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Time-dependent theory of the Auger resonant Raman effect for diatomic molecules:
Concepts and model calculations for N2 and CO

Zbigniew W. Gortel,1,* Robert Teshima,1 and Dietrich Menzel2,†

1Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
2Physik-Department E20, Technische Universita¨t München, D-85747 Garching, Germany

~Received 2 February 1998!

We develop an explicitly time-dependent theory for one-step resonant excitation-deexcitation processes of
core electron states in diatomic molecules. Emphasis is placed on a conceptual picture demonstrating how the
effective time of the formation of the spectra—which is influenced by the bandwidth of the exciting radiation,
by the excitation of the molecule being resonant or off resonant~detuned!, and by the actual core hole
lifetime—changes the appearance of the deexcitation electron spectra. Explicit time-dependent model calcula-
tions for three final states each of 1s-hole excited N2 ~including one spectator decay! and C 1s–hole excited
CO allow demonstration of the various consequences for the spectral shapes which derive from these influ-
ences. In particular, off-resonance excitation is shown to shorten the effective time of the spectrum formation
below the lifetime of the core-excited state leading to the recently observed collapse of the vibrational structure
in the spectrum. Our calculated spectra also demonstrate the influences of the relative positions and shapes of
the potential curves involved. On resonance, the nodal structure of the vibrational wave functions of the
core-excited state is reflected in the shapes of the spectator decay spectra of N2 with a soft final state inter-
atomic potential.@S1050-2947~98!05308-6#

PACS number~s!: 33.80.Eh, 34.10.1x, 34.50.Gb
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I. INTRODUCTION

Excitation and decay of a core hole, whether resonan
nonresonant, are usually considered as two separate s
This applies to decay via emission of a photon or of
Auger electron. However, when the bandwidth of the ex
ing radiation is narrower than the core level lifetime wid
and tuned to the region of a bound resonance, the two-
picture becomes inadequate, and a one-step picture cons
ing the excitation-decay sequence as one coherent pro
has to be applied. These conditions@1# are usually termed
resonant x-ray Raman scattering conditions~when photons
are detected!, and radiationless resonant Raman scattering
more often Auger resonant Raman effect~ARRE! conditions
~when electrons are detected!. We are primarily concerned
with the latter in this work.

Under such resonant Raman conditions a number of in
esting features are found. For ideal resolution of the prim
excitation, energy conservation demands that the decay p
ucts, whether photons or electrons, contain the surplus
ergy of the incoming photon when the latter is tuned throu
a resonance~‘‘linear dispersion’’!. The linewidths of the de-
cay spectra are not influenced by the lifetime width of t
intermediate resonance. The cross section, of course, fol
the resonance profile~‘‘resonance enhancement’’!. Most in-
terestingly, detuning from the resonance leads to dist
changes of the decay spectra. These phenomena have
been seen for decay via photon emission@resonant x-ray
scattering~RXS! or emission~RXES!#, and more recently in
Auger emission~ARRE! as well @2#. The advent of third

*Electronic address: gortel@gortel.phys.ualberta.ca
†Electronic address: menzel@e20.physik.tu-muenchen.de
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generation synchrotron radiation sources with high brig
ness combined with monochromators with high-resolv
power has made it possible to perform studies of atomic
molecular decay x-ray and Auger electron emission stud
under such conditions with unprecedented detail, and has
to the discovery of very interesting effects@2,3#. In the Auger
case and utilizing a nearly~but not ideally! monochromatic
source tuned across the lifetime-broadened resonance
decay spectra have lines which are narrower than the lifet
width of the excited state~e.g., they are narrower than th
corresponding normal Auger lines!, may be asymmetric or
even exhibit a double peak structure, and whose positi
and shapes vary, as mentioned above, with the exciting
diation frequency@4–6#.

For molecules an additional factor influencing the appe
ance of the spectra is the presence of lifetime-broadened
brational structure of the decaying core-excited state an
the vibrational structure of the molecule in the final ele
tronic configuration. Typically, the lifetime broadening o
the core-excited state is of the same order as its vibratio
level spacing. This leads to effects known as lifetim
vibrational interference in the decay spectra@7–10#. The
number of experimental studies under nearly or truly hig
resolution core-excitation conditions~ARRE or x-ray emis-
sion! rapidly increases for small diatomic molecules like C
@8–13#, N2 @8,14#, O2 @8,15,16#, or HCl @17,18#, and ad-
sorbed CO@19#.

The theoretical treatment of the Auger resonant Ram
effect for molecules usually employs a suitably modifi
Kramers-Heisenberg-type expression@see Eqs.~26! and~27!
below# for the Raman scattering amplitude after the nucl
and the electronic degrees of freedom are separated in
Born-Oppenheimer approximation. The x-ray absorption a
the electron or x-ray emission events are considered to
single quantum-mechanical process. The shortcomings
1225 © 1998 The American Physical Society
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1226 PRA 58GORTEL, TESHIMA, AND MENZEL
two-step description in which the emission process is con
ered to be independent of the x-ray absorption become
vere for short living core-excited configurations for whic
the lifetime-vibrational interference effects become imp
tant. Modern derivations of the Kramers-Heisenberg-type
pressions use a machinery of many-channel resonant and
resonant scattering theory@2,20#. These derivations
emphasize the time-independent aspects of the problem
make it difficult to obtain direct insight into details of th
molecular dynamics in the core-excited state. The resul
expression was used to investigate the dependences o
gross features~like the center of gravity! of the electron and
x-ray decay spectra on the radiation frequency and on
radiation spectral distribution for harmonic potential surfac
@21#.

Although the explicitly time-independent expression
sufficient to simulate in detail the experimentally observ
decay spectra@8–10,13–15#, using matrix elements and po
tential curves which have been obtained by fitting to
experimental data or by first principles calculations@13#, de-
tailed insight into the temporal molecular dynamics in t
excited state is helpful and often necessary to understand
evolution of the decay spectra as the exciting nearly mo
chromatic x-ray line is swept across and detuned away f
the absorption resonances of the molecule. As examples
mention the electron decay spectra for O2 @8#, the collapse of
vibrational structure in decay spectra by frequency detun
in CO @12,22#, and the quenching of symmetry breaking
resonant inelastic x-ray scattering by frequency detuning
CO2 @23–25#. Although a time-independent formalism wa
used to actually calculate the spectra, the interpretations
vided often refer to the time-dependent dynamics in the
cited state and introduce the concept of a duration time of
resonant x-ray scattering process@25#.

An explicitly time-dependent theory of the nuclear d
namics of decaying states was recently formulated by C
erbaum and Tarantelli@26# who used it to calculate gros
features~center of gravity and bandwidth! of the decay spec
tra for broad~nonmonochromatic! excitation. This approach
was then generalized to investigate the effects of the com
tition between narrow-band core excitation and electro
decay on ARRE@27#, and on radiative and nonradiative x
ray resonant scattering spectra@24,28#. In particular, in Ref.
@27# the ARRE spectra were computed for N2 and O2 mol-
ecules within the time-independent approach and comp
with the ones calculated by numerically solving a set
coupled time-dependent Schro¨dinger equations. The latte
approach has the advantage that it is possible to observe
the spectra are formed as the system evolves in time. H
ever, it is CPU-time intensive and the interpretational app
of an analytic derivation of explicitly time-dependent expre
sions for the spectra from these equations is lost. We h
already applied in the past@29# the time-dependent approac
used in this work to investigate vibrationally resolved ph
todissociation of diatomic molecules through the Auger
cay of a bonding core-excited state and Sec. II may
viewed also to be a derivation of the expressions used th

In carrying through the development of our own approa
in addition to the existing treatments mentioned, we ha
been motivated by the following three goals. First, aiming
the reader not mainly interested in purely theoretical asp
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of ARRE, but rather in the ability to relate the observ
features of the spectra to the time evolution of the system
the metastable excited state, we derive an explicitly tim
dependent expression for the Auger resonant Raman c
section following the explicitly time-dependent formalism
The derivation, although lengthy, is simple: we start from t
time-dependent Schro¨dinger equation for a coupled electron
nuclei system, decouple it using the Born-Oppenheimer
proximation, and solve the resulting set of coupled differe
tial equations using plausible approximations along the w
The result could be as well derived from the Krame
Heisenberg-type expression for the Raman scattering am
tude. Nevertheless, we choose to present the complete
plicitly time-dependent derivation to emphasize the ro
played by the molecular femtosecond dynamics of the m
ecule in the metastable excited state in the formation proc
of the Auger electron decay spectra under different tun
conditions of the incident nearly monochromatic x-ray rad
tion. The concept of effective lifetime, i.e., the duration tim
of the scattering process, appears in this approach quite n
rally. Secondly, we want to demonstrate that the tim
dependent expression for the cross section is not only i
itively attractive but that it is also a practical tool allowing u
to calculate the spectra. We do this by calculating the AR
spectra for two participant and one spectator decay of c
excited N2 and three participant decays of C 1s–hole core-
excited CO using Morse potential parametrizations of all
tramolecular potentials involved, and following the tim
evolution of the system numerically. Thirdly, we want
relate the evolution of the spectra~i.e., their peak positions
numbers of peaks, and their shapes! to the effective duration
of the system evolution in the metastable core-excited st
which changes as the incoming x-ray radiation is sw
through and away from the vibrational resonances. As m
tioned above, this point was already made in the most rec
literature on the subject, but in our time-dependent appro
it can be demonstrated explicitly.

The outline of the paper is as follows. The theoretic
derivation is presented in Sec. II along with the discussion
the qualitative features of the expected spectra. Certain m
technical points are found in Appendixes A and B. Sect
III is devoted to the numerical calculation of the spectra a
a detailed discussion of their features. This is mainly do
for N2, with CO serving to strengthen the points alrea
made for N2, and to emphasize some additional ones. A
lytic expressions for all the wave functions used in this p
are listed in Appendix C. A short summary and conclusio
are contained in Sec. IV.

Before proceeding, several points should be stres
First, all numerical results presented in this paper could
well be obtained~and some of them were, indeed@9,10,13–
15#! in the time-independent approaches. In particular,
lifetime-vibrational interference effects discussed in the
references are fully accounted for in our examples althou
in our opinion, the explicit decomposition of the spectra in
‘‘direct’’ and ‘‘interference’’ contributions@cf. Eqs.~26! and
~27! below# emphasized in these works is a somewhat ar
cial result of the time-independent approach. Less numer
effort is needed in our time-dependent approach, particul
for systems with shorter lifetimes. Second, the tim
independent approach becomes numerically impractica
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PRA 58 1227TIME-DEPENDENT THEORY OF THE AUGER RESONANT . . .
least without further approximations, for systems with dis
ciating excited states@18,28,30# while our time-dependen
expressions can be evaluated in such cases without
added numerical effort. Third, for such systems, and pr
ably for adsorbed species as well, a dependence of the A
decay rate on nuclear coordinate should be accounted
For time-independent approaches~which must be reformu-
lated right from the start! this would result in almost intrac
table numerics@31# while the time-dependent expressio
trivially modified, may be a starting point for numerical ca
culations which can be handled by the programs develo
in the course of this work. Work in this direction is i
progress. Fourth, the time-dependent expressions for
electron spectra can be further simplified. For example,
time evolution in the core-excited state can be followed a
lytically for harmonic representation of the correspondi
potential surface. Even for the Morse potential represe
tion, an approximate analytic time evolution can be giv
@32,33# based on Heller’s@34# semiclassical method. No
much is gained in such cases when the time-indepen
approach is used.

II. THEORY

In this section we develop the one-step theory of reson
core excitation followed by Auger decay for molecules und
conditions of narrow-band primary excitation, i.e., below t
lifetime width of the intermediate core-excited state. The
conditions are usually termed Auger resonant Raman co
tions and, as mentioned, can be realized experimentally
utilization of third generation synchrotron radiation~SR!
sources. We will explicitly use a time-dependent approach
the nuclear dynamics not only because it is numerically m
efficient than its time-independent counterpart but also
cause it provides intuitive and physically attractive interp
tations of the main features of the numerical results.
though our initial theoretical formulation, analogous to t
approach proposed to model Raman scattering@35#, is quite
general, the theory will be applied specifically to diatom
molecules for which the nuclear dynamics is essentially
dimensional. For the sake of completeness and to streng
the interpretative and pedagogical aspects of our appro
we provide in Secs. II A and II B an explicit time-depende
derivation of the spectra with all approximations explicit
spelled out. The reader interested mainly in the results
their interpretation may take note of Eq.~22! and the discus-
sion following it, and then proceed directly to Sec. II D.

A. Basic equations and their solutions

Consider a molecule as a physical system consisting
nuclei and electrons interacting with the soft x-ray radiatio
We denote a collection of coordinates specifying nuclear
sitions byr and those of all electrons byx. For a diatomic
molecule r is a vector joining the two nuclei. The tota
Hamiltonian of the systemĤ(r,x) can, in the spirit of the
Born-Oppenheimer approach, be written as a sum

Ĥ5T1He2m•E~ t !. ~1!

The kinetic nuclear energyT involves derivatives with re-
spect to the nuclear coordinatesr. The ‘‘electronic Hamil-
-
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tonian’’ He(r,x) depends parametrically onr and consists of
the kinetic energies of all electrons, and of electron-electr
electron-nuclei, and nuclei-nuclei potential interactions.
the dipole approximation the interaction with the radiati
field involves the molecular dipole momentm(r,x) and the
radiation electric fieldE(t)5E0(v)cos(vt). Initially, for t
,0, i.e., before the molecule gets illuminated by the rad
tion field, the system is in the global~i.e., electronic and
nuclear! ground state of the moleculeuC in)& which then
evolves according to the Schro¨dinger equation

ĤuC~ t !)&5 i\
d

dt
uC~ t !)&. ~2!

Here, we use Dirac’s notation: a ‘‘double’’ ketu . . . )& is
used to represent electronic,u . . . ), andnuclear,u . . . &, de-
grees of freedom, respectively. The subscript ‘‘in’’ stands
‘‘initial’’ throughout the entire paper.

To proceed with the solution of Eq.~2! we identify state
vectors of diabatic electronic configurations relevant to
process considered. Thus we have the ground state con
ration uFg) with all electrons filling the lowest-energy orbit
als. The radiation excites the system resonantly to a confi
ration in which an electron is promoted from an atomic co
orbital ~usually the 1s orbital of one of the atoms! to the
lowest unoccupied molecular orbital. We denote byuFd) the
corresponding core-excited state. This configuration is
stable against Auger autoionization decay in which one
the outer shell electrons fills the core hole and anothe
released from the molecule. The electron promoted in
preceding excitation step may or may not participate in
decay giving rise to the commonly used distinction betwe
‘‘participant’’ and ‘‘spectator’’ Auger decay process. Ifk is
the set of all quantum numbers needed to identify the qu
tum state of the released electron~if spin is ignored then\k
is the free electron momentum! and f identifies the final
electronic configuration of the ionic molecule, then we d
note byuF f k) the state of the corresponding final electron
configuration. The outgoing electron is included in it, so w
have an entire continuum of possible final electronic co
figurations corresponding to the continuum of states of
released electron. The subscriptsg, d, and f in the state
vectors above and in the corresponding quantities defi
later stand for ‘‘ground,’’ ‘‘discrete’’ ~core-excited state!,
and ‘‘final ~ionic!’’ electronic configurations. Different Au-
ger decays correspond to different final ionic configuratio
f . In the spirit of the Born-Oppenheimer approximation
the state vectors defined above depend parametrically on
actual value of the nuclear coordinatesr.

Expanding the global state vectoruC(t))& into these elec-
tronic configurations

uC~ t !)&5uxg~ t !& uFg)1uxd~ t !& uFd)1(
f ,k

ux f k~ t !& uF f k),

~3!

inserting it into the Schro¨dinger equation~2!, and closing
from the left with (Fau „a5g,d, and (f k)… we obtain the set
of coupled equations~which, for the sake of brevity, will not
be given here! for the ‘‘expansion coefficients’’uxa(t)&. In
the position representation these coefficients depend on
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1228 PRA 58GORTEL, TESHIMA, AND MENZEL
nuclear coordinatesr and are the wave functions describin
the state of the nuclear motion when the electrons are in
ath configuration. Deriving these equations, the Bo
Oppenheimer approximation is used, i.e., the contributi
due to the action of the kinetic energy operatorT on the
electronic statesuFa& are ignored. Furthermore, it is as
sumed that the states describing the electronic configurat
are chosen in such a way that only the following mat
elements of the Hamiltonian do not vanish:

~FguHeuFg!5Vg , ~4a!

~FduHeuFd!5Vd , ~4b!

~F f kuHeuF f k!5Vf k[Vf1Ek , ~4c!

~FduHeuF f k!5Wf k , ~4d!

~FdumuFg!•E~ t !5D•E~ t !. ~4e!

Diagonal matrix elements ofHe , i.e., Vg , Vd , andVf k are
the r-dependent energies of the system of all electrons in
corresponding electronic configurations. Note, however,
due to the negligible influence of the released electron on
energy of the electrons remaining with the molecule, the
ergy Vf k is the sum of the kinetic energy of the releas
electronEk and ther-dependent energyVf of the electrons
remaining with the molecular ion. The only nonvanishi
off-diagonal element ofHe @Eq. ~4d!# represents the Auge
autoionizing coupling between the discrete core-excited m
lecular configurationd and the continuum of final electroni
ionic configurations (f k): the electronic levelVd is embed-
ded within the continuum ofVf k levels. Finally, it is assumed
that the molecular dipole moment couples only the grou
state configurationg with the core-excited configurationd.
The possibility of direct photoemission@i.e., dipole coupling
betweeng and (f k) configurations# is, therefore, ignored
here. Our present treatment is thus not appropriate for
discussion of interference effects between direct and re
nant photoemission. It can be generalized to include th
effects without too much effort. For future use it is conv
nient to define the molecular Hamiltonians

Ha5T1Va , ~5!

wherea5g,d, and f . At t50 all uxa(t50)& vanish except
for the ground state electronic configuration (a5g) for
which the initial condition is

uxg~ t50!&5uc in&, ~6!

whereuc in& is the ground state wave vector of the electro
ground state HamiltonianHg . The energy eigenvalue corre
sponding to it,Ein , is the lowest possible energy of the sy
tem.

For sufficiently weak interaction with the electromagne
radiation we may expand the solutionsuxa(t)& into a power
series in the strength of the radiation field and keep only
contributions independent of it,uxa

(0)(t)&, and the contribu-
tions linear in it, uxa

(1)(t)&. Correspondingly, the equation
break down into a set independent of the field and anothe
linear in it. Solving the first set leads touxa

(0)(t)&50 for a
he
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5d and (f k) because the radiation field is needed to prom
the system to these configurations. Foruxg

(0)(t)& one gets the
stationary state evolution exp(2iEint/\)uc in&. Next, the set
of equations for the contributions linear in the field is o
tained

i\
d

dt
uxd~ t !&5Hduxd~ t !&1(

f ,k
Wf kux f k~ t !&

2e2~ i /\!EintE~ t !•Duc in&, ~7a!

i\
d

dt
ux f k~ t !&5~H f1Ek!ux f k~ t !&1Wf k

† uxd~ t !&, ~7b!

subjected to the initial conditionsuxd(t50)&5ux f k(t50)&
50. There is one equation like Eq.~7b! for each possible
Auger decay modef . The superfluous superscript~1! is
dropped in Eqs.~7!. These equations differ from the usu
Schrödinger equations by the presence of the core hole–io
coupling terms defined in Eq.~4d!. Furthermore, the radia
tion field continuously promotes the system from the init
ground state configurationuc in& up to the core-excited stat
@cf. the last term in Eq.~7a!#. The set of Eqs.~7! should be
solved for ux f k(t)& which describes the state of the nucle
motion of the molecular ion in the final statef at a timet
provided that the departing Auger electron has a momen
\k.

Formally, a solution to Eq.~7b! is

ux f k~ t !&5~ i\!21E
0

t

dt8e2~ i /\!~H f1Ek!~ t2t8!Wf k
† uxd~ t8!&.

~8!

Inserted into Eq.~7a! it gives

i\
d

dt
uxd~ t !&5Hduxd~ t !&1~ i\!21

3E
0

t

dt8F~ t8!uxd~ t2t8!&

2e2~ i /\!EintE~ t !•Duc in&, ~9!

where the second term on the right-hand side accounts
the memory of the entire past evolution ofuxd(t)& through
the memory kernel

F~ t !5(
f ,k

Wf k e2~ i /\!~H f1Ek!t Wf k
† . ~10!

Physically, reading Eq.~8! from right to left, the system
evolves first in the core-excited electronic configurationd up
to time t8 when it decays emitting an electron with mome
tum \k ~term Wf k

† ). Then, the system evolves up to timet
along the potential energy surfaceVf ~recall thatH f in the
exponential time evolution operator containsVf). The time
integration accounts for the fact that the decay may occu
any instant between 0 andt. The time evolution in the core
excited electronic configurationd, as given by Eq.~9!, is
more complicated as it is affected not only by the usual e
lution along the potential energy surfaceVd ~contained in
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PRA 58 1229TIME-DEPENDENT THEORY OF THE AUGER RESONANT . . .
Hd) and by the continuous radiation pumping from t
ground state but, as seen in Eq.~10!, also by virtual transi-
tions from the core-excited configuration to an ionic o
@term Wf k

† in Eq. ~10!#, followed by the evolution alongVf

and then by the virtual transition back to the core-exci
configuration. The summation overf in Eq. ~10! is due to the
fact that virtual transitions may occur ‘‘to’’ and ‘‘back
from’’ any ionic configurationf .

To deal with the memory kernel we note that the summ
tion overk in Eq. ~10! is in fact an integration over the broa
free electron energy spectrum because eachWf k is expected
to vary slowly across the spectrum. Therefore we assu
that Wf k5Wf does not depend onk at all and convert the
summation overk into the integration overEk . The expres-
sion on the right-hand side of Eq.~10! becomes proportiona
to d(t), i.e., effectively the memory in the system is wipe
out. The result is

F~ t !'p\re(
f

uWf u2d~ t !5
\

2
Gd~ t !, ~11!

whereG52pre( f uWf u2 and re is the average value of th
free electron density of states over the relevant part of
free electron spectrum. Inserting now Eq.~11! into Eq. ~9!
we get

i\
d

dt
uxd~ t !&5S Hd2

i

2
G D uxd~ t !&2e2~ i /\!EintE~ t !•Duc in&,

~12!

which apart from the last radiation pumping term looks li
an ordinary time-dependent Schro¨dinger equation in which
an imaginary optical potential2 iG(r)/2 is added to the po
tential energyVd(r). Its presence accounts for all possib
Auger decays and results in the gradual decrease of the
plitude of uxd(t)& with time.

Usually, more than one decay Auger mode is available
the decay of the core-excited state. This is taken into acco
by summing overf in the middle term on the right-hand sid
of Eq. ~7a! and by having one equation like Eq.~7b! for each
possible decay modef . The optical potentialG in Eq. ~12! is
due to all possible modes of Auger decay and it appear
Eq. ~8! implicitly through uxd(t)&. Wf k

† explicitly present in
Eq. ~8! refers, however, to the individual-mode decay ra
corresponding to the particular final electronic configurat
f to which the state vectorux f k(t)& belongs.

Two more approximations will be made in what follow
In contrast, however, to the approximation in which t
memory effects are ignored, they may be relatively ea
relaxed in a more sophisticated version of the theory. T
first one replaces ther-dependent optical potentialG with a
coordinate-independent constant. This approximation mi
however, be questionable for systems in which the co
excited state is purely repulsive along some generalized
ordinate. This is because the Auger decay rate in a molec
configuration ~when all constituents of the molecule a
close together! may be different from the Auger decay ra
when one atom~or group of atoms! gets substantially sepa
rated from the rest. In the second approximation we ass
that the transition dipole momentD, defined in Eq.~4e!, does
not depend on the nuclear coordinatesr, in particular that it
d
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does not depend on the orientation of the molecule. T
approximation allows us later on to pull outE(t)•D in front
of all operators but it precludes a correct treatment of
dependence of the investigated processes on the polariz
of the incoming radiation.

Invoking both approximations in Eq.~12! one can check
by direct substitution that its solution is

uxd~ t !&52~ i\!21E0~v!•DE
0

t

dt8e2~ i /\!Ein~ t2t8!

3cos@v~ t2t8!#e2Gt8/2\ufd~ t8!&. ~13!

Here, ufd(t)& is the solution of a standard time-depende
Schrödinger equation without the optical potential and wit
out the radiation driven term

i\
d

dt
ufd~ t !&5Hdufd~ t !&, ~14!

subjected to the initial conditionufd(t50)&5uc in&. The ex-
plicit time dependence of the radiation field was used in E
~13!.

Equations~8! and ~13! together form an approximate so
lution to Eqs.~7!. For these solutions to be of use a standa
time-dependent Schro¨dinger equation~14! must be indepen-
dently solved. In the next section these solutions will be u
to derive quantities of direct experimental interest.

B. Observables

Note that the final electronic configuration corresponds
a free electron receding with a momentum\k from the mo-
lecular ion in the electronic configurationf whose internal
molecular motion is governed by the HamiltonianH f . Using
a properly designed detector the ion may be detected in
eigenstate ofH f :

H f uw|
f &5E|

f uw|
f &. ~15!

Here,| represents the set of all quantum numbers neces
to identify the eigenstate of the nuclear motion in which t
molecular ion can be detected. In particular, such a state
belong to either a discrete~vibrationally excited molecular
ion, localized states! or a continuous~dissociating ion, ex-
tended states! spectrum ofH f . The superscriptsf are used in
Eq. ~15! to specify the electronic configuration of the m
lecular ion after decay, i.e., it specifies a particular Aug
decay mode. When a molecule is illuminated by radiation
the frequency interval (v,v1dv) then

dṖ|, f k~v!5 lim
t→`

d

dt
z^w|

f ux f k~ t !& z2 ~16!

is the rate~probability per unit time! that the released elec
tron having momentum\k ~and energyEk) leaves behind a
molecular ion in the state| of its nuclear motion due to the
f th mode of Auger decay. The differential indṖ refers to the
frequency intervaldv, i.e., we anticipate here thatdṖ is
proportional todv. The rate with which the ions in thef th
electronic configuration and|th state of their internal motion
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are generated, and the rate with which the Auger electr
with a momentum\k and resulting fromf th mode of decay
are detected are, respectively,

dṖ|, f~v!5(
k

dṖ|, f k~v!, ~17a!

dṖf k~v!5(
|

dṖ|, f k~v!. ~17b!

The rate in Eq.~17a! for | restricted to the dissociating ex
tended states ofH f was recently used@29# to investigate the
photon energy-dependent photodissociation yield and the1

time of flight spectra for the core hole photoexcited N2 mol-
ecules. In this work we concentrate on the Auger elect
spectra which will now be derived from the rate in Eq.~17b!.

To get the matrix element needed in Eq.~16! we insert
uxd(t)& given in Eq. ~13! into Eq. ~8! to get ux f k(t)&. We
close it from the left with^w|

f u, use Eq.~15! to replaceH f

with E|
f in the exponent, and replace cos@v(t2t8)# with a

sum of exponentials. After dropping the irrelevant tim
dependent overall phase factor we get

^w|
f ux f k~ t !&

52~ i\!22
1

2
E0~v!•DH E

0

t

dt8e2~ i /\!~Ein1\v2E|
f
2Ek!t8

3E
0

t8
dt9e~ i /\!~Ein1\v!t9

3e2Gt9/2\^w|
f uWf k

† ufd~ t9!&

1E
0

t

dt8e2~ i /\!~Ein2\v2E|
f
2Ek!t8

3E
0

t8
dt9e~ i /\!~Ein2\v!t9

3e2Gt9/2\^w|
f uWf k

† ufd~ t9!&J . ~18!

As already noted,D was pulled out to the left of all opera
tors. If its r dependence would have to be accounted for, t
D should be placed inside the matrix element to the righ
Wf k

† . The two terms in the curly brackets differ only in sig
in front of \v.

According to Eq.~16!, the above matrix element must b
squared and differentiated with respect tot before the limit
t→` is taken. The procedure is of some interest but rat
technical so the details are given in Appendix A. The n
result is that, ifEin is the lowest energy which the system c
have, then only the first term in the curly brackets of Eq.~18!
contributes. In the long-time limit, this gives an express
for dṖ|, f k(v) which is proportional tod(Ein1\v2E|

f

2Ek). The latter expresses the overall energy conserva
for the process. Squaring the matrix element we encount
square of the electric field amplitudeE0(v) which can be
related to the radiation intensitydI(v) within the frequency
interval v,v1dv:
ns

n

-

n
f

r
t

n
a

@E0~v!#25F 1

4pe0
G8p

c
dI~v!5F 1

4pe0
G8p

c
I 0G~v2vL!dv,

~19!

where I 0 is the total radiation intensity,G(v2vL) is the
radiation line shape function centered around the nom
radiation frequencyvL , and c is the speed of light in
vacuum. The factor in the square brackets containing
vacuum permittivity constante0 should be ignored if the
Gaussian system of units is used. For radiation with a Ga
ian line shape with full width at half maximum~FWHM!
equal toGL we have

G~v2vL!5S 2ln4

pGL
2 D 1/2

exp@22ln4~v2vL!2/GL
2#.

~20!

As anticipated below Eq.~16!, dṖ|, f k(v) is proportional to
dv and the probability per unit time that a molecule illum
nated by the beam of intensityI 0 and a nominal frequency
vL emits in the f th Auger decay mode an electron with
momentum\k is

Ṗf k~vL![E dṖf k~v!5F 1

4pe0
G4p2

c\4
I 0D2uWf u2

3(
|

G„~E|
f 1Ek2Ein2\vL!/\…

3U E
0

`

dte~ i /\!~E|
f
1Ek!t e2Gt/2\^w|

f ufd~ t !&U2

.

~21!

Here,D is the projection ofD on the direction of the electric
field, and the Auger decay matrix elementWf k

† was replaced
with a constantWf and pulled outside the matrix element
Eq. ~18!. Note thatWf in front of the above expression co
responds to theparticular Auger decay mode correspondin
to the final electronic configurationf of the ion, in contrast to
the ( f uWf u2 defining the decay rateG @cf. Eq. ~11! and the
discussion after Eq.~12!#. The energy conservation Diracd
function was effectively replaced with the line profile Gaus
ian when the integration across the spectral line was ma
Note thatṖf k(vL) containsk throughEk so it does not de-
pend on the direction ofk. This behavior is expected fo
randomly oriented molecules in a gas and/or unpolarized
diation but here it results from neglecting a possibler depen-
dence ofD and is obtainedbeforeany averaging over mo
lecular orientations and/or polarization was done. T
makes such averaging unnecessary, and the compariso
our results should be made with averaged experimenta
sults.

So far k is a discrete index and in order to convert t
probabilities into probability distributions, appropriate de
sity of state factors must be introduced. Th
Ṗf k(vL)re(E)dEdV/4p is a probability per unit time that an
irradiated molecule emits an electron within the energy
terval (E,E1dE) into a solid angledV ~in an arbitrary di-
rection!. Writing down this expression explicitly, one shou
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replaceEk with E. Dividing further by the flux of the inciden
photons I 0 /\vL and by dEdV we arrive at the electron
energy-dependent differential cross section for the elec
emission process. Among others, it contains a fac
2pre(E)uWf u2 which, being proportional toAE, is practically
constant because typical Auger electron energies are o
order of a few hundred eV, while an Auger spectrum for a
decay mode extends only over a few eV. Therefore, con
tently with the definition below Eq.~11!, this factor may be
replaced with the decay constantG f being a contribution
which the particularf th Auger decay mode brings to th
overall decay rateG. Thus we get the following expressio
for the differential cross section:

d2se~E!
dEdV

5F 1

4pe0
GG fvLD2

2c\3

3(
|

G„~E|
f 1E2Ein2\vL!/\…

3U E
0

`

dte~ i /\!~E|
f
1E!t e2Gt/2\^w|

f ufd~ t !&U2

.

~22!

Recall that the summation over| is a summation over al
possible eigenstates, localized and extended ones, of
Hamiltonian H f . Normalization in a box of volumeV is
used for the extended states so the quantum index| is dis-
crete and̂ w|

f uw|8
f &5d|,|8 .

A simple property of the time integral in Eq.~22! will be
useful in the ensuing discussion of the electron spectra.
the integral

E
0

`

dte~ i /\!Vt e2Gt/2\F~ t !, ~23!

the functionF(t) varies slowly in time in comparison with
the exponential factors then the main contribution to the
tegral is due to times limited by theeffective lifetimeteff
52\/Geff , where

Geff/25AV21~G/2!2. ~24!

Consequently, the time spans over which the integrand in
~22! effectively contributes to the formation of the electro
spectrum may, for certain energiesE, be significantly short-
ened below the actual lifetime 2\/G by the destructive os
cillations in the time of the integrand in Eq.~21!. An effec-
tive lifetime, called the duration time of the resonant x-r
scattering process, was recently introduced in Ref.@25# and
used to account for the collapse of vibrational structure
decay spectra by frequency detuning in CO@12,22#, and for
quenching of symmetry breaking in resonant inelastic x-
scattering by frequency detuning in CO2 @23–25#.

We conclude with relating the time-dependent result
the cross section to the normally used Kramers-Heisenb
type expression derived within the time-independent
proach. We introduce the eigenstates of the core-excited
HamiltonianHd , i.e., ucv

d& corresponding to the energy e
genvaluesEv

d . The quantum numberv stands for all quan-
n
r

he
y
s-

the

in

-

q.

n

y

r
g-
-

ate

tum numbers needed to specify the vibrational state of
core-excited molecule and it is assumed here that the di
ciating states of such a molecule have negligible over
with the initial stateuc in&, i.e., the core hole excitation doe
not lead directly to dissociation. The solution of the Sch¨-
dinger equation~14! can be written as

ufd~ t !&5(
v

expS 2
i

\
Ev

dt D ucv
d&^cv

duc in&, ~25!

and inserted into Eq.~22!. We note in passing that this as
sumptionis not made in our time-dependent approach he
This will allow us to apply it to the treatment of weakl
bounding or dissociating core-excited states without any
ditional numerical effort. The time integration in Eq.~22!
can then be explicitly performed and the resulting cross s
tion is

d2se~E!
dEdV

5F 1

4pe0
GvLD2

c\ (
|

G„~E|
f 1E2Ein2\vL!/\…

3~Mdir1M int!, ~26!

where

Mdir5(
v

u^w|
f ucv

d&^cv
duc in&u2

G f /2

~E|
f 1E2Ev

d!21~G/2!2
,

~27a!

M int5 (
v,v8

vÞv8

^c inucv
d&^cv

duw|
f &^w|

f ucv8
d &^cv8

d uc in&

3
G f /2

~E|
f 1E2Ev

d2 iG/2!~E|
f 1E2Ev8

d
1 iG/2!

~27b!

are sometimes referred to asdirect and interferenceterms
@36#, respectively. The direct term contains a series
Lorentzian peaks of FWHM determined by the lifetime
the core-excited state and centered around the electron
ergyE equal to the energy difference between the vibratio
energyEv

d of the core-excited molecule and the final intern
energyE|

f of the molecular ion. The interference term w
investigated in detail by Gel’mukhanovet al. @37#. If the
interference term is ignored, the Auger spectrum is a prod
of the Lorentzians with the spectral line GaussianG(v
2vL) given in Eq. ~20!. This was anticipated in a recen
analysis of the atomic ARRE@4,5#. The interference term
contributes to the spectra in the wings of the peaks given
the direct term and is responsible for the lifetime-interferen
effects in Auger emission spectra of molecules@8–10#. In
our view the division of the spectra into direct and interfe
ence terms is a somewhat artificial result of the more co
monly used time-independent picture of the process. Suc
distinction is absent from the time-dependent picture.

Usually the time-independent treatment has been app
for numerical analysis and interpretation of Auger and x-r
scattering spectra@8,9,13,15,23,36# although the time-
dependent picture has also been invoked in a qualita
@12,18,21,22,28# analysis. In Ref.@27# the time-dependen
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approach was explicitly used for the quantitative analysis
directly solving Eqs.~7b! and ~12! numerically. This ap-
proach allows one to follow the formation of the Auger ele
tron spectra in time as the wave packet evolves along
core-excited state potential surface. The same insight
however, be gained by calculating the spectra from Eq.~22!
for several lifetimes\/G or, as we will see later, for the
x-ray radiation significantly detuned from the resonant ex
tation conditions. Both pictures are complementary and h
ful in a full understanding of the main features of the nume
cal results presented in this and the other cited work.
shall see, however, that intuitively attractive explanations
all these features can be given entirely in terms of the tim
dependent picture. For the actual numerical applications
time-dependent formulation is not only easier but it seem
be the only practically feasible one when the theory is
plied to analyze details of the Auger spectra for systems w
dissociating excited state potentials@18,28,30# Vd(r) and/or
coordinate-dependent decay matrix elementsWf(r).

C. Applications to diatomic molecules

For a diatomic molecule, the set of nuclear coordinater
is a set of three components of a vector connecting b
nuclei, and all potentials are spherically symmetric:Va(r)
5Va(r ) where r 5uru. Therefore, all necessary wave fun
tions,c in(r), fd(r,t), andw|

f (r), can be expanded into serie

involving spherical harmonicsYlm( r̂) ( r̂ is a unit vector
along r). For the duration of the scattering process mu
shorter than the molecular rotation period the scattering c
section may be evaluated in a sudden approximation w
frozen molecular orientation and, in view of the forthcomi
averaging over molecular orientation@38#, the initial wave
packet may be taken spherically symmetric~corresponding
to the rotational ground state of the molecule!. It remains
spherically symmetric throughout its time evolution; so wh
the scalar product is taken withw|

f (r) in Eq. ~22!, only the
s-wave component of the latter contributes. This allows us
rewrite the expression for the cross section in a form
which only one-dimensional integrals occur. We also see
these symmetry arguments must be modified if ther depen-
dence of the molecular dipole moment transition matrix e
mentD(r) is not ignored.

The summation over| in Eq. ~22! runs over both local-
ized and extended energy eigenstates ofH f . From now on
we consider only one Auger decay mode and introduce
energy scale with the origin at the asymptotic value ofVf(r ),
i.e.,

lim
r→`

Vf~r !50, ~28!

so the energy corresponding to the localized states in
potential is negative and that for the extended states is p
tive. For the latter, the wave functionsw|

f (r) must satisfy the
incoming boundary condition for its scattered wave com
nent and the summation over| must eventually be converte
into an integration. Details are given in Appendix B and he
we list the results only.

The cross section in Eq.~22! consists of two contribu-
tions,
y

-
e
n,

i-
p-
-
e
f
-

ur
to
-
h

th

h
ss
th

o
n
at

-

e

is
si-

-

e

d2se~E!
dEdV

5S d2se~E!
dEdV D loc

1S d2se~E!
dEdV D ext

, ~29!

in which the summation over| runs over the localized and
the extended eigenstates ofH f , respectively. Following the
procedure described in Appendix B we get

S d2se~E!
dEdV D loc

5F 1

4pe0
GG fvLD2

2c\3 (
n8

G„~En8
f

1E2Ein2\vL!/\…

3U E
0

`

dte~ i /\!~E
n8
f

1E!t e2Gt/2\^un8
f uud~ t !&U2

, ~30a!

S d2se~E!
dEdV D ext

5F 1

4pe0
GG fvLD2

2c\3 E
0

`

dqG„~E~q!1E2Ein2\vL!/\…

3U E
0

`

dte~ i /\!~E~q!1E!t e2Gt/2\^uf~q!uud~ t !&U2

. ~30b!

Here,^ u & is a one-dimensional integration overr involving
the radial wave functions defined below. Thusud(r ,t) is a
solution of the time-dependent one-dimensional Schro¨dinger
equation involving the core-excited state potential ene
Vd(r ) (m is the effective mass of the relative motion of bo
constituents of the molecule!:

S 2
\2

2m

]2

]r 2
1Vd~r !D ud~r ,t !5 i\

]

]t
ud~r ,t !, ~31!

with the initial condition ud(r ,t50)5uin(r ) which is the
one-dimensional ground state wave function in the grou
state potentialVg(r ):

S 2
\2

2m

d2

dr2
1Vg~r !D uin~r !5Einuin~r !. ~32!

Next, un8
f (r ) in Eq. ~30a! is the bound state wave function

corresponding to the energy eigenvalueEn8
f

,0, of the one-
dimensional Schro¨dinger equation involvingVf(r ):

S 2
\2

2m

d2

dr2
1Vf~r !D un8

f
~r !5En8

f un8
f

~r !. ~33!

Here and in what follows we use a prime to label the vib
tional levels in Vf(r ), i.e., n8508,18,28, . . . . Finally,
uf(r ,q) in Eq. ~30b! is the extended state wave function
the same Schro¨dinger equation corresponding to the ener
eigenvalueE(q)5\2q2/2m @with the asymptotic condition
~28! there is no need for the superscriptf in E(q)#. Its nor-
malization is fixed by requiring that forr→` we have

uf~r ,q!→A2

p
sin@qr1d0

f ~q!#, ~34!
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whered0
f (q) is thes-wave phase shift~its value will not be

needed!.

D. Qualitative properties of the electron spectra

Before going into specific numerical examples it is wor
while to discuss qualitative features of the expressions
Eqs. ~30! for the electron spectra. In particular, we wou
like to show how the early and the late stages of the ti
evolution of the wave packet can be accessed by varying
frequency of the nearly monochromatic x-ray radiation a
how the electron spectra are affected by the time span
which the spectra are formed.

We reiterate that we deal here with a coherent proces
which the photon absorption and the subsequent elec
emission cannot be considered as two independent s
Therefore the energy does not have to be conserved in
step separately but only in the entire process. If the pho
\v is absorbed and the ion is left in the vibrational staten8
after an electron with the kinetic energyE is emitted, then
Ein1\v5En8

f
1E. Consequently, for nearly monochromat

radiation of the nominal frequencyvL @i.e., fairly narrow
G(v2vL) in Eq. ~30a!#, peaks are expected in the electr
spectra for electron energies equal to

E n8
peak

~vL!5\vL1Ein2En8
f . ~35!

The time evolution of the wave packet is exponentia
damped so the main contribution to the time integral in E
~30a! comes from the time span corresponding to the co
excited state lifetime 2\/G. In other words, the time-
dependent wave packet@or, rather, its overlap withun8

f (r )#
contributes effectively to the formation of the spectra fo
time no longer than it is permitted by the lifetime. This re
evant time evolution may be, as discussed below Eq.~23!,
further shortened and the result rendered smaller by the
structive oscillations of thet-dependent integrand. The time
dependent wave packet contains components oscillating
frequenciesEv

d/\ corresponding to the vibrational energ
levels of the core-excited molecule@cf. Eq. ~25!#. Therefore,
as seen from Eqs.~24! and~30a!, only for electron energiesE
satisfying the condition

uE1En8
f

2Ev
du!

G

2
~36!

are the destructive oscillations not present for one partic
(vth! component of the wave packet. This component eff
tively contributes to the formation of the electron spectrum
the energyE for as long as it is permitted by the actual co
hole lifetime 2\/G, and its contribution at this energy dom
nates over the contributions due to all other component
the wave packet. For electron energiesE for which no (n8,v)
pair can be found for which the condition~36! is satisfied the
most significantly contributing components of the wa
packet contribute, according to Eqs.~23! and~24!, for times
shorter than the core hole lifetime and the resulting value
the cross section is relatively small.

The conditions most favorable for relatively large cro
sections are met when the nominal radiation frequency
chosen in such a way that possible electron energy peak
-
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sitions, given in Eq.~35!, coincide with the energiesE for
which the condition ~36! can also be satisfied. This i
achieved by tuning the radiation resonantly to the ene
difference between thevth vibrational level of the core-
excited molecule and the initial ground state of the syste

\vL5Ev
d2Ein[\vL

v ~37!

for some fixedv. Under suchresonant tuning conditions~to
be referred to as ‘‘resonant primary excitation conditions!
the peak positions in the electron spectra, given in Eq.~35!,
occur at the energies

E n8
peak

~vL
v !5Ev

d2En8
f , ~38!

which may formally be labeled by bothv andn8. For reso-
nantly tuned radiation the time-dependent wave packet c
tributes to the formation of the spectra around the peaks
the longest possible times limited only by the actual lifetim
of the core hole. Consequently, according to Eq.~38!, each
peak in the electron spectrum may be viewed to be a resu
the energy conservingAuger transition from the vibrationa
intermediate statev of the core-excited molecule to the v
brational final leveln8 of the resulting molecular ion. Thes
peaks will be labeled withv↘n8 in the graphs which corre
spond to the resonant primary excitation of the molecule
the vibrational levelv ~e.g., 0↘08, 1↘08, 0↘18, etc.!.

Our main interest in this work is to contrast the tim
dependent formation of the spectra for resonant tuning c
ditions described above with the formation of the spec
when the resonant tuning conditions are not met. When
radiation detuning energy\V[uEin1\vL2Ev

du5\uvL

2vL
v u is, for anyv, much larger thanG/2 then, according to

Eq. ~24!, the time-dependent wave packet contributes to
formation of the spectra for times shorter than the act
lifetime 2\/G of the core-excited state and this, as we sh
see, may dramatically affect the appearance of the elec
spectra.

III. NUMERICAL RESULTS

We are going to present a number of calculated elect
spectra for two model systems, diatomic N2 and CO mol-
ecules, to illustrate how their features vary with varying e
ergy of the exciting radiation, and how they depend on
types of potential curves involved. To demonstrate the in
ence of photon bandwidth, we use two values for N2, one
above and one below the core hole lifetime width. To e
phasize some different aspects of the spectra we will a
devote a shorter subsection to CO using the photon ba
width from recent experiments@9#. Infinite resolution of the
electron energy analyzer is assumed, but some remarks
its influence will be made.

A. Model potentials and system parameters

We specify now all the potentials to determine the wa
functions to be used in the numerical work. The most co
venient analytical form forbondingpotentials is the Morse
potential form. For the final ionic state potential we write
as
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Vf~r !5Vf~e22g f ~r 2r f !22e2g f ~r 2r f !!. ~39!

It satisfies the asymptotic condition~28!. For the electronic
ground and the core-excited state potentials, respectively
choose, apart from an additive constant,

Vg~r !5Vg~e2gg~r 2r g!21!2, ~40!

Vd~r !5Vd~e2gd~r 2r d!21!2. ~41!

Besides the equilibrium position,r a (a5g,d or f ), each of
the potentials has also two other parameters, the pote
depthVa and the range parameterga , which are chosen to
fit the experimental spectroscopic data, i.e., the frequenc
the bottom of the potential,va , and the anharmonicity
vaxa , of the potential:

Va5
~\va!2

4\vaxa
, ~42!

ga5A2m\vaxa/\. ~43!

This usually results in Morse potentials with a dissociat
energy Da5\va(12xa)2/4xa ~i.e., the energy difference
between the asymptotic value of potential and the energ
its ground state! which underestimates its actual value. Th
could be a problem for particularly weakly bonding fin
ionic potentialsVf(r ) ~as in one of the numerical example
presented in this work!, and in such cases a reasonable co
promise must be made in choosing the Morse potential
rameters. A dimensionless parameter

sa5A2mVa/\ga51/2xa ~44!

is often used to characterize Morse potentials. The numbe
bound states in the Morse potentialVa(r ) is equal to the
largest integer smaller thansa21/2.

The expressions in Eqs.~40! and~41! account only for the
functional shape of the two potentials, and appropriate c
stant energies should be added to each of them to accoun
their placement on the energy scale with respect to the or
defined in Eq.~28!. We do not do this explicitly here becaus
the constant energy which must be added toVg(r ) does not
affect the shape of the initial wave packetud(r ), and the
constant to be added toVd(r ) results only in a time-
dependent phase factor in the time-dependent wave pa
ud(r ,t) which can be taken care of separately. Furthermo
if the cross section is expressed in terms of the relative no
nal radiation frequency and the relative Auger electron
ergy defined, respectively, as

vL
rel5vL2~E0

d2Ein!/\, ~45a!

E rel5E2~E0
d2E08

f
!, ~45b!

then it no longer depends explicitly on these additive c
stant energies. Here,E0

d is the energy of the vibrationa
ground state in the core-excited state potentialVd(r ) andE08

f

is the energy of the ground (n8508) state in the final ionic
configuration potentialVf(r ) @both energies are measure
with respect to the energy zero defined in Eq.~28!#. In other
words,vL

rel50 corresponds to the radiation resonantly tun
e

ial

at

of

-
a-

of

n-
for
in

ket
e,
i-
-

-

d

to the energy difference between the initial state~ground
state of the electronic ground state of the molecule! and the
vibrational v50 ground state of the core-excited molecu
Similarly, E rel50 corresponds to the kinetic energy of a
electron emitted by the decaying core-excited molecule in
vibrationalv50 ground state which leaves the molecular i
in its vibrationaln8508 ground state. All numerical result
in this paper are presented in terms of these relative radia
frequencies and relative Auger electron energies.

The Morse potentials allow us to obtain analytic expre
sions for the wave functions used in both expressions, E
~30!, for the cross section. They are not needed for the
cussion to follow so we list them in Appendix C: in Eq
~C1!, ~C3!, and ~C4! the expressions for the initial wav
packetuin(r ), for the bound state wave functionsun8

f (r ), and
for the corresponding energy eigenvaluesEn8

f , respectively,
are given. The time evolution of the wave packet is follow
numerically, although approximating the initial wave pack
by a Gaussian given in Eq.~C2! and using Heller’s@34#
semiclassical method of solving the time-dependent Sch¨-
dinger equation it is possible to derive an approximate al
braic expression also for the time-dependent wave pa
ud(r ,t). The exact numerical solution is used, however,
this work. For the extended state wave functionuf(r ,q) the
most convenient expression is provided using the WKB
proximation. For the Morse potentialVf(r ) such an expres-
sion has a simple analytic form which is listed in Eqs.~C5!–
~C7!.

Cross sections given in Eqs.~30! have a dimension of
length2/energyso it is convenient to introduce the dimen
sionless electron spectrum,S(E rel), by dividing the cross sec
tion in Eq. ~29! with

F 1

4pe0
GG fvLD2

2c\3vd
3

, ~46!

wherevd is the vibrational frequency at the bottom of th
core-excited state potentialVd(r ). Implicitly, the energy
spectrum depends also on the relative radiation freque
vL

rel . Note thatG f , which determines the branching rat
between different Auger decay modes, is included in the
mensional factor of Eq.~46!. So, while it makes sense t
compare the magnitudes of different calculated spectra
the same final electronic configuration, one should not p
too much attention to the relative magnitudes of the spe
for different final states.

The parameters used in the calculations are listed in Ta
I for both systems. The effective masses for N2 and CO are
@39# m51.1628310226 kg, andm51.1392310226 kg, re-
spectively. Apart from the spectroscopic parameters,
quencyva , anharmonicityvaxa , and bond lengthr a , for
each of the potentialsVa(r ) involved, the lifetime paramete
for the core-excited state is also needed. The val
G5132 meV @40# for N2 and G597 meV @9# for CO are
accepted. Some additional comments on the choice of
parameters are made in the following subsections in wh
the results are presented and discussed.

Before continuing, a note concerning the numerical str
egy adopted to compute the Auger electron spectra is in
der. First, the time-dependent wave packetud(r ,t) is propa-
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gated by solving numerically the Schro¨dinger equation~31!
and the result is stored in a file to be used in the subseq
computations. The wave-packet evolution needs to be c
puted only once for a given molecule because it depe
only on the shapes of theVg(r ) and Vd(r ) potentials. We
have found that it suffices to propagate the wave packet
no more than five oscillation periods 2p/vd and store the
result at 100 time increments per each oscillation period o
grid of 64 equally spaced points betweenr 50.96 Å and 1.46
Å for N2, and betweenr 50.92 Å and 1.41 Å for CO~cf.
system parameters in Table I!. The wave packet is negligibly
small outside these ranges for all times. Next, all nee
overlaps under the time integrals in Eqs.~30! are computed
and stored for all time instants for all bound statesn8 in Eq.
~30a! and for sufficiently densely sampled energiesE(q) in
Eq. ~30b! ~the latter has to be done only for the specta
decay for N2 and the sampling density should be rough
correlated with the smallest radiation bandwidth to be use!.
The remaining integrations over time@and overE(q) in Eq.
~30b! if needed# are done using cubic splines. Only at th
latter stage must the lifetime parameterG, the radiation cen-
tral frequency, the radiation bandwidth, and the actual e
tron energies be specified.

B. Results for the nitrogen molecule„N2…

Three different final electronic configurations of the N2
1

ion are considered. Two of them result from the particip
decay of the core-excited state to the@3sg

21# and to the
@1pu

21# ionic configurations for which the parameters of t
ground state N2

1(X 2Sg
1) and of the excited state

N2
1(A 2Pu) are used@15#, respectively. The third final con

figuration is@1pu
22,1pg# and results from a spectator dec

of the core-excited state. It has been shown@41# to be the
dominant decay channel which may eventually lead to N2

1

→N(4So)1N1(3P) fragmentation. We adopt for it param
eters which are slightly modified from the spectroscopic

TABLE I. Parameters of the potentials in Eqs.~39!–~41! for N2,
N2

1, CO, and CO1.

\va ~meV! \vaxa ~meV! r a ~Å!

N2(X 1Sg
1)a 292.426 1.7760 1.09768

N2@1s21,1pg#b 235.2 1.9 1.164
N2

1@3sg
21# (X 2Sg

1)c 273.633 1.996 1.1163
N2

1@1pu
21# (A 2Pu)c 236.029 1.862 1.1747

N2
1@1pu

22,1pg# (D 2Pg)d 116.16 1.406 1.471
CO (X 1S1)e 269.023 1.648 1.1283
CO @C 1s(2s)21,2p# f 258.327 1.899 1.1529
CO1@5s21#(X 2S1)g 274.531 1.880 1.1151
CO1@1p21#(A 2P)g 193.671 1.678 1.2437
CO1@4s21#(B 2S1)g 215.011 3.463 1.1687

aa5g; Ref. @39#.
ba5d; Ref. @40#.
ca5 f ; Ref. @15#.
da5 f ; Ref. @42#, modified in Ref.@29#.
ea5g; Refs.@15,9#.
fa5d; Refs.@15,9#.
ga5 f ; Refs.@15,9#.
nt
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or
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rameters of N2
1(D 2Pg) ~i.e., from \v f5112.69 meV and

\v fxf51.509 meV! which would result directly from the
experimentally established classical turning points for the
lowest bound states of Namiokaet al. @42#. The modification
@29# aims at removing a significant underestimate of t
depth of Vf(r ) ~which should be equal to 2.4 eV! and is
necessary in view of the fact that the Auger electron sp
trum is expected to extend over some 5 eV and is formed
electrons which leave the molecular N2

1 ion with enough
energy to either dissociate into N and N1 or to leave it
merely vibrationally excited.

We note also that the parameters of the ground state
tential determine solely the shape of the initial wave pack
Although the effect of the anharmonicity on its shape is
most invisible to the eye, the following time evolution seem
to be quite sensitive to this minute difference. For examp
in the N 1s→1pg absorption spectrum calculated using t
time-dependent approach without the anharmonicity of
ground state thev50 peak is about 9% lower than thev
51 peak but the difference is reduced down to about
when the correct anharmonicity is included@29#. Experimen-
tally both peaks are of approximately equal height@40# so in
all calculations presented here we do account for the an
monicity of the ground state.

We further note certain similarities and differences amo
different potentials listed in Table I. The potentials for th
neutral and ionic ground states are very similar: their f
quency parameters and equilibrium bond lengths differ
less than 7%, and 2%, respectively. Even closer to each o
are the potentials of the N2@1s21,1pg# core-excited state and
the N2

1(A 2Pu) state of the ion: the corresponding diffe
ences are less than 0.3% and 1%, respectively. These fig
should be compared with the differences of roughly 20% a
6%, respectively, between the parameters of these
groups of pairs. The ionic potential resulting from the spe
tator decay stands apart because of its relatively large b
length, small frequency parameter, and low dissociation
ergy. Consequently, in comparison with the participant fi
states, the vibrational energy levels in the spectator final s
potential are quite densely distributed and the overlap
tween the extended states of this potential and the eigenf
tions of the core-excited state HamiltonianHd is significant.

As already mentioned when relative energies in Eqs.~45!
were introduced, the functional shapes of the Auger elect
spectra do not depend explicitly on the actual radiation f
quency and the actual electron energy, but rather on t
‘‘relative’’ values defined there. Thus it is convenient to u
these relative variables as independent variables in all fig
to follow. Then, the actual nominal radiation frequency c
be found by adding, according to Eq.~45a!, the energy@40#
T00[E0

d2Ein5400.868 eV to\vL
rel . The energy which mus

be added according to Eq.~45b! to the relative electron en
ergy in order to get the actual kinetic energy of the Aug
electrons depends on the actual mode of the Auger de
Therefore the corresponding values are given in the fig
captions.

All calculated spectra are presented in Figs. 1–6. T
panel on the right-hand side of each figure shows the
evant potential curves using solid lines:Vg(r ) ~the lowest
curve!, Vd(r ) ~the highest curve!, and the ‘‘active’’ Vf(r )
~the intermediate curve! used to calculate the spectra. Th
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FIG. 1. Auger electron energy spectra for pa
ticipant decay of the N2 1s-hole excited~core-
excited! state to the@3sg

21#(X 2Sg
1) state of the

N2
1 ion for monochromator resolutions with

FWHM GL5200 meV ~left panels! and GL550
meV ~right panels! and the core-excited state life
time width G5132 meV.v50,1, and 2 denote
the quantum numbers of the vibrational levels
the core-excited state to which the nominal rad
tion frequency is resonantly tuned. In the rig
panels the peaks are labeled by identifying t
resonant transitions from the levelv50, 1, or 2
to the final vibrational leveln8508,18, . . . of
the N2

1 ion. The actual electron kinetic energ
@cf. Eq. ~45b!# is E5E rel1T00215.580 eV
5E rel1385.288 eV @46–48#. See text ~fifth
paragraph in Sec. III B! for the detailed descrip-
tion of the panel containing the potential energ
curves, vibrational energy levels, and the initi
wave packet.
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ay,
remaining two potential curvesVf(r ) used to compute the
spectra in the other figures are shown for comparison u
dotted lines.Vf(r ) curves are placed along the energy a
according to the convention chosen in Eq.~28! and the same
asymptotic value of 0.0 eV is chosen forVg(r ). Vd(r ) is
placed in such a way that its ground vibrational levelv50 is
at E50.0 eV. Several vibrationalv andn8 levels are shown
above the minimum ofVd(r ) and of the activeVf(r ), respec-
tively. The initial wave packet is shown atVg(r ) along with
the horizontal bar representing its eigenenergyEin . The
wave packet is repeated at its initial position with respec
the Vd(r ) potential curve. Three thicker horizontal line
placed under the upper replica of the initial wave pac
indicate three relative energies\vL

rel with respect to the po-
tential Vd(r ) ~and its energy levels!, to which the x-ray ra-
diation is nominally tuned in the spectra shown in the ho
zontal panels of the particular figure. Finally, the height
three vertical bars~at 0 eV! represent, counting from th
leftmost one, the lifetime parameterG, and two x-ray band-
widths GL used in the calculations.

The Auger electron spectra for the participa
N2@1s21,1pg#→N2

1@3sg
21#(X 2Sg

1) Auger decay, normal-
g

o

t

-
f

t

ized according to Eq.~46! and calculated using Eq.~30a!, are
shown in Figs. 1 and 2 for two radiation FWHM’s,GL
5200 and 50 meV~left and right hand panels, respectively!.
In Fig. 1, three nominal radiation frequencies\vL

rel50,
\vL

rel5Ev51
d 2E0

d5231.39 meV, and \vL
rel5Ev52

d 2E0
d

5459.11 meV corresponding, respectively, to theresonant
excitations tov50,1, and 2 vibrational levels of the core
excited state are used~panels denotedv50,1, and 2, respec
tively!. The spectra resulting fromoff-resonantexcitations
are shown in the two lower panels in Fig. 2~in the top panels
the resonantv50 excitation case is shown again for com
parison on an expanded energy scale!. The notationv5
22/3 means that the nominal radiation frequency is low
than that needed for the resonantv50 excitation by two-
thirds of thev50 to v51 separation, i.e.,\vL

rel52154.26
meV for v522/3, and twice that forv524/3. Equation
~C4!, with gd andsd substituted forg f ands f , respectively,
was used to get theEv

d2E0
d values quoted above. The con

tribution due to Eq.~30b! is negligible because this mode o
the Auger decay does not lead to fragmentation of the io

The Auger electron spectra for another participant dec
N2@1s21,1pg#→N2

1@1pu
21#(A 2Pu), are shown in Figs. 3
e

-

o
e.
FIG. 2. The same as in Fig. 1 but for th
nominal radiation frequency tuned to~top panel!
and below thev50 resonant excitation by two
thirds ~middle panels! and four-thirds ~bottom
panels! of the energy difference between the tw
lowest vibrational levels of the core-excited stat
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FIG. 3. The same as in Fig. 1 but for th
spectator decay to@1pu

21#(A 2Pu) state of the
N2

1 ion. Actual electron kinetic energy
E5E rel1T00216.92 eV5E rel1383.948 eV@46–
48#.
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and 4 for resonant and nonresonant excitations, respectiv
using the same radiation frequencies and linewidths as in
corresponding panels of Figs. 1 and 2. Again, the contri
tion due to Eq.~30b! is negligible in Figs. 3 and 4.

The Auger electron spectra for the spectator dec
N2@1s21,1pg#→N2

1@1pu
22,1pg#(D 2Pg), are shown in

Figs. 5 and 6 in the same general setup as for the o
spectra. In this case, however, owing to the significan
larger equilibrium bond length of the molecular ion and
significantly smaller dissociation energy as compared to
other two cases, the contribution due to Eq.~30b! is signifi-
cant. The vertical arrows indicate the electron energies be
which the molecular ion left behind dissociates into N(4So)
and N1(3P). Both contributions in Eq.~29! overlap around
the energy indicated by the vertical arrow over the inter
roughly equal toGL . We note here that the photodissociatio
cross section and the time of flight spectra of the dissocia
fragments resulting from this particular spectator decay w
calculated before using essentially the same approach@29#
@cf. Eq. ~17a! and the text below it#.

For the discussion of the main features of the spectra p
sented in Figs. 1–6 we can use the framework of either
ly,
he
-

y,

er
y

e

w

l

n
re

e-
e

time-dependent or the time-independent version of
theory; the latter gives a better conceptual insight into
processes. Therefore we will use Eq.~30a! to gain a qualita-
tive understanding of the observed features. Similar disc
sion can be made for the contribution given in Eq.~30b!.

The (v↘n8) peaks@cf. Eq. ~38! and the text below for
the meaning of this notation# for the resonant tuning condi
tions have been identified only in the high-resolution pan
of Figs. 1 and 3 in which the radiation was resonantly tun
according to Eq.~37! to vL

v50 , vL
v51 , andvL

v52 in panels
labeledv50,1, and 2, respectively. In Fig. 5 the number
such peaks is 41@the number of bound states inVf(r )#, too
large to be individually labeled in the graphs. The pe
(0↘08) which should appear atE rel50 in the lowest right
hand panel in Fig. 5 is invisible on the scale of the graph a
the fringe of (v↘n8) peaks forn8*5 is seen for energies
E rel&20.54 eV. The (0↘408) peak would appear just to
the right of the vertical arrow in this panel if it could b
resolved. Recall that the spectra for energies lower than th
indicated by the vertical arrow in all panels in Fig. 5 are d
to the Auger decay transitions which eventually lead to
dissociation of the molecular ion.
e
FIG. 4. The same as in Fig. 2 but for th
spectator decay to@1pu

21#(A 2Pu) state of the
N2

1 ion.
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FIG. 5. The same as in Fig. 1 but for th
participant decay to@1pu

22 ,1pg#(D 2Pg) state
of the N2

1 ion. The individual peaks~41 of them!
are not labeled in the right panels. The vertic
arrow indicates the energy below which the co
tribution ~30a! to the total cross section due to th
nondissociating final states of the ion sharp
drops down and the contribution~30b! due to the
dissociating final states sharply takes over. Actu
electron kinetic energy:E5E rel1T00222.03
eV5E rel1378.838 eV@42,47#.
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As expected from energy conservation all peaks in F
1, 3, and 5 move up in energy by 231.39 meV with respec
their positions in thev50 panel whenvL is tuned tovL

v51

or by 459.11 meV when it is tuned tovL
v52 .

For the radiation resonantly tuned tovL
v , only the vth

component of the time-dependent wave packet contribute
the spectrum for the entire lifetime 2\/G of the core-excited
state. Therefore the overlap of that particularvth component
with the wave function of the final vibrational leveln8 de-
cides how high the peak (v↘n8) is. All other vibrationalv
components of the time-dependent wave packet contribu
the formation of the spectra for such short times—due
their rapid oscillations in time@cf. Eqs.~23! and~24! and the
discussion around them#—that they are effectively wiped ou
in comparison with the resonantly excited component.

For the spectator decay, the evolution of the spectra
Fig. 5, as the tuning condition~36! is met consecutively for
different v ’s, may be roughly understood using argume
based on the reflection approximation because~i! the ex-
tended states of the final state of the ion contribute sign
cantly to the spectra~the parts of the spectra to the left of th
s.
o

to

to
o

in

s

-

vertical arrows!, and ~ii ! the vibrational levels of the fina
state, which contribute to the spectra to the right of the v
tical arrows, are closely spaced in energy and correspon
rather high quantum numbersn8 ~making them somewha
similar to the extended state wave functions!. Consequently,
the electron spectra in the right hand panels of Fig. 5 refl
the nodal structure of the vibrational wave functions of t
core-excited molecule:~i! the v50 ground vibrational state
wave function of the core-excited state does not have
nodes, so thev50 electron spectrum in Fig. 5 has one bro
maximum enveloping the individual peaks;~ii ! the wave
functions of thev51 and v52 vibrational levels which,
respectively, contribute to the formation of the spectra
the longest time for the tuning conditions in thev51 and
v52 panels have one and two nodes, respectively, so
and two deep minima are seen in the corresponding pane
Fig. 5. The spectra do not go all the way down to zero at
minima ~as expected from the above node-based argum!
because other vibrationalv components do contribute some
thing even though their ‘‘effective’’ lifetime is short, an
because the reflection approximation arguments do not a
e

s

FIG. 6. The same as in Fig. 2 but for th
participant decay to@1pu

22 ,1pg#(D 2Pg) state
of the N2

1 ion. The remaining comments are a
in Fig. 5.
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rigorously. The spectra in the left hand panels of Fig. 5 lo
then as one would expect them to do when high-resolu
structure is smoothed out by poorer radiation resolution.
note in passing that the presence of this node-related s
ture in the time of flight spectra of the dissociation produ
of the resonantly core-excited N2 molecule after it decays in
this particular spectator Auger decay mode was already th
retically derived and discussed in Ref.@29#. Its presence in
the resonant x-ray Raman scattering spectra for dissocia
final states was derived and discussed in detail in Ref.@28#
and was recently observed and interpreted@13# in ARRE
spectator spectra for core-excited CO.

The reflection approximation arguments certainly do
apply for the participator decay spectra in Figs. 1 and 3
cause here rather low final vibrational levelsn8 are involved.
Actually, one might be surprised to see how little the lo
resolution spectra in the left hand panels in Fig. 3 chang
the radiation frequency is resonantly tuned to different vib
tional states of the core-excited state: the dominant peak
not move and the only change seems to be the appearan
additional weak structures at the high-energy side of
spectra with higherv. A look at the high-resolution counter
parts and at the peak identifications there shows that p
corresponding to given vibrational final statesn8 move with
increasing photon energy as expected from energy conse
tion but that the ‘‘diagonal’’ peak (v↘n8) ~i.e., the one for
which n85v) at E rel50 dominates each spectrum. This
due to the similarity of the core-excited and the final ion
state potentials,Vd(r ) and Vf(r ), respectively, for this par-
ticular Auger decay~cf. Table I!. The vibrational level spac
ing in both potentials is almost the same; so the (v↘n8)
peaks withn85v2l for a fixed integerl appear at almos
the same energy in the spectra corresponding to the radia
tuned to differentv ’s according to Eq.~37!. Thevth compo-
nent of the time-dependent wave packet which contribute
the formation of the spectrum for the longest time, and th
contributes dominantly to the spectrum, is almost identi
both in shape and in its absolute position to the vibratio
wave function withn85v in the final ionic state. Their over
lap is, therefore, much larger than the overlap for any ot
(v,n8) pair causing the diagonal peak (v↘n8) with n85v
to dominate each spectrum. In fact, if the potential ene
curvesVf(r ) and Vd(r ) were completely identical then th
diagonal peak would be the only one present in each s
trum and the spectra in all three panels at a given side~left or
right! in Fig. 3 would be completely identical~apart from
different overall multiplicative factors!.

A very different situation is encountered in the case of
spectra in Fig. 1. There, the potentialsVd(r ) andVf(r ) are
very dissimilar. Therefore thevth component of the time
dependent wave packet which contributes the longest to
formation of the spectra has significant overlap with an
creasingly larger number of different vibrational levelsn8, as
the radiation is tuned to higherv. As a consequence th
vibrational structure changes and shifts considerably for
ferent tuning conditions. Another interesting point to note
Fig. 1 concerns the small structure at the high-energy sid
the (0↘08) peak in the left handv50 panel which is totally
absent in the corresponding high-resolution spectrum~the
right hand panel!. This is, of course, due to the fact that
the case of broad radiation bandwidth a considerable frac
k
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of the radiation energy can resonantly excite thev51 vibra-
tion of the core-excited molecule even if the nominal rad
tion frequencyvL is tuned to thev50 level.

This brings us to the point where the role played by t
finite resolution of the electron detector should be me
tioned. Our theoretical spectra are calculated assuming i
electron detector resolution. The actual experimental res
tion is usually represented by a Gaussian resolution pro
with which our spectra should be convoluted before be
compared with the experimental data. We have not attemp
to do this because the effect of such a convolution is a ra
trivial broadening of the spectra which does not enrich th
structure. Such a convolutionis not equivalentto the convo-
lution with the x-ray line profile which we do in our theory
i.e., one cannot compensate for a poor x-ray resolution
using the electron detector with higher resolution. For e
ample, in Fig. 1, no convolution of thev50 narrow excita-
tion spectrum~the lowest right hand panel! with an electron
detector resolution profile can result in thev50 spectrum
for the broad excitation~the lowest left hand panel!. In par-
ticular, the structure discussed in the preceding paragrap
intimately related to the broad radiation bandwidth and c
not be created by convoluting the narrow bandwidth spe
~where it is absent! with a broad resolution profile of the
electron detector. On the other hand, low resolution of
latter will of course wipe out the fine structure in Figs. 5 a
6 ~right parts!.

The preceding discussion for resonant initial excitatio
although deliberately focused on the time-dependent as
of the problem, could have been based as well on the ti
independent picture, using arguments based on Fra
Condon factors and on energy conservation occurring
only for the overall process but approximately also for t
excitation and deexcitation steps separately. This is,
course, the result of the fact that all that matters for reson
excitation is a long time evolution of the wave packet duri
which only one of its vibrational components effective
contributes to the formation of the spectrum for as long a
is permitted by the overall lifetime of the core-excited sta
When the radiation is not resonantly tuned to any of
vibrational levels of the core-excited state, then the two-s
picture of the process, with energy being conserved in e
step separately, is no longer valid. The shape of the spe
then depends on the time-dependent wave packet in a m
complicated way. Still, for finite exciting radiation linewidt
it is difficult to be completely ‘‘out of tune’’ with any of the
vibrational levels and one can argue that as the radia
frequency is swept from one resonant frequency given by
condition ~37! to the next, the electron spectra continuous
evolve from the spectra in the bottom panels of Figs. 1,
and 5 through the ones in the middle panels to those at
top. This is indeed the case, and the peaks which for detu
radiation can, as seen from Eq.~35!, be labeled by the fina
vibrational leveln8 only, shift to the right according to the
condition ~35! stemming from energy conservation in th
overall excitation—deexcitation process. Indeed we ha
found that, for an intermediate tuning condition of the fin
state of Fig. 3, detuning with narrow bandwidth to halfw
between thev50 and v51 resonances, the spectrum h
two peaks of almost equal height rather than only one a
the resonant excitation cases~note that this is not shown in
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Fig. 3!. This has indeed been reported in the most rec
experimental data which just came to our attention@14#: for
this same final state a single peak found forv50 andv51
tuning conditions is split into two for detuning halfway b
tween these resonances.

It is more interesting, therefore, to examine truly nonre
nant excitation cases for which the detuning energyV may
be chosen arbitrarily large. The clearest possibility for this
to choose a nominal radiation frequency which is sma
than the smallest energy necessary for resonant excita
i.e., for vL,vL

v50 . We note that the same effects occ
symmetrically when detuning above the resonance. H
ever, because of the overlap with the excitation of hig
vibrations the situation is not as clearcut there. The spe
for vL,vL

v50 are shown in the two lower panels of Figs.
4, and 6~in the top panels the resonantv50 spectra are
shown again for comparison!.

Here, a new type of behavior is observed. For
N2@1s21,1pg#→N2

1@3sg
21#(X 2Sg

1) participant decay in
Fig. 2 the spectrum evolves from the one composed of th
peaks for the resonantv50 excitation to the spectrum dom
nated by one peak only for off-resonance tuning conditio
This is an example of the ‘‘collapse of the vibrational stru
ture’’ observed@12# and discussed@22# for CO ~to which we
will return later on!. Very recently the collapse demonstrat
in Fig. 2 was experimentally observed for this particular ca
@14#. The reverse is, however, true for the N2@1s21,1pg#
→N2

1@1pu
21#(A 2Pu) participant decay in Fig. 4, wher

the spectrum evolves from the one dominated by essent
one peak for resonant excitation to the detuned spect
with at least three peaks clearly visible. This opposite beh
ior upon detuning of both participant spectra~in Figs. 2 and
4! was also reported very recently@14#. ~Actually, we have
become aware of these experimental observations only w
the present manuscript was almost finished, i.e., after all
calculations had been completed.! Note that in both cases th
peaks in the low-resolution spectra~left hand panels! seem to
shift down in energy~from the top panel down! by less than
required by the energy conservation condition in Eq.~35!.
However, this is only a consequence of the low radiat
resolution: the peaks in the high-resolution spectra~right
hand panels! are shifted by the expected amounts. Of cour
the overall intensity of the spectra drops significantly wh
the radiation is detuned from the resonant conditions.

For the understanding of the features described in the
ceding paragraph the time-dependent picture of the cohe
process is particularly useful. For radiation frequencies
of tune with any resonant excitation the peaks are still
pected for energiesE5E n8

peak(vL) given in Eq.~35!. For these
energies, however, the condition of Eq.~36! can never be
met. Consequently, the integrand in the time integration
cillates rapidly, the overall intensity becomes relatively sm
and, most importantly, the main contribution to the spec
comes from the wave packet at theinitial stages of its time
evolution due to the effects described around Eqs.~23! and
~24!. This explains nicely the observed evolution of the sp
tra across the panels in Figs. 2 and 4 if we realize that
initial wave packet is the vibrational ground state wave fu
tion of the electronic ground state potentialVg(r ). The po-
tential Vf(r ) for the final ionic state N2

1@3sg
21#(X 2Sg

1),
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appropriate to Fig. 2, is very similar to the ground state p
tential Vg(r ) of N2; so the initial wave packet has a larg
overlap with the ground state wave function (n850) of
Vf(r ) and is almost orthogonal to all its excited vibration
(n8Þ0) wave functions. Therefore the detuned spectrum
Fig. 2 is dominated by one peak. In Fig. 4 the situation
reversed: the ground state potentialVg(r ) and the final ionic
state potentialVf(r ) for N2

1@1pu
21#(A 2Pu) are very dif-

ferent, so that the initial wave packet has a significant ov
lap with several final vibrational statesn8. Consequently,
several peaks are present in the detuned spectrum in Fi
For the N2

1@1pu
22,1pg#(D 2Pg) final configuration the

fraction of molecular ions which undergo fragmentation
creases as the radiation frequency is lowered below the l
est vibrational resonance of the core-excited state, and
electron spectra in the lowest panels of Fig. 6 become alm
symmetric. This is expected in the reflection approximat
for a nearly symmetric initial wave packet.

In general, the detuned spectra are essentially insens
to the details of the time evolution of the wave packet alo
the core-excited state potential surface and are basically
termined by the Franck-Condon factors between the ini
wave packet and the vibrational wave functions of the fi
electronic configuration of the ion. This makes the Aug
spectra similar in shape to the direct photoionization elect
spectra at least in the approximation used in the present
proach in which the dipole and the Auger transition operat
were pulled out of the matrix elements. Selection rules,
cillator strengths, and the radiation polarization dependen
may be entirely different for the two types of spectra. T
initial and the final states for both types of processes are
same~unless the detailed selection rules would forbid th!
so there might be an interference between them, particul
when both processes have similar oscillator strengths. Th
not accounted for in the present approach.

As noted above, detuning and the consequent appear
of the spectrum can also be effectively achieved for a no
nal radiation frequency significantlylarger than thatvL

v for
which the Franck-Condon factor~involving the initial wave
packet! is the largest. In such cases the components of
wave packet which contribute to the formation of the spec
for the longest time are again effectively suppressed du
their negligible overlap with the initial wave packet, and t
role of the off-resonant components is relatively enhance

It is not our primary goal in this work to make a detaile
comparison of the calculated and the experimental elec
spectra; rather, we aim at a detailed understanding at a q
tative level of their evolution as the radiation frequency a
bandwidth are varied. Still, some comparisons with the
perimental spectra can be made and some comments to
effect were made earlier where appropriate. For N2, the par-
ticipant electron spectra were measured by Neebet al. @15#
using x-ray radiation with 0.1 eV bandwidth~i.e., between
our 0.05 and 0.2 eV! tuned, in the nomenclature of th
present paper, tov

'
.0, v

'
.1, v'2.5, andv'3.5. Our spectra

in the left hand panels of Figs. 1 and 3 have all the char
teristics seen in the experimental spectra in Fig. 4 of R
@15#. Similarly, a close correspondence can be seen betw
our spectra in Fig. 1 and the resonantv50, 1, and 2 experi-
mental spectra in Fig. 7 of Ref.@14# obtained for a radiation
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FIG. 7. Auger electron spectra for participa
decay of the CO C 1s–hole excited state to the
@5s21#(X 2S1) state of the CO1 ion for the
monochromator resolution with FWHMGL587
meV and the core-excited state lifetime widthG
597 meV. The nominal frequency of the excitin
radiation is identified throughv, and the panel
containing the potential energy curves, vibr
tional energy levels, and the initial wave packet
completely analogous to those in Figs. 1–
Actual electron kinetic energy: E5E rel

1273.33 eV@9#.
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bandwidth between 60 and 70 meV. Note that all experim
tal spectra are affected also by the finite electron dete
resolution. The authors of both works actually provide
interpretation of their spectra in terms of the tim
independent approach. It may be argued that even our r
nantspectatorspectra in Fig. 5 have minima and maxima
the same positions as the corresponding resonant spec
Fig. 8 ~for the electron kinetic energy above 375 eV! of Ref.
@14#. However, comparison must be made very carefully
cause several spectator decay channels may overlap in
experimental spectra. Certainly, the vibrational structure
the finalD 2Pg ionic configuration~the ‘‘fringes’’ in Fig. 5!
should not be resolved once the electron detector resolu
is factored in, contrary to what thetheoreticalcurves in Fig.
8 of Ref. @14# seem to indicate.

C. Results for the carbon monoxide molecule„CO…

In this subsection we present the calculated electron s
tra resulting from C 1s→p* core hole primary excitation
More experimental spectra exist for this system than for2
both for low @15# and high x-ray and electron detector res
-
or
n

o-
t

in

-
the
f

on

c-

-

lution; the latter for resonant primary excitations@9,13# and
for the excitation detuned below@12# v50. The work in Ref.
@13# stands out not only because spectator spectra were m
sured in it as well, but also because the spectra have b
theoretically calculated using a time-independent appro
with an input for electronic states, potential curves, and
matrix elements evaluated by valence configuration inter
tion ~VCI! calculations. Such an approach is very valua
for the spectator region of the decay spectrum in which m
final ionic configurations overlap and their relative intensit
are nota priori known.

We consider here only the participant Auger decays:
electron spectra in Figs. 7–9 correspond, respectiv
to CO1@5s21#(X 2S1), CO1@4s21#(B 2S1), and
CO1@1p21#(A 2P), final electronic configurations of the
CO1 ion. Parameters of all the configurations are given
Table I. Following Ref.@9# we choose the core-excited sta
lifetime parameterG597 meV and do the calculations fo
one only x-ray FWHM bandwidthGL587 meV. As for N2,
each figure contains a panel depicting the potential ene
curves, initial wave packets, vibrational levels, primary e
e

:

FIG. 8. The same as in Fig. 7 but for th
spectator decay to state@4s21#(B 2S1) of the
CO1 ion. Actual electron kinetic energy
E5E rel1267.67 eV@9#.
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FIG. 9. The same as in Fig. 7 but for th
spectator decay to state@1p21#(A 2P) of the
CO1 ion. Actual electron kinetic energy:E
5E rel1270.81 eV@9#.
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citation energies, and the vertical bars representing the
time parameterG, and the x-ray bandwidthGL . The right
hand panels show the spectra following resonant prim
excitations to the v50 (\vL

rel50), v51 (\vL
rel

5254.53 meV), andv52 (\vL
rel5505.29 meV) vibra-

tional levels of the core-excited state of CO. The lowest
hand panel corresponds to the spectrum obtained for the
mary excitation detunedbelow the v50 excitation by the
energy equal to\vL

rel52254.53 meV. The middle and th
upper panels, respectively, are for the primary excitat
tuned above the v50 level by one-third (\vL

rel

584.83 meV) and two-thirds (\vL
rel5169.70 meV) of the

energy distance to thev51 level. The actual nominal photo
energies can be obtained by adding@9# T005287.41 eV to
the values given above~recall thatT00 does not affect the
shape of the spectra!.

For the C 1s resonance of CO, the core-excited state p
tential Vd(r ) is more similar to the ground state potent
Vg(r ) ~their frequency parameters and bond lengths differ
4% and 2%, respectively! than for N2 ~with respective dif-
ferences of 20% and 6%!. Consequently, the x-ray absorp
tion is dominated by thev50 peak which is about five time
higher than the one corresponding to thev51 vibrational
state of the core-excited state. One may therefore expect
the time evolution of the wave packet plays a relative
smaller role for CO than it does for N2. Indeed, the shape o
the spectra in thev50 panels is quite similar to that in th
v523/3 panels in Figs. 7–9. The differences are signific
enough to be observed experimentally@12# and will be dis-
cussed below.

Among the final states, the ionic ground sta
CO1@5s21#(X 2S1) has the frequency and the equilibriu
bond length even closer to those of the neutral ground s
than the core-excited state potential has~the respective dif-
ferences are 2% and 1%!. Consequently, the effects of de
tuning from thev50 resonant excitation tov523/3 below
it, although small, are quite obvious in Fig. 7: the spectr
‘‘collapses’’ from three peaks in the resonantv50 case to
two only for the detuned one. This collapse of vibration
structure for CO is, indeed, observed and qualitatively
plained using arguments based on the effective time o
e-

ry

ft
ri-
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which the wave packet is allowed to evolve@12#.
For the CO1@4s21#(B 2S1) final state the reverse effec

is observed in Fig. 8: the resonantv50 spectrum is domi-
nated by the 0↘08 peak accompanied by a small 0↘18
peak while the spectrum for off-resonancev523/3 excita-
tion has two obvious peaks corresponding to then8508, 18
final vibrational states with the third,n8528, peak also vis-
ible. This is also observed in Ref.@12# but the qualitative
explanation provided there, based solely on the differen
among the equilibrium bond lengths, seems to be overs
plified. Indeed, the difference between the equilibrium bo
lengths between the initial and the final state potent
~3.5%! is larger than the difference between the equilibriu
bond lengths ofVd(r ) andVf(r ) ~1.4%!. But at least equally
important for the presence of the three peaks in the detu
spectrum is the fact that the final state potential freque
parameter is about 20% smaller than that for the ini
ground stateVg(r ). A delicate balance between the param
eters plays a role here becauseVd(r ) and Vf(r ) have also
very different ~about 17%! frequency parameters. This i
why the evolution of the spectra fromv50 throughv51 to
v52 excitations in Fig. 8 is so different than that observ
in Fig. 3 for N2. In fact, the qualitative explanation provide
in Ref.@12# seems more appropriate to account for the e
lution of the spectra observed for N2 in Figs. 3 and 4 than for
those in Fig. 8 for CO.

The final state CO1@1p21#(A 2P) is very different from
the previous two, because both its frequency parameter
equilibrium bond length are very different from those f
both Vg(r ) and Vd(r ) ~over 25% smaller and over 8%
longer, respectively, than those for both these potentia!.
Consequently, the spectra in Fig. 9 exhibit an increas
number of peaks not only as the radiation is resonantly tu
to v50 ~9 peaks!, v51 ~11 peaks!, andv52 ~13 peaks!; but
also when detuned belowv50 ~10 peaks inv523/3 panel!.
For resonant excitation the component of the time-depend
wave packet which contributes for the longest time to
formation of the spectra has increasingly more nodes
higher excitations, so it overlaps with larger numbers of
final vibrational levelsn8, and larger numbers of peaks a
observed for more energetic excitations. For detuned exc
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tion, the number of peaks is also larger than that for thv
50 resonant excitation because the ground state pote
Vg(r ) differs from the final potentialVf(r ) more thanVd(r )
does.

IV. CONCLUSIONS

In this paper we have developed an explicitly tim
dependent theory for one-step resonant excitati
deexcitation processes of core electron states in diato
molecules, paying special attention to its conceptual simp
ity and interpretational appeal. We use the ensuing form
ism to calculate the Auger electron decay spectra for
model diatomic systems N2 and CO, and to demonstrate im
portant features following from such processes. In particu
we stress the influence of the effective time over which
spectrum is formed during the evolution of the tim
dependent wave packet which describes the relative mo
of two atoms in the core-excited molecule. We show t
when the exciting radiation is in tune with the resonant
citations to the vibrational levels of the core-excited m
ecule, the long-time behavior of the evolving wave packe
limited only by the lifetime of the core hole—determines t
shape of the spectrum in which both the vibrational struct
of the final molecular ion and the nodal structure of the
brational wave functions of the core-excited state are
flected. On the other hand, if the exciting radiation is detun
from the resonance, only the initial time evolution of th
wave packet is crucial; this makes the spectra less sens
to the intramolecular binding in the core-excited intermedi
state. The influence of the excitation bandwidth on the
pearance of the spectra, i.e., the Auger resonant Rama
fect, is explicitly demonstrated for N2. Decay spectra calcu
lated for various final states of N2 and CO clearly exhibit the
influences of the positions and shapes of the relevant po
tial curves. The calculated spectra are in good overall ag
ment with the available experimental spectra although
attempt was made at detailed fits.
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APPENDIX A

In order to make the formulas easier to read we denote
A(t) the entire expression inside the curly brackets in E
~18!. Further, denoting

x65~Ein6\v2E|
f 2Ek!/\, ~A1a!
ial

-
ic
-
l-
e

r,
e

n
t
-
-

e
-
-
d

ve
e
-
ef-

n-
e-
o

-
e

t
-
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y
.

z65~Ein6\v1 iG/2!/\, ~A1b!

f ~ t9!5^w|
f uWf k

† ufd~ t9!&, ~A1c!

we get

A~ t !5E
0

t

dt8exp~ ix1t8!E
0

t8
dt9exp~ iz1t9! f ~ t9!

1E
0

t

dt8exp~ ix2t8!E
0

t8
dt9exp~ iz2t9! f ~ t9!.

~A2!

Note thatz6 have positive imaginary parts, so the expone
tial factors containingz6 vanish for t9→`. Reversing the
order of both integrations

E
0

t

dt8E
0

t8
dt9•••5E

0

t

dt9E
t9

t

dt8••• ~A3!

allows us to integrate overt8 explicitly. The result~in which
t9 is renamed tot8) is

A~ t !5E
0

t

dt8 f ~ t8!exp~ iz1t8!
exp~ ix1t !2exp~ ix1t8!

ix1

1E
0

t

dt8 f ~ t8!exp~ iz2t8!
exp~ ix2t !2exp~ ix2t8!

ix2
.

~A4!

We also need the time derivative ofA(t) which we compute
from Eq. ~A2!:

Ȧ~ t !5exp~ ix1t !E
0

t

dt9 f ~ t9!exp~ iz1t9!

1exp~ ix2t !E
0

t

dt9 f ~ t9!exp~ iz2t9!. ~A5!

The time derivative ofuA(t)u2 can now be calculated a
A* Ȧ1AȦ* using Eqs. ~A4! and ~A5!. The result is a
lengthy expression containing a term involvingx1 and z1,
an identical term but withx2 andz2, and a ‘‘mixed’’ term
containing both superscripts,1 and 2. In the long-time
limit, t→`, the dominant contribution comes from the fir
two terms; so we consider them only and ignore the mix
term. Both remaining terms have the same structure so
drop the superscripts in what follows. We get

d

dt
uA~ t !u25E

0

t

dt8E
0

t

dt9 f * ~ t8! f ~ t9!exp~2 iz* t8!

3exp~ izt9!

3
exp@ ix~ t2t8!#2exp@2 ix~ t2t9!#

ix
,

~A6!

which should be understood in such a way thatduAu2/dt is a
sum of two terms like the one above, one in whichx andz



pt

q

at
n
nd

-
o

th

e

el

tum

-

the
m-

-

tion

th

-

e-

re-

e
he

1244 PRA 58GORTEL, TESHIMA, AND MENZEL
have the superscript1 and the one in which the superscri
is 2. Note that the exponential factors containingz result in
a factor exp@2h(t81t9)/2#; so in the limit t@h21 the main
contributions to both integrations are due tot8,t9!h21!t.
Thereforet8 and t9 may be ignored in comparison witht in
the exponential functions containingx. The result is

d

dt
uA~ t !u2'

2 sin~xt!

x U E
0

t

dt8 f ~ t8!exp~ izt8!U2

. ~A7!

Taking the long-time limit needed in Eq.~16! we get, after
restoring the6 superscripts,

lim
t→`

d

dt
uA~ t !u252pd~x1!U E

0

`

dt8 f ~ t8!exp~ izt8!U2

12pd~x2!U E
0

`

dt8 f ~ t8!exp~ izt8!U2

,

~A8!

where the well-known long-time limit sin(xt)/x→pd(x) was
used. After physical quantities are restored according to E
~A1! both d ’s become the energy conservationd functions:
d(Ein6\v2E|

f 2Ek). BecauseEin is the lowest energy
possible for the system, only the term with1\v survives
and dṖ|, f k(v) in Eq. ~16! becomes proportional to
d(Ein1\v2E|

f 2Ek). Therefore the initial energy of the
nuclear motion in the molecule in its electronic ground st
plus the energy of the absorbed photon is shared betwee
final energy of the nuclear motion in the molecular ion a
the kinetic energy of the escaping electron.

APPENDIX B

We outline here the derivation of Eqs.~30! from Eq.~22!.
The initial condition for the time evolution offd(r,t) is the
spherically symmetricground state wave functionc in(r) of
the ground state potentialVg(r ). It evolves in time along the
spherically symmetricpotential Vd(r ). Therefore the time-
dependent wave packetfd(r,t) remains spherically symmet
ric. In other words, the spherical harmonics expansions
the initial and time-dependent wave packets involve only
lowest orderl 5m50 term:

c in~r!5Y00~ r̂!
uin~r !

r
, ~B1a!

fd~r,t !5Y00~ r̂!
ud~r ,t !

r
, ~B1b!

ud~r ,t50!5uin~r !. ~B1c!

Here, Y00( r̂)51/A4p, uin(r ) is a normalized ground stat
wave function solution of theone-dimensionalSchrödinger
equation~32! involving the potentialVg(r ). It is the initial
condition for ud(r ,t) which satisfies theone-dimensional
time-dependent Schro¨dinger equation~31! involving Vd(r ).

To deal with the eigenfunctions ofH f , i.e., w|
f (r), we

must treat the localized and the extended states separat
s.

e
the

f
e

y.

For the localized eigenstates the appropriate quan
numbers are|5(n8,l ,m) so

w|
f ~r![wn8,l ,m

f
~r!5Ylm~ r̂!

un8,l
f

~r !

r
, ~B2!

where un8,l
f (r ) is the n8th eigenfunction of the one

dimensional Schro¨dinger equation containingVf(r ) and the
l -dependent centrifugal potential. When the overlap with
spherically symmetric time-dependent wave packet is co
puted, one gets

^wn8,l ,m
f ufd~ t !&5d l ,0dm,0̂ un8

f uud~ t !&, ~B3!

where we writeun8
f rather thanun8,0

f for the n8th discrete
state eigenfunction of a one-dimensional Schro¨dinger equa-
tion ~33! containingVf(r ). Similarly, the corresponding en
ergy eigenvalue will be denotedEn8

f rather thanEn8,0
f . Insert-

ing Eq. ~B3! into Eq. ~22! we obtain Eq.~30a! for the
‘‘localized’’ contribution to the cross section.

For the extended states the appropriate wave func
w|

f (r) is such an eigenfunction ofH f , w f (2)(r,q), which
corresponds to the energy eigenvalueE(q)5\2q2/2m ~with
m being the effective mass for the relative motion of bo
constituents of the molecule! and which forr→` consists of
a plane wave}exp(iq•r) and the ingoing spherical wave
}exp(2iqr)/r. Thesummationover| in Eq. ~22! for this part
of the spectrum can, in the infinite volume limitV→`, be
replaced with theintegration over d3q, provided the neces
sary density of states factorV/(2p)3 gets incorporated into
the definition of the extended state wave functions

S V

~2p!3D 1/2

w|
f ~r!→w f ~2 !~r,q!, ~B4!

which now are normalized tod (3)(q2q8). The partial wave
expansion of this function is

w f ~2 !~r,q!5(
l 50

`

(
m52 l

m5 l

i lexp@2 id l
f~q!#

3
ul

f~r ,q!

qr
Ylm* ~ q̂!Ylm~ r̂!, ~B5!

whereul
f(r ,q) is an extended state eigenfunction of the on

dimensional Schro¨dinger equation containingVf(r ) and the
l -dependent centrifugal potential. The wave function cor
sponds to the energy eigenvalueE(q) and satisfies the fol-
lowing boundary condition forr→`:

ul
f~r ,q!→A2

p
sin@qr2 lp/21d l

f~q!#, ~B6!

whered l
f(q) is a partial wave phase shift which will not b

needed in what follows. When the matrix element with t
spherically symmetric time-dependent wave packetfd(r,t),
given in Eq.~B1b!, is computed then only thel 5m50 term
survives:
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^w f ~2 !~q!ufd~ t !&5Y00~ q̂!
exp@ id0

f ~q!#

q
^uf~q!uud~ t !&.

~B7!

We write hereuf(q) rather thanu0
f (q) for the extended state

eigenfunction corresponding to the energy eigenvalueE(q)
of a one-dimensional Schro¨dinger equation containingVf(r ).
The phase factor disappears andY00/q gets canceled ou
when the modulus square is taken,d3q is replaced with
q2dqdV, and the angular integration is made. The resul
Eq. ~30b! for the ‘‘extended’’ contribution to the cross se
tion.

APPENDIX C

The initial wave packetuin(r ) is a ground state solution o
the Schro¨dinger equation~31!. For the Morse potential in Eq
~40! it reads

uin~r !5Agg

~2sg!sg21/2

AG~2sg21!
exp~2sge2gg~r 2r g!!

3exp@2gg~sg21/2!~r 2r g!#, ~C1!

whereG(x) is Euler’s gamma function@43# and sg is de-
fined in Eq.~44! for a5g. The time-dependent Schro¨dinger
equation~31! is then solved numerically using the spect
method of Kosloff and Kosloff@44#. The solution may be
done in advance and the result, the real and the imagin
parts of the wave packet at predetermined values ofr and t,
may be stored in a file for further use. If Heller’s semicla
sical method@34# of solution of the time-dependent Schr¨-
dinger is going to be used then the initial wave packet~C1!
should be approximated by a Gaussian

uin~r !'Agg~sg /p!1/4exp@2sggg
2~r 2r g!2/2#, ~C2!

which is a good approximation to Eq.~C1! for sg@1. For
the Morse potential representation ofVd(r ) Heller’s solution
can be obtained in the analytic form@32,33#. It was checked
that such a solution approximates the exact one quite w
but in this work we use the exact numerical time evolution
the wave packet starting from the initial condition~C1!.

For Vf(r ) given by the Morse potential in Eq.~39! it is
convenient to introduce an auxiliary variables5exp@2gf(r
2r f)#. Then, the bound state wave functionsun8

f (r ) of the
Schrödinger equation~33! are

un8
f

~r !5Ag fS n8! ~2s f22n821!

G~2s f2n8!
D 1/2

~2s fs!s f2n821/2

3e2s f s L
n8

~2s f22n821!
~2s fs!, ~C3!

whereLn
(h)(z) denotes the generalized Laguerre polynom

@43# of degreen ands f is defined in Eq.~44! for a5 f . For
n8508 ~the ground state! the above function reduces to th
form given in Eq.~C1! with indicesg replaced withf . The
energy eigenvalues@measured on the energy scale defined
Eq. ~28!# corresponding toun8(r ) are given by
s

l

ry

-

ll,
f

l

n

En8
f

52
\2g f

2

2m
~s f2n821/2!2. ~C4!

An analytic expression exists for the wave functio
uf(r ,q) for an extended state corresponding to the ene
E(q)5\2q2/2m for the Morse potentialVf(r ). Such an ex-
pression is, however, numerically unstable rendering it pr
tically useless in our work. Very accurate results are obtai
using the WKB approximation. In order to satisfy the boun
ary condition which radial functions must satisfy atr 50 one
should add a term\2/8mr 2 to Vf(r ) to get thes-wave radial
wave function in the WKB approximation@45#. In practice,
however, this term may be ignored because of its neglig
effect. Therefore the WKB wave function satisfying th
boundary condition given in Eq.~34! reads

uf~r ,q!5U4E~q!g~r ,q!

E~q!2Vf~r !
U1/4

Ai „2g~r ,q!…, ~C5!

where Ai(z) is the Airy function@43# and

g~r ,q!5sgn@r 2r c~q!#

3U 3

2\Er c~q!

r

dr8A2muE~q!2Vf~r !uU2/3

. ~C6!

Here, r c(q) is the classical turning point at which the inte
grand in Eq.~C6! vanishes. A nice feature of the Mors
potential form ofVf(r ) is that an algebraic expression exis
for g(r ,q). Introducing the dimensionless energye
5E(q)/Vf and using the auxiliary variables5exp@2gf(r
2r f)# already introduced above Eq.~C3! we get, respec-
tively, for r ,r c(q) ~in the classically forbidden region! and
for r .r c(q) ~classically allowed region!,

gl~r ,q!52H 2
3

2
s fFAe arccosS e1s

sA11e
D

1 lnS s211As222s2e

A11e
D

2As222s2eG J 2/3

, ~C7a!

gr~r ,q!5H 3

2
s fFarccosS s21

A11e
D

1Ae lnS e1s1Ae~e12s2s2!

sA11e
D

2Ae12s2s2G J 2/3

, ~C7b!

where the subscriptsl and r refer to regionsr ,r c(q) and
r .r c(q), respectively.
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