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Effect of a thermal bath on electronic resonance decay: A numerical path-integral study
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The effect of electron-vibrational coupling on the decay of a metastable electronic state is treated by a
real-time path-integral method. The electronic resonance is described within the framework of the projection
operator formalism of scattering theory. The effect of the bath is taken into account by the Feynman-Vernon
influence functional technique. In this formulation, neither Born-type nor Markov-type approximations are
invoked. The numerical evaluation of the time-discretized path integral is made possible by a recursive partial
summation technique. This approach, which has previously been formulated for scattering amplitudes, is
generalized to population probabilities that are given by a forward-backward double path integral. The perfor-
mance of the method is demonstrated for model systems describihgave shape resonance, which is
linearly coupled to a bath with Ohmic spectral function. The effect of the bath is investigated as a function of
coupling strength and temperatuf81050-29478)05507-3

PACS numbegs): 34.50—s

I. INTRODUCTION [15,1€ for reviews. Following pioneering works of Chen,
O’'Malley, Bardsley, and Nakamufd 7—20, the projection-

Short-lived electronic states that decay by electron emiseperator formalism as well as other approaches such as the
sion into a continuum are commonly encountered in atomidR-matrix method[21] have been widely employed to com-
and molecular physics. They appear, for example, as resgute inelastic and reactive cross sections. More recently, a
nances in electron-scattering or photoionization cross sedime-dependent formulation of resonant electron-molecule
tions[1,2]. As is well known, these resonances can be classcattering has been elaborated within the projection-operator
sified into shape resonandgghich decay by tunneling of the formalism[22]. The time-dependent picture yields more di-
electron through a barrier of the effective interaction poten+ect insight into the complex interplay of electronic reso-
tial) and Feshbach resonanc@ehich decay via electronic nance decay and vibrational motigg2,23. It reveals, in
interchannel coupling induced by electron-electron correlaparticular, the importance of memory effects and deviations
tiong) [3]. In either case, an isolated resonance can be undefrom the exponential decay law, which can be pronounced
stood as a discrete electronic state that is coupled to an elefor short-lived resonances as well as in the presence of
tronic continuum(or possibly several electronic continua threshold effect$16,24,29.

The formal basis of this description is provided by the In the present work we wish to consider basic aspects of
projection-operator formalism of Feshbaeh or by Fano’'s  electronic resonance decay in polyatomic systems, e.g., poly-
theory of configuration interaction in the continudbi. atomic molecules, molecular aggregates, or molecules ad-

As has repeatedly been discussed in the litergee, for  sorbed on surfaces. In such systems the electronic dynamics
example, Refs[6—13), the time-dependent decay law of a is coupled to a large number of vibrational modes. In the
resonance is completely specified if the discrete-continuuniimit of very large molecules and clusters we can assume a
coupling matrix element is given as a function of energy.quasicontinuous distribution of vibrational frequencies. We
The time-dependent decay is generally described by the sucan assume, moreover, that the unperturbed occupation prob-
vival amplitude, that is, the overlap of the discrete state withability of vibrational levels is given by the Boltzmann distri-
the time-dependent wave function of the system. As is welbution. It appears natural to ask how the electronic barrier
known, the decay of the survival probabilifgiven by the tunneling process is modified by the coupling of the reso-
absolute square of the survival amplitydieviates from the nance to such a thermal heat bath.
exponential decay law at both short and long tif@es13]. If The effect of dissipation on tunneling dynamics has ex-
the resolvent of the system possesses bound-state poles, teasively been investigated for the case of a two-level system
decay is generally incomplete, i.e., the survival probabilitythat is linearly coupled to a bath of harmonic oscillators, the
approaches a nonzero value for o [14]. so-called spin-boson modg26]. Among the many applica-

In molecules the electronic resonance decay is generallifons of this model are electron-transfer processes in chemi-
significantly modified by nuclear motion, in particular vibra- cal and biological systenj®7,28, defect tunneling in solids
tional motion. The theory of resonant electron-molecule scatf29] and the flux-dynamics in superconducting quantum in-
tering is well developed for diatomic molecules; see Refsterference device$30]. The Feynman-Vernon functional-
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integral approach31] allows the oscillator degrees of free- the description of the method and its computational imple-

dom to be integrated out analytically, resulting in anmentation. We demonstrate the feasibility of converged nu-

effective two-level dynamics governed by a time-nonlocalmerical path-integral computations for two models of an

influence functional[26]. The properties of the influence electronic resonance that is coupled to a so-called Ohmic

functional are determined by the spectral function of thebath[26]. We shall investigate the effect of the bath on the

bath: in analogy to the electronic resonance decay discuss&gctronic decay dynamics as a function of the coupling

above, the importance of non-Markovian effects in the realStrength and the temperature.

time dynamics are governed by the frequency dependence of

the spectral function. Il. DEFINITION OF THE PROBLEM

involves o continua the election seattering continaum a5 Ve consider an isoated electronic resonance in eleciron-

well as the continuur‘r; of vibrational frequencies, and repre—mmf_}CUIe scattering. Adoptlng.the projection-operator for-
X malism[4,16], we use a diabatic basj41] consisting of a

sents thus a more general and more involved problem tha&‘iscrete statdgg) (describing the resonancand an or-

the spin-boson model. Barrier tunneling in the presence of % - .
R . ) : thogonal background scattering continulim). The corre-
dissipative environment has extensively been discussed in

the chemical physics literature within the context of the fa_spondlng projectors within the electronic Hilbert space are

mous Kramers problem, that is, noise-activated escape overdaeflned by

potential barrier; see Ref32] for a comprehensive review.
In this case the de Broglie wavelength of the particle is typi-
cally very short such that semiclassical approximations can
be invoked within the path-integral formulation to obtain Q:f kdkdQ| o) (@l (2.1
analytical result§32—-37.

In the case of the decay of an electronic shape resonanc
a fully quantum mechanical description of the electronic dy-
namics is required owing to the small mass and thus very
long wavelength of the electron. Quasiclassical approxima-
tions are probably not useful in this regime. On the otherh
hand, electronic tunneling is a very fast process, occurrin%
typically on a time scale of a few tens of femtoseconds. This
suggests the feasibility of a direct numerical evaluation ofb
the discrete path sum resulting from the time discretization
of the real-time Feynman path integral.

The exponential growth of the number of paths with the H=|<pd>Hd<(pd|+f k dk dQyf o) (Ho+ g1 (@il
number of elementary time slices limits the brute-force nu-
merical evaluation of real-time path integrals to about 30
time intervals and thus extremely short time scales. The so- +j k dk d0{]@a)Va @il +H.c. .3
called sign problem is a severe obstacle for the application of

Monte Carlo importance sampling techniques, which havgyere 1, is the vibrational Hamiltonian of the target mol-
proven to be efficient for the evaluation of imaginary-time gy, whileH, describes vibrational motion in the discrete

path integrals. Qonside_rable progress has 'recently be_eéiate.skzh2k2/2me denotes the asymptotic energy of a con-
made, however, in a variety of real-time path-integral appli-jn ym electron and/y, is the discrete-continuum coupling
cations by employing filtering techniques, short-memory apjement.

proximations, or partial summations over subsets of paths o adopt the harmonic oscillator approximation for the

[28,38,39. , ) ) . multidimensional vibrational motion of the target molecule
The partial-summation approach has been applied earlle(rﬁzl in the following

to calculate T-matrix elements for resonant electron-
molecular scattering with multimode vibrational coupling 1 52
[40]. The basic idea is the replacement of the sum over paths, Ho==>, wj( - —+q?
which becomes computationally intractable for more than 2] 2
about 30 time steps, by a manageable sum over sutsE®ets
called classgsof paths. The contribution of each class is The q; are dimensionless normal coordinates of the target
given by the product of the combinatorial weight of the classmolecule and the; are the associated harmonic vibrational
and the average of the multimode vibrational propagatorfrequencies.
taken over all paths within the class. The class averages are The multidimensional potential-energy function of the
evaluated by recursion with respect to the length of the patlliscrete electronic state differs from that of the ground state.
[39,40. In the present work this theory is extended to dealln the approximation of linear electronic-vibrational cou-
directly with the time-dependent population probability of pling [42] we write
the resonance, which is given by a forward-backward double
path integral. The class-averaging concept has to be general- Hqy=Hg+eq+Vy (2.5
ized accordingly.

In this communication we are primarily concerned with with

P=|oa){(®dl. (2.1a

g'y construction the relations
P+Q=1, PQ=0 (2.2

old. Herel denotes the identity in the Hilbert space of the
lectronic states.

The Hamiltonian represented in this diabatic electronic
asis read¢see Ref[16] for more details

. (2.9

J
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Here« is the dimensionless Kondo parameter measuring the
dez Ciq; (2.6) overall coupling strength of the vibrational degrees of free-
! dom andw, is a high-energy cutoff frequency. This spectral

wheree, is the discrete-state energy at the equilibrium ge-function is well known from the extensive literature on the
ometry of the target and; represents the gradient of the SPin-boson problenj26]. The Ohmic bath is the standard

discrete-state energy with respect to the normal coordinat&ode! for a dissipative environment as it leads, in the clas-
9 sical limit, to a frictional force that is proportional to the

) The discrete-continuum coupling elemeMg, are speci- yelocity [26,44). It should be noted thgt the num_erical path_-
fied by the width function mteg_ral method of the present w_ork is not restricted to this
special form of the spectral function.
We wish to investigate the time-dependent survival prob-
1ﬂ(E)=27TJ' dQy|Va?. (2.7 ability of the resonance and its modification by the coupling
to the vibrational bath. We assume thattat0 an electron
I'(E) is the energy-dependent decay width of the resonancdiops into the discrete statsee Ref[16] for a discussion of
We assume, for simplicity, that th&,, and thud(E) do not  the connection of this initial condition with time-independent
depend on the nuclear coordinates. scattering theory For a zero-temperature bath, all vibra-
In the discussion of the models in Sec. V we will specify tional modes are in their ground state and the survival prob-
the width function by its threshold onset together with aability is given by
convenient high-energy cutoff function

Pa(t)=(¢ql(0le"'Pe™"|0)| ¢g), (2.14
I'(E)=A(E/B)“exp —E/B). (2.9
where
The threshold exponent, (we denote it here by, to avoid
confusion with the Kondo paramete) is given by |0>=H |0j> (2.19

= I+ %, (29) :
denotes the product of ground states of the bath modes.
wherel is the lowest partial wave into which the resonance For finite temperature, the bath is initially in thermal equi-
can decay according to symmetry selection rules. The timefibrium and the product initial state of the bath must be re-
nonlocal kernel determining the time dependence of the suplaced by a Boltzmann weighted sum of product states. We
vival probability of the resonant state is given by the Laplacehave
transform of the width functiofi22]

1 A A
5 , =dE _ Pd(t):Z—<<Pd|trB{e'HtPe_'Hte_BHOH<Pd> (2.16
7(t)=% IVl exp(—lskt)zfo > T(E)exp( —iEY). B

(2.10 with

The time-dependent memory function corresponding to the Zg=trg(e Mo, (2.1

parametrization(2.8) reads 1
where tg denotes the trace over the bath gt (kgT) ~~.

AB o
()= 5 -T(1+a)(1+iBt) g (2.13) IIl. PATH-INTEGRAL FORMULATION

In this section we review the derivation of a discretized
real-time path-integral expression for the survival probability
defined by Egs(2.14) and(2.16). The time interva[0t] is
divided into N time slices of equal lengtls=t/N. At all
intermediate times a complete basis of the electronic Hilbert
space is inserted. Making use of the projection-operator
properties(2.2) we can writeP4(t) as

whereI'(x) is the gamma functiof43]. For all model sys-
tems discussed in Sec. V we hawg=2.5, corresponding to
d-wave scattering.

The coupling of the electronic resonance with the vibra-
tional modes is determined by the coupling constant
Eqg. (2.5. It is convenient to introduce the spectral density
function

Pg(t)=(PU(—&)[(P+QU(—&)]" *PU(e)

a
—— 2 .

Iw)= ZZj Cjo(w—w)), (2.12 X[(P+Q)U(&)]N"1P). (3.2
which contains the information on both the vibrational fre- HereU(e)=e™'"*" is the elementary time evolution operator
quencies and individual coupling strengths of all vibrationalof the system and the brackets: -) denote the expectation
modes. Considering systems with many nuclear degrees yglue with respect to the initial state of the vibrational de-
freedom, it is appropriate to approximate the distributiongrees of freedom. Within each elementary time interval the

J(w) by a continuous function. We adopt here the so-callecexact propagator is replaced by a first-order approximation,
Ohmic Spectra| densiw with exponentia| cutoff for which the electronic and vibrational degrees of freedom

are disentangled. In the limiN— o the discretized path sum
J(w)=27aw exp — wl/w,). (2.13 converges to the correct result for any fixed propagation time
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t according to the Trotter theorefd5]. The elements of the

For a double path labeled by the forward vecf@rand
first-order propagatod*)(e) read(see Appendix A if39]

backward vectof p We introduce the symmetric and antisym-

for detail9 metric variableg28]
Ulid(e)=cogzg)exd —ie(Ho+Vateg]l, (3.2 n=T+1, 3.9
Ui (s) = —iVge/gsin(e Vg) x=fi—fo. (3.9

XeXn:_i8(H0+Vd/2+8k/2+8d/2)], (33) . . . . .
The corresponding piecewise constant functions are defined
analogously. In terms of the new variables the discretized
double path sum can formally be written as

Ui (2)= —iVi/gsin(s g)
XeXF[_iS(H0+Vd/2+ 8k/2+ Sd/Z)], (34)

_ Py)= 2 Pa(x.mexd—®(x.m]. (310
U(kji-();(s):5kk/exn:_|8(H0+8k/2+8kr/2)], (35) {);';7} ©
with In this representation the influence functional reads
N
5 I'(E) .- 1 o ;
9= | kdk d2|Vad®= | dE5—. (3.6 P(nx)=7 2 2 OaxdictixmdLjo. (3.1

The resulting discretized path sum, consisting ¥ 4)  The imaginary part of the influence functional depends lin-
paths forN time slices, can be written as a double sum de-early on the symmetric variable, andLj, denote the real
scribing all possible combinations of forward and backwardand imaginary parts di46]

paths labeled by the vectofs and f,, of dimensionN, re-
spectively. Thereby the propagator associated with the for-
ward path is a product of thd factors in Eq.(3.1), which
contain matrix elements of/Y(¢), while the propagator
associated with the backward path contains matrix elements
U®)(—g). The components of these vectors are defined to
be 0, if the system propagates in the continuum within the
respective interval. If the system propagates in the discrete
state, the corresponding component is defined to be 1. If the
system undergoes a transition from the discrete state into the (3.12
continuum or vice versa, it is 1/2. Thereby we assume that

during a transition interval the vibrational dynamics is deter-gq; 3 finite number of vibrational modes or an Ohmic form
mined by an averaged potential. This third possible value opf the spectral density, the integra12 can be evaluated
the components of; and fb originates in the discretization in analytical form[28].
precedure and should not be confused with a path-integral | ¢t ys now specify the electronic contributi®y(x, 7)
formulation of a three-state system. For each path the elegst £q. (3.10. It is given by
tronic and vibrational degrees of freedom are disentangled
due to the construction of the elementary propagator N BT -z
U®)(e). Each vector labeling a forward or backward path Peix 7)=Px, 1) Prerd X, 7)- (313
defines a piecewise constant function giving rise to an exy/e now derive an expression for the electronic memory
plicitly time-dependent vibrational Hamiltonian for each in- fynction within the discretized path-integral approach. Sup-
dividual path in a straightforward mannkg9]. pose a path is hopping from the discrete state into the con-
The survival probability at timeé can thus be written as  tinuum and propagating there for a certain time interval of
lengthme until it finally returns to the discrete state, which
Pa() =2 X Pe(fo)Pe(fpexd —@(f,, 1. (3.7 represents a kink of lengtime. According to the matrix el-
fy ements of the first-order elementary propagdiife), the
following propagator corresponds to a kink

Here Pe|(ﬂ) and Pe|(Fb) denote the propagators of the elec-
tronic system of the forward and backward path, respec-

2 (> Jw)
ij:;fo dw7[1— cog we) J{coth wB/2)

Xcod we(j—Kk)]+i sifwe(j—k)]},

L“ :%foxda)\](w) {COtI’(wﬂ/Z)[l—Coiw'f)]

C02

+i[sinfwe) — wel}.

(8)---Uity(e)

7lkm72

tively. ®(f,,f;) is the influence functional of Feynman and
Vernon describing the influence of the bath on the electronic
system 31]. Besides including the time-nonlocal effects con-
cerning the forward(backward path, the influence func-
tional also takes into account time-nonlocal correlations be-
tween the forward and the backward path, which originate
from the trace over the bath at the final tie Ne.

- ud £ UL

1
=—a[sin(fgsnzy(me)exp{—ie[<m+1>Hd]}-

(3.19

Therefore the first factor in Eq3.13 is given by
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R (sin( \/68)) 2M¢+2Mp The path sum is replaced by a sum over path classes. The
Plx,m)=| ——— exact subsums over the path classes are replaced by approxi-
@ mate, effective expressions, depending on a limited number

IN- M Lo Mr—L of parameters only, which can be calculated iteratively. The

x[cog ‘/58)] e definition of the path classes is not unique. In the limiting

xexd —ie(Li—Lp)eql, (3.15  case where each path class consists of a single path only, this

approach is, of course, equivalent to the evaluation of the

while P . reads original discretized path sum. The contribution of each path
belonging to a certain path class can be considered to factor-

.. My Mp ize into a product of two contributions. One of these factors

Pmend X, 7) = jHl y(myje) jHl y*(mpje) |. (3.16 s invariant within the class, whereas the other varies within

the path class. Thus rapidly oscillating contributions are ex-
tracted from the subsums over the path classes. If a feasible
approximation can be found for the sum over the varying
dcontributions, whose parameters can be calculated iteratively
with respect to the length of the path, the sign problem can

M and M, are the numbers of kinks in the forward and
backward path, antd; andL, are the collective numbers of
intervals in the continuum for the forward and the backwar
path, respectively. In Eq(3.16), y(t) is the electronic

: : X - effectively be reduced.
memory function defined in Eq2.10 arising from the sum- . . o .
. . . ; . The paths can be classified by different criteria, rendering
mation over the electronic continuum states during an inter;

) e . : the concept very flexible. Choosing a coarse classification,
mediate propagation in the continuum. Even in the absenc; X o
L . . e computational cost can be reduced significantly, but the
of vibrational degrees of freedom, this memory function ren- L .
. : . ) accuracy of the approximation might become poor. Thus,
ders the electronic population dynamics non-Markovian. according 1o the problem one is dealing with. a compromise
Thus the path sur(8.10 can be interpreted as a path sum 9 pre 9 ' P
) between computational effort and desired accuracy of the
of a four-state system representing the elements of the effec- L
. . ) approximations has to be found.
tive reduced density matrix. We shall refer to these states a . e .
Let us now specify the classification used in the present

dd if both the forward and backward path are in the dlscretework. The contributiorCy ) of @ classY[N, ] is defined

state,dk for the forward path in the discrete state and theas the sum over all paths of lendth which end in one of the
backward path in the continuurkd for the forward path in four statesse {dd,dk,kd,kk} of the reduced system. They

the continuum and thg backwarq path in the discrete Stat%tre labeled by an additional set of indidedderel is chosen
andkk for both states in the continuum.

The vibrational propagator for a single path is given by a@S the average of the antisymmetric variapledenotedy;,
product of propagators of driven harmonic oscillators, re-and the lengths of the final kink in the forward and backward
flecting the different electronic-vibronic coupling in the dis- Path, denoted and I,, respectively. Therefore all paths
crete resonance state and the continuum states. As the oscifithin a class exhibit the same phase originating from the
lators are unshifted in the continuum, the vibrational€Sonance energy. Note that the.fm_al state of the system can
dynamics is equivalent to that of an electronic two-state sys@lways be determined from the indicgsandl,. The con-
tem. The coupled dynamics, however, differs essentiallyribution of a classY[N,y,l¢,l,] to the path sum of the
from the dynamics of the spin-boson model. In the absencelectronic dynamics can thus be formally expressed as
of the bath the two-state dynamics exhibits clockwise oscil-
lations in the spin-boson model, whereas the population o€y (ny.i
the discrete state in the model investigated in this work de-

£+1p]

cays asymptotically due to the coupling to the electronic con- = Pinv,e|(Y[N,;If Jol)
tinuum.
X X Puaedxmexd—®(x,n] 4.1
IV. APPROXIMATION METHODS (xm eY[Nox,l.lp]

The numerical evaluation of the path sum given by Eq.Equation(4.1) is just an exact reformulation of the subsum
(3.10 constitutes a challenging task because of the exponen;

) . . ) ver all paths within the clasg[N, x,l;,1,,], taking into ac-
I/Iv?tlhgtrr?(\a,vtr?u%fbgﬁeoplgeﬂr)neern?;rpc:z'tselztr)\l/zlsam r(i]oon;,lgurr:gt?:aslcount the explicit definition of the path classes. The phase
S e . y ; P factor due to the electronic energy is encapsulated in the
applications it is impossible to systematically generate an : A
) X ) ; variant contribution
evaluate all configurations. Besides the untractable size of
the path sum, its evaluation suffers from the so-called sign

problem. It originates from the cancellation of a huge num- Pinv,el( YIN, Xl 1, lp]) =exp(—iexeq). (4.2
ber of complex valued contributions, leading to numerical _
inaccuracies. The variant contribution®,,, (Y[N, x.l¢,15]) are given in

In this work we follow a strategy that is based on theterms of the matrix elements of E3.15 with ¢4 set to
concept of grouping the paths into path clasggg]. This  zero. The influence functional is given by E§.11).
approach has been successfully applied to the calculation of Next we outline the recursion for the partial sums in the
cross sections in resonant electron-molecule scattering, trabsence of vibrational degrees of freedom. If we want to
calculation of absorption spectra of molecules, as well as tealculate the class contributions fidr elementary intervals,
the investigation of electron transfgt0,47-51. given the results foN— 1 elementary intervals, we are faced
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with the problem that the contribution of a kink can only be agonal state ¥\ ;=0). Otherwise the local term can easily
evaluated at its end. The reason for this is the fact that nbe incorporated into the propagator of the electronic system.
simple functional relation holds for the electronic memory For a single path the teri® can easily be calculated. It is,
function, i.e., y(t;+t5)# y(t1) ¥(t2). As a consequence, however, impossible to store all path contributions individu-
there is no straightforward scheme for propagation in timeally, and therefore approximations are unavoidable. Suppose
In this respect the present electronic continuum problem difthe path with N intervals lies in the path clas¥ [N,y

fers .fundamental.ly from the electronic two-level problem. —xn.lt.1]- Then we replace the individual contribution by
To circumvent this problem, we keep track of the lengths ofihe mean value over the class it belongs to, that is,
the last kinks in both the_ forward and backward paths Wherb(kH[N;ﬂwIf 151 A7) [Ny -y 1 1) - THESe mean val-
the system propagates in one .O.f th.e stateddk,kd,kk. ues can easily be calculated iteratively. We have thus ob-
Whenever it undergoes a transition into the resonance StlBined an approximation method in which both the contribu-

either in the forward and/or backward path the eIectromctionS of the electronic as well as the vibrational degrees of

memory function for the forward and/or backward path 'Streedom are treated in a fully non-Markovian manner.
multiplied to the corresponding class contribution. Therefore The chosen classification of paths is demanding, concern-

ropagation. When no cutoffs are applied, the required
backward paths. Its elements are denotedUsy®(lI,Ip) memory scales aii® and the CPU time abl*, N being the
(see Appendix Only when at least one of the indicgsand  , mber of elementary intervals.

I, is zero can the memory function be evaluated. Otherwise
the intermediate propagator is simply set to unity. This trick

enables us to write down a simple recursion relation for the V. RESULTS
variant class contributions: In this work we have considered three model systems.
_ Our primary aim is the demonstration of the feasibility of
Puarel YIN+1x,l¢,1p]) reliable numerical computations of the short-time decay of
an electronic resonance that is coupled to a thermal bath. We
= > Ugf"lf)('f 10 are not aware of any results of this kind in the published
YINx—xnolf 6] literature. In future work we plan to explore in more detail
. the physical mechanisms as well as the application of these
X Pyarel YIN, x = xn+1,15.05])- (4.3  techniques to real systems.

Model | pertains to a diatomic molecule. It has been de-

If we treat a system without vibrational degrees of free-veloped previously[22,52 to describe the?Il, d-wave
dom, these recursion relations yield the numerically exacthape resonance in the electrop-Bcattering. The2Hg
result within the chosen discretization. The major difficulty, shape resonance in electrop-tattering is the prototype of
however, arises from the fact that the vibrational continuumy resonance with a lifetime that is comparable to the vibra-
leads to additional non-Markovian memory effects. Theretjonal frequency. The electron-vibrational coupling is strong
fore we have to introduce a suitable approximation schemand the electronic decay is strongly modified by the vibra-
for the vibrational contributions to the path classes, whichtional motion. For a more detailed discussion of this system
allows one to construct a propagation scheme consistent witlye refer to the literaturg16,53,54. We consider this model
the one introduced for the electronic degrees of freedom. here because it allows us to check the path-integral results

Let us first inspect the structure of the influence functionalagainst a numerically exact calculation. Such benchmarks
given by Eq.(3.11). Consider a path of length+1 labeled are not possible for calculations with a multidimensional
by the vectorsy and 7. We can write the corresponding bath. The parameter values specifying model | aig

influence functional as =2.35 eV, w=0.29 eV,c=-0.38 eV,A=0.874 eV, and
B=1.316 eV.
®(x, MINF11= xR 1l ane st XN 171l R i Figure 1 displays the decay of the resonance on a time
. scale of 15 fs. The solid line shows the decay of the reso-
+®(x,7)[N]+ xnt1 nance state in the absence of coupling to the vibrational
N mode. The decay dynamics is seen to change qualitatively

when the electronic dynamics is coupled to the vibrational
mode. During the first few femtoseconds the fast decay per-
sists. Betweer~4 and ~10 fs the population of the reso-
The first term on the right-hand side of E@.4) is a local nance exhibits a pronounced plateau that results from the
contribution, which only depends on the actual interval andnotion of the vibrational wave packet to larger internuclear
will be denoted®,,.. The second term describes the influ- distances where the electronic decay is slower. Within a vi-
ence functional corresponding to the path without the lasbrational period the wave packet returns to the Franck-
interval, while the last term describes the correlation of theCondon region leading again to rapid decay. The plateau
actual interval with the preceding intervals, which we denotereflects the strong coupling between the electronic and the
8d. This last term is the starting point for the definition of vibrational motions.

our approximation of the vibrational dynamics of the system The long-dashed curve in Fig. 1 represents the Pl calcu-
[51]. From Eq.(4.4) it is clear that the influence functional lation, while the short-dashed curve gives the exact refer-
remains unaltered if the actual interval corresponds to a dience. Despite the approximate treatment of the vibrational

szl (Oxkbn+ it Tl N 1) (4.9
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FIG. 1. Population probabilityP4(t) for model I. The short FIG. 2. Population probability for model 1l foF=0 and differ-
dashed line is the reference, the long dashed line gives the resifiit Kondo parametersy=0 (solid line), «=0.125 (dotted ling,
obtained by the PI method. The full line represents the decay of the = 0-25 (dashed ling and = 0.5 (dash-dotted line
wave packet in the absence of coupling to the vibrational mode.

responds to the cage=0 (same as in Fig.)l the dotted line
dynamics in the PI calculation, the exact result is reproducedives the population forx=0.125, the dashed line is the
very accurately up to 7 fs and qualitatively correctly for result for «=0.25, and the dash-dotted line represents the
longer times. result for «=0.5. Increasing the coupling strength of the

It should be stressed that this one-dimensional model refhath systematically reduces the decay rate of the resonance
resents a demanding test of the numerical path-integral afstate at intermediate and long times. The effect appears to be
proach. The electron-vibration coupling is very strong andqualitatively the same as in the one-dimensional model.
the kernel of the influence functional is strictly periodic in Through the coupling to the vibrational modes, the wave
this case, i.e., vibrational memory effects persist forever. Irpacket moves toward the equilibrium configuration of the
multidimensional models, in particular those involving anbath where the electronic decay rate is smaller due to the
Ohmic bath, the electron-vibrational coupling strength forlowering of the resonance energy.
each single mode is small and the memory kernel of the Figure 3 represents the population dynamics of model Il
influence functional decays rapidly. We are thus confidenfor «=0.25 and different temperatures. The solid line is the
that the present numerical path-integral calculations are afesult for T=0. The dotted line corresponds to the case
guantitative accuracy for the model systems that involve an
Ohmic bath. 10

We mention briefly some technical details of the path-
integral calculation. A time step of 0.35 fs has been em-
ployed. We have evaluatedy(t) for 87 time steps, which
requires 2 Ghyte of computer core memory. The calculation
takes aboul h on amodern workstation. Because the elec-
tronic memory functiony(t) decays rapidly, we can restrict

for the models discussed in this work the numbels, 1, to
values below 60. Hence we can reduce the necessary amount
of memory and the computation time significantly. For the
single-mode case, the path-integral method is of course not
competitive with the direct numerical solution of the time-
dependent Schdinger equation. However, the computa-
tional cost of the latter approach scales exponentially with
the number of vibrational degrees of freedom, while the cost
of the former is(for the models considered heiadependent

of the dimension of the vibrational system.

Model Il is obtained from model | by replacing the single 0.0 : , ,
vibrational mode by an Ohmic bath, with,=0.2 eV. The 0.0 50 ,10'2 150 200
overall electron-vibrational coupling strength, described by dme Ll
the Kondo parameter, is taken as a variable parameter. FIG. 3. Population probability for model Il fore=0.25 and

In Fig. 2 we show results for four different vibrational different temperatured;=0 (solid line), 3=1.0 eV ! (dotted ling,
coupling strengths and zero temperature. The solid line corg=2.5 eV ! (dashed ling and8=10.0 eV ! (dash-dotted ling

0.5

P®
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FIG. 4. Population probability for model I, with and without ferent temperatures. The solid line gives the resultTer0. The
coupling to the bath, aF=0. The solid line gives the result without dotted line represents the result {8=10.0 eV 1, the dashed line is
coupling to the bath. The dotted line gives the resultder0.125,  the result for3B=1.0 eV !, and the dash-dotted line is the result for
the dashed line is the result far=0.25, while the dash-dotted line g=0.5 eV 1.
represents the result far=0.5.

The dynamics exhibits pronounced coherent oscillations with

B=1.0 eV, the dashed line gives the result f#=2.5  a period of about 2.4 fs, which are a result of the quantum
eV~!, and the dash-dotted line is the population £5#10.0  beating of the low-lying and the high-lying resonance, which
eV 1. One recognizes that the decay at intermediate andre separated by 1.8 eV. The envelope decays on a time scale
long times slows down with raising temperature. This is pre-of ~3fs, which corresponds to the lifetime of the high-lying
sumably a consequence of the delocalization of the nucledroad resonance.
density distribution. As we increase temperature, we are ini- The remaining curves in Fig. 4 represdhj(t) obtained
tially preparing higher vibrational levels. This widens the for four different vibronic coupling strengths, i.eq
Franck-Condon region and thus increases the lifetime of the-0.125 (dotted ling, «=0.25 (dashed ling and «a=0.5
resonance. (dash-dotted ling all at T=0. It is seen that the lifetime of

We obtained the results for model Il by computiRg(t)  the electronic population increases with coupling to the bath.
f_or 100 time steps with a time slice of 0.23 fs. We restrictedAlthough the time range of our calculations is presently lim-
x.lh.l; to 50, which results in a memory requirement of 227ited to values below 30 fs, we can say that this model is an
MB. These calculations take approximately 30 min on aexample where the temporary attachment of the electron is
workstation. strongly enhanced through the coupling to the Ohmic bath.

In model 1ll we have changed the parameters of the elecWe also see from Fig. 4 that the amplitude of the quantum
tronic resonance with respect to models | and Il. Thebeating of the electronic system is suppressed by the cou-
discrete-state energy, is chosen as 1.5 eV, 1 eV lower than pling to the bath, demonstrating the interference of electronic
before. The resonance lies thus closer to the threshold. Thnd vibrational memory effects in this system.
width function of model Il is specified by the parametérs In Fig. 5 we show fora=0.25 the population dynamics
=3.833 eV,B=0.3 eV. This implies an increase and simul- obtained for four different temperatures, i.&+=0 (solid
taneously a narrowing of the width functidi(E) such that line), 5=10.0 eV * (dotted ling, =1.0 eV * (dashed ling
the overall discrete-continuum coupling strength defined irand 8=0.5 eV ! (dash-dotted line We recognize that with
Eg. (3.6) remains constant:(E) is now a more rapidly vary- increasing temperature the coherent oscillations are damped
ing function of energy and electronic memory effects areout and the decay of the population slows down.
thus more pronounced than in models 1,Il. An analysis of the
poles of the analytically continued resolvent of model(iti
the absence of coupling to the bathveals that there are two
resonance poles with energies00.06 eV and~1.9 eV and We have described a numerical path-integral method that
lifetimes of ~2.8 fs and~50 fs, respectively. The presence allows the calculation of the time-dependent population dy-
of two poles reflects a breakdown of the Wigner-Weisskopfnamics of a metastable electronic state that is coupled to a
single-pole approximation. thermal vibrational bath. The approach is based on the

Figure 4 shows the time evolution of the survival prob-implementation of the well-known Feynman-Vernon influ-
ability for model IIl with and without coupling to the bath. ence functional, which accounts for the effects of the vibra-
Let us first discuss the dynamics of the electronic systentional degrees of freedom, into a path-integral description of
without coupling to a bath, which is given by the full line. electronic resonance decay. The numerical evaluation of the

VI. CONCLUSIONS
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path-integral expression is made possible through a recursive The performance of the present path-integral method
partial-summation scheme. This approach allows us to deahould be largely independent of the choice of the spectral
with the interplay of quantum mechanical electronic tunnel-density of the bath. In the future we plan to consider more
ing and dissipative vibrational dynamics without introducinggeneral spectral functions, e.g., the case of a strongly
any Born-type or Markov-type approximation. In the presentcoupled reaction mode that in turn is coupled to a thermal
implementation of the method, we can cover a time scale 0hath. An alternative line of future research is the develop-
~50 fs, which is sufficient for the investigation of environ- ment of approximations that allow the evaluation of the path
mental effects on the decay of typical shape resonances. integral for significantly longer time scales. With such tech-
To demonstrate the performance of the method and t9q,es we hope to investigate the expected crossover from

Chefk tthg tﬁor?ewhdat corrgjpletx lcor:\pu'ger progl]r?m, Webh"’g./ uantum mechanical tunneling decay to noise-activated de-
evaluated the time-dependent electronic population probabil, ., ont as a function of temperature.

ity for a one-dimensional model problem, for which exact
results are available. The new method has then been applied
to investigate the effect of Ohmic dissipation on electronic
resonance decay, as a function of the coupling strength and
the temperature of the bath. For the models considered, the
coupling to the bath appears to suppress the electronic decay. This work has been supported by the Deutsche Fors-
The effect increases with the coupling strength and the temehungsgemeinschaft. Part of the computations have been
perature of the bath. performed on a CRAY T90 at the Leibniz Rechenzentrum of
As far as we know, these are the first quantitative resultshe Bayerische Akademie der Wissenschaften. M. W. is sup-
for any problem of this type. The results obtained in theported by the Sonderforschungsbereich 382 from the Deut-
present work may serve as a benchmark for the testing ache Forschungsgemeinschaft. The authors would like to
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