaled Schinger equation
dimensionality only a very limited range of the phase space
can be numerically represented, and one needs to control the
restrictions imposed on this space carefully. The restrictions
consist of basis set truncation and the boundary conditions at
large distance. We first discuss the boundary conditions. to the space of square-integrable functions is equivalent to an
unscaled equation with the constraint of strictly outgoing-
A. Absorption of outgoing flux wave boundary conditions. The outgoing-wave solution at

lonization means that a finite portion of the wave functionthe coordinatesr, ) is obtained by evaluating’, at the

moves away to arbitrarily large distances without furtherdack-scaled argumentse(*r;,e™'r;). To establish this
contributing to the dynamics of the system. In a finite spaceduivalence, we need to assume far reaching analyticity
one needs to absorb this outgoing flux at the boundary of thproperties of the solutio®¥ 4(ry,r,;t), which are difficult to
space to avoid unphysical reflections. Common proceduregrove in practice.
are the use of a complex potential at large distanftés?), Regardless of this mathematical problem, the method has
or some form of mask functiof8]. A more systematic con- been successfully employed in time-dependent calculations
trol of the asymptotic boundary conditions was proposed irf15], and its validity could be verified numericalliL7]. For
Ref.[12]. Ideally, one admits only outgoing waves at large hydrogen one can approach the linéit-0, i.e., directly
distances. However, outgoing-wave boundary conditions areompare with the usual Schtimger equation. It was found
difficult to define in the presence of a dipole field, which that the projections on bound states and the expectation value
ranges to arbitrarily large distances. In any case, correctlpf the dipole
imposed outgoing-wave boundary conditions are energy de- . L .
pendent, which is, in general, quite difficult to implement d(t)=— (Ve "r,t)|r| ¥ (e ' 1)) (6)
computationally. An additional complication is that the re- ]
sulting Hamiltonian is non-self-adjointthe norm of the do not depend on the scaling angleThe advantage of the
wave function on the finite space is not consehamtl it has  complex scaled solution is that, due to the absence of reflec-
nonorthogonal eigenfunctions. This may cause problems fdions, a much shorter expansion of the wave function can be
computational implementations that rely on the orthogonalityused wheng# 0. For the two-electron system, basis size re-
of the eigenfunctions of the Hamiltonian. quirements exclude very small scaling angles, but we found
For calculations with only one active electron, which arestable results for the excited state populations andifoy in
effectively 2+1 dimensional, one can usually make thethe range of 0.12 #=<0.28 (see below.

d - - - o
'a‘l’o(rbrz;t):Ha‘l’o(rl,fz;t) 5)
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The harmonic spectrum is obtamed by Fourier transform- TABLE I. Basis set folL=2 used in time propagation. “Size”
denotes the number of basis functions. For the time propagation,

ing the acceleration of the d|potb The total ionization yield ... linearly dependent vectors are removed.

is defined as
I ag Bs ke mg ng ps Size
Yion:]-_Ei (Di(ry,ra)[Wo(e™rrost=) (D 2000 -0333 3 9 2 9
—2.000 —0.250 3 9 2 9
where®; is theith bound-state function calculated with the —2.000 -0.200 4 9 2 9 221
::%?llvgrig]rzltt?glri:ﬂaa:& We use the computationally more 1 1400 -1400 6 5 5 6
—0.666 —0.666 6 6 2 6 56
VA OF (1 TN (T1.Tot=0)) 2, (8 2 —2.900 -—2900 1 1 1 1
on= 1= 2 KL, r)|Wolry rast==)F, (8 e e e s s e
_ _ _ -1.000 -1000 6 6 2 6
where®; , is the bound-state eigenfunction of the complex —0.666 —0666 6 6 2 6 139
scaled atomic Hamiltonian
total 416
Hoo®i y=Ei®; 4. (9)  total in time propagation 318

Note the extra complex conjugation on the left-hand func-
tion, i.e., in the integral th@&inconjugatedtunction is used.
Equationg(7) and(8) are equivalent because of the analytic-
ity of both ®; , and¥ 4, and since ford=0, ®; ,_ is real
up to an overall phasesee the Appendijx

The population of a doubly excited stateis determined
as

Expansion(11) is known to be formally completgl8],
and it converges rapidly for bound states of the three-body
Coulomb system. In Ref19], a further significant improve-
ment of the basis was achieved by selecting the combination
of powers by the rule

Po=[(®% (/W5 (10 K+ m+n+|k—m|(1— 8y,) <ps. (13

This equation does not have an unscaled analog, since the
resonance wave functioh, , seizes to be square integrable This constraint can be understood as follows: The range of

when # approaches 0. space covered by a basis function in the directiom,0fnd
r, is roughly k/ag and m/Bg, respectively. Whenxs~ B,
B. Basis set expansion and |k—m| becomes large, the electrons remain far from

each other and correlation, which is mostly contained in the
coordinater ,, becomes small. One therefore needs fewer
functions withr,, dependence whetk—m| is large. The
constraint leads to an important reduction in the expansion
size without deteriorating the accuracy of bound and doubly
excited state energies.

max L In Refs.[19,2Q for each state of helium, two sets of ex-
=P, > E G (r1.r>5) ponents were used, one describing the known asymptotic be-

L=01= havior of the bound-state wave function by selecting=Z

mg  ng and B,=+—Z?-2E, and a second one describing correla-

2 2 kmns(t)r‘irmrgze asfi=Ps'2 (11) tion by exponentsy,= 3,, which were optimized to obtain
m=0 n=0 the best bound-state ener@y In our case we needed to

i i describe many states, including strongly correlated doubly
The operatorP, projects on the singlet states, amd,  oycited states, within the same basis set. Therefore we used
:=[ry—r,|. The two-electron angular facto8, for total  several different sets of exponents for edctand!. As an

We approximate the solution of the complex scaled
Schralinger equation by expanding, in a Hylleraas-like
explicitly correlated basis

‘I’o(Fl,Fz;t)

wM
||MU,

angular momenturh andz component.,=0 are example, the exponents and the powers used fo2 in the
major part of the calculations are given in Table I. The first
GL|=r |é |2 CI 0 m(rl) m(fz) (12) group of exponents is adjusted to describe the singly excited

states and single-electron continuum of the configuration

type (1s,n’d), the middle group is for symmetrically doubly
CI mL-1,—m are Clebsch-Gordan coefficients, aivy, are  excited states and higher continua of the fomp,n’p) and
sphencal harmonics. Note that for eachthere are onlyL ~ the last group is for statesn@,n’s) with single-electron
+1 angular functionss, ;. The major part of the angular quantum numbera,n’=1,2,3. The particle-exchanged con-
correlation, which in the usual atomic physics basis requirefigurations are automatically included by the exchange sym-
a large number of combinations of single-electron angulametrization of the basis functions.
momental andL—1, is here contained in the interelectron It is important to observe that in velocity gauge double
coordinater ;. excitation must be included into the basis for a correct rep-
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resentation of the wave function, even when no real double ézr*lJrr*Z
excitation occurs. The reason is that the gauge transforma- ’
tion b= Fl_ Fz
- IA(L)-(rg+T g _ _ . . :
W(ry,rait)— AW 2w (ry ryst) (14 as the body-fixed vectors. With this choice, the subscripts of

4 L refer to collective rotations of the electrons. This is
desirable for some highly correlated states, like the Wannier
_ _ S o MmN e BT stateg[24]. In the unsymmetrically excited states that domi-

Our basis functionsGy(ry,rp)rirare 1772 are  paie the wave function of an atom excited by a laser pulse,
strictly real, such that the phase as well as dependence  one electron carries the major part of angular momentum
of Wy(ry,rp;t) is entirely contained in the expansion coef- (except for symmetrization which leads to poor conver-
ficients. This means that the expansion coefficients of ougence of theD-function expansion.
complex scaled initial statd® 6,1S(F11F2) are dependent oé Similar problems arise for an expansion with respect to
and for eachd, and a different system of equations with the perimetric coordinates
different initial condition has to be solved.

We can interpret the same fact in terms of the back-scaled
solution¥ ,(e~'’r,,e~r,:t), which approximates the solu-
tion of the normal Schudinger equation with outgoing-wave
boundary conditions. The expansion functions for the
outgoing-wave solution are then

equally affects both coordinates, and thus introduces virtu
double excitation.

U:_r1+r2+r12,
v=r1—r2+r12,
W=I‘1+r2—l’12.

While the interparticle coordinates, r,, andr ;, are subject

to the triangular inequalityr;—r,|<r;,;<r;+r,, the peri-
metric coordinatess, v, andw each vary independently in
0,). This simplifies the calculation of integrals, and allows
ne to find expansion functions, where the operator matrices
ecome sparse. Like with the Jacobi coordinates, the unsym-
metrically excited states, where the two electrons move
largely independently, are not efficiently described by such
C. Alternative basis sets an expansion, sinca, v, andw each contain both coordi-

The good performance of expansiti) for He is due to r)atesrl andr,. It also appears diﬁiqult .to find a constraint
the fact that, on the one hand, it is very similar to the usualike EQ. (13) to cut down on the basis size.
atomic physics expansion in terms of products of single- Finally, we explored an expansion with respect to the co-
electron orbitals, which converges well for states, where therdinatesr 1, r,, and co®,,:=r4-r,. This is very similar to
two electrons remain spatially separated. On the other handn expansion in single-electron orbitals. The main advantage
the explicit dependence an, allows a good description of is that the calculation of matrix elements becomes simple.
the wave function at small interelectronic distances, which idHowever, the expansion length is generally larger than with
particularly important when both electrons are in the saméhe explicitly correlated basis, and bound-state accuracies be-
shell, as in the ground state or in symmetrically excitedyond 10 * a.u. become extremely hard to achi¢2g].
states. We investigated several other expansions, which seem
offer technical advantages or which are particularly suitable D. Numerics and computation
for specific states of He.

An implementation of arbitrary angular momentum for
few-body systems is given by Wignei functions[21,22.
At high angular momenta, that expansion allows a strong (il

- : ; S =(ili) (15)

reduction of the number of nonzero matrix elements in the
calculation[23]. The D functions separate the overall rota- for the basis functions
tion of the system from internal degrees of freedom. The
overall rotation is defined as the rotation between a body- [iY=G (ry,rp)rry

fixed coordinate system, determined by two vectandb,

and the laboratory coordinates. TRefunctions carry indices rapidly becomes ill conditioned with increasing powérs

Danm which designate the total angular momentumthe — M;, andni . The situation is further aggravated by our use of

quantum numbem of rotation around the lab-fixed axis, ~ Several different sets of exponentgand3; for the samd.,

and the quantum number of the rotation aroundi. Al- which makes the basis formally overcomplete. We were able
: . = > to control these problems by performing accurate integra-

though there is a certain freedom of choice mpdb’ thAey tions, by appropriately normalizing the basis, and by remov-

cannot be identified with the electron coordinatgsandr,,  ing near-singular values from the metrical matrix. Still, at

since the definition of th® functions is not symmetric un- high angular momenta we needed to resort to Fortran

der exchange of and b. In order to implement electron REAL*16 (~32 decimal digits accuracy in the calculation of

exchange symmetry, one can, for example, use the Jacotfie matrix elements.

coordinates We first express the angular factors in the form

i - - _aif
e I(L+k+m+n)HGLl(r1arz)rlirrznrrl]ze e (a5r1+ﬂsr2),

i.e., they strongly depend of. By varying 6 we therefore

vary the expansion functions for the physical solution, and i
this way we obtain an estimate of the basis set truncatiort‘_n)
error with respect to the radial coordinatgs r,, andr q,.

Expansion(11) is notoriously numerically difficult. The
main reason is that the metrical matrix

rllem a1 A (16)
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G(r1,Fo)=2, g;rirdirli(cosdy)Mi(cosdp)™, (17)
J

where cog is the cosine oﬂ with the z axis. The determi-
nation of the expansion coefficiergs is straightforward but
a little cumbersome. Except for an insignificant overall fac-
tor, g; are rational numbers with not too large denominators,
which allowed us to compute them numerically, and to en-
sure that they were accurate to all digits of arithmetic preci-
sion.

For the angular integration we change variables t@gos FIG. 1.The Hamiltonian matrix in the atomic basis.

@1, C0OYy5, andeq,, Whereg; is the azimuthal angle cffl, _ _ _ _
COSh;,=T1-T,, and @, is the azimuthal angle of, with W efz'o(A fAy)- ze'"" Ze*'9+ e’
respect to the axi§1. Integrations can then be performed 06 roe

Angular momentum

2 r I ro’
over all angular variables except for &s, which is ex- (22)
pressed as cd@g,=(r2+r3—r3,)/(2r,r,). The remaining

three-dimensional integrals have the general form In the dipole approximation the laser field only connects an-

gular momenta differing by —L’|=1. The resulting struc-

ture of the overall Hamiltonian is depicted in Fig. 1.

J drldrzdrlzrir?rﬁze‘ ary—fry. (18) At the laser intensities and frequencies in our calculations,
the diagonal terms still make the dominant contribution to

, . the time evolution. Therefore we time integrate in the “in-
The integrals are nontrivial, becausg r,, andry, are con- o0t picture”

nected by the triangular inequality. We compute them by a

strictly positive and therefore numerically stable recurrence c(t)=a(t)+b(t), (22)
formula[25].

Loss of accuracy is due to the expansionsGf, and d .
cod;,, which at highL become very lengthy with up to Iqra=Hoga(t), 23

several hundred terms. Beyohd=5 we needed to use For-

tran REAL*16 arithmetic, which provided stable results up to d . . .

L~12. i&b(t)=[H9(t)— Hoela(t)+H,(t)b(t). (29
Even when no accuracy is lost in the matrix elements, the

metrical matrixS has in general a very poor condition num-

ber which quickly exceeds regular machine precisierid the operator matrices with respect to fhe,)} basis. For the
. L " - ) N i .
decimal digit$ or evenrREAL*16 precision ¢ 32 decimal dig decomposition of(t) into a(t)+ b(t). at the beginning of

its). This may lead to uncontrolled errors. We remove the )

problem by first rescaling the basis such that the diagonaei’aCh time step we set

elements of the metrical matrix a®;=1, after which the _ _
maximum size of the eigenvalues gilwas limited to= 100. a(to)=c(to),  b(to)=0.
We diagonalize5 and remove eigenvectors with eigenvalues
smaller than a threshold We founde= 101! to be suitable
for FortranREAL*8 arithmetic. INnREAL*16, we could usee
=10 but results were found to depend very weakly on
the threshold. The remaining eigenvectpgs are normal-
ized with respect t&:

Herec(t) denotes the coefficient vector, aﬁqﬂ andH, are

SinceI:|0,0 is diagonal in our basis, the solution of E83) is
trivial. Equation(24) is solved by a seven stage sixth-order
explicit Runge-Kutta methodButcher's method, given in
Ref. [26]), which we found to be more CPU time efficient
than lower-order methods. There were no problems with nu-
merical stability, as we verified by comparing with lower-
order methods at a few parameter points. The time step was
(&lSlg) =2 - (19 automatically adapted by comparing every two integration
_ ) . steps with a single double-step size integration. The typical
After transfqrmmg all matrices to the orthonormal basis mper of time steps was about 400 per optical cycle, which
{I£i)}, precision can be lowered REAL*8 to save on storage o oy seven-stage method means about 3000 matrix-vector
and computation time. multiples per cycle. Computation times for the shorter pulses
were about 1 hour on a 500-MHz DEC/Alpha work station.
E. Time propagation

For the time propagation we make one more transforma- lll. RESULTS
tion to the “atomic basis™{| )}, that diagonalizes the com-

plex scaled atomic Hamiltonian A. Bound and doubly excited states

Before we discuss the results of the time propagation, we
(ni|Hoﬁ| 7)j>:Ei5ij , (20 want to list the energies and widths of the most important
bound and doubly excited states of He and &k obtained
where with the above basis. Table Il compares the values of the first
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TABLE II. Bound-state energies of Héa) Calculated with the
basis used for time propagatiofin) Literature values.

TABLE Ill. Doubly excited states of He for =0-3.(a) Values
obtained with the basis used in the time propagatibpLiterature

values from referencd9] (L<2) and[28] (L>2).

(a) (b) Ref.
L—0 (ng,nz) @ (b)
—2.903724377 —2.903724392 [27] L=0
—2.14597404 —2.145974037 [27] (2,2  —0.777879 45%10°° -—0.777868 4.5%10 3
—2.06127198 —2.0612719 [27] (2,2  —0.621926 2.15810 % —0.6219275 2.15810 ¢
—2.0335877 —2.033586 [27] (2,3  —0.589892 1.3%10°° -—0.589895 1.3%10°°
L=1 (2,3 —0.548085 6.&810°° —0.5480855 7.810°°
—2.123843088 —2.12384308 [27] (3,39 —0.353517 2.9810% -0.353537 3.00410°
—2.05514636 —2.05514637 [27] (33  —0.317511 6.X10°° —0.317455 6.6%10°°
—2.0310696 —2.0310696 [19] L=1
—2.0199059 —2.0199059 [19] (2,2  —0.6931347 1.36810°° —0.6931349 1.377810°°
L=2 (2,3 —0.5970738 3.85%10°° —0.59707381 3.8439910 ©
—2.055620727 —2.05562071 [19] (2,3 —0.5640865 2.9310 4 —0.56408514 3.0105710 *
—2.0312798 —2.0312798 [19] (3,3  —0.335611 6.9%10°° —0.3356269 7.02810°°
—2.0200158 —2.0200158 [19] (3.3 —0.2862 3.0410% —0.28595074 3.40910°°
—2.0138989 —2.0138981 [19] (3,3  —0.282855 1.6%310 % —0.28282897 1.4620810
L=3 L=2
—2.0312551444 —2.03125514439 [20] (2,2  —0.701938 2.36810°% —0.7019457 2.362210°°
—2.0200029370 —2.02000293714 [20] 23 —-0.56925 6.%10* —0.569221 5.5510*
—2.0138906837 —2.01389068381 [20] 2,3 —0.55640 3.¢10°* —0.5564303 2.0%10°°
—2.010205246 —2.01020524808 [20] (3,3 —0.34309 5.17%410°° —0.343173 5.15810°°
@ (@ (3,3 —0.31545 4.1%10% -0.31553 4.30%10°°
L=3
L=4 L=6 (23 —0.5582830 1.29%10°5 —0.55828  1.2&10°
—2.0200007108 —2.0102041204 (23  —0.5322936 358105
—2.0138893453 —2.0078125284 (3,3  —0.3042474 32410°° —0.30424 324103
—2.0102043836 —2.0061728509 (33  —0.2780025 9.5810°5
L=5 L=7
—2.0138890346 —2.0078125124
—2.0102041827 —2.0061728489 _ . .
50078125737 20049999968 Bs. Judging from the convergence behavior, we believe that

few bound-state energies of He that we obtained with th
basis used in the time propagation, with reference value
from literature. Several of our values are lower than th
variational upper bounds from literature, but this does not
indicate greater accuracy, since due to complex scaling oy,
values are not upper bounds. Our accuracy 8 a.u. for
most energies given. The basis sizes are about 300 for eac
angular momentum. The functions are counted after removal

€

our state-specific values are accurate to all except possibly
the last digit quoted. One sees that some of them are more
accurate than the literature values quoted. A special case is

&he shape resonancelin=1 just above théd(n=2) thresh-

3ld. It requires a minimum scaling angle 6&0.25 to be-
come manifest as an isolated eigenvalue of the scaled Hamil-
onian. With the smaller angle used in the time propagation,
e resonance state cannot be distinguished from the approxi-
n%ate continuous states that surround it.

B. Excitation and ionization of He

of near-singular vectors from the bas$t. Sec. Il D, which
is the number relevant for the time propagation. As an ex- Figure 2 shows the probability of excitation and ioniza-
ample, we listed in Table | above the basis setlfer2. It  tion of He by co$-shaped pulses of duratidi= 157 a.u. and
has been shown that literature values can be exactly reprpeak intensityl =0.004 23 a.u=2.97x 10** W/cn?. Note
duced with bases of size 150 that are optimized for each that in Ref.[8] the conversion to Sl units was too small by a
state[19,20. factor of 2. The frequencies cover the range from just above
Table Il gives lowest few doubly excited states of He the five-photon ionization threshold to well above the single-
from the time propagation. The states are labeled by the rgshoton ionization threshold. Below each of the thresholds
dial guantum numbers of the dominant single-electron conene clearly distinguishes the enhancement of bound-state ex-
tributionsn,; andn,. Accuracies are of the order 1Ha.u.  citation due to resonances. The peaks below the one- and
for the energies and widths. At the very small widths thetwo-photon thresholds are due to resonances with the lowest
relative accuracies can become poor. P state(energy= —2.123 84) and the lowest excit&istate
Finally, Table IV summarizes the bound and doubly ex-(energy=—2.145 97), respectively. The resonances below
cited state energies of H We present the energies as theythe lower thresholds are not well separated due to the spec-
appear in the time propagation as well as values obtained itral width of the pulse. The pronounced dip in the bound-
larger bases with state specifically adapted exponengnd  state excitation abb=0.72 is due to a Rabi-like oscillation.
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TABLE IV. Bound and doubly excited states dfi~ for
L=0-3.(a) Values obtained with the basis used in the time propa-
gation.(b) Values with a basis optimized for each state, and litera-
ture values. The value&) are estimated to be converged to all

% digits given except for the last.
~ Energy Width Reference
L=0
107 , , : : —0.52775101689 0 preseris)
requency (a.u.)
—0.1487764 1.7324x107°3 present|(a)
FIG. 2. Excitation and ionization of He by a Geshaped pulse —0.1487762 1.7332x10°3 present,b)
of duration 3.8 fs and peak intensity 2970 W/cn? as a func-  —0.1487765 1.731x10°3 [31]
tion of frequency. Solid line: ionization; dashed line: ionization plus — . 12605 1X10°° present(a)
pognd state excitfitiqn. The arrows Iabelledlpyl, 2, 3,and 4 ~0.1260199 9.02x10°5 present,b)
!ndlcaten-photo_n |on_|zat.|on thresholds. The dip at frequency 0'72—0.12601965 8.985x10°5 [32]
is due to a Rabi oscillation. — 0.069006 1.4192¢10-3 present )
-3
When one increases the pulse duration, the minimum disang'gggtl)g6 1'412218,5 pi::i’g
pears completely, and reappears at a pulse duratien2g®. ' s P ’
A third minimum appears ak= 380 (Fig. 3). The oscillation —0.0561434 8.810 present(b)
period roughly corresponds to the Rabi period at the given L=1 e
parameters. The effect strongly depends on the pulse shape?-12604986 1.36x10 ; present,(a)
Figure 4 compares excitation by égsulses with excitation ~—0-12604986 1.36x10" present,(b)
by Gaussian pulses. The pulse energy is 0.5 a.u. for both 0-1260495 1.165¢10°° (32]
pulse shapes, and the widths of the vector potential enve- 2 present,(a)
lopes wereT=157 for the co$ pulse andT=92 for the = —0.1243856 7.x107* present,(b)
Gaussian pulse. With this choice the envelopes have the 0.12436 6.9<10°* [33]
same width at ¥ of the maximum for both pulse shapes. —0.062708 1.17x10°° present(a)
One can see that the Rabi-like oscillations occur for both—0.062716 1.19x10°3 present(b)
shapes, but they are more pronounced with thé patses.  —0.06871675 1.1914x10°3 [34]
One can also distinguish resonant enhancement of ioniza- 0.058586 <107% present,a)
tion, manifested by the coincidence of bound-state excitation- 0.0585718 8.988x10°° present,b)
peaks with ionization peaks. Most pronounced are the peaks0.05857181 8.986x10°6 [34]
at the three-photon resonance with the lowRsttate at fre- L=2
guencyw = 0.26 and the two-photon resonance with the low-—0.127937 3.19x10°% present,a)
est excitedS state atw=0.38; another resonance with the —g 127937 3.12x10°% present,(b)
lowestD state is hidden in the slope to the two-photon ion-_q 12794175 3.1625<10 % [32]
ization threshold. In spite of the massive bound state excita- g gg5954 1.654x10°3 present(a)
tion at the single-photon resonanceat0.78, weak cou-  _p 0659531 1.6576x10-3 present,(b)
pling of the P state to the continuum leads only to a slight _ gg59533 1.6581x 10-3 [35]
bump in the ionization rate at that frequency. —0.056834 2 104 present,a)
The lowest frequency of 0.2 in the figures is somewhat_0.0568294 2 5302¢10~* present(b)
above the popular frequency of 0.1837 of a 248-nm wave- L=3
e e Y e el @ 0 05504
—0.05655875 5.00x10°3 present(b)

=32.8 fs, which has a half-width of 20 optical cycles. The

pulse parameters Qoincide \_’Vith the ones used in [Ré}.for “State cannot be distinguished from the surrounding continuum at
the comparison with experlment. Our results are systemat[-he complex scaling angle @f=0.22 used in time propagation.
cally lower by about 50% compared to R¢B6]. We esti-

mate that our results are converged to 10% accuracy or bette . .
(see below Considering that we cover intensities all the a[:)sence of doubly excited states from the basis of Raf,

way into the onset of saturation, the agreement is neverthé”‘-Ithough the velocity gauge used in that calculation always

less satisfactory. introduces at least virtual doubly excited staies. Sec.

Recently another calculation for the same pulse was pub! B)- The experimental number given in RgB6] is at least
lished[37]. Those values sizably oscillate around ours, and®n€ order of magnitude smaller than all theoretical results
also around the results of Ref36]. The disagreement is and none of the calculations falls within the quite large upper
particularly evident at the lower intensities, where conver-error margin of the experiment.
gence problems should be smaller. It appears, therefore, that lonization is predominantly a single-electron effect, and
calculations of Ref[37] remain relatively far from conver- all observations made above are qualitatively the same in a
gence. A possible reason for the lack of convergence is theingle-electron atom. Double excitation in turn is a genuine
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0.03 TABLE V. lonization yield for laser wavelength 248 nm and
pulse durationT =40 optical cycles as a function of peak intensity
I. The literature values are obtained by converting the generalized
g 0.02 r cross sections from Table 2 in RER6] with the help of Eq(16) in
K that reference.
=]
24
£ 0.014 " I (W/cn?) Present Ref[36]
2x 104 7.06x10°3 8.13x10°3
00060 180 200 280 300 380 400 2.5% 16+ 0.00105 0.00148
Pulse duration (a.u.) 5x 10 0.043 0.069
1x10% 0.18 0.33

FIG. 3. Bound-state excitation as a function of pulse duration at
frequencyw=0.72. Solid line: total population of excited bound
states. Dashed line: ionization. The distance between the minima iszhich moves toward the expected intensity of< 20"
roughly the Rabi period. W/cn? with increasing pulse duration. The dashed lines are

obtained by integrating the intensity-dependent detachment

two-electron effect. Figure 5 shows the population of theratesI'(1) from Ref. [5] with the pulse shapes used in our
lowest doubly excited states with angular momentum0,  calculations. Saturation effects in the final detachment yield
1, 2, and 3, after passage of a &ebhaped pulse of duration Y(t=c) are included according to the equation
T=157. The narrower peaks are due to multiphoton reso-
nances between the ground and the respective doubly excited Y(t)= ft dt’ T[1(t)H][1=Y(t)] (25)
states with 2—6 photons. The population of the states with — '
evenL are enhanced in the range=0.6—0.9. This enhance-
ment is almost exactly proportional to tH&° bound-state As the instantaneous intensity, we defined

opulation, and the ratio between the populations was found
Fo Ft?)e proportional to the laser intensit)F/). \eVe therefore inter- H(0):=[Eoh(D)]%2, Eg=wh,. (26)
pret it as a far off-resonant single-photon transition from therps yefinition neglects terms with the time derivative of the

P to theS andD states brought about by the large ba”dWidthenveIope, whose contributions do not visibly change the
of the pulse. As with the Rabi oscillation of single excitation,

the pulse shape is quite important, since with Gaussian 2 , ) ) ) ,
pulses the phenomenon nearly disappears. Similarly, a longe
pulse duration suppresses the effect.

C. Excitation and electron detachment from H~

opulation

The binding energy of the only bound state of His
0.027 75 a.u. Therefore, much lower laser intensities and fre-f«
guencies lead to total electron detachment from H

Figure 6 shows the photodetachment at a laser frequency
of w=0.03 for intensities between X110'* and 8x 10
W/cn?. At about 2< 10'* W/cn? the single-photon ioniza-
tion threshold rises above=0.03 due to the ac Stark shift
and roughly in the same intensity region two-photon ioniza-
tion becomes dominan6]. In our time-dependent calcula-
tions we can distinguish a bend in the detachment yield,

Population

0 ! ! !

10

107 / L

-2

10 "4 E

Yield

-3

107 -~
/o

10-4 /\ l -lz T T T T T

os o o8 oo o 030 045 060 075 090 105 120
Frequency (a.u.) Frequency (a.u.)

Population

H

10

FIG. 4. Bound-state excitation for Gaussian and gusses as a FIG. 5. Populations of the lowest doubly excited states With
function of frequency. The pulse energy is 0.5 a.u. for both shapess0, 1, and 2 after the passage of a pulse With3.8 fs with a peak
and the pulse widths afé=157 for co$ pulses(solid line) andT  intensity 2.9 10** W/cn?. Dashed lines: population of the lowest
=92 for Gaussian pulsgslashed ling bound state with symmetr§P® x 10" *.
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FIG. 6. lonization of H by cos-shaped pulses with laser fre- 15 g Harmonic generation on H with a éqaulse of duration
quencyw=0.03 as a function of intensity for pulse duratiofis t_ 49 optical cycles and a peak intensit 20" W/crr?. The fun-
=8, 16, 24, and 32 optical cycles. The bend in the ionization yielddamental frequencies are 0.8dot-dashed ling 0.38 (solid line),
is due to the closure of single-photon ionization channel by the ag,\q g 42 a.u(dashed ling respectively. The frequency 0.38 is two
Stark shift and the transition to two-photon ionization. Dashedy,q4n resonant, with the lowest excit&@istate. The structure
lines: time-integrated Floquet rates from ReH]. aroundw= 0.8 originates from bound-state excitations.

comparison. The agreement for the two longer pulses is quitecceleration of the dipole by numerical differentiation. It
good, except that the bend in the yield is somewhat moravould be more desirable to calculate the expectation values
pronounced for the integrated rates. With the shorter pulse ;

. : Of the acceleration of the dipolﬁ:(t) directly, but unfortu-
the mtc_agrated rate_ unc_k_aresUmates the true detachment. Alﬁ%tely in the matrix elements of that operator integrals of
assuming the applicability of the rate concept at short pulse

the spectral width of the pulse could be sufficient to explain%rm (18) with negative powers of; or r, arise, which can

the higher yield: with a broad pulse the closure of the single-or:cly be calculated with considerable extra numerical effort
A ) ) : . cf. Ref[25]).

photon ionization channel is moved to higher intensities, thué
effectively enhancing the yield. For a quantification of this
hypothesis, rate$'(I) for frequencies other thamw=0.03
would be required.

For the double excitation of H one needs frequencies in
the visible to low UV. Figure 7 shows the excitation of the

relatively long-lived lowest autoionizin® state around the . X ot 2
resonant frequency ab=0.134 and intensity 6 W/cn?. 0‘34_9'42. al.u(.j and intensi=2x1 \'/Y]/Ch .IThe fre- ited
The resonance is shifted from its field-free position by abouflu€ncies include a strong resonance with the lowest excite

0.001 for the ten-cycle pulses. Longer pulses of 20 cycles State that greatly enhances harmonic generation and leads
have a larger shift of-0.002. In the limit of a constant laser to the dominance of the third harmonic over the first. Figure

field an ac Stark shift of the ground state £y0.005 is ex- 8 summarizes the results obtained with a pulse duration of 40

ted b turbativel t lating the data f _ optical cycles. Harmonics up to order 7 can be distinguished,
pected by perturbatively extrapolating the data from Ref and the resonant enhancementeat 0.38 is manifest. For

reference we include Table VI with the peak heights.

The expectation valueé(t) are sensitive to the wave
function at larger distances. To obtain accurate results, we
therefore added extra basis functions with smaller exponents
to cover a longer range in; andr,. By this enlargement of
the basis we were able to obtain satisfactory accuracies of
=<10% up to the fifth harmonic for frequencies in the range

D. Harmonic generation

With Eq. (6), we calculate the expectation value of the E. Accuracy of the results

dipole d(t) as a function of time, from which we obtain the  The limited expansion length for the wave function intro-
duces the dominant error into our calculations. Now we

16 . ' ' study the effect of the truncations with respect to total angu-
14 4 L lar momentum and radial basis functions.
“ 12- | Figure 9 compares the results of calculations with,,
g o =5, 6, and 7 at peak intensity 2.897.0 W/cn? and fre-
= 104 L
E 8 i TABLE VI. Relative peak heights of harmonic generation by
& cog pulses of T=40 optical cycles, and peak intensityx20'
w 64 i W/cn? for three different fundamental frequencies The accura-
'52. 4 = cies are 10% up to the fifth harmonic, and of the order 50% for the
2] i seventh harmonic.
0125 0130 0135 0.140 Harmonic order
Frequency (a.u.) ® 1 3 5 7
FIG. 7. Population of the lowest doubly excit€dstate of H 0.34 0.85 0.25 4810°° 4.4x10°8
by cog-shaped pulses as a function of frequency. The peak intend.38 1 3.9 3.x10°* 3.4x10°7
sity is 10 W/cn?, and the pulse duratioriE=10 optical cycles 0.42 1.46 0.11 2%10°6 —

(solid line) and T=20 (dashed ling
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FIG. 9. Convergence of ionization and total double excitation FIG. 10. Dependence of ionization and double excitation on the
with the maximum angular momentulm,,,. Dashed line: relative ~ complex scaling anglé. The dotted lines indicate estimated errors.
difference between calculations with,,=5 and 7; solid line: rela- ~ The intensity is 2.9% 10" W/cn?, the frequency is 0.4, and the
tive difference betweerl =6 and 7. Intensity=2.97x10'*  pulse duratiorl = 157.

Wicn?, pulse durationT = 157.

guencies between 0.2 and 0.4. Only at the lowest frequencié‘éecno.n atomin a sprong Ia_ser pulse with realistic frequency,
is there a distinguishable effect on ionization with a relative"€Nsity, and duration. This has been demonstrated on the

difference between the calculationssfl%. Double excita- SyStéms of He and Hwith frequencies ranging from infra-
tion is more sensitive to angular momentum truncation, sinc&ed to ultraviolet, intensities up to ¥0W/cn¥ and pulses as
it is a much higher-order process, but still the relative errodong as 160 fs.
rises to only about 10%. Assuming exponential convergence, The firstimportant constituent of our method is an explic-
we can conclude that with,,,, also for double excitation the itly correlated basis set expansion, which allows us to repro-
error due to angular momentum truncationS4% at the duce the atomic structure to essentially any desired accuracy
given parameters. at moderate expansion length. This includes positions and
Convergence of the expansion in the internal coordinate¥idths of doubly excited states, where we obtain accuracies
rqi, o, andr, is more difficult to investigate, since the basis that rival and in some cases exceed literature values.
rapidly grows when one increases the admissible powers of The second ingredient of our method, complex scaling,
r., y, andry,. Complex scaling provides an indirect esti- was formally introduced as a method of imposing strictly
mate of the accuracy of the internal expansion. For an infioutgoing boundary conditions. We cannot at present give a
nite basis, the results are independentofny dependence Mathematically rigorous theory for the use of complex scal-
on 6 must therefore be ascribed to the basis truncation. 1#"g in a time-dependent calculation, but we provide heuristic
practice, there is only a limited range 6fwhere the results arguments and numerical evidence that it indeed is equiva-
vary little with . When @ is too small, the outgoing waves lent to the regular Schainger equation with strictly outgo-
are only weakly damped, and one needs to describe a lor§9Y boun_dary conditions. The .technlcal advaqtage of com-
oscillatory tail in the wave function, for which ar? expan-  Plex scaling is that the expansion length remains short.
sion converges slowly. When, on the other hafdds too Convergence was investigated for the whole range of pa-
large, the complex scaled bound state wave functions ha\;@meters,_and indicates accuracies between fractions of a per-
increasingly oscillatory character, which again is not wellC€Nt at higher laser frequencies and at least 10% for the
reproduced by the finite basisf. the Appendiy. Figure 10 majority of the data. Only at the §ev_enth harmonic peak in
shows ionization and double excitation obtained with differ-OUr €xample, and for double excitation at lowest laser fre-
ent scaling angles at laser frequency 0.39 a.u. One distifiUencies, do accuracies remain unsatisfactory.
guishes a range of where the results are quite stable. The 1h€ numerically most challenging combination of param-
variation inside this range is of the same size as the variatioRters was used for He exposed to pulses of duratiéa fs
when we increase the number of basis functions by a factdft the wave length of 248 nm and peak intensities up # 10
~2, which supports our use of the variation wighfor an W/cn?, where we reac_h an accuracy of the ionization yield
accuracy estimate. For the given parameters, the ionizatioff about 10%. A previous calculation for the same pulses
varies less than 0.2%. The accuracies for double excitatiop36] agreed qualitatively with ours, but exceeded our result
are only slightly lower. At frequency = 0.3 the variation of by_ about 50% at the highest intensity. A more recent calc.u—
ionization still remains within the 1% range, but double ex-1ation [37] deviated more strongly also at the lower intensi-
citation varies by about 10%, which indicates that we apll€S- _ , o .
proach the limits of numerically reliable results for multipho- ~Another comparison with existing theoretical work could

ton double excitation. be performed with a Floquet calculation for the electron de-
tachment fromH ™. Quite satisfactory agreement was found
V. SUMMARY AND CONCLUSIONS for pulses of at least 16 optical cycles. Shorter pulses may

not be expected to compare well with a Floquet calculation
The method introduced in this paper allows a numericafor constant intensity.
integration of the complete Schdimger equation of a two- We believe that our results should serve as a benchmark
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for future calculations of two-electron systems. This refers to N % .
both complete two-electron calculations as well as model v (r;t):=Jo dk'c™ (K" ;)@ (r). (A5)
calculations. It may be expected that for harmonic generation

and ionization a single-electron description will be found to
9 P In order to relate¥(r,t) to the complex scaled wave

be satisfactory in a range of parameters. . L o
Y g P function, we must assume thét(r,t) and its time derivative

If necessary, our method allows extensions in several di W (r 0)/dt vtic functi of f tic initial
rections. To extend the range of accessible parameters is prg- (r.)/dtare analylic functions atfor any analytic initia
tateW (r,t=0). This assumption is nontrivial: for example,

dominantly a question of more computer power, aIthougI"F

technical modifications in the calculation of the matrix ele- it is known to be va_||d _fo_r the I_—|am|ltor_1|an of the f|e|d-fr_ee
ments are also required to control the loss of accuracy. ydrogen atom, while it is obviously violated for potentials

second obvious extension is the introduction of an electronigt':hf"lt are nondt!fferetr;]tlable al‘t ?ny"pomt (?[j[her(tjmam. U?dert_
core to model effective two-electron atoms like Mg. Finally, \P'S a.ssump lon, the almay 'r(]:a y con Ilnue v;/a(;/”e u?: lon
the interpretation of the complex scaled wave functiony (7';t), Im(7)>0 solves the “complex scaled” Schro

adopted in this paper, which takes the back-scaled wav8iNger equation
function as an approximation to the regular solution with
outgoing-wave bounda_ry conditions, suggests tha_t electron iillf(nr;t)=H(r;r;t)\lf(nr;t), (AB)
spectra can be determined. Whether this is numerically fea- dt
sible and practical remains to be investigated.
which is the analog of Eq5) for a single radial coordinate.
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do not depend om:
c,(k,t)y=c(k,t). (A8)

APPENDIX From this it follows that the kernel of the time integration

Here we deduce the relation between outgoing-wavél(k.k';t) also does not depend op. We see that the two
boundary conditions and complex scaling. We first assumé&quations(A2) and (A6) describe exactly the same dynam-

that one can write the radial wave function in the form  ics. The important difference is that due to the asymptotic
behavior of the expansion functior,(nr)~expfkzyr) in
o Eq. (A6), we can distinguisk>0 fromk<<0 by their norms:
W(rt)= ledk (K, D P(r), (A1) “ingoing waves” k<0 grow exponentially, while “outgoing
waves” k>0 become square integrable. Because of the ex-
where®, have the asymptotic behaviere®", and¥ solves ~ Ponential divergence, any function

the Schradinger equation

d f dk a(k)®(#r) (A9)
i&\If(r;t)=H(r;t)\If(r;t). (A2)

will diverge, iff‘lmdkla(k)|2>0. Consequently, ift' (#r;t)
For the sake of brevity we have omitted the part of the excontains ingoing waves, it will not be square integrable. To
pansion with square-integrable functiofifor the Coulomb  obtain a solution with outgoing waves only, we solve the
potential the asymptotic behavior is more preciselydifferential equation(A6) restricted to the space of square
~expikr—iIn2|kr/k).] In terms of the expansion coeffi- integrable function§| W " (5r;t)||<. Sinceh(k,k’;t) does
cientsc(k;t), Eq. (A2) can be written as not depend ony, the coefficients of the expansion

d x -
iac(k;t)=f dk’h(k,k";t)c(k’;t). (A3) qﬁ(nr;t):f dk’ ¢ (K" ;)P (9r) (A10)
% 0

Outgoing boundary conditions mean that one solvesS&8) 4y the same as in EGA5), and the outgoing-wave solution
restricted tok>0: is obtained by substitutingr with r.
q As an initial condition for Eq.(A6), we use a field-free
O [ Pty mt (L - bound state. For the class of “dilation analyti¢Z3] poten-
"at© (kit) fo di’h(k.kem (k). A4 tials, which include the Coulomb potential, the bound-state
functions are known to be analytic functions raf This is
The time-dependent wave function with outgoing boundantrivial to verify for the complex scaled Hamiltonian of the
conditions is then two-body Coulomb problem,
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creasingly oscillatory with increasing Imj, which is oppo-
site to the outgoing waves, where larger bi(causes a
stronger damping. Oscillatory functions are generally more
whered,(r) is a hydrogenic bound-state function. For com-difficult to represent numerically, and the choice pf €'’
putation it is useful to keep in mind that, for example, thewill depend on whether the outgoing-wave or the bound-

1 Z B
_2_772A_F Di(nr)=E®@i(nr), (A11)

radial ground-state eigenfunctiapr exp(—zr) becomes in-

state parts ofV’, are more important.
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