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Two-electron atoms in short intense laser pulses

Armin Scrinzi1 and Bernard Piraux2
1Institut für Theoretische Physik, Universita¨t Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

2Institut de Physique, Universite´ Catholique de Louvain, 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium
~Received 27 February 1998!

We discuss a method of solving the time-dependent Schro¨dinger equation for atoms with two active elec-
trons in a strong laser field, which we used in a previous paper@A. Scrinzi and B. Piraux, Phys. Rev. A56, R13
~1997!# to calculate ionization, double excitation, and harmonic generation in helium by short laser pulses. The
method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the
calculations is documented and error estimates are provided. The results for He at peak intensities up to
1015 W/cm2 and wavelength 248 nm are accurate to at least 10%. Similarly accurate calculations are presented
for electron detachment and double excitation of the negative hydrogen ion.@S1050-2947~98!00208-X#

PACS number~s!: 32.80.Rm, 32.80.Fb
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I. INTRODUCTION

Several programs are being pursued that aim at a des
tion of three-dimensional two-electron or multielectron
oms in strong laser fields@1–4#. The common motivation for
these efforts is to obtain quantitative results for excitati
ionization, and generation of harmonics by laser pulses
intensities, where more than one electron participates in
process. The various approaches emphasize different as
of the problem.

The first fully correlated three-dimensional calculatio
for two-electron atoms in nonperturbative laser fields w
made for constant laser intensity by theR-matrix Floquet
method@1#. Results have been published on H2 and He@5#
and Mg @6#. The advantage of the method is that it can
applied to multielectron atoms, where existing atomic str
ture programs can be used. At large intensities, many ang
momenta and Floquet blocks are required, and very la
systems of equations have to be solved. Recently an ada
tion of the R-matrix method to solve the time-depende
Schrödinger equation was proposed@2#, which maintains the
applicability to general atoms, but may be less plagued
expansion size problems.

The approach of Ref.@3# puts a strong emphasis on two
electron correlation in He-like atoms at the expense of ab
doning the realistic description of atomic structure. T
method solves the time-dependent Schro¨dinger equation on a
grid for the radial electron coordinates, and with an exp
sion in single-particle spherical harmonics for the angu
degrees of freedom. By visualization of the wave function
particular the process of direct double ionization could
studied. The implementation is adjusted to a massively p
allel computer, but still the grid size and the length of t
multipole expansion of the interelectron potential is limit
by computer resources.

The method of Ref.@4# describes a two-electron wav
function by an expansion in numerical single-electron wa
functions that are calculated in a finite box. This provide
realistic representation of atomic structure, and allows on
adjust the wave function to the parameter range to be in
tigated. For example, when photoelectron spectra are to
extracted, continuous wave functions can be densely pla
PRA 581050-2947/98/58~2!/1310~12!/$15.00
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in range of electron energies of interest. Results have b
published on Mg@7#.

Here we present in detail the method employed for
calculation of excitation, ionization, and harmonic gene
tion in He published in a previous paper@8#. Our purpose is
to provide convergedab initio calculations for realistic lase
parameters, with special emphasis on electron correlat
We use an expansion in explicitly correlated two-electr
basis functions and complex scaling@9#. The range of appli-
cation is similar to that of Ref.@4#. The most important dif-
ference is our use of an explicitly correlated basis, wh
gives a very accurate description of atomic structure incl
ing doubly excited states with a relatively short expansi
The second crucial ingredient of our method is complex sc
ing which, as we will show, gives a simple implementati
of strictly outgoing wave boundary conditions by anL2

method. The penalty of the method is the loss of a dir
physical interpretation of the continuous spectrum of
complex scaled operator. While this may not be a fundam
tal limitation of the complex scaling method, it does
present limit our results to total ionization, double excitatio
and harmonic generation.

Compared to Ref.@8#, we extend the calculations for H
to higher laser intensities up to 1015 W/cm2 at a laser wave-
length of 248 nm. The foundation of the error estima
given in Ref. @8# is presented and discussed in detail. B
improvements of the basis the accuracy of the harmo
spectra calculation could be enhanced to about 10%.
supplement the results by laser detachment and double e
tation of H2.

II. COMPUTATIONAL METHOD

The Schro¨dinger equation of a two-electron atom expos
to a laser field described in velocity gauge with the dipo
approximation is

i
d

dt
C~rW1 ,rW2 ;t !5FH01

i

c
AW ~ t !•~¹W 11¹W 2!GC~rW1 ,rW2 ;t !,

~1!

with the atomic Hamiltonian
1310 © 1998 The American Physical Society
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H052
1

2
~D11D2!2

Z

r 1
2

Z

r 2
1

1

urW12rW2u
, ~2!

where rW1 and rW2 denote the electron coordinates measu
from the nucleus, andD i and ¹W i are the corresponding
Laplace and gradient operators. The nuclear charge isZ52
for He andZ51 for the negative hydrogen ion. Atomic uni
are used unless stated otherwise.

The vector potential of a linearly polarized laser pulse
given by

AW ~ t !5h~ t !sin~vt !~0,0,A0!, ~3!

where we employed cos2 and Gaussian shaped envelopes

hcos2~ t !5@cos~pt/T!#2,

hGauss~ t !5exp@2~2t/T!2#,

with the pulse durationT.
The calculations were made in velocity gauge, since

found much better convergence than in length gauge, wh
is in agreement with previous experience and with theor
cal arguments@10#. A calculation at intensity 1014 W/cm2

and frequencies ofv50.4 and 0.6 was repeated in leng
gauge, and gave the same results for ionization and si
excitation. Results for double excitation could not be co
verged in length gauge.

Equation~1! is a ~611!-dimensional equation, which ca
be reduced to 511 dimensions because of cylindrical sym
metry, when the laser is linearly polarized. Due to the h
dimensionality only a very limited range of the phase sp
can be numerically represented, and one needs to contro
restrictions imposed on this space carefully. The restricti
consist of basis set truncation and the boundary condition
large distance. We first discuss the boundary conditions.

A. Absorption of outgoing flux

Ionization means that a finite portion of the wave functi
moves away to arbitrarily large distances without furth
contributing to the dynamics of the system. In a finite spa
one needs to absorb this outgoing flux at the boundary of
space to avoid unphysical reflections. Common procedu
are the use of a complex potential at large distances@11,2#,
or some form of mask function@3#. A more systematic con
trol of the asymptotic boundary conditions was proposed
Ref. @12#. Ideally, one admits only outgoing waves at lar
distances. However, outgoing-wave boundary conditions
difficult to define in the presence of a dipole field, whic
ranges to arbitrarily large distances. In any case, corre
imposed outgoing-wave boundary conditions are energy
pendent, which is, in general, quite difficult to impleme
computationally. An additional complication is that the r
sulting Hamiltonian is non-self-adjoint~the norm of the
wave function on the finite space is not conserved! and it has
nonorthogonal eigenfunctions. This may cause problems
computational implementations that rely on the orthogona
of the eigenfunctions of the Hamiltonian.

For calculations with only one active electron, which a
effectively 211 dimensional, one can usually make t
d
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space large enough such that the boundary conditions a
secondary importance. In our case, a more stringent me
of absorbing outgoing flux is required. Such a method
complex scaling@9,13#. It consists in analytically continuing
the Hamiltonian by multiplying the real coordinates by
complex number

H~rW1 ,rW2 ;t !→Hu5H~eiurW1 ,eiurW2 ;t !, ~4!

where the scaling angleu is real and positive. For the time
independent Schro¨dinger equation, the mathematical theo
of complex scaling is well established. The new Hamiltoni
Hu has the same bound-state spectrum asH, while the con-
tinuous spectrum is rotated by the angle22u around the
ionization thresholds into the lower half-plane of compl
energies. This separates the continua starting from diffe
ionization thresholds. In the wedge-shaped area between
real axis and the rotated continua, doubly excited states
pear as square-integrable eigenfunctions with complex
genvalues, whose imaginary parts give one-half of the au
ionization widths. In an exact calculation, the values
bound-state and resonance energies do not depend on
scaling angleu. The method is being widely applied. Fo
multiphoton physics it is used to calculate ionization ra
and ac Stark shifts of hydrogenlike systems by the Floq
method, and in time-dependent calculations for hydrogen
systems@14,15#.

There is no complete mathematical theory for the ap
cation of complex scaling to time-dependent problems; o
partial results for the time evolution of bound and resona
states were found@16#. In the Appendix we argue that th
restriction of the complex scaled Schro¨dinger equation

i
d

dt
Cu~rW1 ,rW2 ;t !5HuCu~rW1 ,rW2 ;t ! ~5!

to the space of square-integrable functions is equivalent to
unscaled equation with the constraint of strictly outgoin
wave boundary conditions. The outgoing-wave solution
the coordinates (rW1 ,rW2) is obtained by evaluatingCu at the
back-scaled arguments (e2 iurW1 ,e2 iurW2). To establish this
equivalence, we need to assume far reaching analyti
properties of the solutionCu(rW1 ,rW2 ;t), which are difficult to
prove in practice.

Regardless of this mathematical problem, the method
been successfully employed in time-dependent calculat
@15#, and its validity could be verified numerically@17#. For
hydrogen one can approach the limitu→0, i.e., directly
compare with the usual Schro¨dinger equation. It was found
that the projections on bound states and the expectation v
of the dipole

dW ~ t !52^Cu~e2 iurW,t !urWuCu~e2 iurW,t !& ~6!

do not depend on the scaling angleu. The advantage of the
complex scaled solution is that, due to the absence of refl
tions, a much shorter expansion of the wave function can
used whenu5” 0. For the two-electron system, basis size
quirements exclude very small scaling angles, but we fou
stable results for the excited state populations and fordW (t) in
the range of 0.12&u&0.28 ~see below!.
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1312 PRA 58ARMIN SCRINZI AND BERNARD PIRAUX
The harmonic spectrum is obtained by Fourier transfo

ing the acceleration of the dipoledẄ . The total ionization yield
is defined as

Yion512(
i

z^F i~rW1 ,rW2!uCu~e2 iurW1 ,rW2 ;t5`!& z2, ~7!

whereF i is the i th bound-state function calculated with th
real HamiltonianHu50. We use the computationally mor
convenient formula

Yion512(
i

z^F i ,u* ~rW1 ,rW2!uCu~rW1 ,rW2 ;t5`!& z2, ~8!

whereF i ,u is the bound-state eigenfunction of the compl
scaled atomic Hamiltonian

H0,uF i ,u5EiF i ,u . ~9!

Note the extra complex conjugation on the left-hand fu
tion, i.e., in the integral theunconjugatedfunction is used.
Equations~7! and~8! are equivalent because of the analyt
ity of both F i ,u andCu , and since foru50, F i ,u50 is real
up to an overall phase~see the Appendix!.

The population of a doubly excited statea is determined
as

Pa5 z^Fa,u* uCu& z2. ~10!

This equation does not have an unscaled analog, since
resonance wave functionFa,u seizes to be square integrab
whenu approaches 0.

B. Basis set expansion

We approximate the solution of the complex sca
Schrödinger equation by expandingCu in a Hylleraas-like
explicitly correlated basis

Cu~rW1 ,rW2 ;t !

5P1(
L50

Lmax

(
l 50

L

GLl~rW1 ,rW2!

3(
s

(
k50

ks

(
m50

ms

(
n50

ns

ckmn;s
Ll ~ t !r 1

kr 2
mr 12

n e2asr 12bsr 2 ~11!

The operatorP1 projects on the singlet states, andr 12

:5urW12rW2u. The two-electron angular factorsGLl for total
angular momentumL andz componentLz50 are

GLl5r 1
l r 2

L2 l(
m

Cl ,m;L2 l ,2m
L,0 Ym

l ~ r̂ 1!Y2m
L2 l~ r̂ 2!. ~12!

Cl ,m;L2 l ,2m
L,0 are Clebsch-Gordan coefficients, andYm

l are
spherical harmonics. Note that for eachL there are onlyL
11 angular functionsGL,l . The major part of the angula
correlation, which in the usual atomic physics basis requ
a large number of combinations of single-electron angu
momental and L2 l , is here contained in the interelectro
coordinater 12.
-

-

the

s
r

Expansion~11! is known to be formally complete@18#,
and it converges rapidly for bound states of the three-b
Coulomb system. In Ref.@19#, a further significant improve-
ment of the basis was achieved by selecting the combina
of powers by the rule

k1m1n1uk2mu~12d0n!<ps . ~13!

This constraint can be understood as follows: The range
space covered by a basis function in the direction ofr 1 and
r 2 is roughly k/as and m/bs , respectively. Whenas;bs ,
and uk2mu becomes large, the electrons remain far fro
each other and correlation, which is mostly contained in
coordinater 12, becomes small. One therefore needs few
functions with r 12 dependence whenuk2mu is large. The
constraint leads to an important reduction in the expans
size without deteriorating the accuracy of bound and dou
excited state energies.

In Refs.@19,20# for each state of helium, two sets of ex
ponents were used, one describing the known asymptotic
havior of the bound-state wave function by selectinga15Z
and b15A2Z222E, and a second one describing corre
tion by exponentsa25b2, which were optimized to obtain
the best bound-state energyE. In our case we needed t
describe many states, including strongly correlated dou
excited states, within the same basis set. Therefore we
several different sets of exponents for eachL and l . As an
example, the exponents and the powers used forL52 in the
major part of the calculations are given in Table I. The fi
group of exponents is adjusted to describe the singly exc
states and single-electron continuum of the configurat
type (1s,n8d), the middle group is for symmetrically doubl
excited states and higher continua of the form (np,n8p) and
the last group is for states (nd,n8s) with single-electron
quantum numbersn,n851,2,3. The particle-exchanged con
figurations are automatically included by the exchange sy
metrization of the basis functions.

It is important to observe that in velocity gauge doub
excitation must be included into the basis for a correct r

TABLE I. Basis set forL52 used in time propagation. ‘‘Size’’
denotes the number of basis functions. For the time propaga
near linearly dependent vectors are removed.

l as bs ks ms ns ps Size

0 22.000 20.333 3 9 2 9
22.000 20.250 3 9 2 9
22.000 20.200 4 9 2 9 221

1 21.400 21.400 6 6 2 6
20.666 20.666 6 6 2 6 56

2 22.900 22.900 1 1 1 1
21.400 21.400 6 6 2 6
21.000 21.000 6 6 2 6
20.666 20.666 6 6 2 6 139

total 416
total in time propagation 318
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PRA 58 1313TWO-ELECTRON ATOMS IN SHORT INTENSE LASER PULSES
resentation of the wave function, even when no real dou
excitation occurs. The reason is that the gauge transfor
tion

C~rW1 ,rW2 ;t !→eiAW ~ t !•~rW11rW2!C~rW1 ,rW2 ;t ! ~14!

equally affects both coordinates, and thus introduces vir
double excitation.

Our basis functionsGLl(rW1 ,rW2)r 1
kr 2

mr 12
n e2asr 12bsr 2 are

strictly real, such that the phase as well as theu dependence
of Cu(rW1 ,rW2 ;t) is entirely contained in the expansion coe
ficients. This means that the expansion coefficients of
complex scaled initial stateFu,1S(rW1 ,rW2) are dependent onu
and for eachu, and a different system of equations wi
different initial condition has to be solved.

We can interpret the same fact in terms of the back-sca
solutionCu(e2 iurW1 ,e2 iurW2 ;t), which approximates the solu
tion of the normal Schro¨dinger equation with outgoing-wav
boundary conditions. The expansion functions for t
outgoing-wave solution are then

e2 i ~L1k1m1n!uGLl~rW1 ,rW2!r 1
kr 2

mr 12
n e2e2 iu~asr 11bsr 2!,

i.e., they strongly depend onu. By varying u we therefore
vary the expansion functions for the physical solution, and
this way we obtain an estimate of the basis set trunca
error with respect to the radial coordinatesr 1, r 2, andr 12.

C. Alternative basis sets

The good performance of expansion~11! for He is due to
the fact that, on the one hand, it is very similar to the us
atomic physics expansion in terms of products of sing
electron orbitals, which converges well for states, where
two electrons remain spatially separated. On the other h
the explicit dependence onr 12 allows a good description o
the wave function at small interelectronic distances, which
particularly important when both electrons are in the sa
shell, as in the ground state or in symmetrically excit
states. We investigated several other expansions, which s
offer technical advantages or which are particularly suita
for specific states of He.

An implementation of arbitrary angular momentum f
few-body systems is given by Wigner’sD functions@21,22#.
At high angular momenta, that expansion allows a stro
reduction of the number of nonzero matrix elements in
calculation@23#. The D functions separate the overall rot
tion of the system from internal degrees of freedom. T
overall rotation is defined as the rotation between a bo
fixed coordinate system, determined by two vectorsaW andbW ,
and the laboratory coordinates. TheD functions carry indices
Dmn

L , which designate the total angular momentumL, the
quantum numberm of rotation around the lab-fixedz axis,
and the quantum numbern of the rotation aroundaW . Al-
though there is a certain freedom of choice foraW andbW , they
cannot be identified with the electron coordinatesr̂ 1 and r̂ 2,
since the definition of theD functions is not symmetric un
der exchange ofaW and bW . In order to implement electron
exchange symmetry, one can, for example, use the Ja
coordinates
le
a-

al

r

d

e

n
n

l
-
e
d,

is
e
d
em
e

g
e

e
-

bi

aW 5rW11rW2 ,

bW 5rW12rW2

as the body-fixed vectors. With this choice, the subscripts
Dmn

L refer to collective rotations of the electrons. This
desirable for some highly correlated states, like the Wann
states@24#. In the unsymmetrically excited states that dom
nate the wave function of an atom excited by a laser pu
one electron carries the major part of angular moment
~except for symmetrization!, which leads to poor conver
gence of theD-function expansion.

Similar problems arise for an expansion with respect
the perimetric coordinates

u52r 11r 21r 12,

v5r 12r 21r 12,

w5r 11r 22r 12.

While the interparticle coordinatesr 1, r 2, andr 12 are subject
to the triangular inequalityur 12r 2u<r 12<r 11r 2, the peri-
metric coordinatesu, v, and w each vary independently in
@0,̀ ). This simplifies the calculation of integrals, and allow
one to find expansion functions, where the operator matr
become sparse. Like with the Jacobi coordinates, the uns
metrically excited states, where the two electrons mo
largely independently, are not efficiently described by su
an expansion, sinceu, v, and w each contain both coordi
natesr 1 and r 2. It also appears difficult to find a constrain
like Eq. ~13! to cut down on the basis size.

Finally, we explored an expansion with respect to the
ordinatesr 1, r 2 , and cosu12:5 r̂ 1• r̂ 2. This is very similar to
an expansion in single-electron orbitals. The main advant
is that the calculation of matrix elements becomes simp
However, the expansion length is generally larger than w
the explicitly correlated basis, and bound-state accuracies
yond 1024 a.u. become extremely hard to achieve@23#.

D. Numerics and computation

Expansion~11! is notoriously numerically difficult. The
main reason is that the metrical matrix

Si j :5^ i u j & ~15!

for the basis functions

u i &5GLl~rW1 ,rW2!r 1
kir 2

mir 12
ni e2asr 12bsr 2 ~16!

rapidly becomes ill conditioned with increasing powerski ,
mi , andni . The situation is further aggravated by our use
several different sets of exponentsas andbs for the sameL,
which makes the basis formally overcomplete. We were a
to control these problems by performing accurate integ
tions, by appropriately normalizing the basis, and by rem
ing near-singular values from the metrical matrix. Still,
high angular momenta we needed to resort to Fort
REAL*16 ('32 decimal digits! accuracy in the calculation o
the matrix elements.

We first express the angular factors in the form
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1314 PRA 58ARMIN SCRINZI AND BERNARD PIRAUX
G~rW1 ,rW2!5(
j

gj r 1
kj r 2

mjr 12
nj ~cosu1!l j~cosu2!m j , ~17!

where cosui is the cosine ofrW i with the z axis. The determi-
nation of the expansion coefficientsgj is straightforward but
a little cumbersome. Except for an insignificant overall fa
tor, gj are rational numbers with not too large denominato
which allowed us to compute them numerically, and to e
sure that they were accurate to all digits of arithmetic pre
sion.

For the angular integration we change variables to cou1,
w1, cosu12, andw12, wherew1 is the azimuthal angle ofrW1,
cosu125 r̂ 1• r̂ 2, and w12 is the azimuthal angle ofrW2 with
respect to the axisrW1. Integrations can then be performe
over all angular variables except for cosu12, which is ex-
pressed as cosu125(r 1

21r 2
22r 12

2 )/(2r 1r 2). The remaining
three-dimensional integrals have the general form

E dr1dr2dr12r 1
kr 2

mr 12
n e2ar 12br 2. ~18!

The integrals are nontrivial, becauser 1, r 2, andr 12 are con-
nected by the triangular inequality. We compute them b
strictly positive and therefore numerically stable recurren
formula @25#.

Loss of accuracy is due to the expansions ofGLl and
cosu12, which at highL become very lengthy with up to
several hundred terms. BeyondL'5 we needed to use For
tran REAL*16 arithmetic, which provided stable results up
L'12.

Even when no accuracy is lost in the matrix elements,
metrical matrixS has in general a very poor condition num
ber which quickly exceeds regular machine precision ('14
decimal digits! or evenREAL*16 precision ('32 decimal dig-
its!. This may lead to uncontrolled errors. We remove
problem by first rescaling the basis such that the diago
elements of the metrical matrix areSii [1, after which the
maximum size of the eigenvalues ofS was limited to&100.
We diagonalizeS and remove eigenvectors with eigenvalu
smaller than a thresholde. We founde510211 to be suitable
for Fortran REAL*8 arithmetic. InREAL*16, we could usee
510230, but results were found to depend very weakly
the threshold. The remaining eigenvectorsuj i& are normal-
ized with respect toS:

^j i uSuj j&5d i j . ~19!

After transforming all matrices to the orthonormal ba
$uj i&%, precision can be lowered toREAL*8 to save on storage
and computation time.

E. Time propagation

For the time propagation we make one more transform
tion to the ‘‘atomic basis’’$uh i&%, that diagonalizes the com
plex scaled atomic Hamiltonian

^h i uH0,uuh j&5Eid i j , ~20!

where
-
,
-
i-

a
e

e

e
al

-

H0,u52
e22iu

2
~D11D2!2

Ze2 iu

r 1
2

Ze2 iu

r 2
1

e2 iu

r 12
.

~21!

In the dipole approximation the laser field only connects
gular momenta differing byuL2L8u51. The resulting struc-
ture of the overall Hamiltonian is depicted in Fig. 1.

At the laser intensities and frequencies in our calculatio
the diagonal terms still make the dominant contribution
the time evolution. Therefore we time integrate in the ‘‘i
teraction picture’’

c~ t !5a~ t !1b~ t !, ~22!

i
d

dt
a~ t !5Ĥ0,ua~ t !, ~23!

i
d

dt
b~ t !5@Ĥu~ t !2Ĥ0,u#a~ t !1Ĥu~ t !b~ t !. ~24!

Herec(t) denotes the coefficient vector, andĤ0,u andĤu are
the operator matrices with respect to the$uh i&% basis. For the
decomposition ofc(t) into a(t)1b(t), at the beginning of
each time step we set

a~ t0!5c~ t0!, b~ t0!50.

SinceĤ0,u is diagonal in our basis, the solution of Eq.~23! is
trivial. Equation~24! is solved by a seven stage sixth-ord
explicit Runge-Kutta method~Butcher’s method, given in
Ref. @26#!, which we found to be more CPU time efficien
than lower-order methods. There were no problems with
merical stability, as we verified by comparing with lowe
order methods at a few parameter points. The time step
automatically adapted by comparing every two integrat
steps with a single double-step size integration. The typ
number of time steps was about 400 per optical cycle, wh
for our seven-stage method means about 3000 matrix-ve
multiples per cycle. Computation times for the shorter pul
were about 1 hour on a 500-MHz DEC/Alpha work statio

III. RESULTS

A. Bound and doubly excited states

Before we discuss the results of the time propagation,
want to list the energies and widths of the most import
bound and doubly excited states of He and H2 as obtained
with the above basis. Table II compares the values of the

FIG. 1.The Hamiltonian matrix in the atomic basis.
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PRA 58 1315TWO-ELECTRON ATOMS IN SHORT INTENSE LASER PULSES
few bound-state energies of He that we obtained with
basis used in the time propagation, with reference val
from literature. Several of our values are lower than
variational upper bounds from literature, but this does
indicate greater accuracy, since due to complex scaling
values are not upper bounds. Our accuracy is;1028 a.u. for
most energies given. The basis sizes are about 300 for
angular momentum. The functions are counted after remo
of near-singular vectors from the basis~cf. Sec. II D!, which
is the number relevant for the time propagation. As an
ample, we listed in Table I above the basis set forL52. It
has been shown that literature values can be exactly re
duced with bases of size;150 that are optimized for eac
state@19,20#.

Table III gives lowest few doubly excited states of H
from the time propagation. The states are labeled by the
dial quantum numbers of the dominant single-electron c
tributions n1 and n2. Accuracies are of the order 1024 a.u.
for the energies and widths. At the very small widths t
relative accuracies can become poor.

Finally, Table IV summarizes the bound and doubly e
cited state energies of H2. We present the energies as th
appear in the time propagation as well as values obtaine
larger bases with state specifically adapted exponentsas and

TABLE II. Bound-state energies of He:~a! Calculated with the
basis used for time propagation.~b! Literature values.

~a! ~b! Ref.

L50
22.903724377 22.903724392 @27#

22.14597404 22.145974037 @27#

22.06127198 22.0612719 @27#

22.0335877 22.033586 @27#

L51
22.123843088 22.12384308 @27#

22.05514636 22.05514637 @27#

22.0310696 22.0310696 @19#

22.0199059 22.0199059 @19#

L52
22.055620727 22.05562071 @19#

22.0312798 22.0312798 @19#

22.0200158 22.0200158 @19#

22.0138989 22.0138981 @19#

L53
22.0312551444 22.03125514439 @20#

22.0200029370 22.02000293714 @20#

22.0138906837 22.01389068381 @20#

22.010205246 22.01020524808 @20#

~a! ~a!

L54 L56
22.0200007108 22.0102041204
22.0138893453 22.0078125284
22.0102043836 22.0061728509

L55 L57
22.0138890346 22.0078125124
22.0102041827 22.0061728489
22.0078125737 22.0049999968
e
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bs . Judging from the convergence behavior, we believe t
our state-specific values are accurate to all except poss
the last digit quoted. One sees that some of them are m
accurate than the literature values quoted. A special cas
the shape resonance inL51 just above theH(n52) thresh-
old. It requires a minimum scaling angle ofu'0.25 to be-
come manifest as an isolated eigenvalue of the scaled Ha
tonian. With the smaller angle used in the time propagati
the resonance state cannot be distinguished from the app
mate continuous states that surround it.

B. Excitation and ionization of He

Figure 2 shows the probability of excitation and ioniz
tion of He by cos2-shaped pulses of durationT5157 a.u. and
peak intensityI 50.004 23 a.u.52.9731014 W/cm2. Note
that in Ref.@8# the conversion to SI units was too small by
factor of 2. The frequencies cover the range from just ab
the five-photon ionization threshold to well above the sing
photon ionization threshold. Below each of the thresho
one clearly distinguishes the enhancement of bound-state
citation due to resonances. The peaks below the one-
two-photon thresholds are due to resonances with the low
P state~energy5 22.123 84) and the lowest excitedS state
~energy522.145 97), respectively. The resonances bel
the lower thresholds are not well separated due to the s
tral width of the pulse. The pronounced dip in the boun
state excitation atv50.72 is due to a Rabi-like oscillation

TABLE III. Doubly excited states of He forL50 –3.~a! Values
obtained with the basis used in the time propagation.~b! Literature
values from references@29# (L<2) and@28# (L.2).

(n1 ,n2) ~a! ~b!

L50
~2,2! 20.777879 4.5531023 20.777868 4.5331023

~2,2! 20.621926 2.15631024 20.6219275 2.15631024

~2,3! 20.589892 1.3731023 20.589895 1.3531023

~2,3! 20.548085 6.831025 20.5480855 7.831025

~3,3! 20.353517 2.9831023 20.353537 3.00431023

~3,3! 20.317511 6.931023 20.317455 6.6731023

L51
~2,2! 20.6931347 1.36631023 20.6931349 1.377331023

~2,3! 20.5970738 3.85731026 20.59707381 3.8439931026

~2,3! 20.5640865 2.9331024 20.56408514 3.0105731024

~3,3! 20.335611 6.9231023 20.3356269 7.02331023

~3,3! 20.2862 3.0431024 20.28595074 3.40931025

~3,3! 20.282855 1.6331023 20.28282897 1.4620831023

L52
~2,2! 20.701938 2.36031023 20.7019457 2.362231023

~2,3! 20.56925 6.931024 20.569221 5.5531024

~2,3! 20.55640 3.631024 20.5564303 2.0131025

~3,3! 20.34309 5.17431023 20.343173 5.15531023

~3,3! 20.31545 4.1431023 20.31553 4.30531023

L53
~2,3! 20.5582830 1.29731025 20.55828 1.2831025

~2,3! 20.5322936 3.5031025

~3,3! 20.3042474 3.2431023 20.30424 3.2431023

~3,3! 20.2780025 9.5831025
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When one increases the pulse duration, the minimum dis
pears completely, and reappears at a pulse duration of;270.
A third minimum appears atT5380 ~Fig. 3!. The oscillation
period roughly corresponds to the Rabi period at the gi
parameters. The effect strongly depends on the pulse sh
Figure 4 compares excitation by cos2 pulses with excitation
by Gaussian pulses. The pulse energy is 0.5 a.u. for b
pulse shapes, and the widths of the vector potential en
lopes wereT5157 for the cos2 pulse andT592 for the
Gaussian pulse. With this choice the envelopes have
same width at 1/e of the maximum for both pulse shape
One can see that the Rabi-like oscillations occur for b
shapes, but they are more pronounced with the cos2 pulses.

One can also distinguish resonant enhancement of ion
tion, manifested by the coincidence of bound-state excita
peaks with ionization peaks. Most pronounced are the pe
at the three-photon resonance with the lowestP state at fre-
quencyv50.26 and the two-photon resonance with the lo
est excitedS state atv50.38; another resonance with th
lowestD state is hidden in the slope to the two-photon io
ization threshold. In spite of the massive bound state exc
tion at the single-photon resonance atv50.78, weak cou-
pling of the P state to the continuum leads only to a slig
bump in the ionization rate at that frequency.

The lowest frequency of 0.2 in the figures is somew
above the popular frequency of 0.1837 of a 248-nm wa
length laser. In Table V, we give the ionization yield at wa
length 248 nm by a cos2 pulse of durationT540 cycles
532.8 fs, which has a half-width of 20 optical cycles. T
pulse parameters coincide with the ones used in Ref.@36# for
the comparison with experiment. Our results are system
cally lower by about 50% compared to Ref.@36#. We esti-
mate that our results are converged to 10% accuracy or b
~see below!. Considering that we cover intensities all th
way into the onset of saturation, the agreement is never
less satisfactory.

Recently another calculation for the same pulse was p
lished @37#. Those values sizably oscillate around ours, a
also around the results of Ref.@36#. The disagreement is
particularly evident at the lower intensities, where conv
gence problems should be smaller. It appears, therefore,
calculations of Ref.@37# remain relatively far from conver
gence. A possible reason for the lack of convergence is

FIG. 2. Excitation and ionization of He by a cos2-shaped pulse
of duration 3.8 fs and peak intensity 2.9731014 W/cm2 as a func-
tion of frequency. Solid line: ionization; dashed line: ionization pl
bound state excitation. The arrows labelled byn51, 2, 3, and 4
indicaten-photon ionization thresholds. The dip at frequency 0
is due to a Rabi oscillation.
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absence of doubly excited states from the basis of Ref.@37#,
although the velocity gauge used in that calculation alw
introduces at least virtual doubly excited states~cf. Sec.
II B !. The experimental number given in Ref.@36# is at least
one order of magnitude smaller than all theoretical res
and none of the calculations falls within the quite large up
error margin of the experiment.

Ionization is predominantly a single-electron effect, a
all observations made above are qualitatively the same
single-electron atom. Double excitation in turn is a genu

TABLE IV. Bound and doubly excited states ofH2 for
L50 –3. ~a! Values obtained with the basis used in the time pro
gation.~b! Values with a basis optimized for each state, and lite
ture values. The values~b! are estimated to be converged to a
digits given except for the last.

Energy Width Reference

L50
20.52775101689 0 present,~a!

20.5277510165443 0 @30#

20.1487764 1.732431023 present,~a!

20.1487762 1.733231023 present,~b!

20.1487765 1.73131023 @31#

20.12605 1231025 present,~a!

20.1260199 9.0231025 present,~b!

20.12601965 8.98531025 @32#

20.069006 1.419231023 present,~a!

20.069006 1.418431023 present,~b!

20.05615 2331025 present,~a!

20.0561434 8.831025 present,~b!

L51
20.12604986 1.3631026 present,~a!

20.12604986 1.3631026 present,~b!

20.1260495 1.16531026 @32#
a present,~a!

20.1243856 7.031024 present,~b!

20.12436 6.931024 @33#

20.062708 1.1731023 present,~a!

20.062716 1.1931023 present,~b!

20.06871675 1.191431023 @34#

20.058586 ,1025 present,~a!

20.0585718 8.98831026 present,~b!

20.05857181 8.98631026 @34#

L52
20.127937 3.1931024 present,~a!

20.127937 3.1231024 present,~b!

20.12794175 3.162531024 @32#

20.065954 1.65431023 present,~a!

20.0659531 1.657631023 present,~b!

20.0659533 1.658131023 @35#

20.056834 2.831024 present,~a!

20.0568294 2.530231024 present,~b!

L53
20.056564 3.5431023 present,~a!

20.05655875 5.0031023 present,~b!

aState cannot be distinguished from the surrounding continuum
the complex scaling angle ofu50.22 used in time propagation.
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two-electron effect. Figure 5 shows the population of t
lowest doubly excited states with angular momentumL50,
1, 2, and 3, after passage of a cos2-shaped pulse of duratio
T5157. The narrower peaks are due to multiphoton re
nances between the ground and the respective doubly ex
states with 2–6 photons. The population of the states w
evenL are enhanced in the rangev50.6–0.9. This enhance
ment is almost exactly proportional to the1P0 bound-state
population, and the ratio between the populations was fo
to be proportional to the laser intensity. We therefore int
pret it as a far off-resonant single-photon transition from
P to theS andD states brought about by the large bandwid
of the pulse. As with the Rabi oscillation of single excitatio
the pulse shape is quite important, since with Gauss
pulses the phenomenon nearly disappears. Similarly, a lo
pulse duration suppresses the effect.

C. Excitation and electron detachment from H2

The binding energy of the only bound state of H2 is
0.027 75 a.u. Therefore, much lower laser intensities and
quencies lead to total electron detachment from H2.

Figure 6 shows the photodetachment at a laser freque
of v50.03 for intensities between 131011 and 831011

W/cm2. At about 231011 W/cm2 the single-photon ioniza
tion threshold rises abovev50.03 due to the ac Stark shi
and roughly in the same intensity region two-photon ioni
tion becomes dominant@5#. In our time-dependent calcula
tions we can distinguish a bend in the detachment yie

FIG. 3. Bound-state excitation as a function of pulse duration
frequencyv50.72. Solid line: total population of excited boun
states. Dashed line: ionization. The distance between the minim
roughly the Rabi period.

FIG. 4. Bound-state excitation for Gaussian and cos2 pulses as a
function of frequency. The pulse energy is 0.5 a.u. for both sha
and the pulse widths areT5157 for cos2 pulses~solid line! andT
592 for Gaussian pulses~dashed line!.
e

-
ted
th

d
-
e

,
n
er

e-

cy

-

,

which moves toward the expected intensity of 231011

W/cm2 with increasing pulse duration. The dashed lines
obtained by integrating the intensity-dependent detachm
ratesG(I ) from Ref. @5# with the pulse shapes used in o
calculations. Saturation effects in the final detachment yi
Y(t5`) are included according to the equation

Y~ t !5E
2`

t

dt8 G@ I ~ t8!#@12Y~ t8!#. ~25!

As the instantaneous intensity, we defined

I ~ t !:5@E0h~ t !#2/2, E05vA0 . ~26!

This definition neglects terms with the time derivative of t
envelope, whose contributions do not visibly change

TABLE V. Ionization yield for laser wavelength 248 nm an
pulse durationT540 optical cycles as a function of peak intensi
I . The literature values are obtained by converting the general
cross sections from Table 2 in Ref.@36# with the help of Eq.~16! in
that reference.

I (W/cm2) Present Ref.@36#

231014 7.0631023 8.1331023

2.531014 0.00105 0.00148
531014 0.043 0.069
131015 0.18 0.33
t

is

s,
FIG. 5. Populations of the lowest doubly excited states withL

50, 1, and 2 after the passage of a pulse withT53.8 fs with a peak
intensity 2.9731014 W/cm2. Dashed lines: population of the lowes
bound state with symmetry1P0 31024.
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1318 PRA 58ARMIN SCRINZI AND BERNARD PIRAUX
comparison. The agreement for the two longer pulses is q
good, except that the bend in the yield is somewhat m
pronounced for the integrated rates. With the shorter pu
the integrated rate underestimates the true detachment.
assuming the applicability of the rate concept at short pul
the spectral width of the pulse could be sufficient to expl
the higher yield: with a broad pulse the closure of the sing
photon ionization channel is moved to higher intensities, t
effectively enhancing the yield. For a quantification of th
hypothesis, ratesG(I ) for frequencies other thanv50.03
would be required.

For the double excitation of H2, one needs frequencies i
the visible to low UV. Figure 7 shows the excitation of th
relatively long-lived lowest autoionizingP state around the
resonant frequency ofv50.134 and intensity 1013 W/cm2.
The resonance is shifted from its field-free position by ab
0.001 for the ten-cycle pulses. Longer pulses of 20 cyc
have a larger shift of;0.002. In the limit of a constant lase
field an ac Stark shift of the ground state by;0.005 is ex-
pected by perturbatively extrapolating the data from Ref.@5#.

D. Harmonic generation

With Eq. ~6!, we calculate the expectation value of th
dipole dW (t) as a function of time, from which we obtain th

FIG. 6. Ionization of H2 by cos2-shaped pulses with laser fre
quencyv50.03 as a function of intensity for pulse durationsT
58, 16, 24, and 32 optical cycles. The bend in the ionization yi
is due to the closure of single-photon ionization channel by the
Stark shift and the transition to two-photon ionization. Dash
lines: time-integrated Floquet rates from Ref.@5#.

FIG. 7. Population of the lowest doubly excitedP state of H2

by cos2-shaped pulses as a function of frequency. The peak in
sity is 1013 W/cm2, and the pulse durationsT510 optical cycles
~solid line! andT520 ~dashed line!.
ite
re
es
lso
s,
n
-
s

t
s

acceleration of the dipole by numerical differentiation.
would be more desirable to calculate the expectation va

of the acceleration of the dipoledẄ (t) directly, but unfortu-
nately in the matrix elements of that operator integrals
form ~18! with negative powers ofr 1 or r 2 arise, which can
only be calculated with considerable extra numerical eff
~cf. Ref @25#!.

The expectation valuesdW (t) are sensitive to the wave
function at larger distances. To obtain accurate results,
therefore added extra basis functions with smaller expon
to cover a longer range inr 1 andr 2. By this enlargement of
the basis we were able to obtain satisfactory accuracie
&10% up to the fifth harmonic for frequencies in the ran
0.34–0.42 a.u. and intensityI 5231014 W/cm2. The fre-
quencies include a strong resonance with the lowest exc
S state that greatly enhances harmonic generation and l
to the dominance of the third harmonic over the first. Figu
8 summarizes the results obtained with a pulse duration o
optical cycles. Harmonics up to order 7 can be distinguish
and the resonant enhancement atv50.38 is manifest. For
reference we include Table VI with the peak heights.

E. Accuracy of the results

The limited expansion length for the wave function intr
duces the dominant error into our calculations. Now
study the effect of the truncations with respect to total an
lar momentum and radial basis functions.

Figure 9 compares the results of calculations withLmax
55, 6, and 7 at peak intensity 2.9731014 W/cm2 and fre-

d
c

d

n-

FIG. 8. Harmonic generation on H with a cos2 pulse of duration
T540 optical cycles and a peak intensity 231014 W/cm2. The fun-
damental frequencies are 0.34~dot-dashed line!, 0.38 ~solid line!,
and 0.42 a.u.~dashed line!, respectively. The frequency 0.38 is tw
photon resonant, with the lowest excitedS state. The structure
aroundv50.8 originates from bound-state excitations.

TABLE VI. Relative peak heights of harmonic generation b
cos2 pulses ofT540 optical cycles, and peak intensity 231014

W/cm2 for three different fundamental frequenciesv. The accura-
cies are 10% up to the fifth harmonic, and of the order 50% for
seventh harmonic.

Harmonic order
v 1 3 5 7

0.34 0.85 0.25 4.831025 4.431028

0.38 1 3.9 3.231024 3.431027

0.42 1.46 0.11 2.131026 —
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quencies between 0.2 and 0.4. Only at the lowest frequen
is there a distinguishable effect on ionization with a relat
difference between the calculations of&1%. Double excita-
tion is more sensitive to angular momentum truncation, si
it is a much higher-order process, but still the relative er
rises to only about 10%. Assuming exponential convergen
we can conclude that withLmax also for double excitation the
error due to angular momentum truncation is&1% at the
given parameters.

Convergence of the expansion in the internal coordina
r 1, r 2, andr 12 is more difficult to investigate, since the bas
rapidly grows when one increases the admissible power
r 1, r 2, and r 12. Complex scaling provides an indirect es
mate of the accuracy of the internal expansion. For an i
nite basis, the results are independent ofu. Any dependence
on u must therefore be ascribed to the basis truncation
practice, there is only a limited range ofu where the results
vary little with u. Whenu is too small, the outgoing wave
are only weakly damped, and one needs to describe a
oscillatory tail in the wave function, for which anL2 expan-
sion converges slowly. When, on the other hand,u is too
large, the complex scaled bound state wave functions h
increasingly oscillatory character, which again is not w
reproduced by the finite basis~cf. the Appendix!. Figure 10
shows ionization and double excitation obtained with diff
ent scaling angles at laser frequency 0.39 a.u. One dis
guishes a range ofu where the results are quite stable. T
variation inside this range is of the same size as the varia
when we increase the number of basis functions by a fa
;2, which supports our use of the variation withu for an
accuracy estimate. For the given parameters, the ioniza
varies less than 0.2%. The accuracies for double excita
are only slightly lower. At frequencyv50.3 the variation of
ionization still remains within the 1% range, but double e
citation varies by about 10%, which indicates that we a
proach the limits of numerically reliable results for multiph
ton double excitation.

IV. SUMMARY AND CONCLUSIONS

The method introduced in this paper allows a numeri
integration of the complete Schro¨dinger equation of a two-

FIG. 9. Convergence of ionization and total double excitat
with the maximum angular momentumLmax. Dashed line: relative
difference between calculations withLmax55 and 7; solid line: rela-
tive difference betweenLmax56 and 7. Intensity52.9731014

W/cm2, pulse durationT5157.
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electron atom in a strong laser pulse with realistic frequen
intensity, and duration. This has been demonstrated on
systems of He and H2 with frequencies ranging from infra
red to ultraviolet, intensities up to 1015 W/cm2 and pulses as
long as 160 fs.

The first important constituent of our method is an expl
itly correlated basis set expansion, which allows us to rep
duce the atomic structure to essentially any desired accu
at moderate expansion length. This includes positions
widths of doubly excited states, where we obtain accurac
that rival and in some cases exceed literature values.

The second ingredient of our method, complex scali
was formally introduced as a method of imposing stric
outgoing boundary conditions. We cannot at present giv
mathematically rigorous theory for the use of complex sc
ing in a time-dependent calculation, but we provide heuris
arguments and numerical evidence that it indeed is equ
lent to the regular Schro¨dinger equation with strictly outgo
ing boundary conditions. The technical advantage of co
plex scaling is that the expansion length remains short.

Convergence was investigated for the whole range of
rameters, and indicates accuracies between fractions of a
cent at higher laser frequencies and at least 10% for
majority of the data. Only at the seventh harmonic peak
our example, and for double excitation at lowest laser f
quencies, do accuracies remain unsatisfactory.

The numerically most challenging combination of para
eters was used for He exposed to pulses of duration;32 fs
at the wave length of 248 nm and peak intensities up to 115

W/cm2, where we reach an accuracy of the ionization yie
of about 10%. A previous calculation for the same puls
@36# agreed qualitatively with ours, but exceeded our res
by about 50% at the highest intensity. A more recent cal
lation @37# deviated more strongly also at the lower inten
ties.

Another comparison with existing theoretical work cou
be performed with a Floquet calculation for the electron d
tachment fromH2. Quite satisfactory agreement was foun
for pulses of at least 16 optical cycles. Shorter pulses m
not be expected to compare well with a Floquet calculat
for constant intensity.

We believe that our results should serve as a benchm

FIG. 10. Dependence of ionization and double excitation on
complex scaling angleu. The dotted lines indicate estimated erro
The intensity is 2.9731014 W/cm2, the frequency is 0.4, and th
pulse durationT5157.
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1320 PRA 58ARMIN SCRINZI AND BERNARD PIRAUX
for future calculations of two-electron systems. This refers
both complete two-electron calculations as well as mo
calculations. It may be expected that for harmonic genera
and ionization a single-electron description will be found
be satisfactory in a range of parameters.

If necessary, our method allows extensions in several
rections. To extend the range of accessible parameters is
dominantly a question of more computer power, althou
technical modifications in the calculation of the matrix e
ments are also required to control the loss of accuracy
second obvious extension is the introduction of an electro
core to model effective two-electron atoms like Mg. Final
the interpretation of the complex scaled wave funct
adopted in this paper, which takes the back-scaled w
function as an approximation to the regular solution w
outgoing-wave boundary conditions, suggests that elec
spectra can be determined. Whether this is numerically
sible and practical remains to be investigated.
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APPENDIX

Here we deduce the relation between outgoing-w
boundary conditions and complex scaling. We first assu
that one can write the radial wave function in the form

C~r ;t !5E
2`

`

dk c~k,t !Fk~r !, ~A1!

whereFk have the asymptotic behavior;eikr , andC solves
the Schro¨dinger equation

i
d

dt
C~r ;t !5H~r ;t !C~r ;t !. ~A2!

For the sake of brevity we have omitted the part of the
pansion with square-integrable functions.@For the Coulomb
potential the asymptotic behavior is more precis
;exp(ikr2i ln2ukur/k).# In terms of the expansion coeffi
cientsc(k;t), Eq. ~A2! can be written as

i
d

dt
c~k;t !5E

2`

`

dk8h~k,k8;t !c~k8;t !. ~A3!

Outgoing boundary conditions mean that one solves Eq.~A3!
restricted tok.0:

i
d

dt
c1~k;t !5E

0

`

dk8h~k,k8;t !c1~k8;t !. ~A4!

The time-dependent wave function with outgoing bound
conditions is then
o
l
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C1~r ;t !:5E
0

`

dk8c1~k8;t !Fk8~r !. ~A5!

In order to relateC(r ,t) to the complex scaled wav
function, we must assume thatC(r ,t) and its time derivative
dC(r ,t)/dt are analytic functions ofr for any analytic initial
stateC(r ,t50). This assumption is nontrivial: for example
it is known to be valid for the Hamiltonian of the field-fre
hydrogen atom, while it is obviously violated for potentia
that are nondifferentiable at any point other thanr 50. Under
this assumption, the analytically continued wave functi
C(hr ;t), Im(h).0 solves the ‘‘complex scaled’’ Schro¨-
dinger equation

i
d

dt
C~hr ;t !5H~hr ;t !C~hr ;t !, ~A6!

which is the analog of Eq.~5! for a single radial coordinate
If we further assume that the expansion functionsFk are
analytic, the expansion coefficientsch

C~hr ;t !5E
2`

`

dk ch~k,t !Fk~hr !, ~A7!

do not depend onh:

ch~k,t ![c~k,t !. ~A8!

From this it follows that the kernel of the time integratio
h(k,k8;t) also does not depend onh. We see that the two
equations~A2! and ~A6! describe exactly the same dynam
ics. The important difference is that due to the asympto
behavior of the expansion functionsFk(hr );exp(ikhr) in
Eq. ~A6!, we can distinguishk.0 from k,0 by their norms:
‘‘ingoing waves’’ k,0 grow exponentially, while ‘‘outgoing
waves’’ k.0 become square integrable. Because of the
ponential divergence, any function

E dk a~k!Fk~hr ! ~A9!

will diverge, if *2`
0 dkua(k)u2.0. Consequently, ifC(hr ;t)

contains ingoing waves, it will not be square integrable.
obtain a solution with outgoing waves only, we solve t
differential equation~A6! restricted to the space of squa
integrable functionszuC1(hr ;t)uz,`. Sinceh(k,k8;t) does
not depend onh, the coefficients of the expansion

C1~hr ;t !5E
0

`

dk8c1~k8;t !Fk8~hr ! ~A10!

are the same as in Eq.~A5!, and the outgoing-wave solutio
is obtained by substitutinghr with r .

As an initial condition for Eq.~A6!, we use a field-free
bound state. For the class of ‘‘dilation analytic’’@13# poten-
tials, which include the Coulomb potential, the bound-st
functions are known to be analytic functions ofr . This is
trivial to verify for the complex scaled Hamiltonian of th
two-body Coulomb problem,
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Z

hr D F i~hr !5EiF i~hr !, ~A11!

whereF i(r ) is a hydrogenic bound-state function. For com
putation it is useful to keep in mind that, for example, t
radial ground-state eigenfunctionhr exp(2hr) becomes in-
Le

J

l

. B
-

creasingly oscillatory with increasing Im(h), which is oppo-
site to the outgoing waves, where larger Im(h) causes a
stronger damping. Oscillatory functions are generally m
difficult to represent numerically, and the choice ofh5eiu

will depend on whether the outgoing-wave or the boun
state parts ofCh are more important.
j,
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