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Autoionization of a quasicontinuum: Population trapping, self-trapping, and stabilization

Xin Chen and John A. Yeazell
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802

~Received 14 August 1997; revised manuscript received 31 March 1998!

Three distinct phenomena are found to affect the autoionization of a quasicontinuum. For certain initial
superpositions of the states within the quasicontinuum, the autoionization may be inhibited by quantum inter-
ference and the population may be trapped. For those initial superpositions that do decay, a self-trapping effect
can be observed which causes the superposition to evolve into a trapped state. The self-trapping is due to a
redistribution of the population within the quasicontinuum via Raman-like transitions driven by the channel
interaction with the continuum acting as the intermediate state. The physical system of a two-electron atom is
studied. There the autoionizing continuum is created by an isolated core excitation that embeds a range of
highly excited Rydberg states into the continuum. Another mechanism appears, in this system, that affects the
autoionization. When the channel interaction is strong compared to the strength of the core excitation a
stabilizing effect occurs which slows the autoionization. Analytical models examine these effects in a system
with degenerate quasicontinua. Perfect population trapping, self-trapping, and stabilization are all clearly
displayed by this system. Numerical models of nondegenerate quasicontinua show that the stabilization process
is virtually unchanged by the lifting of the degeneracy. These models also show that, in general, the trapping
effects largely disappear. However, a synchronization of the free evolution of the quasicontinuum states with
Rabi oscillation of the core excitation returns them to significant roles in the decay process. A wide variety of
nondecaying states can be created. Competition between these mechanisms is explored and the impact of these
phenomena on experiments is considered.@S1050-2947~98!09608-5#

PACS number~s!: 32.80.Dz, 32.80.Rm
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I. INTRODUCTION

Structure embedded in a continuum has long excited
entific interest@1#. The classic problem of a single state a
toionizing to a continuum is well understood both expe
mentally @2,3# and theoretically@4–6#. Recently, the richer
problem of the interaction between many states~quasicon-
tinuum or QC! and a continuum has received a great dea
experimental and theoretical attention. One fascinating
pect of the problem is the effect of establishing a we
defined phase relationship or coherence between the stat
the QC. The central question is what processes govern
decay and, for this work, how does a coherence within
QC effect that decay.

There are two general classes of effects which inhibit
process of decay. The first is an interference between m
tiple pathways that leads to a long-term trapping of the po
lation in a particular state~or states!. A simple example of
this is a ‘‘dark state’’ in which interference between a sup
position of ground states inhibits the excitation of an exci
state@7#. The second class can be described as a stabiliza
and is characterized by a reduction in a decay rate as
strength of the interaction is increased. The physical mec
nisms for stabilization are of various origins, but are link
to a significant change in the system as the strength of
interaction is increased~examples range from power broa
ening to the spatial alteration of the ground state by str
optical fields!.

Such phenomena have been actively explored in the
cess of above-threshold ionization@8#. An example of par-
ticular interest for this paper may be found in Ref.@9#. There
trapping and stabilization effects are found in the strong-fi
photoionization of a Rydberg atom quasicontinuum. In t
PRA 581050-2947/98/58~2!/1267~8!/$15.00
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case, when the ionization process becomes sufficie
strong population may be recaptured from the continuum
so slow the ionization rate. Here, we show that it is possi
for an intrinsic interaction of the atom~autoionization! to
lead to similar phenomena. In addition, the nature of
interaction leads to some unique features such as a
trapping behavior of the QC.

Initially, we will use a model in which a degenerate QC
coupled to a continuum. The analytical solution of th
model provides intuition for exploring the physical proble
of the autoionization of Rydberg electrons in a two-electr
atom. Precisely, the physical problem examines a superp
tion of Rydberg states that is coupled to an autoioniz
collection of states through an isolated core excitation~ICE!
@10# process in a two-electron atom. In ICE, one of the v
lence electrons is promoted to a highly excited state~or Ry-
dberg state!. The remaining core electron is driven so that
oscillates between its ground state and its first excited st
The states of this core electron are much like the states o
singly ionized atom or like that of a single-electron ato
However, the correlation between the two electrons lead
a coupling between the inner electron states and the Ryd
states. This coupling effectively embeds the Rydberg sta
into the continuum. Such two-electron systems have been
subject of a wide variety of studies@11,12#. Here we are
particularly interested in this process when the highly exci
state is a coherent superposition of many Rydberg sta
Such a state can display strong classical characteristics,
a classically oscillating localized wave packet@13–16#.
These are commonly known as radially localized wave pa
ets.

Some of the earliest work investigating ICE and coher
superpositions of Rydberg states was performed by W
1267 © 1998 The American Physical Society
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1268 PRA 58XIN CHEN AND JOHN A. YEAZELL
and Cooke@17–19#. When the core electron is driven by
strong field the correlations between these two electr
leads to a wealth of phenomena. Studies of this situa
@20–24# found that the autoionization process and the la
induced structure was strongly modified~particularly, when
the Rabi frequency for the core transition is equivalent to a
synchronized to the classical orbital frequency or Rydb
frequency of the radial wave packet!. The insight@21# for the
synchronization comes from the following physical pictu
The wave packet’s motion is timed such that it is localiz
away from the core when the core is in the excited state.
lack of overlap between the wave packet and the excited
limits the autoionization. Half a period~Rydberg or Rabi!
later when the wave packet is near the core, the core elec
is in the ground state and again there is little autoionizati
In addition to this suppression of the autoionization, the p
cess can also shape the wave function of the Rydberg e
tron into a nondispersing wave packet.

In this paper, analytic and numerical solutions for a co
tinuum interacting with both degenerate and nondegene
embedded quasicontinua are described. They extend the
clusions of the previous theoretical works and provide n
insight into the interplay of stabilization and population tra
ping in this system. They also point out the limitations of t
physical picture as the self-trapping process leads to an
tangled state of the core electron and the Rydberg elect
Section II studies analytically two situations for the dege
erate system. First, it examines a single autoionizing QC
then it adds a coupling to a bound QC. The first situat
highlights the trapping phenomena while the second hi
lights the stabilization process. Section III explores the sa
situations numerically for a nondegenerate system. The
sults indicate that, in general, the trapping phenomena
only a minor, transitory role for a nondegenerate QC. Ho
ever, the synchronization of the free evolution to the R
oscillation of the core electron can largely restore the tr
ping phenomena to a dominant role. Intuition gained fro
the analytical models suggested that there exists a varie
nondecaying states and nondispersing wave packets.
examples are given. If the initial superposition correspo
to just a single state excited or if it corresponds to
Schrödinger-cat wave packet state@25# an appropriate Rab
frequency may be chosen that leads to their evolution in
nonautoionizing state. Section IV uses the conclusions
Secs. II and III to explore the feasibility of observing th
various phenomena in the physical system of a two-elec
atom.

II. A DEGENERATE QUASICONTINUUM AUTOIONIZING
TO A CONTINUUM—ANALYTIC SOLUTION

The case of a degenerate quasicontinuum decaying
continuum serves as the starting point. Figure 1~a! depicts
the interaction of a degenerate QC~the states within this QC
are labeledh! with a continuum. The channel interactio
drives the autoionization process coupling the QC to the c
tinuum. It is described by a matrix elementRh« connecting
the h series to the continuum. Schro¨dinger’s equations of
motion for the amplitudes of the states of this system may
written
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i ȧh~ t !5Ehah1E
«
d«Rh«c« , ~2.1!

i ċ«~ t !5E«c«1(
h

Rh«ah , ~2.2!

whereEh andE« are the energies of the QC states and
continuum states, respectively. Note that in the degene
case allEh are equal.

These equations can be transformed to the interaction
ture. If we also make use of the Markov approximation@1# to
eliminate the continuum, then we can write the followin
differential equations for the discrete states:

Ȧh~ t !52pRh (
h8

Rh8Ah8 , ~2.3!

where ah5Ahexp(2iEht). We have also assumed that th
continuum is flat so thatRh« is independent of« and so write
Rh«5Rh .

The solution of Eq.~2.3! is accomplished in two steps
First, a new differential equation is formed for the su
(hAhRh , by multiplying both sides of Eq.~2.3! by Rh and
introducing a sum onh to both sides. The solution of thi
equation is simply(hAhRh5Q0e2Gt, where the constan
Q05(hAh(0)Rh contains the initial conditions of the state
in the quasicontinuum. The autoionization coupling appe
in the constantG5p(hRh

2 . This solution for the sum now
acts as a driving term in Eq.~2.3! and the exact solution o
this equation is

Ah~ t !5Ah~0!1
pRhQ0

G
~e2Gt21!. ~2.4!

In the simple case of a single state embedded in the c
tinuum, the above solution reduces to the well-known so
tion, Ah(t)5Ah(0)exp(2pRh

2t). The population of the state
decays exponentially into the continuum@4#.

Next, consider the phenomenon of population trapping
there are a number of states in the QC then the initial am
tudes of the states play a key role. The quantityQ0
5(hAh(0)Rh determines whether the decay is inhibited

FIG. 1. Energy level diagram describing the coupling of a qu
sicontinuum to a continuum. In~a! the quasicontinuum is degene
ate. In ~b! the autoionizing quasicontinuum is coupled to a bou
quasicontinuum by a cw isolated core excitation. A two-electr
atom is modeled in~c! in which the bound quasicontinuum is ex
cited by a short pulse. Again, the bound quasicontinuum is coup
to an autoionizing quasicontinuum by a cw isolated core excitat
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PRA 58 1269AUTOIONIZATION OF A QUASICONTINUUM: . . .
enhanced. Clearly, ifQ0 is zero, the population is trappe
forever in the QC. The simplest trapping example occ
when there are only two states in the QC. In that case,
initial state has the familiar asymmetric form of a ‘‘da
state’’similar to those found in the laser excitation of aL
system@7#. Specifically, if theRh are all identical, the am-
plitudes of the states are equal in magnitude but opposit
sign. For a QC with many states, any superposition of st
that yields aQ050 is a trapped or a nonautoionizing stat

For an initial distribution that results in a nonzeroQ0 , a
portion of the population may still be trapped. A compa
result is found for the steady-state solution of Eq.~2.4! if all
of the coupling coefficients for these states,Rh , are assumed
to be identical:

Ah~`!5Ah~0!2
1

N (
h

Ah~0!. ~2.5!

A case of particular interest is when only a single state
initially populated in the QC. Then the total steady-sta
population in the QC is given by(huAh(`)u25121/N. For
example, consider a three-state QC in which only one
them is populated. The steady-state solution predicts tha
of the population is trapped. The associated final superp
tion state has amplitudes that yield a zero value forQ0 .
Therefore the final population trapping results from the e
lution of the QC into a nonautoionizing superposition. It
the Raman-like transitions between the states of the QC
the channel interaction with the continuum that produces
self-trapping behavior.

It is possible for the entire population to leave this QC.
the initial superposition had identical amplitudes~i.e., for an
N-state QC,Ah(0)51/AN) then the trapping is inhibited an
the steady-state population in the QC is zero. These
amples highlight the key role played by the coherence
tially established in the superposition. Depending upon
initial superposition state, the trapping of the population
this degenerate QC may vary from perfect to none.

A further question can be addressed by this analyt
model. How quickly is the population of the quasicontinuu
lost to the continuum in comparison to the decay of a sing
isolated state? Again, for compactness, we assume tha
theRh are identical. Then the decay rate isN times faster for
the degenerate QC compared to a single, isolated state
G(N)5NR2. Of course, ifQ050 this enhanced decay rate
of little importance since the population is perfectly trappe
However, for nonzeroQ0 , there is a rapid evolution to a
trapped state. That is, there is a rapid drop to a new leve
the population that is then maintained forever.

The addition of an interaction between this autoionizi
QC and a bound QC brings this model a step closer to
physical problem that will be discussed in Sec. IV. The e
tension of the analytical model is depicted in Fig. 1~b!,
where a laser interaction couples a degenerate bound q
continuum to a degenerate autoionizing quasicontinu
This coupling produces a Rabi oscillation between these
quasicontinua. The indicesj and h are for the bound and
autoionizing QC’s, respectively. Any direct photoionizatio
process from the bound QC is assumed to be weak and
ignore its effect. Now, the equations of motion for this sy
tem can be written
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i ȧh5~Ep1Eh!ah1(
j

Shjcos~vt !aj1E
«
d«Rh«c« ,

~2.6!

i ḃj5~Es1Ej!bj1(
h

Sjhcos~vt !ah , ~2.7!

i ċ«5~Es1E«!c«1(
h

Rh«ah . ~2.8!

The Schro¨dinger amplitudes are denotedah , bj , and c« ,
corresponding to the autoionizing, the bound, and the c
tinuum states, respectively. Each channel has its own ion
tion threshold and these are denotedEs andEp for the lower
and upper channels, respectively.

Again, we enter the interaction picture and use the M
kov approximation to eliminate the continuum. In additio
we also use the rotating wave approximation for the la
interaction. The resulting set of differential equations is

iȦh5(
j

Shj

2
e2 iDhjtBj2 ipRh (

h8
Rh8Ah8 , ~2.9!

iḂh5(
j

Shj

2
eiDhjtAh , ~2.10!

where Dhj5(v2Ep1Es)2(Eh2Ej). It is assumed that
there are no shakeup processes so that the laser intera
between anh state and the correspondingj state can be
written with a Kronecker delta functionShj5Vdhj . The
notation is further simplified by keeping only a single ind
h. The analytic solution of this more complex system is a
possible. The solution for the case of exact resonance,
Dhj50, is particularly straightforward. The more general s
lution ~nonzero detuning! is closely related to this specia
case and can be found by a substitution.

Since the right-hand sides of our differential equations
no longer explicitly time dependent, these equations may
solved in the same fashion as described in the simpler c
above. Depending upon the relative size ofG and V, the
solution will have different dynamic behavior. ForV.G we
find

iAh~ t !5S Bh~0!2
pRhQ0

G D sinS Vt

2 D
1

pRhQ0V

sG
sinS st

2 De2Gt/2, ~2.11!

iBh~ t !5S Bh~0!2
pRhQ0

G D cosS Vt

2 D
1FpRhQ0

G
cosS st

2 D1
pRhQ0

s
sinS st

2 D Ge2Gt/2,

~2.12!

whereG5p(hRh
2 and s5AV22G2. The rightmost terms

in Eqs. ~2.11! and ~2.12! are exponentially damped oscilla
tory terms. The solution forV<G is similar in form; how-
ever, the rightmost terms are now purely decay terms.
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1270 PRA 58XIN CHEN AND JOHN A. YEAZELL
iAh~ t !5S Bh~0!2
pRhQ0

G D sinS Vt

2 D
1

pRhVQ0

2Gd
~el1t2el2t!, ~2.13!

iBh~ t !5S Bh~0!2
pRhQ0

G D cosS Vt

2 D
1

pRhQ0

2d
~el1t2el2t!1

pRhQ0

2G
~el1t1el2t!,

~2.14!

where d5AG22V2, l152(G2d)/2, and l252(G
1d)/2.

The off-resonance solution (DhjÞ0) can be found in a
straightforward manner by transforming to slowly rotati
variables. That is, letAj(t)5Ch(t)e2 iDhjt/2 and Bh(t)
5Dh(t)eiDhjt/2. Then the solutions forCh and Dh are ex-
actly the same as forAh and Bh , respectively, except tha
the V2 in s andd are replaced by (V22Dhj

2 22GDhj).
This extended model still displays a sensitive depende

upon the initial superposition. For example, the trapp
population is the sum of the steady-state population in
two quasicontinua. If we make this sum, we find

(
h

uAhu21(
h

uBhu25(
h

UBh~0!2
pRhQ0

G U2

.

~2.15!

This steady-state population is identical to that result
from the simpler model described above. Therefore all
predictions regarding population trapping and the s
trapping behavior remain true for this extended model.

A new phenomenon does appear in the transient evolu
of the population in the two QC’s. IfQ0 is chosen to allow
some decay, the final population in the QC is nonzero an
equal to 12(pQ0

2)/G, as previously. However, the rout
taken to that steady state is dependent upon the streng
the channel interaction. Note that one of the decay const
in Eqs. ~2.13! and ~2.14!, l1 , is quite small for largeG.
Counterintuitively, the rate of autoionization decreases as
strength of the channel interaction increases beyond the
frequency of the laser interaction.

Three examples of the short term evolution are shown
Fig. 2. In all of them, the Rabi frequency is held fixed andG
is varied. The behavior falls into two distinct regimes and
reminiscent of the behavior of a damped, harmonic osci
tor. One example lies in the underdamped regime, anothe
the overdamped regime, and the last at the border~critical
damping!. ForV.G, the short term evolution contains exp
nentially damped oscillatory terms. The combination of the
damped oscillations leads to the stair step structure see
Fig. 2. The stairlike structure seen here is of pure quan
origin. The time scale of the structure is related to the R
period, number of states involved and the strength of
channel interaction. In this underdamped regime, the de
rate of the population increases asG increases. However, a
G increases beyond the thresholdV5G, the damped oscilla-
tions disappear and the decay rate now decreases asG
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increases. Such a reduction in the decay rate with the
crease of the strength of the interaction is commonly
scribed as stabilization. It is similar in character to pow
broadening, the broadening of a resonance due to a st
laser interaction, except that in this case it is the intrin
channel interaction that produces the effect.

These analytic solutions allow an easy separation of
processes that effect the autoionization. The perfect trapp
of the population is linked to the initially established cohe
ent superposition, i.e., an initially prepared dark or nonau
ionizing state. Similarly, the self-trapping phenomenon~re-
distribution of population by Raman-like transitions! leads to
the evolution of an initially decaying state to a coherent
perposition that is nondecaying. Once a nondecaying sta
established or produced, the degeneracy of this system
further evolution. On the other hand, the stabilization ph
nomenon is not dependent upon the coherence establish
the superposition. It depends solely upon the relative size
V and G and is not tied to the degeneracy of the mod
system. How do these processes change when the de
eracy is lifted?

III. A NONDEGENERATE QUASICONTINUUM
AUTOIONIZING TO A CONTINUUM—NUMERICAL

SOLUTION

Figure 1~c! depicts the model of the nondegenerate q
sicontinua of the physical problem. The bound QC is a n
degenerate set of Rydberg states of a two-electron atom.
bound QC may be coupled to a nondegenerate autoioni
QC, as above, by a cw isolated core excitation. First, p
ceeding as in the preceding section, we consider only
interaction between the autoionizing QC and the continuu
The primary result is that the initial superposition of the Q
now freely evolves. In the degenerate case, only the inte
tion with the continuum could change this superposition
the autoionization was suppressed by the population trap
~i.e., Q050) this superposition did not ever change. Ho
ever, in the present nondegenerate case, the free evol
will inhibit such population trapping since the trapping reli

FIG. 2. Short term evolution of the population of a degener
quasicontinuum. The long-dashed curve (V050.05) is for the case
of V.G. The short-dashed curve (V050.5) is for the case ofG.V.
The case ofG5V is the plain curve (V050.2). Counterintuitively,
as channel interaction strengthG is increased beyondV the auto-
ionization rate decreases.
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PRA 58 1271AUTOIONIZATION OF A QUASICONTINUUM: . . .
on maintaining a specific superposition state.
The amplitudes of the autoionizing QC~interaction pic-

ture! can be described in this nondegenerate situation by
equation

iȦh52 ipRh (
h8

Rh8Ah8e
2 i ~Eh82Eh!t, ~3.1!

whereEh521/(2h2). A natural time scale for the free evo
lution of the superposition is given by the fundamental e
ergy differenceEh2Eh21 and is commonly described as
Rydberg period,tR52ph3. Figure 3 compares the results
this numerical analysis with those of the previous analy
solution. There is no choice of initial superposition that lea
to perfectly trapped population. The initial superposition th
led to perfect trapping~long dashes! can maintain it for only
half a Rydberg period before a sharp drop in the populat
In fact, the other cases of interest~a nonzeroQ0 , and a
single state! are also little like the degenerate solution
Clearly, the choice of initial superposition does not have
same sensitivity in determining the decay of a nondegene
autoionizing QC. However, the original behavior can be
gained if the free evolution of the superposition can be co
pensated.

The semiclassical argument put forward by Hanson
Lambropoulos@21# showed that coupling the autoionizin
QC to a bound QC can lead to a suppression of the auto
ization. They explored the situation of initial superpositi
that corresponds to a well-localized radial wave packet
the Rabi frequency equal to Rydberg frequency. If the t
oscillations are synchronized, as described in the Introd
tion, the autoionization is suppressed and a nondisper
wave packet is formed.

In the terms of this paper, synchronizing the Rabi per
and the Rydberg period offers a means of compensating
free evolution of the states of the QC and so offers a me

FIG. 3. Dependence of autoionization on initial superposit
for a nondegenerate quasicontinuum. This figure compares
population of the quasicontinua obtained from an numerical an
sis with those of the analytic solution for the degenerate case.
initial superposition that led to perfectly trapped population in
degenerate case now produces the long-dashed curve. The b
iors of all the initial superpositions are now similar. TheQ050
superposition~long dashes!, the nonzeroQ0 superposition~short
dashes!, and a single state~solid line! all lead to a rapid decay of the
population.
e
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of restoring the trapping and self-trapping behaviors t
were lost in the lifting of the degeneracy. The effect of t
synchronization is to provide a time dependent phase term
the amplitudesAh that nearly cancels the free evolution ter
that appears in Eq.~3.1!. In the degenerate case, the quant
Q0 defined the population trapping. In the nondegener
case, the trapping can be regained as long as
evolution of the time dependent quantityQ(t)
5Rh(h8Rh8Ah8(0)e2 i (Eh82Eh)t can be compensated by th
Rabi oscillations of the core excitation. In effect it is a tran
formation to a rotating frame that rotates at the rate of
free evolution of the quasicontinuum. The situation explor
by Hanson and Lambropoulos@21# is not unique and the
analysis presented here allows their insight to be generali
The initial superposition need not be a well-localized rad
wave packet. For example, any superposition that ha
simple periodic free evolution can have suppressed auto
ization by choosing a Rabi period that matches that per
This opens such intriguing questions as what happen
other wave packet states such as the nonclass
Schrödinger-cat state@25#. In fact, even if the initial super-
position does not have a simple periodic evolution, the s
trapping behavior will shape it into a superposition that is
nondecaying state for the particular synchronization chos
These superpositions may be either stationary states or
stationary ~wave packets! states of the combined Hamil
tonian.

Including the ICE into the model leads to the followin
set of equations:

iȦh5
1

2 (
j

ShjBje
2 i ~D1Ej2Eh!t

2 ipRh (
h8

Rh8Ah8e
2 i ~Eh82Eh!t, ~3.2!

iḂj5
1

2 (
h

ShjAhei ~D1Ej2Eh!t, ~3.3!

whereAh andBj are, respectively, the autoionizing QC an
bound QC probability amplitudes in the interaction pictu
Ej andEh areEi521/@2(n2d i)

2# ~i5j, h!. The d i allow
the introduction of quantum defects. The optical frequenc
are denoted v for the cw laser field. Shj

5Dhj$2Ahjsin@p(h2j)#%/@p(h22j2)# is the Rabi frequency
for the core excitation, determined by the matrix element
the dipole operator and the electric field amplitude of t
light. The channel interaction coupling the upper series a
the continuum is governed byRh5V0 /h3/2, whereV0 is the
strength of the channel interaction and is a constant fo
given atom and for a given core excitation of that atom. T
detuning isD5v2(Eh2Ej).

These equations are again solved numerically. Figur
shows results for several different initial superposition sta
of the autoionizing QC. The Rabi period of the core las
transition is chosen equal to the Rydberg period. It is
sumed that this ICE process is abruptly turned on att50
~this abrupt turn on will be discussed in the next sectio!.
The results for the well-localized wave packet repeat tha
Ref. @21#, i.e., the autoionization is suppressed and a non
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1272 PRA 58XIN CHEN AND JOHN A. YEAZELL
persing wave packet is formed. Note that the single state
evolves into a nondecaying state with significant populati
It is the self-trapping that keeps the population from co
pletely decaying to the continuum.

The entanglement of these nondecaying states can be
by examining the population in the autoionizing QC. Figu
4~b! compares the total population to the population with
the autoionizing continuum for the single state case. Initia
the population undergoes Rabi oscillations between
bound and autoionizing QC’s. However, after several R
berg periods not all the population returns to the bound
and eventually a steady-state population is established in
autoionizing QC. Such a steady-state population in the
toionizing continuum cannot easily be understood with
physical picture that provided the insight for synchronizi
the Rabi oscillations and the evolution of the wave packe
is not sufficient for a nondecaying state to correspond t

FIG. 4. Autoionization of a nondegenerate quasicontinu
coupled to a bound quasicontinuum by an ICE interaction. In~a! the
total population of both continua are shown. The initial superpo
tion states of the autoionizing QC described in Fig. 3 are conside
here. The synchronization of the Rabi period of the core laser t
sition to the Rydberg period restores the trapping phenomena
with the lifting of the degeneracy. TheQ050 superposition~long
dashes! leads again to a well-trapped population, the nonzeroQ0

superposition~short dashes! decays rapidly but then is trapped, an
the single state~solid line! also evolves to a trapped situation. In~b!
the population in the autoionizing continuum~solid line! is shown
along with the total population~dashed line! when the initial popu-
lation in the quasicontinuum is in only one state. Note that th
exists a nonzero steady-state population in the autoionizing
tinuum.
so
.
-

een

,
e
-
C
he
u-
e

It
a

wave packet that is in the right place at the right time. Th
is, since there is significant steady-state population in
autoionizing QC there must be a time that the Rydberg w
packet approaches the core while the core is excited.
state does not autoionize at this time due to quantum in
ference between the states of the QC. It is the entanglem
that results from the synchronized ICE that makes this p
sible. An analysis of the probability density of the wav
function of this nondecaying state~at times longer than 10
Rydberg periods! shows that it oscillates at Rydberg fre
quency with no change of shape and with only a slow loss
amplitude. This indicates that it is nondispersing wa
packet or equivalently a coherent superposition state of
complete system~atom, field, and channel interaction!.

Other synchronizations are possible. Consider the f
evolution of a Schro¨dinger-cat state. It occurs at twice th
Rydberg frequency. Therefore the necessary synchroniza
requires a Rabi frequency equal to twice the Rydberg
quency. The creation of the cat state is modeled by a t
pulse excitation from the ground state to the bound QC. T
first and second pulses are separated by approximately
half of a Rydberg period. Two classical wave packets
excited and they are distinguishable by a small additio
optical phase delay. In this case the optical phase shift
tween the two pulses wasp. The ICE interaction is turned on
abruptly at 1.0 Rydberg period after the first excitation pul
Figure 5 shows the suppression of autoionization that occ
when a Schro¨dinger-cat state is the initial superposition.

The stabilization phenomenon is largely unchanged
this nondegenerate system. In Fig. 6, we explore the sta
zation phenomenon by varying the channel interact
strengthV0 , and so varyingG. The initial superposition con-
sists of a single populated state. We have chosen the R
frequencyV equal to the Rydberg frequency. The ICE
turned on abruptly att50 and the single state evolves into
nondecaying state. However, the manner in which this e
lution takes place is strongly dependent upon the strengt
the channel interaction. As in Fig. 2 there are two distin
regions of behavior. WhenG,V the rate of decay is small
When we increaseG the decay occurs more rapidly untilG
exceedsV. At this point the decay rate begins to decrea

i-
d

n-
st

e
n-

FIG. 5. Autoionization of a Schro¨dinger-cat state. The Rabi fre
quencyV is equal to twice the Rydberg frequency. The total pop
lation of the two quasicontinua is shown. The superposition evol
into an essentially nondecaying state that is an eigenstate o
entire system. A channel interaction strength ofV050.2 was used
for this simulation and the quantum defect was taken to be 0.1
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This is exactly the behavior found in the degenerate ca
Note that a strong channel interaction, in this case, enha
the ability of the self-trapping effect to form a nondecayi
state.

This section has shown that, in general, a nondegene
autoionizing QC cannot trap population forever. Howev
synchronization of the oscillations of the core electron w
the free evolution of the QC superposition allows t
electron-electron correlations to restore the trapping p
nomena. This section also showed that there were many
sible initial superpositions and associated synchronizat
that could lead to a trapping of the population. Similar
many different types of nondecaying states can be gener
by the self-trapping process. For example, even an initi
prepared single state will evolve into a nondecaying state
addition, the stabilization process that stems from the ch
nel interaction modifies the rate at which such states evo
In the next section, we will examine the experimental imp
cations of these predictions.

IV. EXPERIMENTAL IMPLICATIONS

Here, we explore one method of exciting the initial sup
position of states within the QC. We assume that the I
laser is on for all times and that a pulsed excitation popula
the bound QC from the ground state. By choosing an app
priately chirped pulse@26# or a multiple pulse sequence@27#
a wide range of initial superpositions can be formed. T
question is how are these superpositions modified by
presence of the ICE laser during the pulsed excitation?

It is straightforward to include this pulsed excitation
the Rydberg states in our model and numerically solve
resulting equations. As an example, we consider the cas
the Schro¨dinger-cat state. The excitation of a Schro¨dinger-
cat state is achieved by a two-pulse excitation, as descr

FIG. 6. Stabilization of the autoionization process by lar
channel interaction strengths for a nondegenerate quasicontin
Initially, only a single state is populated in the quasicontinuum. T
ICE interaction is turned on abruptly att50. The Rabi frequencyV
is equal to the Rydberg frequency and they are synchronize
suppress the autoionization. The total population of the two c
tinua is shown. The long-dashed curve (V050.05) is for the case of
V.G. The short-dashed curve (V050.5) is for the case ofG.V.
The case ofG5V is the plain curve (V050.2). As before, when the
channel interaction strengthG is increased beyondV the autoioniz-
ation rate decreases.
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in the preceding section. Here, there is no abrupt turn on
the laser driving the ICE interaction. It is on for all time
The Rabi frequency of this ICE is twice the Rydberg fr
quency. In Fig. 7 we show that the nondecaying states
develop and that the stabilization phenomenon still appe
in this physical system. There is some loss of the popula
during the excitation, but ultimately a nondecaying sta
evolves.

An analysis of the wave function of the nondecaying st
(V050.2, solid line! at time later than 20 Rydberg period
shows that it changes little with time. This indicates that
has evolved into a stationary state of the Hamiltonian of
complete system.

What are realistic values for the parameterG? G may be
changed by either changing the atomic system or by exci
different core states for a particular atom. Both offer expe
mental difficulties. However, it is fortunate that for alkalin
earth atoms the values of the channel interaction strength
in the region of interest. For barium, the states 6p3/2nd have
a value ofV050.13 @28# and for calcium, the states 4p3/2nd
have a value ofV050.25 @29#.

The experimental requirements are well within pres
day technology. Calcium is a particularly attractive syste
due to availability of lasers~titanium sapphire! at the neces-
sary wavelengths to drive the various processes. The la
intensities needed for the cw ICE interaction can be obtai
either via enhancement cavities or through the use of l
pulsed lasers synchronized to the short pulses used to e
the various initial superpositions.

V. CONCLUDING REMARKS

This paper has shown that three processes~population
trapping, self-trapping, and stabilization! affect the decay of
an autoionizing quasicontinuum to a continuum. The po
lation trapping stems from the possibility of destructive i

m.
e

to
-

FIG. 7. Stabilization of the autoionization of a two-electro
atom. A Schro¨dinger-cat state is excited in the presence of the I
laser. The Rabi frequencyV is equal to the Rydberg frequency. Th
total population of the two continua is shown. The long-dash
curve (V050.05) is for the case ofV.G. The short-dashed curve
(V050.5) is for the case ofG.V. The case ofG5V is the plain
curve (V050.2). As before, when the channel interaction stren
G is increased beyondV the autoionization rate decreases. A qua
tum defect of 0.1 was used in this simulation.
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1274 PRA 58XIN CHEN AND JOHN A. YEAZELL
terference between the pathways to the continuum. The
trapping refers to the tendency of the superposition to evo
to a nondecaying or trapped superposition through Ram
like interactions via the continuum. However, in general
nondegenerate, autoionizing QC cannot trap populat
Electron-electron correlations~specifically an ICE! can be
used to create a coupling that can restore the phenomen
population trapping. The synchronization of the Rabi os
lation associate with that coupling and the free evolution
the superposition makes this possible. This paper genera
that synchronization idea and showed that there were m
possible initial superpositions and associated Rabi frequ
cies that could lead to a trapping of the population. T
self-trapping process leads to the formation of nondecay
.G
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states. This paper showed that a wide variety of such st
could be formed. These nondecaying states range from b
stationary states of the complete system~atom, field, and
channel interaction! to being superpositions of such stat
that evolve with time, i.e., nondispersing wave packets. In
experimentally realizable example, it was demonstrated
an initially excited Schro¨dinger-cat wave packet evolved int
a nondecaying state~in that case, a stationary state!.

Finally, the introduction of the ICE also opened up a
other process that can affect the decay of the QC, i.e., st
lization. The ability of the self-trapping process to shape
superposition into nondecaying and nondispersing form
affected by this stabilization process. Strong channel inte
tions can change the rate at which these form.
d
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