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Quantum and classical descriptions of a measuring apparatus
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A measuring apparatus is described by quantum mechanics while it interacts with the quantum system under
observation and then it must be given a classical description so that the result of the measurement appears as
objective reality. Alternatively, the apparatus may always be treated by quantum mechanics and be measured
by a second apparatus, which has such a dual description. This article examines whether these two different
descriptions are mutually consistent. It is shown that if the dynamical variable used in the first apparatus is
represented by an operator of the Weyl-Wigner tyfr example, if it is a linear coordingtethen the
conversion from quantum to classical terminology does not affect the final result. However, if the first appa-
ratus encodes the measurement in a different type of opgetpr the phase operatpthe two methods of
calculation may give different results51050-2947®8)04107-9

PACS numbd(s): 03.65.Bz

I. VON NEUMANN'S CUT In the present article we introduce a dual description for
the measuring apparatus. It obeys quantum mechanics while
Quantum mechanics provides statistical predictions foit interacts with the system under observation and then it is
the results of measurements performed on physical systenidequantized” and is described by a classical Liouville den-
that have been prepared in a specified way. The preparaticiity, which provides the probability distribution for the re-
and measurement are performed by macroscopic devices afHlts of the measurement. Alternatively, the apparatus may
these are described in classical terms. The necessity of usifgivays be treated by quantum mechanics and measured by a
a classical terminology was emphasized by Bidr whose second apparatus that has such a dual description. The ques-
insistence on a classical description was very strict. Bohfion is whether these two different methods of calculation
never considered the measuring process as a dynamical ifive the same resul6].
teraction between an apparatus and the system under obser-We show that a sufficient condition for agreement be-
vation. Any intermediate systems used in that process coultiveen the two methods is that the dynamical variable used as
be treated quantum mechanically, but theal instrument @ “pointer” by the first apparatus be represented by an op-
had a purely classical descriptip]. Measurement was un- €rator of the Weyl-Wigner typg7]. These “quasiclassical”
derstood as a primitive notion. Bohr thereby eluded quesOPerators are defined as follows. Let a classical dynamical
tions which caused considerable controversy among othefariableA(q,p) be expressed as a Fourier transform
authorg[3,4].
Yet, measuring_apparatuses are made of the same kinc_j of A(q,p)=f f do dr &9 P (o, 7). 1)
matter as everything else and they obey the same physical

laws. It therefore seems natural to use quantum theory inh h i Wi is obtained b
order to investigate their behavior during a measurement "€ the correponding Weyl-Wigner operator is obtained by

This was attempted by von Neumann, in his treatise on th&ePlacing, in the above expression, the classical variaples
mathematical foundations of quantum the@8y. In the last andp by the corresponding quantum operatgrand p. It
section of that book, as in an afterthought, von Neumanman be shown that the expectation vaIueMﬁ,E)) for any
represented the apparatus by a single degree of freedomuantum state, pure or mixed, is equal to the classical ex-
whose value was correlated to that of the dynamical variabl@ression

being measured. Such an apparatus is not, in general, left in

a definite pure state and does not admit a classical descrip-

tion. Therr—zpfore, von Neumann introduced a second apparg— <A>:j fW(q,p)A(q,p)dq dp, @)

tus, which observes the first one, and possibly a third appa-

ratus, and so on, until there is a final measurement, which iwhere W(q,p) is Wigner's quasiprobability distribution
not described by quantum dynamics and has a definite resul,8]. If the latter is nowhere negative, it can be interpreted
(for which quantum mechanics can give only statistical pre-as a classical Liouville distribution. In the rest of this paper
dictions. The essential point that was suggested, but nothe same symbolg andp will be used for classical variables
proved by von Neumann, is that the introduction of this se-and for operators since the meaning of the symbol is always
guence of apparatuses is irrelevant: The final result is thelear from the context and there is no risk of confusion.
same, irrespective of the location of the “cut” between clas- We examine two examples. In the simplest one the
sical and quantum physic@At this point, von Neumann also pointer is described by a linear coordinaje which is an
speculated that a final step would involve the consciousnessperator of the Weyl-Wigner type. As expected, the conver-
of the observer, a rather bizarre statement in a mathematsion from quantum to classical description does not affect the
cally rigorous monograph. final result. In the second example, the first apparatus en-
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1 — II. LINEAR POINTER
08 /,/ Let the system under observation be a gpparticle. We
’ 7 want to measure the spin compondpt which satisfies, in
/ natural units g=1),
- 0.6 1 /
% /I/ ‘]Z|m>=m|m>’ m=j,j_1,...,_j. (3)
044
y/ The initial state of the system Ba,;|m).
024 ,/ In elementary discussions of quantum measurements,
] there is no explicit decription of the apparatus. The typical
0 . ' . ' . textbook just says that the result of the measurement,is
0 1 2 3 with probability |a,|2. The reader may imagine a pointer,
r jumping fromg=0 to g=m (in suitable unity with prob-

ags 2 .
FIG. 1. FunctionS(r), given by Eq.(41), is the factor by which ability |am| » as a result of the_ measuring p_roceelﬂ. the
the mean result of the quantum measurement is reduced, with rddnguage of statistical mechanics, the Liouville function of

. . 2 _ .
spect to the classical result. The semiclassical result, given by E4N€ pointer has peaks of sizay|* nearg=m.) It is then '
(66), is shown by the dotted curve. possible to imagine a second apparatus that measures the first

one and has its pointer moving fro@=0 to Q=q. The

codes the measurement in a phase. In that case, the operafgidings of the two apparatuses of course agree with each
that we use is not of the Weyl-Wigner type and the twogther.
methods of calculation giVe different results. It is ||ke|y that In this article we provide a quantum dynamica' descrip_
the validity of these conclusions is not restricted to the partion for the apparatuses. The initial state of the first pointer is
ticular examples for which we provide detailed calculations.gpecified by a wave functios(q). The positiong and its

In both examples the quantum system that we observe is @njugate momentup= —id/dq are linear operators in Hil-
particle of spinj and we want to measure thig component.  pert space. Their spectra extend frome to «. Likewise,
In Sec. Il we couplel, to the linear positiory of a pointer.  the second apparatus is a linear pointer with position opera-
The latter is then measured by a second pointer, whose linegsy Q, momentum operatoP=—i4/JQ, and initial state
position isQ. The problem is to find the probability distri- ®(Q).
bution of Q for a given initial state of the quantum system.  The joint state of the complete setup is, initially,
As shown explicitly, it makes no difference to dequantige
after the first measurement and to always t@atlassically.

In Sec. lIl, on the other hand, we couglgto the phase® Yo=2 anlm® (q) 2D (Q). (4)
of a harmonic oscillator. The second appardtgain a lin- "
ear pointer with p_osmorQ) measures cas not_a_ltself be- .The interaction between the system and the first apparatus is
cause the phase is not a well-defined self-adjoint operator 'Fbpresented by the unitary operator
guantum mechanid®,10]. We then find that in this case the
expectation valuéQ) is not the same when the first appara- U,=e NP= gl (5)
tus is treated quantum mechanically, or classically, while it is

measured by the second one. That is, when we perform thenis ynitary evolution can be generated by a Hamiltonian
required calculations for such a measuring process, the resql;,m:‘]zp/& acting during a time, brief enough so that the

. |
depends on the location chosen for the von Neumann cUpher parts of the Hamiltonian can be neglected. However,
Figure 1 encapsulates the difference between the two meths, e present problem, it is simpler to directly use unitary

ods of calculation. operators, instead of exponentiating a Hamiltonian. If the

To avoid any misunderstanding, we emphasize that thgate of the spin ifm), the operatot); causes the pointer to

classical description of a pointerm®tby means of a pointin - pyqye hym length units(with a suitable choice of unitsThe
phase space, but by a Liouville density. Quantum theory o\, state thus is. in general

makes only statistical predictions and any semiclassical treat-
ment that simulates it must also be statistical. Our approach
involves only strictly orthodox quantum mechanics. We z/;1=U1<//O=E A M ® d(q—mM)@P(Q). (6)
never speculate about modifications of the conventional m
theory, such as those that have been proposed by some au- | .
thors[4]. In particular, we do not attempt to mix classical LIkéwise, the second pointer senses the valueqoand
and quantum mechanics at any stage of the dynamical ev&?OVes byqg units. The interaction of the two pointers is
lution [11,172]. generated by

The implications of our results on the so-called quantum _CiqP_ - q(al9Q)
measurement problem are briefly discussed in Sec. IV. While U,=e =€ ' @)
our work may not satisfy the desiderata of some physicists, it
does prove the consistency of those of Bohr and von Neu®
mann, provided that the physical system that is employed as
';gtlae.measurlng instrument is indeed suitable for filling that ¢2:U2w1:§ anmed(q-med(Q-q). (8)

that
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The probability distribution of (while we ignore the other Note that thet signs in Eq.(18) are opposite to those in the
variables is two preceding equations. This is because a Liouville distri-
bution flows in phase space as an incompressible fluid and

* * the solution of the Liouville equation ik’'(q’,p’,Q’,P’
[ dautv [ 00 S lanfls@-mpPleQ-gE T oML ; (apnQ"PY)
9) To get the marginal distributions af and Q, we first

integrate the right-hand side of Ed.8) overp and then over
This simply is the convolution of the probability distribution P. The dynamical law(12) readily follows, in complete
of the first pointer, namely, agreement with the quantum calculation. Note that we did
not have to assume any particular form for the non-negative

_ 2 N2 functionsL,(qg,p) and L,(Q,P). Only the marginal prob-
f(a) % laml*l(q—m)[*, (10 abilities (13) and (14) are involved in the final result.
with the probability distribution of the second pointer for a 1. ENCODING A MEASUREMENT IN A PHASE

given value ofq, .
We shall now measure the same quantum system with a

F(Q—q)=|®(Q—0q)|> (11) different apparatus. Instead of a linear pointer, we use the
phase of a harmonic oscillator, whose HamiltoniarHig,.

It will now be seen that the same result is obtained if the vor= 3 (p?+g?). In classical mechanics, the phase is given by
Neumann cut is placed after the first apparatus. That is, thé=arctanp/g). In quantum mechanics, the issue is more
guantum-mechanical resyt0) will be considered as a clas- complicated, as we shall see.
sical probability distribution for the position of the first First, let us give, as in the preceding section, an elemen-
pointer. The initial distribution for the second oneF¢Q), tary classical description of the quantum measurentint
which is a given non-negative function. The two pointerswill later be needed for comparison with the semiclassical

interact classically in such a way that and the purely quantum treatment¥he final phase of the
classical oscillator, which plays the role of a pointer, is given
f()F(Q)—f(q)F(Q—a). (120 py
The final result for the probability distribution @) is obvi- 6= 6,— my, (19
ously the same as in the quantum-mechanical calculation
above. with probability |a,|2. Herey is any constantwe shall take

However, we still have to formally show that the postu- y<w/2j, so that there is no overlap in the final value9pf
lated dynamical evolutioril2) is compatible with classical It will be convenient to taked,= /2.
mechanics. Let us thus wrif€q) andF(Q) as the marginals The second apparatus is, as before, a linear pointer. It is
of Liouville distributions coupled to cog (not to 4 itself, for reasons that will become
clear below. The final position of the second pointgreated

classically thus is
(@)= [ Luap) d, 13 y
Q=Qy+cos#=Qy+ sinmy. (20
F(Q)Zf L(Q,P) dP. (14 This elementary classical result, for which no dynamical jus-

tification was given, will now be compared with the one
The interaction of the two apparatuses lasts a very brief tim@btained by treating both apparatuses as quantum systems.
€, during which the Hamiltonian is

A. Two quantum apparatuses

Hin=0P/e. (15 The first apparatus is a harmonic oscillaterg., one of

the modes of an electromagnetic field in a cayiipitially

The other parts of the Hamiltonian can be neglected. It fol orepared in a coherent stdte3),

lows thatq and P remain constant during the measurement

and thatp= — P/e andQ =g/ e. When the interaction is con- ,
cluded after a time: we have lay=e"" ’2k20 (a1 kD)|k), (21)
p—p'=p-P (16) : . :
wherea is a complex number. On the right hand-side of Eq.
and (21), the orthonormal basigk) consists of eigenstates of
HOSCI
Q—Q'=Q+q. 17
Hosc“(>:(k+%)|k>v (22)
It follows that the functional form of the joint distribution
evolves as andr is defined by

L1(a,p)L2(Q,P)—L4(d,p+P)L2(Q—q,P). (18 r’=|al*=(alHosda)— 3. (23
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The coherent state@1) minimize the uncertainty product The interaction between the first and the second appara-
ApAg=+/2 and therefore give results as close as possible ttuses is given, as in Eq7), by
classical physics, in particular whee>1.

The second apparatus is, as before, a linear pointer pre- Up=e

pared in a staté(Q). The joint state of the complete setup ) . )
thus is, initially To see how this acts of;, we have to expanfe™"™¥a) into

a sum of eigenstates @. For such an eigenstate, the evo-
bo=|Mm)®|a)@®(Q). (24)  lution is

—~iCP_ g~ C(d/0Q) (30)

Here we have assumed for simplicity that the quantum sys- U,|cosd) @ ®(Q)=|cost)@P(Q—cosd).  (31)
tem is in one of the eigenstatés) of J, (the goal of the ]

measurement is to determin®. It is obvious that any linear BY virtue of Eq.(29) we have

combination=a,,|m) would give, after the quantum system

E tr?lc(;d out, a statistical mixture with weights,|?, as in lem Mg = J'ﬂde |cosp)(cosf| e ™ a). (32)
g. . 0

The interaction between the system and the first apparatus .
is represented by the unitary operator The expressioncosdd |[e"™a) can be evaluated explicitly

_ owing to Egs.(21) and(27). For brevity, let us write
U =e 'Waos (25) , ,
e 'Mxg=g'#r, (33
As before, it is easy to write an interaction Hamiltonian that
generates this unitary evolution. In the present case, where where = u,—my. It will be convenient to take as the ini-
has a definite value, we can replace in E2p) J, by m. It  tial phaseuy= /2.
then follows from Eqs(21) and(22) that The next step is to compuig,= U, ;. Collecting all the
relevant expressions, we obtain from E§l)
$1=Urp=e" ™ mjole ™ a)0®(Q).  (26)

2 T o
From this point, we can safely ignore the spin stht®, [42(Q)) = \/:e_rzl2 do > sin(n+1)6]
since we shall not observe again the quantum system itself, T 0 n=0
and of course we ignore the phase fa@ot™¥'2, FNgin
If we could now measure the phase of the parameter X |cos) @ P (Q—cod), (34
e '"™Xa in the coherent state on the right-hand side of Eq. Jnt

(26), this would readily give us the value of. This is of _ ) _ )
course impossible, because coherent states are not mutualkpiere we have used a mixed notation, as in the previous
orthogonal[13] and they cannot be distinguished with cer- €quations: The Dirac symbgl) is used for the states of the
tainty. At most, we may get probabilistic indications for the first apparatus and ordinary functions Qf for the second
value ofm. Moreover, there is no self-adjoint phase operator@Pparatus. With these notations, the probability distribution
[9]. It is however possible to define a self-adjoint operator for Q, irrespectively of the value of césis given by the
which is a legitimate quantum analog of the classical vari-diagonal elements of the partly traced density matrix
able co®. (Most authors simply call that operator éor 17l [#2(Q)){(#2(Q)|]. The result is, owing to the orthogo-

cosd, instead ofC as we do here to avoid ambiguitieThe nality relation(28),

reader who is not interested in computational details may w ning
skip from here to Eq(40). Ee"szda sir[(n+1)0]r e
The spectrum ofC runs from—1 to 1, and it is conve- 0 n=0 Jnt
nient to label the eigenvalues by &wwith 0< <. The . A
eigenstates of are given, in terms of the number stata}, «S simf(s+ 1)‘9]r5e"5f‘ B(Q e 35
sin (s —co .
by [9] s=0 \/S_|
_ _— This expression is a convolution, just as in EE). It is
=+ + . e . L
|cost) = v2Im nzo sin{(n+1)]|m) @7 difficult to evaluate it explicitly, but the mean valy®) can
easily be obtained. Keeping the integration ovefor the
They have a delta-function normalization end, we have
(cod|cost’' )= 8(6—6"), (29

|” @ dow@-coml*=(@p+cow (30
and a completeness property -
~ and therefore

V) ¥ do=1, 29
Jteowtoost 29 (Q)=(Qho+(C), @)

wherel is the unit operator. where
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> L pn o Hine=CPle, (43
(C)=—=e"""| dfcoss >, sinM(n+1)6]
T 0 n,s=0 as in Eq.(15). Here
rn+Sei(n*S)/L _ _ [~2 2
xsin(s+1)]———— (38 C=cos=alvp™+a” (49

n!ys!
\/—\/_ The reader who is not interested in computational details
is the expectation value o€ in the statele”"™ @) whose —may skip from here to Eq66). _
expansion was given in E432). We now make use of The variable canonically conjugate @is
m =(p?+q?)%%2p=H s /sinG, (45)
f d6 cosd sin(n+1)6]sir (s+1)6] Pe=(p™+q P=Mose
0 as may be checked by computing their Poisson bracket

=m(Snss 1T Osns1)ld. (390 [C.pc]=1. We may also writgpc as
This gives, after some rearrangement, pe=*Hye/V1—C2. (46)

-~ Note that—1<C=<1, but for any giverC the domain ofp.
)
(Q)—(Q)o=cosue ™" ngo r2”+1/ yn!(n+ 1)L extends from— o to o.

(40) With the interaction(43), C andP are constant, while

The coefficient cog=sinmy is the classical result20) for Pc—Pc=pc—P (47)
the displacement of). The quantum motion of the first ap-
paratus reduces the average value of this displacement byaﬁ'd
factor S(r), which depends on the amplitude of the coherent
state in which the oscillator was prepared:

Q—-Q'=Q+C, (48)

as in Egs.(16) and (17). The joint distribution thus evolves

S(r)zerzzorz"”/\/n!(mrl)!. (41 as

. L1(C,pc)L2(Q,P)—L41(C,pc+P)Lo(Q—C,P). (49
For smallr, we haveS(r)—r. For larger, the sum in Eq.

(41) can be written as an asymptotic seriég,15 To obtain the probability distribution d, we have to inte-
grate the right-hand side of E¢49) over all the other ca-
S(r)=1——5— - —— (42) nonical variables. First, we note that singg extends from
8re 128" 1024 — o to 0, a shift by the parametd? makes no difference in
the integral: We can replace in the integrandC,pc+ P)
by L,1(C,pc). This allows us to return to the original canoni-
cal variables

L1(C,pc)dC dp-=W(q,p)dq dp. (50

Once this is done, the integration overyields

Thus, wherr is large,S(r)—1. This is the expected result
since a harmonic oscillator in a coherent state with large
almost classical. Figure 1 shows a plot of the funct&{n).

B. Semiclassical description

The above results will now be compared with a semiclas
sical treatment similar to the one that was introduced in the
preceding section. The second apparatus is always described f L,(Q—C,P)dP=F(Q-C), (51)
by classical statistical mechanics. It is prepared in a Liouville
distributionL,(Q,P) and it interacts with the first apparatus,
for which we also assume a Liouville distribution. The latter
is initially identical to the Wigner functioW(q,p) [8] that
results from the first stage of the measurement. It is indeeg
possible to equate these two distributions because the fir%t]I
apparatus is in a coherent state, so that its Wigner function is
everywhere positive(lf we had chosen another state, pure or o
mixed, whose Wigner function had negative regions, it <Q>=j Q dQJ f dg dpWq,p)F(Q—-C). (52
would have been inconsistent to dequantize the first appara- -
tus. This would simply mean that, in such a state, it is not E{N
legitimate measuring apparatus. This point is further dis-
cussed in Sec. IV. q

We must now construct an interaction between the two —
apparatuses in such a way tl@tmoves to a new valu® (@ <Q>°+f f da dp Wa.p) \/q2+ pz'
+C, as in Eq.(17). To respect classical mechanics, this has
to be a continuous canonical transformation, generated by &here we have replace@ by its explicit value(44) and
Hamitonian made use of fW(q,p)dq dp=1 and[F(Q) dQ=1.

where C is given by the right-hand side of E¢44) and
F(Q) is the initial marginal distribution fof.

As in the preceding full quantum treatment, we shall cal-
late the average final valy®), for a given initial distri-
tion F(Q):

e again shift the origifQ— Q+ C and obtain

(53
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Explicitly, for the coherent statkﬁi“r> we have(see Ref.
[6], pp. 316 and 325

W(q,p)=mte (@@ (=(p)? (54)

where
(q)y=\2r cosu, (55)
(py=1/2r sinu. (56)

We likewise replaceg and p by polar coordinateswhose
physical meaning is that of action-angle varialied

q=/2s cosp, (57)
p=1/2s sing, (58)
so thatdq dp=2s ds dp. The mean displacement ¢,
8Q=(Q)—(Q)o, (59
is then found to be, after some rearrangement,
5Q: Efxs ds§ dd’ Cos;befzszfzr2+4rscos¢fﬂ)
mJo ’
(60)

Owing to the periodicity ofp, it is possible to shift its origin
by u, so that

2 ©
Q= ;f s dsjg dep COS b+ )@ 25" ~2r" +arscoss,
0
(61)

In the expression cog{t ¢)=cosucosp—sinusing, the sec-

ond term is odd inp and does not contribute to the integral.

Since now only cog is involved in the integrand, it is
convenient to remap the¢ plane so that-~<s<e and
0< ¢<m. We thus obtain

2 o ™
8Q=— cos,ue‘z’zf s dsf dep cosp @25 Harscost,
o 0
(62

The exponent can be written as2(s—rcosp)?+2r2cog¢.

We shift the origin ofs by r cosp and perform the integration

overs explicitly, with the result

2 T
6Q= —cosure‘zrzj dp coLp €20 (63)
0

N

We then substituted=y/2 and codp=(1+cosy)/2, and ob-
tain

cosu 2 (7™ 5.2
6Q=——re " | e?"Y(1+cog)dy. 64
Q on . ( y)dy (64)

Finally, owing to the identityf 16]
f 0 e’ (comy)dy=ml(2), (65)
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we have

8Q=cosum2 re " Tlo(r3)+14(r?)]. (66)
The expression that multiplies gegwhich was the classical
resuly tends tor \//2 whenr is small, and to 1 when is
large. It is plotted in Fig. 1.

Why is this result different from the preceding one, in Eq.
(41)? The reason is that the two classically equivalent ex-
pressions forC in Eg. (44) are not equivalent when these
expressions become operators in quantum mechanics. The
semiclassical result6) was obtained by using the Wigner
function W(q,p) in Eq. (53) as if it were a classical prob-
ability density. This would be justified if the operat@,
whose expectation value we seek, was of the Weyl-Wigner
form [7]. HoweverC, which is defined by its spectrum and
eigenstates in Eq27), is not of that form. It is therefore not
surprising that the semiclassical approximation gives a final
result that is different from the quantum predicti¢®n the
other hand, the linear operatqrthat was used in Sec. Il has
the Weyl-Wigner form, and therefore the two methods of
calculation agree.

IV. SUMMARY AND OUTLOOK

The reader who expected to find in this article a solution
of the so-called quantum measurement problem may be dis-
appointed. Indeed, that problem is ill defined and it is under-
stood in different ways by various authd@4]. Our way of
formulating the problem, for which we can indicate a solu-
tion, simply is to say that quantum theorists describe the
physical world by means of a complex Hilbert spéeectors
and operatopsthat defies any realistic interpretation, while
experimenters find plain numbers. The experimenters ma-
nipulate measuring instruments made of ordinary matter, for
which quantum theory is assumed valid, but the ultimate
outcome of the measuring process is essentially classical
[1,2]. Therefore, at some stage, a transition has to be made
from the quantum formalism to a classical language.

Here the role of decoherence should be clarified. Some
authors claim that decoherence provides the solution of the
measurement problefwith the particular meaning that they
attribute to that problein but many others dispute this point
of view [17]. Yet, decoherence has an essential role in the
preceding discussion. We have repeatedly taken the liberty
of discarding one link in the von Neumann chain, after mov-
ing over to the next link. For example, in E§) we obtained
the probability distribution for the second apparatus by aver-
aging out the dynamical variables of the spin and the first
apparatus. This was not a deliberate omission on our part. In
the real world, with many interacting degrees of freeedom,
correlations between consecutive links are exceedingly diffi-
cult to follow [18]. However, “exceedingly difficult” is not
the same as “impossible.” Technological advances occa-
sionally permit us to proceed one more step along the chain
and it is important to examine whether this makes any dif-
ference in the final result. This is what the present article is
about.

We have shown that if the measuring apparatus is suitably
chosenas in Sec. ), the transition from quantum mechanics
to classicalstatisticalmechanics can proceed in a consistent
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way. However, as shown in Sec. lll, a “bad” choice of semi-classical treatment to proceed. Fortunately, this condi-
apparatus is incompatible with a classical descriptimore  tion is likely to be fulfilled for any macroscopic apparatus
precisely, the semiclassical results do not coincide with thosehat is not in a pure state, but rather in a mixed state with
predicted by quantum theory, though they may asymptotiAqAp># (this inequality is the hallmark of being “macro-
cally agree for large). scopic”) [19]. All the negative parts ofVV are completely
ThIS bringS us to the Unavoidable fundamental question\:,vashed away by the coarseness Of the apparatusl
What are the properties that are necessary for a physical |n summary, there is nothing mysterious in the transition
system to be a legitimate measuring apparatus? Our resuliem the quantum world to the classical one. There is no
indicate that if an apparatus uses as its “pointer” a dynamineed of invoking anthropomorphic concepts, such as con-
cal variable represented by an operator of the Weyl-Wignegcijousness. Plain orthodox guantum mechanics and classical
form, it is legitimate to dequantize it and to proceed as if itsstatistical mechanics correctly reproduce all statistical pre-
Wigner function were a classical probability density. For gictions that can be verified in experiments, provided that the
other types of operators, the transition from quantum to clasmeasuring apparatus satisfies suitable conditions, such as
sical mechanics usually is only an approximatiowhich  those discussed above. If enough care is exercised, no incon-
may be excellent if the quantum state of the apparatus i§istency shall arise.
quasiclassical
Furthermore, the replacement of Wigner's function

W(q,p) by a Liouville functionL(q,p) is consistent only if ACKNOWLEDGMENTS
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