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Effect of a thermal bath on electronic resonance decay: A numerical path-integral study
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The effect of electron-vibrational coupling on the decay of a metastable electronic state is treated by a
real-time path-integral method. The electronic resonance is described within the framework of the projection
operator formalism of scattering theory. The effect of the bath is taken into account by the Feynman-Vernon
influence functional technique. In this formulation, neither Born-type nor Markov-type approximations are
invoked. The numerical evaluation of the time-discretized path integral is made possible by a recursive partial
summation technique. This approach, which has previously been formulated for scattering amplitudes, is
generalized to population probabilities that are given by a forward-backward double path integral. The perfor-
mance of the method is demonstrated for model systems describing ad-wave shape resonance, which is
linearly coupled to a bath with Ohmic spectral function. The effect of the bath is investigated as a function of
coupling strength and temperature.@S1050-2947~98!05507-3#

PACS number~s!: 34.50.2s
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I. INTRODUCTION

Short-lived electronic states that decay by electron em
sion into a continuum are commonly encountered in ato
and molecular physics. They appear, for example, as r
nances in electron-scattering or photoionization cross
tions @1,2#. As is well known, these resonances can be c
sified into shape resonances~which decay by tunneling of the
electron through a barrier of the effective interaction pot
tial! and Feshbach resonances~which decay via electronic
interchannel coupling induced by electron-electron corre
tions! @3#. In either case, an isolated resonance can be un
stood as a discrete electronic state that is coupled to an
tronic continuum~or possibly several electronic continua!.
The formal basis of this description is provided by t
projection-operator formalism of Feshbach@4# or by Fano’s
theory of configuration interaction in the continuum@5#.

As has repeatedly been discussed in the literature~see, for
example, Refs.@6–13#!, the time-dependent decay law of
resonance is completely specified if the discrete-continu
coupling matrix element is given as a function of energ
The time-dependent decay is generally described by the
vival amplitude, that is, the overlap of the discrete state w
the time-dependent wave function of the system. As is w
known, the decay of the survival probability~given by the
absolute square of the survival amplitude! deviates from the
exponential decay law at both short and long times@6–13#. If
the resolvent of the system possesses bound-state pole
decay is generally incomplete, i.e., the survival probabi
approaches a nonzero value fort→` @14#.

In molecules the electronic resonance decay is gene
significantly modified by nuclear motion, in particular vibr
tional motion. The theory of resonant electron-molecule sc
tering is well developed for diatomic molecules; see Re
PRA 581050-2947/98/58~2!/1152~10!/$15.00
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@15,16# for reviews. Following pioneering works of Chen
O’Malley, Bardsley, and Nakamura@17–20#, the projection-
operator formalism as well as other approaches such as
R-matrix method@21# have been widely employed to com
pute inelastic and reactive cross sections. More recentl
time-dependent formulation of resonant electron-molec
scattering has been elaborated within the projection-oper
formalism @22#. The time-dependent picture yields more d
rect insight into the complex interplay of electronic res
nance decay and vibrational motion@22,23#. It reveals, in
particular, the importance of memory effects and deviatio
from the exponential decay law, which can be pronounc
for short-lived resonances as well as in the presence
threshold effects@16,24,25#.

In the present work we wish to consider basic aspects
electronic resonance decay in polyatomic systems, e.g., p
atomic molecules, molecular aggregates, or molecules
sorbed on surfaces. In such systems the electronic dyna
is coupled to a large number of vibrational modes. In t
limit of very large molecules and clusters we can assum
quasicontinuous distribution of vibrational frequencies. W
can assume, moreover, that the unperturbed occupation p
ability of vibrational levels is given by the Boltzmann distr
bution. It appears natural to ask how the electronic bar
tunneling process is modified by the coupling of the re
nance to such a thermal heat bath.

The effect of dissipation on tunneling dynamics has e
tensively been investigated for the case of a two-level sys
that is linearly coupled to a bath of harmonic oscillators, t
so-called spin-boson model@26#. Among the many applica-
tions of this model are electron-transfer processes in che
cal and biological systems@27,28#, defect tunneling in solids
@29# and the flux-dynamics in superconducting quantum
terference devices@30#. The Feynman-Vernon functional
1152 © 1998 The American Physical Society
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PRA 58 1153EFFECT OF A THERMAL BATH ON ELECTRONIC . . .
integral approach@31# allows the oscillator degrees of free
dom to be integrated out analytically, resulting in
effective two-level dynamics governed by a time-nonlo
influence functional@26#. The properties of the influenc
functional are determined by the spectral function of
bath: in analogy to the electronic resonance decay discu
above, the importance of non-Markovian effects in the re
time dynamics are governed by the frequency dependenc
the spectral function.

Electronic resonance decay in the presence of dissipa
involves two continua, the electronic scattering continuum
well as the continuum of vibrational frequencies, and rep
sents thus a more general and more involved problem
the spin-boson model. Barrier tunneling in the presence
dissipative environment has extensively been discusse
the chemical physics literature within the context of the
mous Kramers problem, that is, noise-activated escape ov
potential barrier; see Ref.@32# for a comprehensive review
In this case the de Broglie wavelength of the particle is ty
cally very short such that semiclassical approximations
be invoked within the path-integral formulation to obta
analytical results@32–37#.

In the case of the decay of an electronic shape resona
a fully quantum mechanical description of the electronic d
namics is required owing to the small mass and thus v
long wavelength of the electron. Quasiclassical approxim
tions are probably not useful in this regime. On the oth
hand, electronic tunneling is a very fast process, occur
typically on a time scale of a few tens of femtoseconds. T
suggests the feasibility of a direct numerical evaluation
the discrete path sum resulting from the time discretizat
of the real-time Feynman path integral.

The exponential growth of the number of paths with t
number of elementary time slices limits the brute-force n
merical evaluation of real-time path integrals to about
time intervals and thus extremely short time scales. The
called sign problem is a severe obstacle for the applicatio
Monte Carlo importance sampling techniques, which ha
proven to be efficient for the evaluation of imaginary-tim
path integrals. Considerable progress has recently b
made, however, in a variety of real-time path-integral ap
cations by employing filtering techniques, short-memory
proximations, or partial summations over subsets of pa
@28,38,39#.

The partial-summation approach has been applied ea
to calculate T-matrix elements for resonant electro
molecular scattering with multimode vibrational couplin
@40#. The basic idea is the replacement of the sum over pa
which becomes computationally intractable for more th
about 30 time steps, by a manageable sum over subsets~so-
called classes! of paths. The contribution of each class
given by the product of the combinatorial weight of the cla
and the average of the multimode vibrational propaga
taken over all paths within the class. The class averages
evaluated by recursion with respect to the length of the p
@39,40#. In the present work this theory is extended to d
directly with the time-dependent population probability
the resonance, which is given by a forward-backward dou
path integral. The class-averaging concept has to be gen
ized accordingly.

In this communication we are primarily concerned w
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the description of the method and its computational imp
mentation. We demonstrate the feasibility of converged
merical path-integral computations for two models of
electronic resonance that is coupled to a so-called Oh
bath @26#. We shall investigate the effect of the bath on t
electronic decay dynamics as a function of the coupl
strength and the temperature.

II. DEFINITION OF THE PROBLEM

We consider an isolated electronic resonance in elect
molecule scattering. Adopting the projection-operator f
malism @4,16#, we use a diabatic basis@41# consisting of a
discrete stateuwd& ~describing the resonance! and an or-
thogonal background scattering continuumuwk&. The corre-
sponding projectors within the electronic Hilbert space
defined by

P5uwd&^wdu, ~2.1a!

Q5E kdkdVkuwk&^wku. ~2.1b!

By construction the relations

P1Q51, PQ50 ~2.2!

hold. Here1 denotes the identity in the Hilbert space of th
electronic states.

The Hamiltonian represented in this diabatic electro
basis reads~see Ref.@16# for more details!

H5uwd&Hd^wdu1E k dk dVkuwk&~H01«k!^wku

1E k dk dVk$uwd&Vdk^wku1H.c.%. ~2.3!

Here H0 is the vibrational Hamiltonian of the target mo
ecule, whileHd describes vibrational motion in the discre
state.«k5\2k2/2me denotes the asymptotic energy of a co
tinuum electron andVdk is the discrete-continuum couplin
element.

We adopt the harmonic oscillator approximation for t
multidimensional vibrational motion of the target molecu
(\51 in the following!

H05
1

2(j
v j S 2

]2

]qj
2

1qj
2D . ~2.4!

The qj are dimensionless normal coordinates of the tar
molecule and thev j are the associated harmonic vibration
frequencies.

The multidimensional potential-energy function of th
discrete electronic state differs from that of the ground sta
In the approximation of linear electronic-vibrational co
pling @42# we write

Hd5H01«d1Vd ~2.5!

with
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1154 PRA 58PLÖHN, THOSS, WINTERSTETTER, AND DOMCKE
Vd5(
j

cjqj , ~2.6!

where«d is the discrete-state energy at the equilibrium g
ometry of the target andcj represents the gradient of th
discrete-state energy with respect to the normal coordin
qj .

The discrete-continuum coupling elementsVdk are speci-
fied by the width function

G~E!52pE dVkuVdku2. ~2.7!

G(E) is the energy-dependent decay width of the resona
We assume, for simplicity, that theVdk and thusG(E) do not
depend on the nuclear coordinates.

In the discussion of the models in Sec. V we will spec
the width function by its threshold onset together with
convenient high-energy cutoff function

G~E!5A~E/B!a lexp~2E/B!. ~2.8!

The threshold exponenta l ~we denote it here bya l to avoid
confusion with the Kondo parametera) is given by

a l5 l 1 1
2 , ~2.9!

wherel is the lowest partial wave into which the resonan
can decay according to symmetry selection rules. The ti
nonlocal kernel determining the time dependence of the
vival probability of the resonant state is given by the Lapla
transform of the width function@22#

g~ t !5(
k

uVdku2exp~2 i«kt !5E
0

`dE

2p
G~E!exp~2 iEt !.

~2.10!

The time-dependent memory function corresponding to
parametrization~2.8! reads

g~ t !5
AB

2p
G~11a l !~11 iBt !2a l21, ~2.11!

whereG(x) is the gamma function@43#. For all model sys-
tems discussed in Sec. V we havea l52.5, corresponding to
d-wave scattering.

The coupling of the electronic resonance with the vib
tional modes is determined by the coupling constantscj in
Eq. ~2.5!. It is convenient to introduce the spectral dens
function

J~v!5
p

2(
j

cj
2d~v2v j !, ~2.12!

which contains the information on both the vibrational fr
quencies and individual coupling strengths of all vibration
modes. Considering systems with many nuclear degree
freedom, it is appropriate to approximate the distributi
J(v) by a continuous function. We adopt here the so-cal
Ohmic spectral density with exponential cutoff

J~v!52pav exp~2v/vc!. ~2.13!
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Herea is the dimensionless Kondo parameter measuring
overall coupling strength of the vibrational degrees of fre
dom andvc is a high-energy cutoff frequency. This spectr
function is well known from the extensive literature on th
spin-boson problem@26#. The Ohmic bath is the standar
model for a dissipative environment as it leads, in the cl
sical limit, to a frictional force that is proportional to th
velocity @26,44#. It should be noted that the numerical pat
integral method of the present work is not restricted to t
special form of the spectral function.

We wish to investigate the time-dependent survival pro
ability of the resonance and its modification by the coupli
to the vibrational bath. We assume that att50 an electron
hops into the discrete state~see Ref.@16# for a discussion of
the connection of this initial condition with time-independe
scattering theory!. For a zero-temperature bath, all vibr
tional modes are in their ground state and the survival pr
ability is given by

Pd~ t !5^wdu^0ueiHtPe2 iHt u0&uwd&, ~2.14!

where

u0&5)
j

u0j& ~2.15!

denotes the product of ground states of the bath modes.
For finite temperature, the bath is initially in thermal equ

librium and the product initial state of the bath must be
placed by a Boltzmann weighted sum of product states.
have

Pd~ t !5
1

ZB
^wdutr B$eiHtPe2 iHte2bH0%uwd& ~2.16!

with

ZB5trB~e2bH0!, ~2.17!

where trB denotes the trace over the bath andb5(kBT)21.

III. PATH-INTEGRAL FORMULATION

In this section we review the derivation of a discretiz
real-time path-integral expression for the survival probabi
defined by Eqs.~2.14! and ~2.16!. The time interval@0,t# is
divided into N time slices of equal length«5t/N. At all
intermediate times a complete basis of the electronic Hilb
space is inserted. Making use of the projection-opera
properties~2.2! we can writePd(t) as

Pd~ t !5^PU~2«!@~P1Q!U~2«!#N21PU~«!

3@~P1Q!U~«!#N21P&. ~3.1!

HereU(«)5e2 i«H is the elementary time evolution operat
of the system and the brackets^•••& denote the expectation
value with respect to the initial state of the vibrational d
grees of freedom. Within each elementary time interval
exact propagator is replaced by a first-order approximat
for which the electronic and vibrational degrees of freed
are disentangled. In the limitN→` the discretized path sum
converges to the correct result for any fixed propagation t
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t according to the Trotter theorem@45#. The elements of the
first-order propagatorU (1)(«) read~see Appendix A in@39#
for details!

Udd
~1!~«!5cos~«Ag!exp@2 i«~H01Vd1«d!#, ~3.2!

Udk
~1!~«!52 iVdkAgsin~«Ag!

3exp@2 i«~H01Vd/21«k/21«d/2!#, ~3.3!

Ukd
~1!~«!52 iVdk* Agsin~«Ag!

3exp@2 i«~H01Vd/21«k/21«d/2!#, ~3.4!

Ukk8
~1!

~«!5dkk8exp@2 i«~H01«k/21«k8/2!#, ~3.5!

with

g5E k dk dVkuVdku25E dE
G~E!

2p
. ~3.6!

The resulting discretized path sum, consisting of 4(N21)

paths forN time slices, can be written as a double sum d
scribing all possible combinations of forward and backwa
paths labeled by the vectorsfW f and fWb of dimensionN, re-
spectively. Thereby the propagator associated with the
ward path is a product of theN factors in Eq.~3.1!, which
contain matrix elements ofU (1)(«), while the propagator
associated with the backward path contains matrix elem
U (1)(2«). The components of these vectors are defined
be 0, if the system propagates in the continuum within
respective interval. If the system propagates in the disc
state, the corresponding component is defined to be 1. If
system undergoes a transition from the discrete state into
continuum or vice versa, it is 1/2. Thereby we assume
during a transition interval the vibrational dynamics is det
mined by an averaged potential. This third possible value
the components offW f and fWb originates in the discretization
precedure and should not be confused with a path-inte
formulation of a three-state system. For each path the e
tronic and vibrational degrees of freedom are disentang
due to the construction of the elementary propaga
U (1)(«). Each vector labeling a forward or backward pa
defines a piecewise constant function giving rise to an
plicitly time-dependent vibrational Hamiltonian for each i
dividual path in a straightforward manner@39#.

The survival probability at timet can thus be written as

Pd~ t !5(
fWb

(
fW f

Pel~ fWb!Pel~ fW f !exp@2F~ fWb , fW f !#. ~3.7!

HerePel( fW f) andPel( fWb) denote the propagators of the ele
tronic system of the forward and backward path, resp
tively. F( fWb , fW f) is the influence functional of Feynman an
Vernon describing the influence of the bath on the electro
system@31#. Besides including the time-nonlocal effects co
cerning the forward~backward! path, the influence func
tional also takes into account time-nonlocal correlations
tween the forward and the backward path, which origin
from the trace over the bath at the final timet5N«.
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For a double path labeled by the forward vectorfW f and
backward vectorfWb we introduce the symmetric and antisym
metric variables@28#

hW 5 fW f1 fWb , ~3.8!

xW 5 fW f2 fWb . ~3.9!

The corresponding piecewise constant functions are defi
analogously. In terms of the new variables the discretiz
double path sum can formally be written as

Pd~ t !5 (
$xW ,hW %

Pel~xW ,hW !exp@2F~xW ,hW !#. ~3.10!

In this representation the influence functional reads

F~hW ,xW !5
1

4 (
j 51

N

(
k51

j

~x jxkL jk8 1 ix jhkL jk9 !. ~3.11!

The imaginary part of the influence functional depends l
early on the symmetric variable.L jk8 andL jk9 denote the real
and imaginary parts of@46#

L jk5
2

pE0

`

dv
J~v!

v2
@12cos~ve!#$coth~vb/2!

3cos@ve~ j 2k!#1 i sin@ve~ j 2k!#%,

L j j 5
1

pE0

`

dv
J~v!

v2
$coth~vb/2!@12cos~ve!#

1 i @sin~ve!2ve#%. ~3.12!

For a finite number of vibrational modes or an Ohmic for
of the spectral density, the integrals~3.12! can be evaluated
in analytical form@28#.

Let us now specify the electronic contributionPel(xW ,hW )
of Eq. ~3.10!. It is given by

Pel~xW ,hW !5 P̃~xW ,hW !Pmem~xW ,hW !. ~3.13!

We now derive an expression for the electronic mem
function within the discretized path-integral approach. Su
pose a path is hopping from the discrete state into the c
tinuum and propagating there for a certain time interval
lengthm« until it finally returns to the discrete state, whic
represents a kink of lengthm«. According to the matrix el-
ements of the first-order elementary propagatorU(«), the
following propagator corresponds to a kink

(
km21

•••(
k1

Udkm21

~1! ~«!Ukm21km22

~1! ~«!•••Uk1d
~1! ~«!

52
1

g
@sin~Ag«!#2g~m«!exp$2 i«@~m11!Hd#%.

~3.14!

Therefore the first factor in Eq.~3.13! is given by
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P̃~xW ,hW !5S sin~Ag«!

Ag
D 2M f12Mb

3@cos~Ag«!#2N2M f2L f2Mb2Lb

3exp@2 i«~L f2Lb!«d#, ~3.15!

while Pmem reads

Pmem~xW ,hW !5F)
j 51

M f

g~mf j«!GF)
j 51

Mb

g* ~mb j«!G . ~3.16!

M f and Mb are the numbers of kinks in the forward an
backward path, andL f andLb are the collective numbers o
intervals in the continuum for the forward and the backwa
path, respectively. In Eq.~3.16!, g(t) is the electronic
memory function defined in Eq.~2.10! arising from the sum-
mation over the electronic continuum states during an in
mediate propagation in the continuum. Even in the abse
of vibrational degrees of freedom, this memory function re
ders the electronic population dynamics non-Markovian.

Thus the path sum~3.10! can be interpreted as a path su
of a four-state system representing the elements of the e
tive reduced density matrix. We shall refer to these state
dd if both the forward and backward path are in the discr
state,dk for the forward path in the discrete state and t
backward path in the continuum,kd for the forward path in
the continuum and the backward path in the discrete st
andkk for both states in the continuum.

The vibrational propagator for a single path is given by
product of propagators of driven harmonic oscillators,
flecting the different electronic-vibronic coupling in the di
crete resonance state and the continuum states. As the o
lators are unshifted in the continuum, the vibration
dynamics is equivalent to that of an electronic two-state s
tem. The coupled dynamics, however, differs essenti
from the dynamics of the spin-boson model. In the abse
of the bath the two-state dynamics exhibits clockwise os
lations in the spin-boson model, whereas the population
the discrete state in the model investigated in this work
cays asymptotically due to the coupling to the electronic c
tinuum.

IV. APPROXIMATION METHODS

The numerical evaluation of the path sum given by E
~3.10! constitutes a challenging task because of the expon
tial growth of the number of possible path configuratio
with the number of elementary intervals. In most practi
applications it is impossible to systematically generate
evaluate all configurations. Besides the untractable size
the path sum, its evaluation suffers from the so-called s
problem. It originates from the cancellation of a huge nu
ber of complex valued contributions, leading to numeri
inaccuracies.

In this work we follow a strategy that is based on t
concept of grouping the paths into path classes@39#. This
approach has been successfully applied to the calculatio
cross sections in resonant electron-molecule scattering
calculation of absorption spectra of molecules, as well a
the investigation of electron transfer@40,47–51#.
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The path sum is replaced by a sum over path classes.
exact subsums over the path classes are replaced by app
mate, effective expressions, depending on a limited num
of parameters only, which can be calculated iteratively. T
definition of the path classes is not unique. In the limiti
case where each path class consists of a single path only
approach is, of course, equivalent to the evaluation of
original discretized path sum. The contribution of each p
belonging to a certain path class can be considered to fac
ize into a product of two contributions. One of these facto
is invariant within the class, whereas the other varies wit
the path class. Thus rapidly oscillating contributions are
tracted from the subsums over the path classes. If a feas
approximation can be found for the sum over the vary
contributions, whose parameters can be calculated iterati
with respect to the length of the path, the sign problem c
effectively be reduced.

The paths can be classified by different criteria, render
the concept very flexible. Choosing a coarse classificat
the computational cost can be reduced significantly, but
accuracy of the approximation might become poor. Th
according to the problem one is dealing with, a comprom
between computational effort and desired accuracy of
approximations has to be found.

Let us now specify the classification used in the pres
work. The contributionCY[N,I ] of a classY@N,I # is defined
as the sum over all paths of lengthN, which end in one of the
four statessP$dd,dk,kd,kk% of the reduced system. The
are labeled by an additional set of indicesI . HereI is chosen
as the average of the antisymmetric variablex, denotedx̄,
and the lengths of the final kink in the forward and backwa
path, denotedl f and l b , respectively. Therefore all path
within a class exhibit the same phase originating from
resonance energy. Note that the final state of the system
always be determined from the indicesl f and l b . The con-
tribution of a classY@N,x̄,l f ,l b# to the path sum of the
electronic dynamics can thus be formally expressed as

CY[N,x̄,l f ,l b]

5Pinv,el~Y@N,x̄,l f ,l b# !

3 (
~xW ,hW !PY[N,x̄,l f ,l b]

Pvar,el~xW ,hW !exp@2F~xW ,hW !#. ~4.1!

Equation~4.1! is just an exact reformulation of the subsu
over all paths within the classY@N,x̄,l f ,l b#, taking into ac-
count the explicit definition of the path classes. The ph
factor due to the electronic energy is encapsulated in
invariant contribution

Pinv,el~Y@N,x̄,l f ,l b# !5exp~2 i«x̄«d!. ~4.2!

The variant contributionsPvar,el(Y@N,x̄,l f ,l b#) are given in
terms of the matrix elements of Eq.~3.15! with «d set to
zero. The influence functional is given by Eq.~3.11!.

Next we outline the recursion for the partial sums in t
absence of vibrational degrees of freedom. If we want
calculate the class contributions forN elementary intervals,
given the results forN21 elementary intervals, we are face
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with the problem that the contribution of a kink can only
evaluated at its end. The reason for this is the fact that
simple functional relation holds for the electronic memo
function, i.e., g(t11t2)Þg(t1)g(t2). As a consequence
there is no straightforward scheme for propagation in tim
In this respect the present electronic continuum problem
fers fundamentally from the electronic two-level proble
To circumvent this problem, we keep track of the lengths
the last kinks in both the forward and backward paths wh
the system propagates in one of the statessP$dk,kd,kk%.
Whenever it undergoes a transition into the resonance s
either in the forward and/or backward path the electro
memory function for the forward and/or backward path
multiplied to the corresponding class contribution. Theref
the propagator of the electronic effective reduced sys
must depend on the lengths of the kinks in the forward a
backward paths. Its elements are denoted byUel

(r ,s)( l f ,l b)
~see Appendix!. Only when at least one of the indicesl f and
l b is zero can the memory function be evaluated. Otherw
the intermediate propagator is simply set to unity. This tr
enables us to write down a simple recursion relation for
variant class contributions:

Pvar,el~Y@N11,x̄,l f ,l b# !

5 (
Y[N,x̄2xN ,l f8 ,l b8]

Uel
~ l b ,l f !~ l f8 ,l b8!

3Pvar,el~Y@N,x̄2xN11 ,l f8 ,l b8# !. ~4.3!

If we treat a system without vibrational degrees of fre
dom, these recursion relations yield the numerically ex
result within the chosen discretization. The major difficul
however, arises from the fact that the vibrational continu
leads to additional non-Markovian memory effects. The
fore we have to introduce a suitable approximation sche
for the vibrational contributions to the path classes, wh
allows one to construct a propagation scheme consistent
the one introduced for the electronic degrees of freedom

Let us first inspect the structure of the influence functio
given by Eq.~3.11!. Consider a path of lengthN11 labeled
by the vectorsxW and hW . We can write the correspondin
influence functional as

F~xW ,hW !@N11#5xN11
2 LN11,N118 1 ixN11hN11LN11,N119

1F~xW ,hW !@N#1xN11

3 (
k51

N

~xkLN11,k8 1 ihkLN11,k9 !. ~4.4!

The first term on the right-hand side of Eq.~4.4! is a local
contribution, which only depends on the actual interval a
will be denotedF loc . The second term describes the infl
ence functional corresponding to the path without the
interval, while the last term describes the correlation of
actual interval with the preceding intervals, which we den
dF. This last term is the starting point for the definition
our approximation of the vibrational dynamics of the syst
@51#. From Eq.~4.4! it is clear that the influence functiona
remains unaltered if the actual interval corresponds to a
o
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agonal state (xN1150). Otherwise the local term can easi
be incorporated into the propagator of the electronic syst
For a single path the termdF can easily be calculated. It is
however, impossible to store all path contributions individ
ally, and therefore approximations are unavoidable. Supp
the path with N intervals lies in the path classY@N,x̄
2xN ,l f ,l b#. Then we replace the individual contribution b
the mean value over the class it belongs to, that
^xk&Y[N,x̄2xN ,l f ,l b] and^hk&Y[N,x̄2xN ,l f ,l b] . These mean val-
ues can easily be calculated iteratively. We have thus
tained an approximation method in which both the contrib
tions of the electronic as well as the vibrational degrees
freedom are treated in a fully non-Markovian manner.

The chosen classification of paths is demanding, conc
ing the required memory and CPU time for longer times
propagation. When no cutoffs are applied, the requi
memory scales asN3 and the CPU time asN4, N being the
number of elementary intervals.

V. RESULTS

In this work we have considered three model system
Our primary aim is the demonstration of the feasibility
reliable numerical computations of the short-time decay
an electronic resonance that is coupled to a thermal bath.
are not aware of any results of this kind in the publish
literature. In future work we plan to explore in more deta
the physical mechanisms as well as the application of th
techniques to real systems.

Model I pertains to a diatomic molecule. It has been d
veloped previously@22,52# to describe the2Pg d-wave
shape resonance in the electron-N2 scattering. The2Pg
shape resonance in electron-N2 scattering is the prototype o
a resonance with a lifetime that is comparable to the vib
tional frequency. The electron-vibrational coupling is stro
and the electronic decay is strongly modified by the vib
tional motion. For a more detailed discussion of this syst
we refer to the literature@16,53,54#. We consider this mode
here because it allows us to check the path-integral res
against a numerically exact calculation. Such benchma
are not possible for calculations with a multidimension
bath. The parameter values specifying model I are«d
52.35 eV, v50.29 eV, c520.38 eV, A50.874 eV, and
B51.316 eV.

Figure 1 displays the decay of the resonance on a t
scale of 15 fs. The solid line shows the decay of the re
nance state in the absence of coupling to the vibratio
mode. The decay dynamics is seen to change qualitati
when the electronic dynamics is coupled to the vibratio
mode. During the first few femtoseconds the fast decay p
sists. Between'4 and '10 fs the population of the reso
nance exhibits a pronounced plateau that results from
motion of the vibrational wave packet to larger internucle
distances where the electronic decay is slower. Within a
brational period the wave packet returns to the Fran
Condon region leading again to rapid decay. The plat
reflects the strong coupling between the electronic and
vibrational motions.

The long-dashed curve in Fig. 1 represents the PI ca
lation, while the short-dashed curve gives the exact re
ence. Despite the approximate treatment of the vibratio
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dynamics in the PI calculation, the exact result is reprodu
very accurately up to 7 fs and qualitatively correctly f
longer times.

It should be stressed that this one-dimensional model
resents a demanding test of the numerical path-integral
proach. The electron-vibration coupling is very strong a
the kernel of the influence functional is strictly periodic
this case, i.e., vibrational memory effects persist forever
multidimensional models, in particular those involving
Ohmic bath, the electron-vibrational coupling strength
each single mode is small and the memory kernel of
influence functional decays rapidly. We are thus confid
that the present numerical path-integral calculations are
quantitative accuracy for the model systems that involve
Ohmic bath.

We mention briefly some technical details of the pa
integral calculation. A time step of 0.35 fs has been e
ployed. We have evaluatedPd(t) for 87 time steps, which
requires 2 Gbyte of computer core memory. The calculat
takes about 1 h on amodern workstation. Because the ele
tronic memory functiong(t) decays rapidly, we can restric
for the models discussed in this work the numbersx̄,l h ,l r to
values below 60. Hence we can reduce the necessary am
of memory and the computation time significantly. For t
single-mode case, the path-integral method is of course
competitive with the direct numerical solution of the tim
dependent Schro¨dinger equation. However, the comput
tional cost of the latter approach scales exponentially w
the number of vibrational degrees of freedom, while the c
of the former is~for the models considered here! independent
of the dimension of the vibrational system.

Model II is obtained from model I by replacing the sing
vibrational mode by an Ohmic bath, withvc50.2 eV. The
overall electron-vibrational coupling strength, described
the Kondo parametera, is taken as a variable parameter.

In Fig. 2 we show results for four different vibrationa
coupling strengths and zero temperature. The solid line

FIG. 1. Population probabilityPd(t) for model I. The short
dashed line is the reference, the long dashed line gives the r
obtained by the PI method. The full line represents the decay of
wave packet in the absence of coupling to the vibrational mode
d
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responds to the casea50 ~same as in Fig. 1!, the dotted line
gives the population fora50.125, the dashed line is th
result for a50.25, and the dash-dotted line represents
result for a50.5. Increasing the coupling strength of th
bath systematically reduces the decay rate of the reson
state at intermediate and long times. The effect appears t
qualitatively the same as in the one-dimensional mod
Through the coupling to the vibrational modes, the wa
packet moves toward the equilibrium configuration of t
bath where the electronic decay rate is smaller due to
lowering of the resonance energy.

Figure 3 represents the population dynamics of mode
for a50.25 and different temperatures. The solid line is t
result for T50. The dotted line corresponds to the ca

ult
e

FIG. 2. Population probability for model II forT50 and differ-
ent Kondo parameters,a50 ~solid line!, a50.125 ~dotted line!,
a50.25 ~dashed line!, anda50.5 ~dash-dotted line!.

FIG. 3. Population probability for model II fora50.25 and
different temperatures,T50 ~solid line!, b51.0 eV21 ~dotted line!,
b52.5 eV21 ~dashed line!, andb510.0 eV21 ~dash-dotted line!.
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b51.0 eV21, the dashed line gives the result forb52.5
eV21, and the dash-dotted line is the population forb510.0
eV21. One recognizes that the decay at intermediate
long times slows down with raising temperature. This is p
sumably a consequence of the delocalization of the nuc
density distribution. As we increase temperature, we are
tially preparing higher vibrational levels. This widens th
Franck-Condon region and thus increases the lifetime of
resonance.

We obtained the results for model II by computingPd(t)
for 100 time steps with a time slice of 0.23 fs. We restrict
x̄,l h ,l r to 50, which results in a memory requirement of 2
MB. These calculations take approximately 30 min on
workstation.

In model III we have changed the parameters of the e
tronic resonance with respect to models I and II. T
discrete-state energy«d is chosen as 1.5 eV, 1 eV lower tha
before. The resonance lies thus closer to the threshold.
width function of model II is specified by the parametersA
53.833 eV,B50.3 eV. This implies an increase and simu
taneously a narrowing of the width functionG(E) such that
the overall discrete-continuum coupling strength defined
Eq. ~3.6! remains constant.G(E) is now a more rapidly vary-
ing function of energy and electronic memory effects a
thus more pronounced than in models I,II. An analysis of
poles of the analytically continued resolvent of model III~in
the absence of coupling to the bath! reveals that there are tw
resonance poles with energies of'0.06 eV and'1.9 eV and
lifetimes of '2.8 fs and'50 fs, respectively. The presenc
of two poles reflects a breakdown of the Wigner-Weissk
single-pole approximation.

Figure 4 shows the time evolution of the survival pro
ability for model III with and without coupling to the bath
Let us first discuss the dynamics of the electronic sys
without coupling to a bath, which is given by the full line

FIG. 4. Population probability for model III, with and withou
coupling to the bath, atT50. The solid line gives the result withou
coupling to the bath. The dotted line gives the result fora50.125,
the dashed line is the result fora50.25, while the dash-dotted lin
represents the result fora50.5.
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The dynamics exhibits pronounced coherent oscillations w
a period of about 2.4 fs, which are a result of the quant
beating of the low-lying and the high-lying resonance, whi
are separated by 1.8 eV. The envelope decays on a time
of '3fs, which corresponds to the lifetime of the high-lyin
broad resonance.

The remaining curves in Fig. 4 representPd(t) obtained
for four different vibronic coupling strengths, i.e.,a
50.125 ~dotted line!, a50.25 ~dashed line!, and a50.5
~dash-dotted line!, all at T50. It is seen that the lifetime o
the electronic population increases with coupling to the ba
Although the time range of our calculations is presently li
ited to values below 30 fs, we can say that this model is
example where the temporary attachment of the electro
strongly enhanced through the coupling to the Ohmic ba
We also see from Fig. 4 that the amplitude of the quant
beating of the electronic system is suppressed by the c
pling to the bath, demonstrating the interference of electro
and vibrational memory effects in this system.

In Fig. 5 we show fora50.25 the population dynamic
obtained for four different temperatures, i.e.,T50 ~solid
line!, b510.0 eV21 ~dotted line!, b51.0 eV21 ~dashed line!,
andb50.5 eV21 ~dash-dotted line!. We recognize that with
increasing temperature the coherent oscillations are dam
out and the decay of the population slows down.

VI. CONCLUSIONS

We have described a numerical path-integral method
allows the calculation of the time-dependent population
namics of a metastable electronic state that is coupled
thermal vibrational bath. The approach is based on
implementation of the well-known Feynman-Vernon infl
ence functional, which accounts for the effects of the vib
tional degrees of freedom, into a path-integral description
electronic resonance decay. The numerical evaluation of

FIG. 5. Population probability for model III,a50.25, and dif-
ferent temperatures. The solid line gives the result forT50. The
dotted line represents the result forb510.0 eV21, the dashed line is
the result forb51.0 eV21, and the dash-dotted line is the result f
b50.5 eV21.
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path-integral expression is made possible through a recur
partial-summation scheme. This approach allows us to d
with the interplay of quantum mechanical electronic tunn
ing and dissipative vibrational dynamics without introduci
any Born-type or Markov-type approximation. In the prese
implementation of the method, we can cover a time scale
'50 fs, which is sufficient for the investigation of environ
mental effects on the decay of typical shape resonances

To demonstrate the performance of the method and
check the somewhat complex computer program, we h
evaluated the time-dependent electronic population proba
ity for a one-dimensional model problem, for which exa
results are available. The new method has then been ap
to investigate the effect of Ohmic dissipation on electro
resonance decay, as a function of the coupling strength
the temperature of the bath. For the models considered
coupling to the bath appears to suppress the electronic de
The effect increases with the coupling strength and the t
perature of the bath.

As far as we know, these are the first quantitative res
for any problem of this type. The results obtained in t
present work may serve as a benchmark for the testing
more approximate treatments.
m
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The performance of the present path-integral meth
should be largely independent of the choice of the spec
density of the bath. In the future we plan to consider mo
general spectral functions, e.g., the case of a stron
coupled reaction mode that in turn is coupled to a therm
bath. An alternative line of future research is the develo
ment of approximations that allow the evaluation of the p
integral for significantly longer time scales. With such tec
niques we hope to investigate the expected crossover f
quantum mechanical tunneling decay to noise-activated
tachment as a function of temperature.
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