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Autoionization of a quasicontinuum: Population trapping, self-trapping, and stabilization
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Three distinct phenomena are found to affect the autoionization of a quasicontinuum. For certain initial
superpositions of the states within the quasicontinuum, the autoionization may be inhibited by quantum inter-
ference and the population may be trapped. For those initial superpositions that do decay, a self-trapping effect
can be observed which causes the superposition to evolve into a trapped state. The self-trapping is due to a
redistribution of the population within the quasicontinuum via Raman-like transitions driven by the channel
interaction with the continuum acting as the intermediate state. The physical system of a two-electron atom is
studied. There the autoionizing continuum is created by an isolated core excitation that embeds a range of
highly excited Rydberg states into the continuum. Another mechanism appears, in this system, that affects the
autoionization. When the channel interaction is strong compared to the strength of the core excitation a
stabilizing effect occurs which slows the autoionization. Analytical models examine these effects in a system
with degenerate quasicontinua. Perfect population trapping, self-trapping, and stabilization are all clearly
displayed by this system. Numerical models of nondegenerate quasicontinua show that the stabilization process
is virtually unchanged by the lifting of the degeneracy. These models also show that, in general, the trapping
effects largely disappear. However, a synchronization of the free evolution of the quasicontinuum states with
Rabi oscillation of the core excitation returns them to significant roles in the decay process. A wide variety of
nondecaying states can be created. Competition between these mechanisms is explored and the impact of these
phenomena on experiments is considef&l.050-29478)09608-3

PACS numbegs): 32.80.Dz, 32.80.Rm

[. INTRODUCTION case, when the ionization process becomes sufficiently
strong population may be recaptured from the continuum and
Structure embedded in a continuum has long excited sciso slow the ionization rate. Here, we show that it is possible
entific interes{1]. The classic problem of a single state au-for an intrinsic interaction of the atorfautoionization to
toionizing to a continuum is well understood both experi-lead to similar phenomena. In addition, the nature of the
mentally [2,3] and theoreticallyf4—6]. Recently, the richer interaction leads to some unigue features such as a self-
problem of the interaction between many statgsasicon- trapping behavior of the QC.
tinuum or QG and a continuum has received a great deal of Initially, we will use a model in which a degenerate QC is
experimental and theoretical attention. One fascinating assoupled to a continuum. The analytical solution of this
pect of the problem is the effect of establishing a well-model provides intuition for exploring the physical problem
defined phase relationship or coherence between the statesadfthe autoionization of Rydberg electrons in a two-electron
the QC. The central question is what processes govern thetom. Precisely, the physical problem examines a superposi-
decay and, for this work, how does a coherence within the¢ion of Rydberg states that is coupled to an autoionizing
QC effect that decay. collection of states through an isolated core excitati@E)
There are two general classes of effects which inhibit thg¢10] process in a two-electron atom. In ICE, one of the va-
process of decay. The first is an interference between mulence electrons is promoted to a highly excited stateRy-
tiple pathways that leads to a long-term trapping of the popueberg state The remaining core electron is driven so that it
lation in a particular statéor states A simple example of oscillates between its ground state and its first excited state.
this is a “dark state” in which interference between a super-The states of this core electron are much like the states of the
position of ground states inhibits the excitation of an excitedsingly ionized atom or like that of a single-electron atom.
state[7]. The second class can be described as a stabilizatiddowever, the correlation between the two electrons leads to
and is characterized by a reduction in a decay rate as the coupling between the inner electron states and the Rydberg
strength of the interaction is increased. The physical mechastates. This coupling effectively embeds the Rydberg states
nisms for stabilization are of various origins, but are linkedinto the continuum. Such two-electron systems have been the
to a significant change in the system as the strength of theubject of a wide variety of studigd1,12. Here we are
interaction is increasetexamples range from power broad- particularly interested in this process when the highly excited
ening to the spatial alteration of the ground state by strongtate is a coherent superposition of many Rydberg states.
optical fields. Such a state can display strong classical characteristics, e.g.,
Such phenomena have been actively explored in the pra classically oscillating localized wave packgt3-16.
cess of above-threshold ionizatip8]. An example of par- These are commonly known as radially localized wave pack-
ticular interest for this paper may be found in R&f]. There  ets.
trapping and stabilization effects are found in the strong-field Some of the earliest work investigating ICE and coherent
photoionization of a Rydberg atom quasicontinuum. In thatsuperpositions of Rydberg states was performed by Wang
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and Cookeg17-19. When the core electron is driven by a

strong field the correlations between these two electrons n R 7

leads to a wealth of phenomena. Studies of this situation _s% %
[20—24 found that the autoionization process and the laser (a) € z_ﬂ,ﬂ_ 1
induced structure was strongly modifigaiarticularly, when -

the Rabi frequency for the core transition is equivalent to and n é%

synchronized to the classical orbital frequency or Rydberg

frequency of the radial wave packethe insighf21] for the L £
synchronization comes from the following physical picture. E —

The wave packet’'s motion is timed such that it is localized ®) ©

away from the core when the core is in the excited state. The _ - .
. FIG. 1. Energy level diagram describing the coupling of a qua-

lack of overlap between the wave packet and the excited core =~ . 2 .

S T . . sicontinuum to a continuum. Ifa) the quasicontinuum is degener-

limits the autoionization. H"?llf a perio(Rydberg or Rabi ate. In(b) the autoionizing quasicontinuum is coupled to a bound

later when the wave packet is near the core, the core electrQfyasicontinuum by a cw isolated core excitation. A two-electron

is in the ground state and again there is little autoionizationatom is modeled irc) in which the bound quasicontinuum is ex-

In addition to this suppression of the autoionization, the pro<cited by a short pulse. Again, the bound quasicontinuum is coupled

cess can also shape the wave function of the Rydberg eleg an autoionizing quasicontinuum by a cw isolated core excitation.

tron into a nondispersing wave packet.

In this paper, analytic and numerical solutions for a con- .

tinuum interacting with both degenerate and nondegenerate, ia,(t)=E,a,+ f deR,:Cq, (2.9

embedded quasicontinua are described. They extend the con- #

clusions of the previous theoretical works and provide new

insight into the interplay of stabilization and population trap- iég(t)= E.c.+ E R,.a,, (2.2

ping in this system. They also point out the limitations of the 7

physical picture as the self-trapping process leads to an en- .

tangled state of the core electron and the Rydberg electrof/N€r€E, andE, are the energies of the QC states and the

Section Il studies analytically two situations for the degen-continuum states, respectively. Note that in the degenerate

erate system. First, it examines a single autoionizing QC anfi@S€ allE, are equal. , .
then it adds a coupling to a bound QC. The first situation These equations can be transformed to the interaction pic-
highlights the trapping phenomena while the second highture: If we also make use of the Markov approximafiginto.
lights the stabilization process. Section Il explores the sam&!/Mminate the continuum, then we can write the following
situations numerically for a nondegenerate system. The rélifferential equations for the discrete states:

sults indicate that, in general, the trapping phenomena play

only a minor, transitory role for a nondegenerate QC. How- An(t): - 7R, E R, A, , (2.3
ever, the synchronization of the free evolution to the Rabi 7'

oscillation of the core electron can largely restore the trap- .
ping phenomena to a dominant role. Intuition gained fromWhe_re a,,:A,,exp(—lEnt). We_ have also assumed tha_t the
the analytical models suggested that there exists a variety GPntinuum is flat so thaR . is independent of and so write
nondecaying states and nondispersing wave packets. Twdne =Ry ) . ) )

examples are given. If the initial superposition corresponds . 1he Solution of Eq(2.3) is accomplished in two steps.
to just a single state excited or if it corresponds to afirSt: @ new differential equation is formed for the sum,
Schralinger-cat wave packet staf@5] an appropriate Rabi = »”4R», by multiplying both sides of Eq2.3) by R, and
frequency may be chosen that leads to their evolution into 1treducing a sum om to both S'?FetS- The solution of this
nonautoionizing state. Section IV uses the conclusions ofduation is simply>,A,R,=Q¢e "', where the constant
Secs. Il and Il to explore the feasibility of observing the Qo==,A,(0)R,, contains the initial conditions of the states

various phenomena in the physical system of a two-electroff! the quasicontinuum. The autoionization coupling appears
atom. in the constanl’= 7=, R%. This solution for the sum now

acts as a driving term in Eq2.3) and the exact solution of
this equation is

Il. A DEGENERATE QUASICONTINUUM AUTOIONIZING
7TR,,]QO

TO A CONTINUUM—ANALYTIC SOLUTION An(t) =A”(O)+ T (e_rt— 1). (2.9

The case of a degenerate quasicontinuum decaying to a
continuum serves as the starting point. Figuta) Hepicts In the simple case of a single state embedded in the con-
the interaction of a degenerate Qiie states within this QC tinuum, the above solution reduces to the well-known solu-
are labeledn) with a continuum. The channel interaction tion, A,](t)zA,,(O)exp(—wa7t). The population of the state
drives the autoionization process coupling the QC to the condecays exponentially into the continuy#i.
tinuum. It is described by a matrix elemeRt, connecting Next, consider the phenomenon of population trapping. If
the # series to the continuum. Schilinger’s equations of there are a number of states in the QC then the initial ampli-
motion for the amplitudes of the states of this system may béudes of the states play a key role. The quantiy
written =2 ,A,(0)R, determines whether the decay is inhibited or
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enhanced. Clearly, i, is zero, the population is trapped :

forever in the QC. The simplest trapping example occurs 1a,=(Ep+ E,a,+ > S,,gcos{wt)angstR,]ch,

when there are only two states in the QC. In that case, the ¢ ° (2.6)

initial state has the familiar asymmetric form of a “dark ’

state”similar to those found in the laser excitation ofAa )

system[7]. Specifically, if theR, are all identical, the am- ib,=(Es+Eob+ Y, S;,codwt)a,, 2.7

plitudes of the states are equal in magnitude but opposite in K

sign. For a QC with many states, any superposition of states

that yields aQy=0 is a trapped or a nonautoionizing state. iéa:(Es+ EE)CSJFE R,.a,. (2.9
For an initial distribution that results in a nonze@y, a n

portion of the population may still be trapped. A compact

result is found for the steady-state solution of Etj4) if all

of the coupling coefficients for these statBs,, are assumed

to be identical:

The Schrdinger amplitudes are denoted,, b,, andc,,
corresponding to the autoionizing, the bound, and the con-
tinuum states, respectively. Each channel has its own ioniza-
tion threshold and these are denokedandE, for the lower
1 and upper channels, respectively.
A, (°)=A,0)— N 2 A,(0). (2.5 Again, we enter the interaction picture and use the Mar-
7 kov approximation to eliminate the continuum. In addition,

we also use the rotating wave approximation for the laser

A_(_:ase of parUcngr interest is when only a single state 'Snteraction. The resulting set of differential equations is
initially populated in the QC. Then the total steady-state

population in the QC is given by, |A,(=)|?=1—1/N. For y Sy _

example, consider a three-state QC in which only one of |A,7=E TEf'A”fth—ITar > R,yA,, (29
them is populated. The steady-state solution predicts that 2/3 ¢ '

of the population is trapped. The associated final superposi- s

tion state has amplitudes that yield a zero value @y. iB,,=2 —”ge‘AngtA,}, (2.10
Therefore the final population trapping results from the evo- £ 2

lution of the QC into a nonautoionizing superposition. It is
the Raman-like transitions between the states of the QC vi
the channel interaction with the continuum that produces thi%
self-trapping behavior.

It is possible for the entire population to leave this QC. If
the initial superposition had identical amplitudes., for an

here A, ,=(w—Ep+Eg)—(E,—E,). It is assumed that

ere are no shakeup processes so that the laser interaction
etween anzy state and the correspondirgstate can be
written with a Kronecker delta functio®,.=Q4,,. The
notation is further simplified by keeping only a single index

) _ PR 7. The analytic solution of this more complex system is also
m eStitt(ea ;?j(;gét?a) péé\l/ﬂﬁa)tighrf rilnthteh(tarag%nigslszgglbq%des g de)gossible. The solution for the case of exact resonance, i.e.,
amples highlight the key role played by the coherence ini—A ,7_§=0, is particularly ;trqlghtforward. The more _general_so—
tially established in the superposition. Depending upon th(l,‘Utlon (nonzero detuningis closely related to this special

initial superposition state, the trapping of the population incas¢€ and can be found l?y a SUbSt'tu.t'On' . .
this degenerate QC may vary from perfect to none. Since the right-hand sides of our differential equations are

A further question can be addressed by this analyticapo longer explicitly time dependent, these equations may be

model. How quickly is the population of the quasicontinuumsowed in the same fashion as described in the simpler case

lost to the continuum in comparison to the decay of a singleablm,:.e' Dellgl)indm%#pon tﬂ;e rqutws ilzgmhggilf the
isolated state? Again, for compactness, we assume that %‘ﬁé’ lon will have difterent dynamic behavior. we

theR, are identical. Then the decay rateNgimes faster for

the degenerate QC compared to a single, isolated state, i.e., 7R, Qo Ot
I'(N)=NR?. Of course, ifQ,=0 this enhanced decay rate is iA (D)= ( B,(0)— 1:’ )sin( 7)
of little importance since the population is perfectly trapped.
However, for nonzerd,, there is a rapid evolution to a mR,QuQY ot
trapped state. That is, there is a rapid drop to a new level of + ”—Fsin( ?) e 2 (2.11
the population that is then maintained forever. g
The addition of an interaction between this autoionizing R.Q Ot
QC and a bound QC brings this model a step closer to the g (t)=(B (0)— 7 O)Co{_)
physical problem that will be discussed in Sec. IV. The ex- 7 7 r 2
tension of the analytical model is depicted in Figh)l
where a laser interaction couples a degenerate bound quasi- + 7TR”QOCO{ U—t) + 7TR”QOsin( i{) e 2
continuum to a degenerate autoionizing quasicontinuum. r 2 g 2
This coupling produces a Rabi oscillation between these two (2.12

guasicontinua. The indices and » are for the bound and

autoionizing QC’s, respectively. Any direct photoionization whereI'= 7% ,,Rf] and o= Q?—T?2. The rightmost terms
process from the bound QC is assumed to be weak and wie Egs.(2.11) and (2.12 are exponentially damped oscilla-
ignore its effect. Now, the equations of motion for this sys-tory terms. The solution fof)<I" is similar in form; how-
tem can be written ever, the rightmost terms are now purely decay terms.
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7R, Qo Ot 2 _
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iB,(t)={B,(0) T )cos( 5 ) : -
g 0.
7R, Qo 7R, Qq - J
ER/A L PN VL S 1 7 At L Aot | ]
" 20 (el eZ)+ 2r (el+eZ)’ 05 Lo v v v v b v v by gy
(2.14 0.0 1.0 . 2.'0 ‘ 3.0 4.0
time (Rabi periods)
V:h;;g O=NIT=0% == (T'=0)f2, and Ap=—(T FIG. 2. Short term evolution of the population of a degenerate

. . quasicontinuum. The long-dashed cur € 0.05) is for the case
The off-resonance solutiom(,:#0) can be found in @ o )>T The short-dashed curv/g=0.5) is for the case df>Q.
straightforward manner by transforming to slowly rotating The case ol'=0Q is the plain curve Y,=0.2). Counterintuitively,

. . _ _A
variables. That is, letALt)=C,(t)e '%2¢/2 and B,(t)  as channel interaction strengkhis increased beyon€d the auto-
=D, (t)e'*#¢"2. Then the solutions fo€, andD,, are ex- jonization rate decreases.

actly the same as foh, andB, , respectively, except that

the 02 in o and & are replaced by@?—A2,—2T'A ;). increases. Such a reduction in the decay rate with the in-
This extended model still displays a sensitive dependencerease of the strength of the interaction is commonly de-
upon the initial superposition. For example, the trappedscribed as stabilization. It is similar in character to power
population is the sum of the steady-state population in théyroadening, the broadening of a resonance due to a strong
two quasicontinua. If we make this sum, we find laser interaction, except that in this case it is the intrinsic
channel interaction that produces the effect.
These analytic solutions allow an easy separation of the
processes that effect the autoionization. The perfect trapping
(2.15 of the population is linked to the initially established coher-
ent superposition, i.e., an initially prepared dark or nonauto-
This steady-state population is identical to that resultingonizing state. Similarly, the self-trapping phenomer{og
from the simpler model described above. Therefore all thalistribution of population by Raman-like transitiorsads to
predictions regarding population trapping and the selfthe evolution of an initially decaying state to a coherent su-
trapping behavior remain true for this extended model. perposition that is nondecaying. Once a nondecaying state is
A new phenomenon does appear in the transient evolutioastablished or produced, the degeneracy of this system halts
of the population in the two QC's. IQ, is chosen to allow further evolution. On the other hand, the stabilization phe-
some decay, the final population in the QC is nonzero and isomenon is not dependent upon the coherence established in
equal to 1 (7Q3)/T, as previously. However, the route the superposition. It depends solely upon the relative sizes of
taken to that steady state is dependent upon the strength 8f and I' and is not tied to the degeneracy of the model
the channel interaction. Note that one of the decay constangystem. How do these processes change when the degen-
in Egs. (2.13 and (2.14, \,, is quite small for largel.  eracy is lifted?
Counterintuitively, the rate of autoionization decreases as the
strength of the channel interaction increases beyond the Rabi
frequency of the laser interaction.
Three examples of the short term evolution are shown in
Fig. 2. In all of them, the Rabi frequency is held fixed dhd
is varied. The behavior falls into two distinct regimes and is  Figure Xc) depicts the model of the nondegenerate qua-
reminiscent of the behavior of a damped, harmonic oscillasicontinua of the physical problem. The bound QC is a non-
tor. One example lies in the underdamped regime, another idegenerate set of Rydberg states of a two-electron atom. This
the overdamped regime, and the last at the botdetical bound QC may be coupled to a nondegenerate autoionizing
damping. For Q>T", the short term evolution contains expo- QC, as above, by a cw isolated core excitation. First, pro-
nentially damped oscillatory terms. The combination of theseceeding as in the preceding section, we consider only the
damped oscillations leads to the stair step structure seen interaction between the autoionizing QC and the continuum.
Fig. 2. The stairlike structure seen here is of pure quantunihe primary result is that the initial superposition of the QC
origin. The time scale of the structure is related to the Rabinow freely evolves. In the degenerate case, only the interac-
period, number of states involved and the strength of th&ion with the continuum could change this superposition. If
channel interaction. In this underdamped regime, the decalpe autoionization was suppressed by the population trapping
rate of the population increases Bsncreases. However, as (i.e., Qu=0) this superposition did not ever change. How-
I" increases beyond the threshdlg=I", the damped oscilla- ever, in the present nondegenerate case, the free evolution
tions disappear and the decay rate now decreases ds thewill inhibit such population trapping since the trapping relies

2

WRT]QO
r

> A2+ 2 [B,I2=2 |B,(0)—
n n n

IIl. A NONDEGENERATE QUASICONTINUUM
AUTOIONIZING TO A CONTINUUM—NUMERICAL
SOLUTION
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L L LR L BRI B of restoring the trapping and self-trapping behaviors that
L0 B 7] were lost in the lifting of the degeneracy. The effect of the
— synchronization is to provide a time dependent phase term in
z 08 =] . .
e | ] the amplitude#\, that nearly cancels the free evolution term
£ 0.6 _ that appears in Ed3.1). In the degenerate case, the quantity
§ L i Qo defined the population trapping. In the nondegenerate
% 0.4 - case, the trapping can be regained as long as the
2 Or - evolution of the time dependent quantityQ(t)
2 02F — =R, , R, A, (0)e Ex~Est can be compensated by the
N . Rabi oscillations of the core excitation. In effect it is a trans-
0.0~ N formation to a rotating frame that rotates at the rate of the
(] | | I I | | L1 11 I 1111 I 111 1 I 1 . . . . .
0.0 Lo 0 20 10 free evolution of the quasicontinuum. The situation explored

by Hanson and Lambropould®1] is not unique and the
analysis presented here allows their insight to be generalized.
FIG. 3. Dependence of autoionization on initial superpositionThe initial superposition need not be a well-localized radial

for a nondegenerate quasicontinuum. This figure compares thd@ve packet. For example, any superposition that has a
population of the quasicontinua obtained from an numerical analySimple periodic free evolution can have suppressed autoion-
sis with those of the analytic solution for the degenerate case. Th&ation by choosing a Rabi period that matches that period.
initial superposition that led to perfectly trapped population in the ThiS opens such intriguing questions as what happens to
degenerate case now produces the long-dashed curve. The beh&fher wave packet states such as the nonclassical
iors of all the initial superpositions are now similar. TRg=0  Schralinger-cat stat¢25]. In fact, even if the initial super-
superposition(long dashes the nonzeroQ, superposition(short  position does not have a simple periodic evolution, the self-
dashej and a single statgolid line) all lead to a rapid decay of the trapping behavior will shape it into a superposition that is a

time (Rydberg period)

population. nondecaying state for the particular synchronization chosen.
These superpositions may be either stationary states or non-
on maintaining a specific superposition state. stationary (wave packets states of the combined Hamil-

The amplitudes of the autoionizing Q@hteraction pic-  tonian.
ture) can be described in this nondegenerate situation by the Including the ICE into the model leads to the following
equation set of equations:

(=Y

A,=—imR, > RyA,e &80 @) iA,=

- 52;‘ Snnge i(A+Ez—E )t
whereE, = — 1/(2%%). A natural time scale for the free evo-
lution of the superposition is given by the fundamental en-
ergy differenceE,—E,_, and is commonly described as a
Rydberg period7gr=277°. Figure 3 compares the results of 1
this numerical analysis with those of the previous analytic iBgzz > S, A, e BTETE (3.3
solution. There is no choice of initial superposition that leads 7
to perfectly trapped population. The initial superposition that
led to perfect trappinglong dashescan maintain it for only ~whereA, andB, are, respectively, the autoionizing QC and
half a Rydberg period before a sharp drop in the populationbound QC probability amplitudes in the interaction picture.
In fact, the other cases of intere&t nonzeroQ,, and a E¢andE, areE;=—1[2(n—&)?] (i=¢ 7). The 5, allow
single statg are also little like the degenerate solutions. the introduction of quantum defects. The optical frequencies
Clearly, the choice of initial superposition does not have theare  denoted o for the cw laser field. S,
same sensitivity in determining the decay of a nondegenerate D , {2 Jnésinm(n— O (P )] is the Rabi frequency
autoionizing QC. However, the original behavior can be refor the core excitation, determined by the matrix element of
gained if the free evolution of the superposition can be comthe dipole operator and the electric field amplitude of the
pensated. light. The channel interaction coupling the upper series and

The semiclassical argument put forward by Hanson andhe continuum is governed b‘ynzvo/nS’Z, whereV is the
Lambropoulos[21] showed that coupling the autoionizing strength of the channel interaction and is a constant for a
QC to a bound QC can lead to a suppression of the autoiorgiven atom and for a given core excitation of that atom. The
ization. They explored the situation of initial superpositiondetuning isA=w—(E,—E,).
that corresponds to a well-localized radial wave packet and These equations are again solved numerically. Figure 4
the Rabi frequency equal to Rydberg frequency. If the twoshows results for several different initial superposition states
oscillations are synchronized, as described in the Introducsf the autoionizing QC. The Rabi period of the core laser
tion, the autoionization is suppressed and a nondispersingansition is chosen equal to the Rydberg period. It is as-
wave packet is formed. sumed that this ICE process is abruptly turned on=af

In the terms of this paper, synchronizing the Rabi period(this abrupt turn on will be discussed in the next segtion
and the Rydberg period offers a means of compensating thehe results for the well-localized wave packet repeat that of
free evolution of the states of the QC and so offers a meanBef.[21], i.e., the autoionization is suppressed and a nondis-

—imR, > RyA, e Ey Bl (32
77/
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2 0.002 -
‘ 0000 I_ 11 1 1 I 1 1 11 I 1 1 11 I 11 1 1 _I
0.0 2.0 4.0 6.0 8.0 10.0 00 50 ] 10.0 ] 150 200
. . time (Rydberg period)
time (Rydberg period)
: : : : : FIG. 5. Autoionization of a Schrdinger-cat state. The Rabi fre-
! ! ! ! ! ! quency( is equal to twice the Rydberg frequency. The total popu-
lation of the two quasicontinua is shown. The superposition evolves
_ into an essentially nondecaying state that is an eigenstate of the
§ entire system. A channel interaction strengthVgi=0.2 was used
_g for this simulation and the quantum defect was taken to be 0.1.
£ wave packet that is in the right place at the right time. That
= is, since there is significant steady-state population in the
§ autoionizing QC there must be a time that the Rydberg wave
j packet approaches the core while the core is excited. The
state does not autoionize at this time due to quantum inter-

ference between the states of the QC. It is the entanglement
0.0 2040 60 80 10.0 that results from the synchronized ICE that makes this pos-
time (Rydberg period) sible. An analysis of the probability density of the wave
FIG. 4. Autoionization of a nondegenerate quasicontinuumfuncuon of th.'s nondecaying ;ta(at_nmes longer than 10
- . . Rydberg periods shows that it oscillates at Rydberg fre-
coupled to a bound quasicontinuum by an ICE interactioiga)the ith h fsh d with onl low | f
total population of both continua are shown. The initial superposi-quen.Cy Wi nq ¢ 'an.ge of shape "?‘”. Wi On. ya S.OW 0SS 0
gmplltude. This indicates that it is nondispersing wave

tion states of the autoionizing QC described in Fig. 3 are considere . .
here. The synchronization of the Rabi period of the core laser tranpacket or equivalently a coherent superposition state of the

sition to the Rydberg period restores the trapping phenomena lo§omplete SyStemat_om{ field, and channel 'ntera_CtDon
with the lifting of the degeneracy. TH@,=0 superpositiorlong Other synchronizations are possible. Consider the free
dasheb leads again to a We”_trapped popu]ation, the non@so eVOIUtion Of a SChrdinger'Cat state. It occurs at tWice the
superpositior(short dashesdecays rapidly but then is trapped, and Rydberg frequency. Therefore the necessary synchronization
the single statésolid line) also evolves to a trapped situation.(y ~ requires a Rabi frequency equal to twice the Rydberg fre-
the population in the autoionizing continuuolid line) is shown  quency. The creation of the cat state is modeled by a two-
along with the total populatiofdashed lingwhen the initial popu-  pulse excitation from the ground state to the bound QC. The
lation in the quasicontinuum is in only one state. Note that therdirst and second pulses are separated by approximately one-
exists a nonzero steady-state population in the autoionizing corhalf of a Rydberg period. Two classical wave packets are
tinuum. excited and they are distinguishable by a small additional
optical phase delay. In this case the optical phase shift be-
persing wave packet is formed. Note that the single state alstween the two pulses was The ICE interaction is turned on
evolves into a nondecaying state with significant populationabruptly at 1.0 Rydberg period after the first excitation pulse.
It is the self-trapping that keeps the population from com-Figure 5 shows the suppression of autoionization that occurs
pletely decaying to the continuum. when a Schrdinger-cat state is the initial superposition.

The entanglement of these nondecaying states can be seenThe stabilization phenomenon is largely unchanged for
by examining the population in the autoionizing QC. Figurethis nondegenerate system. In Fig. 6, we explore the stabili-
4(b) compares the total population to the population withinzation phenomenon by varying the channel interaction
the autoionizing continuum for the single state case. Initially strengthV, and so varyind'. The initial superposition con-
the population undergoes Rabi oscillations between thsists of a single populated state. We have chosen the Rabi
bound and autoionizing QC’s. However, after several Ryd{frequency() equal to the Rydberg frequency. The ICE is
berg periods not all the population returns to the bound QQGurned on abruptly at=0 and the single state evolves into a
and eventually a steady-state population is established in th@ondecaying state. However, the manner in which this evo-
autoionizing QC. Such a steady-state population in the auution takes place is strongly dependent upon the strength of
toionizing continuum cannot easily be understood with thethe channel interaction. As in Fig. 2 there are two distinct
physical picture that provided the insight for synchronizingregions of behavior. Wheh<() the rate of decay is small.
the Rabi oscillations and the evolution of the wave packet. [When we increasé&' the decay occurs more rapidly uniil
is not sufficient for a nondecaying state to correspond to &xceed<). At this point the decay rate begins to decrease.
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FIG. 6. Stabilization of the autoionization process by large FIG. 7. Stabilization of the autoionization of a two-electron
channel interaction strengths for a nondegenerate quasicontinuufom- A Schrdinger-cat state is excited in the presence of the ICE
Initially, only a single state is populated in the quasicontinuum. The@Ser- The Rabi frequendy is equal to the Rydberg frequency. The
ICE interaction is turned on abruptly & 0. The Rabi frequencgy ~ total population of the two continua is shown. The long-dashed
is equal to the Rydberg frequency and they are synchronized t6UVe (Vo=0.05) is for the case df)>I'. The short-dashed curve
suppress the autoionization. The total population of the two con{Vo=0.5) is for the case of>(). The case ol’=() is the plain
tinua is shown. The long-dashed curié& 0.05) is for the case of  CUrve (Vo=0.2). As before, when the channel interaction strength
Q>T. The short-dashed curv&/§=0.5) is for the case of>Q. I' is increased beyonf) the autoionization rate decreases. A quan-
The case of = is the plain curve{,=0.2). As before, when the tum defect of 0.1 was used in this simulation.
channel interaction strengthis increased beyonfl the autoioniz-
ation rate decreases.

in the preceding section. Here, there is no abrupt turn on of

This is exacﬂy the behavior found in the degenerate Caséhe laser driVing the ICE interaction. It is on for all times.
Note that a strong channel interaction, in this case, enhancddie Rabi frequency of this ICE is twice the Rydberg fre-
the ability of the self-trapping effect to form a nondecayingguency. In Fig. 7 we show that the nondecaying states still
state. develop and that the stabilization phenomenon still appears
This section has shown that, in general, a nondegenerat# this physical system. There is some loss of the population
autoionizing QC cannot trap population forever. However,during the excitation, but ultimately a nondecaying state
synchronization of the oscillations of the core electron withevolves.
the free evolution of the QC superposition allows the An analysis of the wave function of the nondecaying state
electron-electron correlations to restore the trapping phetYo=0.2, solid ling at time later than 20 Rydberg periods
nomena. This section also showed that there were many poghOWS that it changes little with time. This indicates that it
sible initial superpositions and associated synchronizationgas evolved into a stationary state of the Hamiltonian of the
that could lead to a trapping of the population. Similarly, complete system.
many different types of nondecaying states can be generated What are realistic values for the paramef& " may be
by the self-trapping process. For example, even an initiallychanged by either changing the atomic system or by exciting
prepared single state will evolve into a nondecaying state. Iflifferent core states for a particular atom. Both offer experi-
addition, the stabilization process that stems from the charmental difficulties. However, it is fortunate that for alkaline
nel interaction modifies the rate at which such states evolvegarth atoms the values of the channel interaction strength fall
In the next section, we will examine the experimental impli-in the region of interest. For barium, the statgsghd have
cations of these predictions. a value ofVy=0.13[28] and for calcium, the stategp4,,nd
have a value o¥/,=0.25[29].
The experimental requirements are well within present
IV. EXPERIMENTAL IMPLICATIONS day technology. Calcium is a particularly attractive system

Here, we explore one method of exciting the initial super-due to availability of lasergtitanium sapphirgat the neces-

position of states within the QC. We assume that the ICES&Y wavelengths to drive the various processes. The large

laser is on for all times and that a pulsed excitation popmateg'ntensities needed for the cw ICE interaction can be obtained

the bound QC from the ground state. By choosing an appro‘?ither via enhancement cavities or through the use of long

priately chirped pulsé26] or a multiple pulse sequen¢27] pulsed .Iaserls 's.ynchronized_ to the short pulses used to excite
a wide range of initial superpositions can be formed. TheN€ various initial superpositions.

guestion is how are these superpositions modified by the
presence of the ICE laser during the pulsed excitation?

It is straightforward to include this pulsed excitation of
the Rydberg states in our model and numerically solve the This paper has shown that three procesgeEspulation
resulting equations. As an example, we consider the case tfapping, self-trapping, and stabilizatjoaffect the decay of
the Schrdinger-cat state. The excitation of a Safimger- an autoionizing quasicontinuum to a continuum. The popu-
cat state is achieved by a two-pulse excitation, as describddtion trapping stems from the possibility of destructive in-

V. CONCLUDING REMARKS
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terference between the pathways to the continuum. The sel§tates. This paper showed that a wide variety of such states
trapping refers to the tendency of the superposition to evolveould be formed. These nondecaying states range from being
to a nondecaying or trapped superposition through Ramarstationary states of the complete systéatom, field, and

like interactions via the continuum. However, in general, achannel interactionto being superpositions of such states
nondegenerate, autoionizing QC cannot trap populatiorthat evolve with time, i.e., hondispersing wave packets. In an
Electron-electron correlationspecifically an ICE can be experimentally realizable example, it was demonstrated that
used to create a coupling that can restore the phenomenon an initially excited Schrdinger-cat wave packet evolved into
population trapping. The synchronization of the Rabi oscil-a nondecaying statén that case, a stationary state

lation associate with that coupling and the free evolution of Finally, the introduction of the ICE also opened up an-
the superposition makes this possible. This paper generalizesther process that can affect the decay of the QC, i.e., stabi-
that synchronization idea and showed that there were marlijzation. The ability of the self-trapping process to shape the
possible initial superpositions and associated Rabi frequersuperposition into nondecaying and nondispersing forms is
cies that could lead to a trapping of the population. Theaffected by this stabilization process. Strong channel interac-
self-trapping process leads to the formation of nondecayingons can change the rate at which these form.
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