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Multiphoton ac Stark effect in a bichromatically driven two-level atom
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We study the interaction of a two-level atom with two lasers of different frequencies and amplitudes: a
strong laser of Rabi frequency 2V1 on resonance with the atomic transition, and a weaker laser detuned by
subharmonics (2V1 /n) of the Rabi frequency of the first. We find that under these conditions the second laser
couples the dressed states created by the first in ann-photon process, resulting in ‘‘doubly dressed’’ states and
in a ‘‘multiphoton ac Stark’’ effect. We calculate the eigenstates of the doubly dressed atom and their energies,
and illustrate the role of this multiphoton ac Stark effect in its fluorescence, absorption, and Autler-Townes
spectra.@S1050-2947~98!07607-0#

PACS number~s!: 42.50.Hz, 32.80.2t
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I. INTRODUCTION

The interaction of a two-level atom with an intens
nearly resonant laser field is of fundamental interest
atomic spectroscopy and quantum optics and has been
ied extensively for over 25 years. Early interest focused
the atom driven by an intense monochromatic field and
resulting ‘‘dressed’’ system probed by a weak field. Fluor
cence by the system was first predicted@1# and then observed
@2#, as was the absorption and dispersion by the entan
atom1driving field system of a weak probe field nearly res
nant with either the driven transition@3# or the transition
from a driven level to a third atomic level~Autler-Townes
effect! @4#.

Another area of interest involves the atomic response
amplitude-modulated~AM ! and bichromatic driving fields. A
100% amplitude-modulated field is equivalent to a bich
matic field whose~mutually coherent! components have
equal intensities, and whose frequencies are separate
twice the modulation frequency. Various aspects of t
problem have been studied. For example, the fluoresce
spectrum of an atom driven by a bichromatic field of eq
amplitudes~Rabi frequencies! was observed@5# and inter-
preted using a dressed-atom analysis@6#. Since then a wide
variety of studies have been performed on the fluoresce
near-resonant absorption, and Autler-Townes absorptio
bichromatically driven atoms for both equal@7# and unequal
@8# Rabi frequencies, and for average driving field frequen
both tuned to and detuned from the atomic resonance@9,10#.

Much attention has focused, in these studies, on the
pearance of the ‘‘subharmonic resonances’’ displayed by
absorption spectrum of a strong probe beam monitorin
strongly driven two-level system@10–13#. The experimental
data collected to date relating to the subharmonic absorp
maxima of the strong probe also correspond to a study of
maxima of the integrated intensity of fluorescence by
atom when one component of the driving field~the ‘‘pump’’!
is fixed in its frequency and intensity, while the frequen
and/or intensity of the second component~the ‘‘probe’’! is
varied. The connection of these subharmonic resonan
with multiphoton gain has also been explored@14#, and a
two-photon optical lasing has been observed@15#. However,
PRA 581050-2947/98/58~2!/1296~14!/$15.00
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a ‘‘strong probe’’ is an intense field that itself alters th
characteristics of the system it is supposed to be prob
Based on this observation, we therefore consider this sys
from the point of view that both laser fields ‘‘dress’’ th
atom and analyze the energy states of the resulting sys
We will show that the system is both in principle and
practice more profitably regarded in the context of th
bichromatic excitation.

In the studies of resonance fluorescence from two-
three-level atoms under bichromatic excitation, both drivi
fields couple to the same atomic transition. In the rela
studies of multilevel atoms driven byn coherent laser fields
each of the fields couples to only one of then possible one-
photon transitions@16#; in this latter case a multiphoton ab
sorption is possible, but the driving fields can lead to onl
‘‘one-photon ac Stark effect.’’ In this paper we study a sy
tem in which two fields drive the same atomic one-phot
transition, yet nevertheless the second field can couple
multiphoton resonances between dressed states of the
field. We find a new physical phenomenon: the splitting
the dressed states is due to ann-photon coupling between
them, i.e., it represents ann-photon ac Stark effect. We
present the fundamental dynamics of this system by exam
ing the fluorescence spectrum, as well as the weak pr
absorption and Autler-Townes spectra. We focus on the d
ing of the singly dressed system by a laser field tuned to
subharmonic resonances, and use the dressed-atom m
both to explain the physical origin of novel spectral effec
and to demonstrate that far more detailed information is
fact obtainable by suitable probing. The calculated fluor
cence, probe absorption, and Autler-Townes spectra are
tremely rich in detail, containing multiplets at the subha
monic as well as harmonic resonance frequencies with
intricate dependence on the ordern of the resonance and o
the relative Rabi frequencies of the driving field componen

In principle it is possible to write down and numerical
solve the master equation or the Bloch equations of the
tem including all of these effects; this does not, howev
lead to a physical understanding of the problem. In orde
gain insight into the dynamics of the system, we use
‘‘dressed atom’’ model for our bichromatically driven ato
@19#. The energy levels of the entangled system
1296 © 1998 The American Physical Society
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atom1driving fields ~i.e., the doubly dressed atom! are cal-
culated first in Secs. II and III. Resonance fluorescence
pears in this picture as a spontaneous emission cascad
the dressed atom down its ladder of energy manifolds.
absorption spectrum is interpreted as the net difference
tween absorption and stimulated emission of a weak, q
siresonant probe between the manifold sublevels, while
Autler-Townes spectrum reflects the net absorption from
manifold sublevels of a weak probe tuned to a third atom
level. These spectra are calculated in Sec. IV. In Sec. V
briefly discuss the multiphoton Stark effect that occurs wh
the strong field is detuned and the weaker field is on re
nance. In Sec. VI we summarize our results, in Appendix
present details of the perturbation calculations involved
the determination of the dressed states, and in Append
tabulate the transition rates which govern the intensities
the spectral components.

II. THE SYSTEM

We consider a two-level atom with ground stateug& and
excited stateue& separated by a transition frequencyv0 and
connected by a transition dipole momentmW . The atom is
driven by a bichromatic field with frequency componentsv1
and v2 and corresponding~on resonance! Rabi frequencies
2V1 and 2V2 . The atom is also coupled to all other mod
of the electromagnetic field, which are assumed to be
tially in their vacuum states. This coupling leads to spon
neous emission with a rateG.

The time evolution of the atomic system can be descri
by the reduced atomic density operatorr, which in the
Schrödinger picture obeys the master equation (\51) @20#

]r

]t
52 i @H,r#2

G

2
~S1S2r1rS1S222S2rS1!, ~1!

whereS1(S2)5ue&^gu (ug&^eu) is the usual atomic raising
~lowering! operator. The HamiltonianH is composed of five
terms,

H5Ha1H11H21V11V2 , ~2!

where

Ha5v0Sz ~3!

is the Hamiltonian of the atom, and

Hi5v iai
†ai , i 51,2, ~4!

are the Hamiltonians of the driving field components. In E
~3! and ~4!, Sz5 1

2 (ue&^eu2ug&^gu) is the atomic inversion,
and ai (ai

†) are the annihilation~creation! operators for the
driving field modes. The terms

Vi5gi~ai
†S21S1ai !, i 51,2, ~5!

wheregi are the atom-field coupling constants, describe
interaction of the laser fields with the atom~in the rotating-
wave approximation!.

We begin by diagonalizing the HamiltonianH to find the
eigenstates~dressed states! of the combined atom1driving
fields system. This approach is valid for
p-
by
e
e-
a-
e
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v1 , v2@V1 , V2.G. ~6!

We consider only the case ofV25aV1 with a,1, and we
examine the effect of the second field perturbatively. Mo
over, we limit our calculations to the case in which the fi
field is on resonance with the atomic transition,v15v0 , and
the second field is detuned from resonance by an inte
fraction of the first field’s Rabi frequency, so that

v25v01
2V1

n
. ~7!

This corresponds to driving the system by the second fiel
one of the ‘‘subharmonic resonances’’ of the Rabi frequen
of the first field. The case ofn51 has recently been exam
ined both theoretically@21# and experimentally@22#. As we
shall see the situation forn52,3, . . . produces dramatically
different results. Ann-photon coupling between dresse
states leads to the appearance of multiplet features at sub
monic as well as harmonic resonance frequencies in
spectra.

The diagonalization ofH leads to the dressed states of t
system and their energies. However, instead of perform
the diagonalization of the total Hamiltonian by treating t
driving fields as a single combined field, we first diagonal
the Hamiltonian Hda5Ha1H11V1 and calculate the
dressed states of the atom1resonant field system. Next w
couple the resulting singly dressed atom to the off-reson
field and calculate the dressed states and their energies o
‘‘doubly dressed’’ atom. The eigenstates of the Hamiltoni
Hda satisfy the eigenvalue equation

HdauN6&5@Nv06V1#uN6&, ~8!

where

2V152g1A^N& ~9!

is the Rabi frequency of the resonant field,1

uN6&5
1

&
~ ug,N&6ue,N21&! ~10!

are the singly dressed states, andN is the number of photons
in the resonant mode@19#. The singly dressed states form
ladder of doublets, as shown in Fig. 1~a!, with adjacent dou-
blets separated byv0 , and intradoublet splitting 2V1 .

Next, we add the second field and find that the eigenst
of the combined systemHda1H2 are degenerate doublets:

u~N1n2m!1,M2n1m&[uam
n &,

~11!

u~N2m!2,M1m&[ubm
n &,

with energies

1In the derivation of Eq.~8!, we have ignored the variation ofV1

with N, on the basis that the resonant laser is in a large amplit
coherent state with an average number of photons^N&@1.
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Eam
[Ebm

5~N1M !v01
V1

n
@2~M1m!2n#, ~12!

whereM is the number of photons in the detuned mode
This degeneracy is due to ann-photon coupling between
singly dressed states, as indicated forn52 by arrows in Fig.
1~a!. Thus, to this point, the energy structure of the syst
consists of an infinite number of manifolds~separated by

FIG. 1. ~a! Energy levels of the singly dressed atom. Absorpti
of two laser 2 photons of frequencyv25v01V1 , corresponding to
the case ofn52, is indicated by the arrows.~b! Energy levels of the
singly dressed atom and laser 2 before the interaction between
is ‘‘turned on.’’ The energy manifolds each contain an infinite nu
ber of degenerate doublets with interdoublet separationV1 . ~c!
Addition of the interaction with laser 2 removes the degeneracy
leads to the splitting of the degenerate levels into doublets with
intradoublet separation 2DE2 .
.

v0!, each containing an infinite number of degenerate d
blets ~separated by 2V1 /n!, as shown in Fig. 1~b!.

III. THE DOUBLY DRESSED STATES
AND ENERGY SPLITTINGS

The addition of the interactionV2 between the atom and
field mode 2 removes the degeneracy between the statesuam

n &
and ubm

n & and results in ‘‘doubly dressed’’ states. In order
show this, we diagonalize the HamiltonianH5Hda1H2

1V2 in the basis of the degenerate statesuam
n & andubm

n &. We
perform the diagonalization using perturbation theory, a
find that forn52,3, . . . it isnecessary to go to second-ord
degenerate perturbation theory to achieve this. This is du
the fact that the matrix elements^auV2ub& (a,b5a,b) are
zero, and the first nonvanishing perturbation calculatio
therefore involve diagonalization of the operator

R 1[ (
iÞa,b

V2u i &^ i uV2

Ea2Ei
~13!

on the two-dimensional degenerate subspace$ua&,ub&%.
The details of the perturbation calculations are shown

Appendix A. After lengthy calculations, we find that th
eigenstates ofH are composed of nondegenerate doubl
with splitting 2DEn @as shown in Fig. 1~c!#, whereDEn , for
n52, 3, and 4, are given by the series expansions

DE25V1A13S 1

6
a22

493

2808
a41

9123107

52565760
a61 ¯ D ,

DE35V1S 9

32
a21

36117

40960
a42

132460191

26214400
a61 ¯ D ,

~14!

DE45V1S 4

15
a21

254

3375
a41

9384656

5315625
a61 ¯ D .

The corresponding eigenstates~the doubly dressed states!,
calculated as a perturbation expansion ina, are given by the
following:

em
-

d
n

n52:

u~N1M!m1&5N2H hua&1ub&1
1

2
aF2~h11!ua1&1ub1&1hua21&1~h21!ub21&1

1

3
ua3&2

1

3
hub23&G1

1

12
a2F227

52
~ ua&

2hub&)1~3h22!ua2&1ub2&1hua22&1~2h13!ub22&1
1

2
ua4&2

1

2
hub24&G J ,

u~N1M !m2&5N2H ua&2hub&1
1

2
aF ~h21!ua1&2hub1&1ua21&1~h11!ub21&2

1

3
hua3&2

1

3
ub23&G

1
1

12
a2F27

52
~hua&1ub&)1~312h!ua2&2hub2&1ua22&1~223h!ub22&2

1

2
hua4&2

1

2
ub24&G J , ~15!

n53:
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u~N1M !m1&5N3H ua&1
3

4
aF3

2
ub&2ua1&1ua21&1

1

2
ub22&2

1

4
ub24&G

1
27

16
a2F1

2
ub1&2ub21&1

1

8
ua22&1

7

36
ub23&1

1

8
ua4&2

1

20
ub25&G J ,

u~N1M !m2&5N3H ub&1
3

4
aF3

2
ua&1ub1&2ub21&2

1

2
ua2&1

1

4
ua4&G

1
27

16
a2F ua1&2

1

2
ua21&1

1

8
ub2&2

7

36
ua3&1

1

8
ub24&1

1

20
ua5&G J , ~16!

n54:

u~N1M !m1&5N4H ua&1aF ua21&2ua1&1
1

3
ub23&2

1

5
ub25&G

1a2F25

3
ub&1

2

3
ua2&1

2

5
ua22&2

2

3
ub22&1

7

15
ub24&2

2

15
ub26&G J ,

u~N1M !m2&5N4H ub&1aF ub1&2ub21&2
1

3
ua3&1

1

5
ua5&G1a2F5

3
ua&1

2

3
ub22&1

2

5
ub2&1

2

3
ua2&2

7

15
ua4&1

2

15
ua6&G J ,

~17!
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whereh522/32A13/3, andN25@(11h2)(11 7
9 a2)#21/2,

N35@11 484
225a2#21/2, N45@11 657

256a2)] 21/2 are the normal-
ization constants, and, for simplicity, we have introduc
the notation uai&[uam1 i

n &, ubi&[ubm1 i
n & for iÞ0 and

ua0&5ua&, ub0&5ub&.
We note the interesting effect that the perturbationV2 lifts

the degeneracy between theua& and ub& states for alln>2;
however, a mixture of these statesto zeroth order ina does
not occur forn.2. To understand this we refer to the oper
tor R 1, whose diagonal elements represent the shift of

FIG. 2. Then-photon energy splittingDEn /V1 , plotted as a
function of a for n52 ~solid line!, n53 ~dashed line!, andn54
~dashed-dotted line!.
d

-
e

degenerate states due to their coupling, throughV2 , with
other states of the manifold. Since^auR 1ua&52^buR 1ub&
Þ0 for all n, the states are always shifted in opposite dire
tions, which lifts the degeneracy at second order. The
diagonal elements ofR 1 represent a couplingbetweenthe
degenerate states through the other states of the manifo
is not difficult to show that forn.2 these off-diagonal ele
ments are zero; hence the matrix representation ofR 1 is
diagonal and no superposition of the states occurs until o
an22.

The splittingsDEn are plotted in Fig. 2 as a function ofa.
Clearly for smalla the splittings exhibit a quadratic depen
dence ona, and decrease with increasingn. Moreover for
a,0.1 the splittings forn53 and 4 are almost exactl
equal. This is a consequence again of the fact that forn>3
the statesua& and ub& do not couple to each other throug
R 1, which results in the leading term of the expansion
DEn rapidly approaching1

4 V1a2 for largen. Thus asn in-
creases, the smalla behavior of the splittings becomes a
most identical.

IV. THE FLUORESCENCE, WEAK PROBE,
AND AUTLER-TOWNES ABSORPTION

AND DISPERSION SPECTRA

A. Spectral frequencies and transition rates

The interaction between the atom and the vacuum mo
of the electromagnetic field leads to a spontaneous emis
cascade down the energy manifold ladder of the dres
atom. Transitions occur between any pair of dressed st
with a probability proportional to the absolute square of t
dipole transition moment connecting them. Using the dres
states ~15!–~17! we find that the transitions from
u(N1M )ms& to u(N1M21)(m1 j )e& (e,sP$1,2%) oc-
cur at frequencies



f

d
e
in

ar

t
-
in

d

th
w

i-
n
ns

n

le

the

nd
ses
e

n
rp-
tral

to

e
ec-

abi

ion

1300 PRA 58T. G. RUDOLPH, H. S. FREEDHOFF, AND Z. FICEK
v j
665v02 j

2V1

n
~18!

and

v j
675v02 j

2V1

n
62DEn , ~19!

indicating that the fluorescence spectrum will consist o
series of triplets with intratriplet spacing 2DEn centered at
integer multiples of 2V1 /n, i.e., at both subharmonics an
superharmonics of the strong field Rabi frequency. Nonz
transition probabilities occur only between states with
neighboring manifolds. The relevant transition rates
therefore of the form

G j
se5G z^~N1M !msuS1u~N1M21!~m1 j !e& z2.

~20!

These transition rates~normalized toG, as are all relevan
results presented henceforth! are presented explicitly in Ap
pendix B. In order to show the first nonvanishing terms
the transition rates, the calculations forn52 are presented
correct to ordera2, whereas forn53,4 they are presente
correct to ordera4.

B. Populations of the dressed states

We use the master equation~1! to find the time evolution
of the populations of the doubly dressed states and of
coherences between them. To study the populations,
project the master equation ontou(N1M )m6& on the right
and^(N1M )m6u on the left. We make the secular approx
mation in which we ignore couplings between populatio
and coherences and introduce the ‘‘reduced populatio
@19#

Pm
65 (

N,M
^~N1M !m6uru~N1M !m6&. ~21!

BecauseN,M@1 we can also assume that the populatio
vary very slowly withm, and so

Pm
6.Pm61

6 . ¯ [P6. ~22!

The population equations then reduce to a pair of coup
equations

Ṗ657A1P16A2P2, ~23!

where the dot denotes differentiation with respect toGt, and
the coefficientsA6 are given by the following: Forn52:

A65
35

104
2S 61

24336
6

A13

12 Da21S 99556813

455569920
7

259A13

2808 Da4.

~24!

For n53:

A15
1

4
1

381

512
a22

4421529

819200
a4,

~25!
a

ro

e

e
e

s
’’

s

d

A25
1

4
2

285

512
a22

5538249

819200
a4.

For n54:

A15
1

4
1

17

225
a21

158051

101250
a4,

~26!

A25
1

4
2

13

225
a21

136931

101250
a4.

The equations~23! have steady state solutions

Pss
65

A7

A11A2 , ~27!

which yield explicitly the following: Forn52:

Pss
65

1

2
7

13A13

105
a26

4502A13

33075
a4. ~28!

For n53:

Pss
65

1

2
7

3

16
a27

2241

2560
a4. ~29!

For n54:

Pss
65

1

2
7

2

15
a27

688

3375
a4. ~30!

In the case of resonant monochromatic excitation,
dressed states are equally populated~in the secular approxi-
mation!. However, the atom still exhibits weak emissive a
absorptive properties that arise from multiphoton proces
@17,18#. In the case of bichromatic driving, however, th
populationsPss

6 depend ona and are unequal even withi
the secular approximation. This results in first-order abso
tion and emission at all sideband frequencies, with cen
components that still vanish, because they correspond
1⇔1 and 2⇔2 transitions~which involve equal upper
and lower state populations!. The difference between th
populations depends intricately upon the strength of the s
ond laser and decreases with increasingn, indicating a de-
creasing efficiency of the second laser. The effective R
frequency of the second laser decreases with increasingn, as
the laser drives the higher-order resonances.

C. Coherences and spectral linewidths

All spectra of the system are related to the time evolut
of the atomic dipole moment operatorS1 given by

S15 (
l e,ms
N,M

Sl e,ms
1 r l e,ms,N,M

~1 ! , ~31!

whereSl e,ms
1 5^(N1M ) l euS1u(N1M21)ms&, and

r l e,ms,N,M
~1 ! 5u~N1M !l e&^~N1M21!msu. ~32!
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The matrix elements of the off diagonal operators~32! rep-
resent coherences between the dressed states, and the
cillate at frequencies~18! and ~19!.

First, we consider transitions at the frequencies of
sidebands of each triplet~19!. For values ofV1 and V2
corresponding to the range~6!, it is easily verified that the
spectral lines are all nonoverlapping. The equations of m
tion of the corresponding density matrix elements are the
fore uncoupled and from the master equation~1! we find that
they are given by

ṙ l 6,m7,N,M52~ iv l 2m
67 1Gs!r l 6,m7,N,M , ~33!

where the linewidthsGs are as follows. Forn52:

Gs5
69

104
1

61

24336
a21

99556813

227784960
a4.

For n53:

Gs5
3

4
2

333

512
a21

4979889

819200
a4. ~34!

For n54:

Gs5
3

4
2

2

225
a22

147491

101250
a4.

Next we consider the transitions at the central compon
of each triplet. In this case the two matrix elemen
r l 1,m1,N,M

(1) and r l 2,m2,N,M
(1) oscillate at the same frequenc

~18!, and therefore have coupled equations of motion. W
we average over the driving field, the reduced coheren
r l 6,m6

(1) 5(NMr l 6,m6,N,M
(1) are found to obey the sam

coupled equations of motion as do the populationsP6, with
the addition in each of the freely oscillating term
2 iv l 2m

66 r l 6,m6
(1) , given by

ṙ l 6,m652~ iv l 2m
66 1A6!r l 6,m61A7r l 7,m7 . ~35!

The associated dipole momentspl 6,m6
(1) 5Sl 6,m6

1 r l 6,m6
(1) then

obey the equations

ṗl 6,m6
~1 ! ~ t !52~ iv l 2m

66 1A6!pl 6,m6
~1 ! ~ t !2A7pl 7,m7

~1 ! ~ t !,
~36!

whose solutions are readily found to be

pl 6,m6
~1 ! ~ t !5

6u1

A~A1!21~A2!2
A7e2 iv l 2m

66 t1u2e2~ iv l 2m
66

1Gc!t,

~37!

where the constantsu1 and u2 can be found from initial
conditions. We do not, however, require the values ofu1 and
u2 in order to calculate the spectra and therefore do not s
for them. The first term in Eq.~37! corresponds to the elasti
components, while the second term corresponds to the
elastic central components at frequenciesv l 2m

66 with line-
width given by

Gc5A11A2. ~38!
os-

e

-
e-

nt

n
es

ve

n-

For all n we findGc52(12Gs). We see from Eqs.~34! and
~38! that the spectral linewidths depend ona such that the
linewidths of the sideband components of the triplets
crease with increasingn, whereas the linewidths of the cen
tral components increase with increasingn.

D. Fluorescence spectrum

The fluorescence spectrum is given by the real part of
Fourier transform of the correlation function of the dipol
moment operator̂p(1)(t)p(2)(t8)&, t.t8. From the quan-
tum regression theorem@24#, it is well known that fort.t8
the two-time averagêpl e,ms

(1) (t)p(2)(t8)& satisfies the same
equation of motion as the one-time average^pl e,ms

(1) (t)&, with
the initial conditions

^pl e,ms
~1 ! ~ t8!p~2 !~ t8!&5G l 2m

es Pss
e , ~39!

whereG l 2m
es are the transition rates given by Eqs.~B1!–~B3!,

andPss
e are the steady-state populations of the dressed s

given by Eq.~28!. The equations of motion for the one-tim
averageŝpl e,ms

(1) (t)& were obtained in Sec. IV C. Thus, in th
limit of large V2 (V2.G), where the spectral lines do no
overlap, the fluorescence spectrum~apart from geometrica
and atomic factors! is given by

S~v!5 (
j 52`

` S G j
12Pss

1Gs

~v2v j
12!21Gs

2 1
G j

21Pss
2Gs

~v2v j
21!21Gs

2

1
~G j

11Pss
11G j

22Pss
2!Gc

~v2v j
11!21Gc

2 D , ~40!

where the sum overj indicates a sum over the nonvanishin
transitions as given by Eqs.~B1!–~B3!. In Fig. 3 we plot this
analytical expression for the fluorescence spectrum
n52, 3, and 4.2 The arrow in the diagram indicates the fr
quency of the second field. It is seen that for alln the spec-
trum consists of a series of triplets with intertriplet spaci
2V1 /n and intratriplet spacing 2DEn . With increasingn,
the number of triplets increases while the splitting of ea
triplet decreases. The structure of the spectrum reveals
presence of both the multiphoton transitions~in the appear-
ance of the subharmonic and harmonic features! and the mul-
tiphoton ac Stark effect~in the intratriplet splitting!.

E. Weak probe nearly resonant withv0 :
absorption and dispersion

It is interesting to consider as well the absorption a
dispersion of a weak beam probing the doubly dressed at
Since the dressed states are unequally populated, the ab
tion spectrum can give information about population inv
sions between the dressed states. The absorption and di

2We note here that we have solved the master equation~1! nu-
merically and have found that in order to get excellent agreem
between the numerical and the present analytical results, we ha
extend the dressed atom calculations to ordera6. Therefore, all the
spectra plotted here include the populations and transition rates
rect toa6.
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sion profiles of a weak probe beam of frequencyvp are
given by the real and imaginary parts, respectively, of
Fourier transform of the commutator^@S2(t),S1(t8)#&. The
term ^S2(t)S1(t8)& of the commutator is associated wi
absorption and the term̂S1(t8)S2(t)& with stimulated
emission of the probe beam. From the quantum regres
theorem@24#, it is well known that fort.t8 the two-time
commutator̂ @Sl e,ms

2 (t),S1(t8)#& satisfies the same equatio
of motion as does the density matrix element@r l e,ms

(1) (t)#* ,
with the initial condition

^@Sl e,ms
2 ~ t8!,S1~ t8!#&5G l 2m

es ~Pss
e 2Pss

s !. ~41!

Thus, it is straightforward to show that in the case of no

FIG. 3. The fluorescence spectrum for 2V15160G, a50.35,
and differentn: ~a! n52, ~b! n53, ~c! n54.
e

on

-

overlapping spectral components the absorption spectrum
a probe beam nearly resonant with the atomic transition
quency is given by

W~vp!5 (
j 52`

` S G j
12~Pss

22Pss
1!Gs

~vp2v j
12!21Gs

2 1
G j

21~Pss
12Pss

2!Gs

~vp2v j
21!21Gs

2 D ,

~42!

and the dispersion profile by

D~vp!5 (
j 52`

` S G j
12~Pss

22Pss
1!~vp2v j

12!

~vp2v j
12!21Gs

2

1
G j

21~Pss
12Pss

2!~vp2v j
21!

~vp2v j
21!21Gs

2 D . ~43!

The expressions~42! and ~43! are plotted respectively in
Figs. 4 and 5. They contain features at the same frequen
and with the same linewidths as their counterparts inS(v),
but with widely differing intensities depending ona. As the
calculations have been made within the secular approxi
tion, there are no~small! central features in the componen
of the absorption spectra. Therefore the absorption spect
and the dispersion profile are composed of doublets cent
at the frequenciesv j

67 . In each doublet of the absorptio
spectrum one sideband is absorbing and the other amplif
depending on the difference in steady-state populations
the lower and upper levels of the transition. It is interesti
to note from Fig. 4 that with increasingn the maximum of
amplification and absorption shifts from the central doub
to the Rabi sidebands. The same occurs with the dispers
as seen in Fig. 5. Moreover, asn increases the red feature
become exclusively emissive whereas the blue features
come only absorptive. The amplification at frequenc
smaller thanv0 is relatively large compared to the absor
tion at frequencies greater thanv0 , in contrast with the
monochromatic case, where the amplification at one of
sidebands is always small compared to the absorption a
other sideband@3#.

The dispersion, shown in Fig. 5, also exhibits interest
modifications. For example, in the region between the cen
doublet there is a strong negative dispersion with minim
absorption. Forn52, this effect is also seen in all harmon
and subharmonic doublets. With increasingn the negative
dispersion decreases in the harmonic and subharmonic
blets whereas the central structure is remarkably sta
against variation inn.

It should be emphasized here that this system may pr
useful in the production of optical materials having a lar
index of refraction accompanied by vanishing absorpt
@25#. An advantage of this system is that near the cen
frequency, where the absorption vanishes, both the abs
tion and dispersion change slowly with frequency. Therefo
our system is a convenient candidate for this experime
application, since it does not require a precise matching
the probe beam frequency to the point of vanishing abso
tion.
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F. Autler-Townes absorption and dispersion profiles

The structure and properties of the doubly dressed a
can also be studied by monitoring the system with a w
probe beam coupled to a third~bare! atomic state. We as
sume that a third atomic leveluc& is connected toug& with a
nonzero dipole moment, and with a transition frequencyvc
much different fromv0 . The transition is monitored by a
weak probe beam of frequencyv3 tuned close tovc . The
intensity of the features corresponding to absorption from
dressed stateu(N1M )m6& is proportional to the product o
the steady-state populationPss

6 and the transition rate from
u(N1M )m6& to uc,N,M &, which itself is proportional to
@19#

FIG. 4. The near-resonance absorption spectrum for the s
parameters as in Fig. 3.~a! n52, ~b! n53, ~c! n54.
m
k

e

Lm
65G3u^~N1M !m6ug,N,M &u2, ~44!

whereG3 is the natural width of leveluc&. These quantities
are readily evaluated using the dressed states~15!–~17! and
are listed~normalized toG3! in Appendix B. The frequencies
at which the absorption occurs fromu(N1M )m6& to
uc,N,M & are given by

v j
65vc2S 2 j

n
21DV17DEn , ~45!

while the linewidths are given by

e FIG. 5. The near-resonance dispersion profile for the same
rameters as in Fig. 3.~a! n52, ~b! n53, ~c! n54.
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Ga5
Gs1G3 /G

2
. ~46!

Accordingly, the Autler-Townes absorption spectrum c
be written as

A~v3!5(
j

S L j
1Pss

1Ga

~v32v j
1!21Ga

2 1
L j

2Pss
2Ga

~v32v j
2!21Ga

2D ,

~47!

and the corresponding dispersion profile is

T~v3!5(
j

S L j
1Pss

1~v32v j
1!

~v32v j
1!21Ga

2 1
L j

2Pss
2~v32v j

2!

~v32v j
2!21Ga

2 D .

~48!

In Figs. 6 and 7 we plot the Autler-Townes absorpti
and dispersion spectra, respectively, for the same param
as in Fig. 3. Each consists of a series of doublets, locate
frequencies 2mV1 /n, wherem50,61,62, . . . for n even
andm56 1

2 ,6 3
2 ,6 5

2 , . . . for n odd. The intradoublet sepa
ration is 2DEn . The most intense doublets are those cente
at the frequenciesvc6V1 , which correspond to the Autler
Townes frequencies of a monochromatically driven ato
The width of all lines isGa , and once again an intricat
dependence of the peak intensities ona is evident. Care mus
be taken when comparing the transition rates~B4! with the
doublets in Fig. 6. The transition ratesL0

6 correspond to the
sideband doublet atv35vc1V1 , not to the central one
whereasL i

6 corresponds to thei th doublet to the left~right!
of this intense doublet ifi is positive~negative!.

V. a>1: STRONGER FIELD DETUNED, WEAKER
ON RESONANCE

In this section, we consider briefly a role reversal of t
driving fields, with the stronger detuned fromv0 by an
amountD, and the weaker field on resonance:

v15v0 , v25v01D, ~49!

V25aV1 , a.1. ~50!

The atom can then be viewed as interacting first with
dominant field~of frequencyv2!, with an effective Rabi fre-
quency

2G25AD214V2
2. ~51!

Whenever the detuningD is such thatv1 lies at a subhar-
monic resonance of 2G2 (D52G2 /n), or alternatively,
whenever the detuning and resonant Rabi frequency of fi
2 are related by the equation

2V25DAn221, n.1, ~52!

a multiphoton ac Stark effect again results. All the featu
described in the previous sections fora,1 again appear, bu
centered in this case at frequenciesv2 andv26 j (2G2 /n).
n

ers
at

d

.

e

ld

s

VI. CONCLUSIONS

We have studied the effect of bichromatic excitation
the radiative and absorptive properties of a two-level at
under the condition that one of the excitation fields is stro
and exactly resonant with the atomic transition, while t
other is weaker and detuned by a subharmonic of the R
frequency of the strong field. The energy levels of this s
tem have been found and the radiative and absorptive p
erties interpreted in terms of the transitions between th
We have shown that this system, despite the one-photon
pling between the atom and driving fields, exhibits a mu
photon ac Stark effect. As such the fluorescence, absorp

FIG. 6. The Autler-Townes absorption spectrum for the sa
parameters as in Fig. 3 and natural linewidth of the third le
G35G/3. ~a! n52, ~b! n53, ~c! n54.
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and Autler-Townes spectra exhibit spectral features at s
harmonics as well as harmonics of the Rabi frequency of
strong field, with the number of features dependent on
ordern of the resonance. The presence of the multiphoton
Stark effect leads to a splitting of each of the features of
fluorescence and near resonance absorption spectra in
triplet, and of the Autler-Townes spectrum into a doublet

Finally, we would like to point out that the multiphoto
splitting and the Autler-Townes spectra, of a system sim
to that considered here, have recently been observed ex
mentally @23# and our theoretical predictions agree wi
these observations.

FIG. 7. The Autler-Townes dispersion profile for the same
rameters as in Fig. 3 and natural linewidth of the third lev
G35G/3. ~a! n52, ~b! n53, ~c! n54.
b-
e
e
c
e
o a

r
ri-

ACKNOWLEDGMENTS

We are grateful to Andrew Greentree, Neil Manson, a
Changjiang Wei for sharing their experimental data with
prior to its publication. This research was supported in p
by the Australian Research Council and by the Natural S
ences and Engineering Research Council of Canada
whom the authors extend their thanks.

APPENDIX A: PERTURBATION THEORY FOR TWO
DEGENERATE LEVELS

We consider a general perturbationlV of a Hamiltonian
H0 whose eigenvalues E1 ,E2 , . . . and eigenstates
u1&,u2&, . . . areknown. In particular we consider the cas
when two of the unperturbed eigenstatesua& and ub& are
degenerate with energyEa[Eb . In the standard manner w
assume that the perturbed eigenstates and energies ca
expanded as a power series inl of the form

uc&5uc&~0!1luc&~1!1l2uc&~2!1 ¯ , ~A1!

E5E01lE~1!1l2E~2!1 ¯ , ~A2!

that the wave function correct to zero order is given by

uc&~0!5Ca
~0!ua&1Cb

~0!ub& ~A3!

and that themth order correction to the wave function can b
written as

uc&~m!5Ca
~m!ua&1Cb

~m!ub&1 (
iÞa,b

Ci
~m!u i &. ~A4!

The inclusion of the statesua& and ub& in the higher order
corrections is often omitted in treatments of perturbat
theory, but in fact is found to be critical to a correct calc
lation of then-photon dynamic Stark effect discussed in th
paper.

By substitution of these expressions into the Schro¨dinger
equation, we set up a series of matrix equations of the fo

G0C~0!5E~1!C~0!, ~A5!

G0C~1!1G1C~0!5E~1!C~1!1E~2!C~0!, ~A6!

G0C~2!1G1C~1!1G2C~0!5E~1!C~2!1E~2!C~1!1E~3!C~0!

~A7!

]

HereC(m) is the vector

S Ca
~m!

Cb
~m!D ~A8!

-
l
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and the$Gi% are 232 matrices evaluated in the degenera
subspace. More explicitly

G05S Vaa Vab

Vba Vbb
D ~A9!

while

G15SR aa
1 R ab

1

R ba
1 R bb

1 D , ~A10!

whereR i j
p [^ i uR pu j & is the matrix element (i , j ) of the op-

erator

R p5(
i

8
Vu i &^ i uV

~Ea2Ei !
p , ~A11!

and the prime indicates that the sum excludes the st
ua&,ub&. In fact it is useful to define the more general ope
tor

R pq..r5 (
i , j ,..,k

8
Vu i &^ i uVu j &^ j uV¯Vuk&^kuV

~Ea2Ei !
p~Ea2Ej !

q
¯~Ea2Ek!

r ,

~A12!

and the operatorJm( l ) as the sum over all theR operators
with l superscripts such that they add up tom. For example,

J4~2!5R 131R 311R 22,

J5~3!5R 1131R 1311R 3111R 1221R 2121R 221.
~A13!

Further, we define the operator

M l
m5Jm~ l !2(

j 51

l 21

E~ j !M l 2 j
m112 j , m,l>2, ~A14!

with

M 1
m5Jm~1!5Rm. ~A15!

For example,M3
3, from which we calculateG3 , is given by

M 3
35R 1112E~1!~R 121R 212E~1!R 3!2E~2!R 2.

~A16!

Finally can write the matricesGm as

Gm5S ^auMm
mua& ^auMm

mub&

^buMm
mua& ^buMm

mub&
D . ~A17!
es
-

We can systematically solve the equations~A5!–~A7!.
However, in the problem investigated in this paper we ha
Vaa5Vab5Vba5Vbb[0 and thusG050. Hence the first or-
der energy corrections are zero (E(1)50), and we must use
Eq. ~A6! to determine the correct zero-order eigenstates
the energy correctionsE(2). Equation~A6! is now a two-
dimensional eigenvalue equation whose eigenvectorsC6

(0)

and eigenvaluesE6
(2) give the dressed states correct to ze

order and second-order energy corrections, respectiv
Having found and normalized the eigenvectorsC6

(0) , we pro-
ceed to solve Eq.~A7!.

Because the matricesGm are Hermitian, we know that the
eigenvectorsC6

(0) are orthogonal and that they span the tw
dimensional vector space. Therefore, we can write the ve
C1

(1)5 f 1
1C1

(0)1 f 1
2C2

(0) . Substituting this back into Eq.~A7!

and multiplying on the left first byC1
(0)†, then byC2

(0)†, we
find

E1
~3!5C1

~0!†
G2C1

~0! ,
~A18!

f 1
25

1

E1
~2!2E2

~2! ~C2
~0!†

G2C1
~0!!.

The coefficientf 1
1 is found to be arbitrary, and we choos

f 1
150 in order to follow the orthogonality convention tha

~0!^cuc&~n!50. ~A19!

The previous derivation is symmetric and we can sim
interchange plus and minus signs to obtain expressions
E2

(3) and f 2
1 . The process can be continued to next order

takingC1
(2)5g1

1C1
(0)1g1

2C2
(0) , and so on. In this manner th

energy corrections and coefficients of the degenerate s
Ca

(n) ,Cb
(n) can be found to any accuracy required. The co

ficients of the other states that contribute to the eigenve
corrections are found in the usual way, and given by

Ck
~1!5

1

Ea2Ek
~Ca

~0!Vka1Cb
~0!Vkb!,

~A20!

Ck
~m!5

1

Ea2Ek
S (

j
Cj

~m21!Vk j2 (
i 51

m21

E~ i !Ck
~m2 i !D ,

where we point out that the first sum includes the sta
ua&,ub&.
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APPENDIX B: TRANSITION RATES BETWEEN THE DRESSED STATES

For n52 the transition rates~20! to ordera2 are given by

G23
665

1

13
a2, G23

675S 17

117
6

4A13

117 Da2,

G22
665

9

208
2

1405

5408
a2, G22

675
17

208
6

A13

52
2S 17099

48672
7

6803A13

97344 Da2,

G21
665

13

36
a2, G21

675
1

4
a2,

G0
665

1

13
2

2201

12168
a2, G0

675
9

52
2S 131

1352
7

3A13

26 Da2,

G1
665

4

117
a2, G1

675
1

13
a2,

G2
665

9

208
2

261

5408
a2, G2

675
17

208
7

A13

52
2S 3059

48672
7

1187A13

97344 Da2,

G3
665

1

52
a2, G3

675S 17

468
7

A13

117Da2. ~B1!

The left-hand column of Eq.~B1! consists of those transition rates which contribute to the central components o
fluorescence triplets, the right-hand column are transition rates which govern the intensities of the triplet sidebandn
53 we find the transition rates correct to ordera4 to be given by

G0
665

1

4
2

369

256
a21

4844169

409600
a4, G0

125
81

64
a22

26163

2560
a4, G0

215
81

64
a22

18549

1280
a4,

G1
665

81

1024
a22

45927

65536
a4, G1

125
6561

16384
a4, G1

215
3969

4096
a4,

G21
665

81

1024
a21

325053

327680
a4, G21

125
6561

4096
a4, G21

215
6561

16384
a4,

G2
665

263169

409600
a4, G22

125
81

64
a22

485757

40960
a4, G2

215
9

64
a22

50949

40960
a4,

G22
665

927369

409600
a4, G3

125
6561

16384
a4, G3

215
1

4
2

597

512
a21

55103607

6553600
a4,

G3
665

81

256
a22

677889

163840
a4, G23

125
1

4
2

1365

512
a21

125778807

6553600
a4, G23

215
6561

16384
a4,

G23
665

81

256
a22

207117

32768
a4, G24

125
225

256
a22

89343

16384
a4, G4

215
81

256
a22

105219

81920
a4,

G4
665

6561

16384
a4, G25

125
3538161

6553600
a4, G5

215
6561

16384
a4,

G24
665

18225

16384
a4, ~B2!

while for n54 we find to ordera4
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G0
665

1

4
2

34

225
a22

149486

50625
a4, G0

125
25

9
a4, G0

215
25

9
a4,

G1
665

16

225
a22

3136

50625
a4, G22

125
400

81
a4, G2

215
4

81
a4,

G21
665

16

225
a21

4064

50625
a4, G23

125
16

9
a22

28288

2025
a4, G3

215
4

9
a22

2272

2025
a4,

G2
665

16

225
a4, G24

125
1

4
2

707

225
a21

1463321

101250
a4, G4

215
1

4
2

257

225
a21

95321

101250
a4,

G22
665

4

225
a4, G25

125
36

25
a22

15392

1875
a4, G5

215
16

25
a22

1024

625
a4,

G4
665

25

36
a4, G26

125
8836

5625
a4, G6

215
1936

5625
a4,

G24
665

25

36
a4. ~B3!
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In Eqs. ~B2! and ~B3! the left-hand column consists o
those transition rates corresponding to the central com
nents of the fluorescence triplets, the middle and right c
umns correspond to right and left sidebands of the tripl
respectively. An examination of Eqs.~B2! and ~B3! reveals
that the only transition rates that have nonvanishing te
independent ofa areG0

66 , which correspond to transition
at v0 , andG7n

67 , which correspond to sidebands of the tri
lets at62V1 , the location of the Rabi sidebands for mon
chromatic driving.

The quantities~44!, which determine the intensities of th
Autler-Townes spectral lines, are found to be as follows: F
n52:

L21
6 5S 1

9
7

2A13

117 Da2,

L0
65S 1

4
7

A13

26 D 2S 5

18
7

433A13

48672Da2,

L2
65S 1

4
6

A13

26 D 2S 1

9
6

1993A13

48672 Da2,

L1
65S 1

4
7

A13

26 Da2.

For n53:

L0
15

81

128
a22

1215081

163840
a4,

L0
25

1

2
2

825

512
a21

27429651

3276800
a4,

L1
15

729

512
a4, L1

25
81

128
a22

81405

32768
a4,
o-
l-
s,

s

r

L21
1 5

18225

32768
a4, L21

2 5
225

512
a22

130923

131072
a4,

L2
15

9

128
a22

25893

32768
a4, L2

25
729

512
a4, ~B4!

L3
15

1

2
2

489

512
a21

19169811

3276800
a4, L22

2 5
35721

819200
a4,

L4
15

81

512
a22

41067

131072
a4, L3

25
81

128
a22

962361

163840
a4,

L5
15

6561

819200
a4, L4

25
6561

32768
a4.

For n54:

L0
15

25

18
a4, L0

25
1

2
2

347

225
a21

27821

33750
a4,

L3
15

2

9
a22

196

675
a4, L1

25
8

9
a22

1424

675
a4,

L4
15

1

2
2

137

225
a22

32099

33750
a4, L21

2 5
18

25
a22

644

625
a4,

L5
15

8

25
a22

1616

5625
a4, L2

25
8

9
a4,

L6
15

8

225
a4, L22

2 5
32

225
a4, L4

25
25

18
a4.

These are correct to ordera2 for n52, and ordera4 for
n53,4.
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