
PHYSICAL REVIEW A JULY 1998VOLUME 58, NUMBER 1
Quantum and classical descriptions of a measuring apparatus

Ori Hay and Asher Peres
Department of Physics, Technion–Israel Institute of Technology, 32 000 Haifa, Israel

~Received 18 December 1997!

A measuring apparatus is described by quantum mechanics while it interacts with the quantum system under
observation and then it must be given a classical description so that the result of the measurement appears as
objective reality. Alternatively, the apparatus may always be treated by quantum mechanics and be measured
by a second apparatus, which has such a dual description. This article examines whether these two different
descriptions are mutually consistent. It is shown that if the dynamical variable used in the first apparatus is
represented by an operator of the Weyl-Wigner type~for example, if it is a linear coordinate!, then the
conversion from quantum to classical terminology does not affect the final result. However, if the first appa-
ratus encodes the measurement in a different type of operator~e.g., the phase operator!, the two methods of
calculation may give different results.@S1050-2947~98!04107-9#

PACS number~s!: 03.65.Bz
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I. VON NEUMANN’S CUT

Quantum mechanics provides statistical predictions
the results of measurements performed on physical sys
that have been prepared in a specified way. The prepara
and measurement are performed by macroscopic devices
these are described in classical terms. The necessity of u
a classical terminology was emphasized by Bohr@1#, whose
insistence on a classical description was very strict. B
never considered the measuring process as a dynamica
teraction between an apparatus and the system under o
vation. Any intermediate systems used in that process co
be treated quantum mechanically, but thefinal instrument
had a purely classical description@2#. Measurement was un
derstood as a primitive notion. Bohr thereby eluded qu
tions which caused considerable controversy among o
authors@3,4#.

Yet, measuring apparatuses are made of the same kin
matter as everything else and they obey the same phy
laws. It therefore seems natural to use quantum theor
order to investigate their behavior during a measurem
This was attempted by von Neumann, in his treatise on
mathematical foundations of quantum theory@5#. In the last
section of that book, as in an afterthought, von Neuma
represented the apparatus by a single degree of freed
whose value was correlated to that of the dynamical varia
being measured. Such an apparatus is not, in general, le
a definite pure state and does not admit a classical des
tion. Therefore, von Neumann introduced a second app
tus, which observes the first one, and possibly a third ap
ratus, and so on, until there is a final measurement, whic
not described by quantum dynamics and has a definite re
~for which quantum mechanics can give only statistical p
dictions!. The essential point that was suggested, but
proved by von Neumann, is that the introduction of this
quence of apparatuses is irrelevant: The final result is
same, irrespective of the location of the ‘‘cut’’ between cla
sical and quantum physics.~At this point, von Neumann also
speculated that a final step would involve the consciousn
of the observer, a rather bizarre statement in a mathem
cally rigorous monograph.!
PRA 581050-2947/98/58~1!/116~7!/$15.00
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In the present article we introduce a dual description
the measuring apparatus. It obeys quantum mechanics w
it interacts with the system under observation and then i
‘‘dequantized’’ and is described by a classical Liouville de
sity, which provides the probability distribution for the re
sults of the measurement. Alternatively, the apparatus m
always be treated by quantum mechanics and measured
second apparatus that has such a dual description. The q
tion is whether these two different methods of calculati
give the same result@6#.

We show that a sufficient condition for agreement b
tween the two methods is that the dynamical variable use
a ‘‘pointer’’ by the first apparatus be represented by an
erator of the Weyl-Wigner type@7#. These ‘‘quasiclassical’’
operators are defined as follows. Let a classical dynam
variableA(q,p) be expressed as a Fourier transform

A~q,p!5E E ds dt ei ~sq1tp!a~s,t!. ~1!

Then the correponding Weyl-Wigner operator is obtained
replacing, in the above expression, the classical variableq

and p by the corresponding quantum operatorsq̂ and p̂. It
can be shown that the expectation value ofÂ(q̂,p̂) for any
quantum state, pure or mixed, is equal to the classical
pression

^A&5E E W~q,p!A~q,p!dq dp, ~2!

where W(q,p) is Wigner’s quasiprobability distribution
@7,8#. If the latter is nowhere negative, it can be interpret
as a classical Liouville distribution. In the rest of this pap
the same symbolsq andp will be used for classical variable
and for operators since the meaning of the symbol is alw
clear from the context and there is no risk of confusion.

We examine two examples. In the simplest one
pointer is described by a linear coordinateq, which is an
operator of the Weyl-Wigner type. As expected, the conv
sion from quantum to classical description does not affect
final result. In the second example, the first apparatus
116 © 1998 The American Physical Society



r
o

at
a
ns
is

ne
-

.

r
e
a-
t i
t
s

cu
e

th

or
ea
a
e

n
e
al
ev

um
hi
s,
e

d
a

nts,
cal

r,

of

first

ach

ip-
r is

era-

s is

ian

er,
ry

the

is

E

PRA 58 117QUANTUM AND CLASSICAL DESCRIPTIONS OF A . . .
codes the measurement in a phase. In that case, the ope
that we use is not of the Weyl-Wigner type and the tw
methods of calculation give different results. It is likely th
the validity of these conclusions is not restricted to the p
ticular examples for which we provide detailed calculatio

In both examples the quantum system that we observe
particle of spinj and we want to measure theJz component.
In Sec. II we coupleJz to the linear positionq of a pointer.
The latter is then measured by a second pointer, whose li
position isQ. The problem is to find the probability distri
bution of Q for a given initial state of the quantum system
As shown explicitly, it makes no difference to dequantizeq
after the first measurement and to always treatQ classically.

In Sec. III, on the other hand, we coupleJz to the phaseu
of a harmonic oscillator. The second apparatus~again a lin-
ear pointer with positionQ) measures cosu, not u itself be-
cause the phase is not a well-defined self-adjoint operato
quantum mechanics@9,10#. We then find that in this case th
expectation valuêQ& is not the same when the first appar
tus is treated quantum mechanically, or classically, while i
measured by the second one. That is, when we perform
required calculations for such a measuring process, the re
depends on the location chosen for the von Neumann
Figure 1 encapsulates the difference between the two m
ods of calculation.

To avoid any misunderstanding, we emphasize that
classical description of a pointer isnot by means of a point in
phase space, but by a Liouville density. Quantum the
makes only statistical predictions and any semiclassical tr
ment that simulates it must also be statistical. Our appro
involves only strictly orthodox quantum mechanics. W
never speculate about modifications of the conventio
theory, such as those that have been proposed by som
thors @4#. In particular, we do not attempt to mix classic
and quantum mechanics at any stage of the dynamical
lution @11,12#.

The implications of our results on the so-called quant
measurement problem are briefly discussed in Sec. IV. W
our work may not satisfy the desiderata of some physicist
does prove the consistency of those of Bohr and von N
mann, provided that the physical system that is employe
the measuring instrument is indeed suitable for filling th
role.

FIG. 1. FunctionS(r ), given by Eq.~41!, is the factor by which
the mean result of the quantum measurement is reduced, with
spect to the classical result. The semiclassical result, given by
~66!, is shown by the dotted curve.
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II. LINEAR POINTER

Let the system under observation be a spinj particle. We
want to measure the spin componentJz , which satisfies, in
natural units (\51),

Jzum&5mum&, m5 j , j 21, . . . ,2 j . ~3!

The initial state of the system is(amum&.
In elementary discussions of quantum measureme

there is no explicit decription of the apparatus. The typi
textbook just says that the result of the measurement ism,
with probability uamu2. The reader may imagine a pointe
jumping from q50 to q5m ~in suitable units!, with prob-
ability uamu2, as a result of the measuring process.~In the
language of statistical mechanics, the Liouville function
the pointer has peaks of sizeuamu2 near q5m.! It is then
possible to imagine a second apparatus that measures the
one and has its pointer moving fromQ50 to Q5q. The
readings of the two apparatuses of course agree with e
other.

In this article we provide a quantum dynamical descr
tion for the apparatuses. The initial state of the first pointe
specified by a wave functionf(q). The positionq and its
conjugate momentump52 i ]/]q are linear operators in Hil-
bert space. Their spectra extend from2` to `. Likewise,
the second apparatus is a linear pointer with position op
tor Q, momentum operatorP52 i ]/]Q, and initial state
F(Q).

The joint state of the complete setup is, initially,

c05(
m

amum& ^ f~q! ^ F~Q!. ~4!

The interaction between the system and the first apparatu
represented by the unitary operator

U15e2 iJzp5e2Jz~]/]q!. ~5!

This unitary evolution can be generated by a Hamilton
H int5Jzp/e, acting during a timee, brief enough so that the
other parts of the Hamiltonian can be neglected. Howev
for the present problem, it is simpler to directly use unita
operators, instead of exponentiating a Hamiltonian. If
state of the spin isum&, the operatorU1 causes the pointer to
move bym length units~with a suitable choice of units!. The
new state thus is, in general,

c15U1c05(
m

amum& ^ f~q2m! ^ F~Q!. ~6!

Likewise, the second pointer senses the value ofq and
moves byq units. The interaction of the two pointers
generated by

U25e2 iqP5e2q~]/]Q!, ~7!

so that

c25U2c15(
m

amum& ^ f~q2m! ^ F~Q2q!. ~8!

re-
q.
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118 PRA 58ORI HAY AND ASHER PERES
The probability distribution ofQ ~while we ignore the other
variables! is

E
2`

`

dq c2
†c25E

2`

`

dq (
m

uamu2uf~q2m!u2uF~Q2q!u2.

~9!

This simply is the convolution of the probability distributio
of the first pointer, namely,

f ~q!5(
m

uamu2uf~q2m!u2, ~10!

with the probability distribution of the second pointer for
given value ofq,

F~Q2q!5uF~Q2q!u2. ~11!

It will now be seen that the same result is obtained if the v
Neumann cut is placed after the first apparatus. That is,
quantum-mechanical result~10! will be considered as a clas
sical probability distribution for the position of the firs
pointer. The initial distribution for the second one isF(Q),
which is a given non-negative function. The two pointe
interact classically in such a way that

f ~q!F~Q!→ f ~q!F~Q2q!. ~12!

The final result for the probability distribution ofQ is obvi-
ously the same as in the quantum-mechanical calcula
above.

However, we still have to formally show that the post
lated dynamical evolution~12! is compatible with classica
mechanics. Let us thus writef (q) andF(Q) as the marginals
of Liouville distributions

f ~q!5E L1~q,p! dp, ~13!

F~Q!5E L2~Q,P! dP. ~14!

The interaction of the two apparatuses lasts a very brief t
e, during which the Hamiltonian is

H int5qP/e. ~15!

The other parts of the Hamiltonian can be neglected. It
lows thatq and P remain constant during the measureme
and thatṗ52P/e andQ̇5q/e. When the interaction is con
cluded after a timee we have

p→p85p2P ~16!

and

Q→Q85Q1q. ~17!

It follows that the functional form of the joint distribution
evolves as

L1~q,p!L2~Q,P!→L1~q,p1P!L2~Q2q,P!. ~18!
n
e

n

e

l-
t

Note that the6 signs in Eq.~18! are opposite to those in th
two preceding equations. This is because a Liouville dis
bution flows in phase space as an incompressible fluid
the solution of the Liouville equation isL8(q8,p8,Q8,P8)
5L(q,p,Q,P).

To get the marginal distributions ofq and Q, we first
integrate the right-hand side of Eq.~18! overp and then over
P. The dynamical law~12! readily follows, in complete
agreement with the quantum calculation. Note that we
not have to assume any particular form for the non-nega
functions L1(q,p) and L2(Q,P). Only the marginal prob-
abilities ~13! and ~14! are involved in the final result.

III. ENCODING A MEASUREMENT IN A PHASE

We shall now measure the same quantum system wi
different apparatus. Instead of a linear pointer, we use
phase of a harmonic oscillator, whose Hamiltonian isHosc
5 1

2 (p21q2). In classical mechanics, the phase is given
u5arctan(p/q). In quantum mechanics, the issue is mo
complicated, as we shall see.

First, let us give, as in the preceding section, an elem
tary classical description of the quantum measuremen~it
will later be needed for comparison with the semiclassi
and the purely quantum treatments!. The final phase of the
classical oscillator, which plays the role of a pointer, is giv
by

u5u02mx, ~19!

with probability uamu2. Herex is any constant~we shall take
x,p/2j , so that there is no overlap in the final values ofu).
It will be convenient to takeu05p/2.

The second apparatus is, as before, a linear pointer.
coupled to cosu ~not tou itself, for reasons that will become
clear below!. The final position of the second pointer~treated
classically! thus is

Q5Q01cosu5Q01sinmx. ~20!

This elementary classical result, for which no dynamical ju
tification was given, will now be compared with the on
obtained by treating both apparatuses as quantum syste

A. Two quantum apparatuses

The first apparatus is a harmonic oscillator~e.g., one of
the modes of an electromagnetic field in a cavity!, initially
prepared in a coherent state@13#,

ua&5e2r 2/2(
k50

`

~ak/Ak! !uk&, ~21!

wherea is a complex number. On the right hand-side of E
~21!, the orthonormal basisuk& consists of eigenstates o
Hosc,

Hoscuk&5~k1 1
2 !uk&, ~22!

and r is defined by

r 2[uau25^auHoscua&2 1
2 . ~23!
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PRA 58 119QUANTUM AND CLASSICAL DESCRIPTIONS OF A . . .
The coherent states~21! minimize the uncertainty produc
DpDq5\/2 and therefore give results as close as possibl
classical physics, in particular whenr @1.

The second apparatus is, as before, a linear pointer
pared in a stateF(Q). The joint state of the complete setu
thus is, initially

c05um& ^ ua& ^ F~Q!. ~24!

Here we have assumed for simplicity that the quantum s
tem is in one of the eigenstatesum& of Jz ~the goal of the
measurement is to determinem). It is obvious that any linear
combination(amum& would give, after the quantum syste
is traced out, a statistical mixture with weightsuamu2, as in
Eq. ~10!.

The interaction between the system and the first appar
is represented by the unitary operator

U15e2 ixJzHosc. ~25!

As before, it is easy to write an interaction Hamiltonian th
generates this unitary evolution. In the present case, whem
has a definite value, we can replace in Eq.~25! Jz by m. It
then follows from Eqs.~21! and ~22! that

c15U1c05e2 imx/2um& ^ ue2 imxa& ^ F~Q!. ~26!

From this point, we can safely ignore the spin stateum&,
since we shall not observe again the quantum system it
and of course we ignore the phase factore2 imx/2.

If we could now measure the phase of the parame
e2 imxa in the coherent state on the right-hand side of E
~26!, this would readily give us the value ofm. This is of
course impossible, because coherent states are not mut
orthogonal@13# and they cannot be distinguished with ce
tainty. At most, we may get probabilistic indications for th
value ofm. Moreover, there is no self-adjoint phase opera
@9#. It is however possible to define a self-adjoint operatorC,
which is a legitimate quantum analog of the classical va
able cosu. ~Most authors simply call that operator cosu, or
cosû, instead ofC as we do here to avoid ambiguities.! The
reader who is not interested in computational details m
skip from here to Eq.~40!.

The spectrum ofC runs from21 to 1, and it is conve-
nient to label the eigenvalues by cosu, with 0<u<p. The
eigenstates ofC are given, in terms of the number statesun&,
by @9#

ucosu&5A2/p (
n50

`

sin@~n11!u#un&. ~27!

They have a delta-function normalization

^cosuucosu8&5d~u2u8!, ~28!

and a completeness property

E
0

p

ucosu&^cosuu du51, ~29!

where1 is the unit operator.
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The interaction between the first and the second app
tuses is given, as in Eq.~7!, by

U25e2 iCP5e2C~]/]Q!. ~30!

To see how this acts onc1, we have to expandue2 imxa& into
a sum of eigenstates ofC. For such an eigenstate, the ev
lution is

U2ucosu& ^ F~Q!5ucosu& ^ F~Q2cosu!. ~31!

By virtue of Eq.~29! we have

ue2 imxa&5E
0

p

du ucosu&^cosuue2 imxa&. ~32!

The expression̂ cosu ue2imxa& can be evaluated explicitly
owing to Eqs.~21! and ~27!. For brevity, let us write

e2 imxa5eimr , ~33!

wherem5m02mx. It will be convenient to take as the ini
tial phasem05p/2.

The next step is to computec25U2c1. Collecting all the
relevant expressions, we obtain from Eq.~31!

uc2~Q!&5A2

p
e2r 2/2E

0

p

du (
n50

`

sin@~n11!u#

3
r neinm

An!
ucosu& ^ F~Q2cosu!, ~34!

where we have used a mixed notation, as in the previ
equations: The Dirac symbolu & is used for the states of th
first apparatus and ordinary functions ofQ for the second
apparatus. With these notations, the probability distribut
for Q, irrespectively of the value of cosu, is given by the
diagonal elements of the partly traced density mat
Tru@ uc2(Q)&^c2(Q)u#. The result is, owing to the orthogo
nality relation~28!,

2

p
e2r 2E

0

p

du (
n50

`

sin@~n11!u#
r neinm

An!

3(
s50

`

sin@~s11!u#
r se2 ism

As!
uF~Q2cosu!u2. ~35!

This expression is a convolution, just as in Eq.~9!. It is
difficult to evaluate it explicitly, but the mean value^Q& can
easily be obtained. Keeping the integration overu for the
end, we have

E
2`

`

Q dQuF~Q2cosu!u25^Q&01cosu ~36!

and therefore

^Q&5^Q&01^C&, ~37!

where
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^C&5
2

p
e2r 2E

0

p

du cosu (
n,s50

`

sin@~n11!u#

3sin@~s11!u#
r n1sei ~n2s!m

An!As!
~38!

is the expectation value ofC in the stateue2 imxa& whose
expansion was given in Eq.~32!. We now make use of

E
0

p

du cosu sin@~n11!u#sin@~s11!u#

[p~dn,s111ds,n11!/4. ~39!

This gives, after some rearrangement,

^Q&2^Q&05cosme2r 2

(
n50

`

r 2n11Y An! ~n11!!.

~40!

The coefficient cosm[sinmx is the classical result~20! for
the displacement ofQ. The quantum motion of the first ap
paratus reduces the average value of this displacement
factorS(r ), which depends on the amplitude of the coher
state in which the oscillator was prepared:

S~r !5e2r 2

(
n50

`

r 2n11Y An! ~n11!!. ~41!

For smallr , we haveS(r )→r . For larger , the sum in Eq.
~41! can be written as an asymptotic series@14,15#

S~r !512
1

8r 2 2
7

128r 4 2
75

1024r 6 2•••. ~42!

Thus, whenr is large,S(r )→1. This is the expected resu
since a harmonic oscillator in a coherent state with larger is
almost classical. Figure 1 shows a plot of the functionS(r ).

B. Semiclassical description

The above results will now be compared with a semicl
sical treatment similar to the one that was introduced in
preceding section. The second apparatus is always desc
by classical statistical mechanics. It is prepared in a Liouv
distributionL2(Q,P) and it interacts with the first apparatu
for which we also assume a Liouville distribution. The latt
is initially identical to the Wigner functionW(q,p) @8# that
results from the first stage of the measurement. It is ind
possible to equate these two distributions because the
apparatus is in a coherent state, so that its Wigner functio
everywhere positive.~If we had chosen another state, pure
mixed, whose Wigner function had negative regions,
would have been inconsistent to dequantize the first app
tus. This would simply mean that, in such a state, it is no
legitimate measuring apparatus. This point is further d
cussed in Sec. IV.!

We must now construct an interaction between the t
apparatuses in such a way thatQ moves to a new valueQ
1C, as in Eq.~17!. To respect classical mechanics, this h
to be a continuous canonical transformation, generated
Hamitonian
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H int5CP/e, ~43!

as in Eq.~15!. Here

C5cosu5q/Ap21q2. ~44!

The reader who is not interested in computational det
may skip from here to Eq.~66!.

The variable canonically conjugate toC is

pC5~p21q2!3/2/2p5Hosc/sinu, ~45!

as may be checked by computing their Poisson brac
@C,pC#51. We may also writepC as

pC56Hosc/A12C2. ~46!

Note that21<C<1, but for any givenC the domain ofpC
extends from2` to `.

With the interaction~43!, C andP are constant, while

pC→pC8 5pC2P ~47!

and

Q→Q85Q1C, ~48!

as in Eqs.~16! and ~17!. The joint distribution thus evolves
as

L1~C,pC!L2~Q,P!→L1~C,pC1P!L2~Q2C,P!. ~49!

To obtain the probability distribution ofQ, we have to inte-
grate the right-hand side of Eq.~49! over all the other ca-
nonical variables. First, we note that sincepC extends from
2` to `, a shift by the parameterP makes no difference in
the integral: We can replace in the integrandL1(C,pC1P)
by L1(C,pC). This allows us to return to the original canon
cal variables

L1~C,pC!dC dpC5W~q,p!dq dp. ~50!

Once this is done, the integration overP yields

E L2~Q2C,P!dP5F~Q2C!, ~51!

where C is given by the right-hand side of Eq.~44! and
F(Q) is the initial marginal distribution forQ.

As in the preceding full quantum treatment, we shall c
culate the average final value^Q&, for a given initial distri-
bution F(Q):

^Q&5E
2`

`

Q dQE E dq dpW~q,p!F~Q2C!. ~52!

We again shift the originQ→Q1C and obtain

^Q&5^Q&01E E dq dp W~q,p!
q

Aq21p2
, ~53!

where we have replacedC by its explicit value~44! and
made use of**W(q,p)dq dp51 and*F(Q) dQ51.
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PRA 58 121QUANTUM AND CLASSICAL DESCRIPTIONS OF A . . .
Explicitly, for the coherent stateueimr & we have~see Ref.
@6#, pp. 316 and 325!

W~q,p!5p21e2~q2^q&!22~p2^p&!2
, ~54!

where

^q&5A2r cosm, ~55!

^p&5A2r sinm. ~56!

We likewise replaceq and p by polar coordinates~whose
physical meaning is that of action-angle variables@9#!

q5A2s cosf, ~57!

p5A2s sinf, ~58!

so thatdq dp52s ds df. The mean displacement ofQ,

dQ5^Q&2^Q&0 , ~59!

is then found to be, after some rearrangement,

dQ5
2

pE0

`

s ds R df cosfe22s222r 214rscos~f2m!.

~60!

Owing to the periodicity off, it is possible to shift its origin
by m, so that

dQ5
2

pE0

`

s ds R df cos~f1m!e22s222r 214rscosf.

~61!

In the expression cos(m1f)[cosmcosf2sinmsinf, the sec-
ond term is odd inf and does not contribute to the integra

Since now only cosf is involved in the integrand, it is
convenient to remap thesf plane so that2`,s,` and
0<f<p. We thus obtain

dQ5
2

p
cosme22r 2E

2`

`

s dsE
0

p

df cosf e22s214rscosf.

~62!

The exponent can be written as22(s2rcosf)212r2cos2f.
We shift the origin ofs by rcosf and perform the integration
over s explicitly, with the result

dQ5
2

Ap
cosmre22r 2E

0

p

df cos2f e2r 2cos2f. ~63!

We then substitutef5y/2 and cos2f5(11cosy)/2, and ob-
tain

dQ5
cosm

A2p
re2r 2E

0

p

e2r 2cosy~11cosy!dy. ~64!

Finally, owing to the identity@16#

E
0

p

ezcosy~cosny!dy[pI n~z!, ~65!
we have

dQ5cosmAp/2 re2r 2
@ I 0~r 2!1I 1~r 2!#. ~66!

The expression that multiplies cosm ~which was the classica
result! tends torAp/2 whenr is small, and to 1 whenr is
large. It is plotted in Fig. 1.

Why is this result different from the preceding one, in E
~41!? The reason is that the two classically equivalent
pressions forC in Eq. ~44! are not equivalent when thes
expressions become operators in quantum mechanics.
semiclassical result~66! was obtained by using the Wigne
function W(q,p) in Eq. ~53! as if it were a classical prob
ability density. This would be justified if the operatorC,
whose expectation value we seek, was of the Weyl-Wig
form @7#. HoweverC, which is defined by its spectrum an
eigenstates in Eq.~27!, is not of that form. It is therefore no
surprising that the semiclassical approximation gives a fi
result that is different from the quantum prediction.~On the
other hand, the linear operatorq that was used in Sec. II ha
the Weyl-Wigner form, and therefore the two methods
calculation agree.!

IV. SUMMARY AND OUTLOOK

The reader who expected to find in this article a solut
of the so-called quantum measurement problem may be
appointed. Indeed, that problem is ill defined and it is und
stood in different ways by various authors@3,4#. Our way of
formulating the problem, for which we can indicate a so
tion, simply is to say that quantum theorists describe
physical world by means of a complex Hilbert space~vectors
and operators! that defies any realistic interpretation, whi
experimenters find plain numbers. The experimenters
nipulate measuring instruments made of ordinary matter,
which quantum theory is assumed valid, but the ultim
outcome of the measuring process is essentially class
@1,2#. Therefore, at some stage, a transition has to be m
from the quantum formalism to a classical language.

Here the role of decoherence should be clarified. So
authors claim that decoherence provides the solution of
measurement problem~with the particular meaning that the
attribute to that problem!, but many others dispute this poin
of view @17#. Yet, decoherence has an essential role in
preceding discussion. We have repeatedly taken the lib
of discarding one link in the von Neumann chain, after mo
ing over to the next link. For example, in Eq.~9! we obtained
the probability distribution for the second apparatus by av
aging out the dynamical variables of the spin and the fi
apparatus. This was not a deliberate omission on our par
the real world, with many interacting degrees of freeedo
correlations between consecutive links are exceedingly d
cult to follow @18#. However, ‘‘exceedingly difficult’’ is not
the same as ‘‘impossible.’’ Technological advances oc
sionally permit us to proceed one more step along the ch
and it is important to examine whether this makes any d
ference in the final result. This is what the present article
about.

We have shown that if the measuring apparatus is suita
chosen~as in Sec. II!, the transition from quantum mechanic
to classicalstatisticalmechanics can proceed in a consiste



f

os
ot

ion
ic

su
m
ne
it
o
la

s

on

-

s
r

ndi-
s
ith
-

on
no
on-
sical
re-
the
h as
con-

du-
ard
rch.

122 PRA 58ORI HAY AND ASHER PERES
way. However, as shown in Sec. III, a ‘‘bad’’ choice o
apparatus is incompatible with a classical description~more
precisely, the semiclassical results do not coincide with th
predicted by quantum theory, though they may asympt
cally agree for larger ).

This brings us to the unavoidable fundamental quest
What are the properties that are necessary for a phys
system to be a legitimate measuring apparatus? Our re
indicate that if an apparatus uses as its ‘‘pointer’’ a dyna
cal variable represented by an operator of the Weyl-Wig
form, it is legitimate to dequantize it and to proceed as if
Wigner function were a classical probability density. F
other types of operators, the transition from quantum to c
sical mechanics usually is only an approximation~which
may be excellent if the quantum state of the apparatu
quasiclassical!.

Furthermore, the replacement of Wigner’s functi
W(q,p) by a Liouville functionL(q,p) is consistent only if
W(q,p)>0. We did not check this condition in Sec. II, be
cause we did not needW(q,p): Only the marginal probabil-
ity distribution for q was required. In general, if Wigner’
function is explicitly needed, it has to be non-negative fo
th
th
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semi-classical treatment to proceed. Fortunately, this co
tion is likely to be fulfilled for any macroscopic apparatu
that is not in a pure state, but rather in a mixed state w
DqDp@\ ~this inequality is the hallmark of being ‘‘macro
scopic’’! @19#. All the negative parts ofW are completely
washed away by the coarseness of the apparatus.

In summary, there is nothing mysterious in the transiti
from the quantum world to the classical one. There is
need of invoking anthropomorphic concepts, such as c
sciousness. Plain orthodox quantum mechanics and clas
statistical mechanics correctly reproduce all statistical p
dictions that can be verified in experiments, provided that
measuring apparatus satisfies suitable conditions, suc
those discussed above. If enough care is exercised, no in
sistency shall arise.
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