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Nonadiabatic dipole polarizabilities of H2
1 and D2

1 ground states

J. Shertzer
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The recently reported discrepancy between the experimentally determined value for the dipole polarizabity
of the H2

1 ground state@Phys. Rev. A56, R4361~1997!; 57, 4065~1998!# and the adiabatic value calculated
in the clamped nucleus approximation@Mol. Phys.65, 679 ~1988!# has motivated a fully nonadiabatic treat-
ment of the problem. Finite element analysis is used to obtain a direct solution of the zeroth- and first-order
equations of perturbation theory. The nonadiabatic value foras is consistent with the experimental measure-
ment.@S1050-2947~98!03108-4#

PACS number~s!: 33.15.Kr, 02.70.Dh
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I. INTRODUCTION

For a Rydberg state of a homonuclear diatomic molec
the interaction between the excited electron and the mole
lar ion core can be described via an effective polarizat
potential which includes permanent and induced multip
moments of the core@1–3#. For aJ50 core, the lowest orde
terms in the polarization potential areV5(B4 /r 4)
1(B6 /r 6)1(B7 /r 7)1•••, whereB4 is proportional to the
scalar dipole polarizability. Microwave spectroscopy of hi
L Rydberg states has provided a mechanism for determi
these moments experimentally@4–6#. Recently, Jacobson
et al. reported an experimental valueas53.1681(7)e2ao

3 for
the ground-state scalar dipole polarizability of H2

1 ~using
B452as/2) @7#. This is not in agreement with the adiabat
value calculated by Bishop and co-workers, who obtain
as53.1713e2ao

3 in a clamped nucleus approximation@8–
11#. It has been suggested@7# that the discrepancy is due t
the neglected nonadiabatic effects in the calculation, and
study is an attempt to calculate those effects. In Sec. II,
outline our method for obtainingas nonadiabatically. In Sec
III, we compare our results with the adiabatic and expe
mental values.

II. METHOD

A. Transformation to the body-fixed frame

The three-body Hamiltonian for the homonuclear
atomic molecular ion (m15m25m,m351) in an external
electric fieldEW5En̂ is given in atomic units as

Ĥ52
“1

2

2m
2

“2
2

2m
2

“3
2

2
1

1

urW12rW2u
2

1

urW12rW3u
2

1

urW22rW3u

2En̂•~rW11rW22rW3!. ~1!

The coordinates of the three particles with respect to
laboratory frame arex18, x28, and x38, where the prime indi-
cates the space-fixed~SF! frame. The direction of the electri
field n̂ must be specified in a SF frame. Defining
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RW cm5
m~rW11rW2!1rW3

2m11
, ~2a!

RW 5rW12rW2 , ~2b!

rW5rW32
rW11rW2

2
, ~2c!

we can separate out the center-of-mass~cm! motion. The
Hamiltonian for the relative motion in the SF frame is

Ĥ52
1

2m
“R

22
1

2
“ r

22
1

8m
“ r

21
1

R
2

1

U RW

2
2rW U

2
1

U RW

2
1rWU 1~11e!En̂•rW, ~3!

where m5m/2 and (11e)5(2m12)/(2m11). The rela-
tive electronic and nuclear coordinates are represented ax8
and X8, respectively. For weak electric fields~one atomic
unit is 5.1423109 V/cm), the last term can be treated usin
perturbation theory. The mass factor that scales the fi
dependent term was discussed previously by Drachman@12#.
The HamiltonianĤ, the total squared angular momentumL̂2,
and thez8 component of angular momentumL̂z8 are con-
stants of motions with corresponding eigenvaluesE, L(L
11), andM .

We adopt the conventions introduced by Pack and H
schfelder for diatomic molecular ions@13#, whereby the
transformation from the SF~primed! coordinates to the
body-fixed~unprimed! coordinates is affected through a ro
tationR that aligns thez axis with RW , and leaves they axis
in the x8y8 plane. The matrix representation ofR is
R(F8,Q8,0), where the Euler angles are the spherical po
coordinates ofRW in the SF frame. The electronic and nucle
coordinates in the body-fixed~BF! frame are related to thos
1082 © 1998 The American Physical Society
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in the SF frame byx5Rx8 andX5RX8. The physical vec-
tors rW andRW are unchanged in the frame transformation; o
thecomponentsof vector are frame dependent. SinceL̂2 and
Ĥ are invariant with respect to rotation, they remain co
stants of the motion;L̂z ~with corresponding eigenvalueV)
doesnot commute withĤ in the BF frame.

In the BF frame, the field-free Hamiltonian becomes

Ĥ5
p̂R

2

2m
1

L̂n
2

2mR2
2

1

2
“ r

22
1

8m
“ r

21V~rW,R!, ~4!

where

V~rW,R!5
1

R
2

1

AR2

4
1r 22Rr cosu

2
1

AR2

4
1r 21Rr cosu

. ~5!

The BF Hamiltonian of Eq.~4! is identical to field-free SF
Hamiltonian of Eq.~3! with one exception:2“R

2 has been

replaced with p̂R
21(L̂n

2/R2), where L̂n
25L̂21L̂e

222L̂z
2

2L̂e2
L̂12L̂e1

L̂2 . The transformation to the BF frame ha
eliminated two degrees of freedom, but the Hamiltonian
not diagonal in the basis spanned by the eigenstates ofL̂ and
L̂z :

ĤC~L,V!5HV,VC~L,V!1HV,V11C~L,V11!

1HV,V21C~L,V21!, ~6a!

HV,V5
p̂R

2

2m
1

1

2mR2 @L~L11!22V21L̂e
2#2

1

2
“ r

2

2
1

8m
“ r

21V~rW,R!, ~6b!

HV,V6152
AL~L11!2M ~M61!

2mR2
L̂e7

. ~6c!

The SF wave function with total angular momentumL andz
componentM is related to the BF wave functions by

C~x8,X8;L,M !5 (
V52L

L

C~x,R;L,V!DVM
L ~R!. ~7!

B. Perturbation theory

The scalar dipole polarizabilityas for a homonuclear di-
atomic molecular ion is defined in terms of the second-or
correction to the energyE(2) induced by an external field
fixed in the laboratory frame:

E~2!52 1
2 asE 25^C~1!u~11e!En̂•rWuC~0!&. ~8!
-

s

r

C (0) and C (1) are solutions of the zeroth- and first-ord
equations of perturbation theory:

HC~0!5E~0!C~0!, ~9a!

~H2E~0!!C~1!52~11e!En̂•rWC~0!. ~9b!

~The superscript in parentheses indicates the order of
perturbation.!

First we solve the zeroth-order equation for the groun
state energyE(0) and the corresponding wave functionC (0)

in the BF frame. For the special caseL50, the BF Hamil-
tonian of Eq.~6! is diagonal:

ĤC~0!~0,0!5F p̂R
2

2m
1S 1

2
1

1

8m D p̂r
2

1S 1

2mR2 1
1

2r 2 1
1

8mr 2D L̂e
2

1V~rW,R!GC~0!~0,0!. ~10!

The wave functionC (0)(x,R;0,0) is independent of the elec
tronic azimuthal angle. Using the elliptical coordinates

R5R, ~11a!

j5
r 11r 2

R
, ~11b!

h5
r 12r 2

R
, ~11c!

wherer 1,25AR2/4 1r 26rR cosu , the eigenvalue problem
described by Eq.~9a! is solved with three-dimensional finit
element analysis as described in Ref.@14#. With this choice
of coordinates, all the matrix elements are simple polyno
als and can be evaluated exactly.

Next we solve the first-order equation of perturbati
theory for the correction to the wave functionC (1) in the BF
frame. If we choose the field along the laboratoryz8 axis,
then

n̂•rW5 ẑ8•rW5cosQ8cosu2r sinQ8sinu cosf ~12!

whereQ8 is the Euler angle, andu andf are the electronic
angular coordinates in the BF frame. The first-order corr
tion to the wave function, which hasL51,Mz850 character
owing to the Wigner-Eckart theorem, can be written as

C~1!~x8,X8;1,0!5 (
V521

1

C~1!~x,R;1,V!DV1
1 ~R!

52
sinQ8

A2
C~1!~x,R;1,21!

1cosQ8C~1!~x,R;1,0!

1
sinQ8

A2
C~1!~x,R;1,1!. ~13!

Using Eqs.~12! and~13! in Eq. ~9b!, and noting thatH and
C (0) are independent of the Euler angles, we can elimin
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the dependence onQ8 by equating the terms proportional t
sinQ8 and cosQ8, respectively:

~H0,02E~0!!C~1!~1,0!1H0,1C
~1!~1,1!1H0,21C~1!~1,21!

52r cosuC~0!~0,0!, ~14a!

~H1,12E~0!!
C~1!~1,1!

A2
2~H21,212E~0!!

C~1!~1,21!

A2

1~H1,01H21,0!C
~1!~1,0!

5rsinu cosfC~0!~0,0!, ~14b!

where

H0,05
p̂R

2

2m
1

1

mR2 1S 1

2
1

1

8m D p̂r
2

1S 1

2mR2 1
1

2r 2 1
1

8mr 2D L̂e
21V~rW,R!, ~15a!

H1,15H21,215H0,02
1

mR2 , ~15b!

H0,615H71,052
L̂e7

2mR2
. ~15c!

We can now eliminate thef dependence from Eq.~14! ana-
lytically. Since the right-hand side of Eq.~14a! is indepen-
dent of f, it follows that C (1)(1,0) and @ L̂e2

C (1)(1,1)

1L̂e1
C (1)(1,21)# must be independent off. From Eq.

~14b!, we have the additional constraint that@C (1)(1,1)
2C (1)(1,21)# must be proportional to cosf. It is straight-
foward to show that these equations are satsifiedonly if

C~1!~1,0!5 f ~r ,u,R!, ~16a!

C~1!~1,61!56
1

A2
g~r ,u,R!exp~6 if!, ~16b!
re
n

t
th

o

wheref andg are still undetermined functions of the remai
ing three variables. Substituting Eq.~16! into Eq. ~14!, we
obtain a set of coupled equations for the functionsf andg:

~H0,02E~0!! f 1
1

mR2S ]

]u
1cot u Dg52r cosuC~0!,

~17a!

FH1,12E~0!1S 1

2mR21
1

2r 2 1
1

8mr 2D 1

sin2uGg1
1

mR2

]

]u
f

5r sinuC~0!, ~17b!

where f (r ,p2u,R)52 f (r ,u,R) and g(r ,p2u,R)
5g(r ,u,R). The symmetry conditions onf and g, along
with Eqs. ~13! and ~16!, guarantee that the wave functio
C (1) has odd total parity. Because of the indicial behavior
g(r ,u,R) at u50, we also require thatg vanish atu50.
Carrying out a transformation to elliptical coordinat
j, h, andR, we solve the resulting set of linear equatio
using three-dimensional~3D! finite element~FE! analysis
subject to the appropriate boundary conditions. Because
function g(j,h,R) goes to zero very rapidly atj51 andh
561, a much finer mesh is needed in the vicinity of the
points in order to obtain an accurate representation of
wave function. Unlike the solution of the zeroth-order equ
tion, the matrix elements arising fromL̂e

2 and L̂e6 operating
on cosf are not simple polynomials in elliptical coordinate
and must be integrated numerically. The zeroth-order w
function and first-order wave functions, which are rep
sented as products of FE basis functions and analytical fu
tions of Q8,F8 andf, can now be used in Eq.~8! to obtain
the polarizability.

III. RESULTS

The zeroth- and first-order equations of perturbat
theory were solved for H2

1 and D2
1 using identical FE

grids. The results reported were obtained using 360
ments; the 3D space was truncated and discretized as
lows:
0
R: 0 0.8 1.4 1.8 2 2.2 2.6 3.2 4 6 1
j: 1 1.001 1.1 1.5 2 2.5 3 4 6 12
h: 0 0.5 0.9 0.999 1 .
tion
ble

nts
t

for
ni-
ry
to
The local basis functions were products of fourth deg
polynomials in three variables; over 23 000 basis functio
were used to approximate each of the three functionsC (0), f ,
andg.

The FE ground-state energy for H2
1 is 20.597 139 055

(8)a.u., where the number in parentheses is the error in
last digit. The error was determined by comparison with
best variational result of20.597 139 063 123 a.u.@15,16#.
For D2

1, the FE energy is20.598 787 6(11), compared t
the variational value20.598 788 784 331@17,18#. The
e
s

he
e

slower convergence for D2
1 as compared to H2

1 is a con-
sequence of the increased localization of the wave func
about the equilibrium separation. The energy was very sta
with respect to variations in the grid. The small eleme
nearh51 andj51 could be completely eliminated withou
any loss of accuracy to the energy.

Our intent here was not to obtain benchmark values
the ground-state energy; rather we attempted to find a ‘‘u
versal’’ grid on which the equations of perturbation theo
for both systems could be solved with sufficient accuracy



ilty
ho
n

n

at
io
ve

or
tio

r
e
e

te

a-
r
r

f
th
n

il
n

tio
y
c

i

o
is

l

c-
te

atic
c-

the
of

a-
un-
the

in
ote
the

ed
ent
o
ba-

e
d S.
ges
W.

ity
nd

t

us

PRA 58 1085NONADIABATIC DIPOLE POLARIZABILITIES OF H2
1 . . .
determine the nonadiabatic contributions to the polarizab
Ground-state energies obtained with the adaptive FE met
which automatically refines the grid for energy optimizatio
are far more accurate:20.597 139 062(1) for H2

1 and
20.598 788 779(5) for D2

1 @19,20#.
The accuracy of the FE wave functionC (0) can be esti-

mated from the error in expectation values of no
Hamiltonian operators. In Ref.@14#, the error for H2

1 FE
expectation values is only one order of magnitude gre
than the error in the FE energy, even for the delta funct
operator̂ d(r 1)&. We therefore assume that the error in wa
function for H2

1(D2
1) is on the order of 1027(1025). This

is considerably higher than one expects based on the err
the energy, and is a direct consequence of local interpola
We conclude that the error inC (0) is not a significant source
of uncertainty in the final value for the polarizability fo
H2

1. For D2
1, any overestimation of the polarizability du

to the error in the binding energy of the ground state is w
within the final error bars.~A smaller binding energy implies
larger polarizability, since the state is more easily distor
in the field.!

The sensitivity of the polarization to the grid discretiz
tion, particularly nearh51 andj51, and the residual erro
from numerical integration of certain matrix elements, we
the main sources of the stated uncertainty of60.0004 in the
final values foras . This is believed to be a fair estimate o
the final error based on convergence studies in which
number of Gauss quadrature points and the element size
h51 andj51 were varied.

In Table I, the FE nonadiabatic values for the polarizab
ity of the ground state are compared with experiment a
two adiabatic calculations: the clamped nucleus calcula
of Bishop and co-workers@8–10# and a recent calculation b
Clark and Greene@22# which uses a sum over rovibroni
states. Various approaches for obtaining the polarizability
the adiabatic approximation were discussed in Ref.@11#.

In the clamped nucleus approximation, the electronic m
tion is perturbed by the electric field, and the polarizability
obtained as a function of the internuclear separation:

TABLE I. The nonadiabatic values for the scalar polarizabil
of H2

1 and D2
1 are compared with experimental calculations a

two adiabatic calculations: the clamped nucleus approach and
sum over rovibronic states method. Experimental resultsincludethe
factor of (11e)2 as explained in the text. The clamped nucle
calculation does not include (11e) in the perturbation. All results
are in atomic units.

System Method as

H2
1 Clamped nucleusa 3.1713

Adiabaticb 3.1667
Experimentc 3.1681~7!

FE nonadiabaticd 3.1682~4!

D2
1 Clamped nucleusa 3.0731

Adiabaticb 3.0708
Experimentc 3.0712~7!

FE nonadiabatic FEd 3.0714~4!

aBishop and Lam@10#.
bClark and Greene@22#.
cJacobsonet al. @7#.
dBabb @21#.
.
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2
1

2
a~R!E 25(

n

z^cn~R;rW !uEW•rWuc0~R;rW !& z2

E0~R!2En~R!
. ~18!

Here En(R) and cn(R;rW) are the BO electronic potentia
energy and wave function at fixedR. @The results of Bishop
and co-workers do not include the factor of (11e) in the
perturbation; this is consistent with perturbing only the ele
tronic state.# a(R) is then averaged over the rovibronic sta
f J,v(RW ). For the ground-state polarizability, we have

as5^ f 0,0~RW !ua~R!u f 0,0~RW !&. ~19!

In the sum over rovibronic states approach, the adiab
molecular wave function is written as a product of an ele
tronic and nuclear function. The moleculeas a wholeis per-
turbed by the field:

2
1

2
aE 2

5 (
n,J,v

z^cn~RrW ! f J,v~RW !u~11e!EW•rWuc0~R;rW ! f 0,0~RW !& z2

E0,0,02En,J,v
.

~20!

This approach is expected to be an improvement over
clamped nuclear approximation, as it includes the effect
the perturbation on the nuclear motion.

The experimental results from Ref.@7# have been multi-
plied by (11e)2 to be consistent with our definition ofas ,
which includes the factor (11e) from the center-of-mass
separation as part of the perturbation. In Eq.~5! of Ref. @7#,
the coefficient of the quadrupole term is given asB452(1
1e)2(as/2); we have instead takenB452as/2. It is the
value ofB4 that is fitted to the experimental data. The non
diabatic results agree with experiment within the stated
certainties. The difference between the nonadiabatic and
clamped nucleus results for H2

1 is double that for D2
1 as

expected.
In conclusion, nonadiabatic theory and experiment are

agreement at the current level of accuracy. Finally, we n
that several other groups are in the process of calculating
nonadiabatic dipole polarizability of H2

1 and D2
1. Prelimi-

nary results from Moss, who obtained rotationally averag
polarizabilities from scattering theory, are in good agreem
with the FE results@23#. Bhatia and Drachman have als
calculated the polarizabilities using second-order pertur
tion theory with intermediatep pseudostates@24#.
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