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Nonadiabatic dipole polarizabilities of H,* and D, ground states
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The recently reported discrepancy between the experimentally determined value for the dipole polarizabity
of the H,™ ground stat¢Phys. Rev. A56, R4361(1997; 57, 4065(1998] and the adiabatic value calculated
in the clamped nucleus approximatifidol. Phys.65, 679 (1988] has motivated a fully nonadiabatic treat-
ment of the problem. Finite element analysis is used to obtain a direct solution of the zeroth- and first-order
equations of perturbation theory. The nonadiabatic valuerfois consistent with the experimental measure-
ment.[S1050-294{98)03108-4

PACS numbd(s): 33.15.Kr, 02.70.Dh

I. INTRODUCTION ) m(F1+F2)+F3

For a Rydberg state of a homonuclear diatomic molecule, M 2m+1 ' (29
the interaction between the excited electron and the molecu-
lar ion core can be described via an effective polarization R=r,—T,, (2b)

potential which includes permanent and induced multipole
moments of the corgl—3]. For aJ=0 core, the lowest order
terms in the polarization potential are/=(B,/r*) 3 ,
+(Bg/r®+(B;/r")+---, whereB, is proportional to the 2
scalar dipole polarizability. Microwave spectroscopy of high
L Rydberg states has provided a mechanism for determini
these moments experimentalld—6]. Recently, Jacobson
et al. reported an experimental valmu%=3.1681(7)32ag for 1
the ground-state scalar dipole polarizability of H(using H=—-—Vi—-V2— —V2+_—
B,=—aJ/2) [7]. This is not in agreement with the adiabatic 2p 2 8u R
value calculated by Bishop and co-workers, who obtained
a5=3.171332a§ in a clamped nucleus approximatig8—

11]. It has been suggestéd] that the discrepancy is due to
the neglected nonadiabatic effects in the calculation, and this
study is an attempt to calculate those effects. In Sec. I, we
outline our method for obtainings nonadiabatically. In Sec.

lll, we compare our results with the adiabatic and eXpe”'where,u=m/2 and (1+ €)= (2m+2)/(2m+1). The rela-
mental values.

tive electronic and nuclear coordinates are represented as
and X', respectively. For weak electric fieldene atomic
Il. METHOD unit is 5.142<10° V/cm), the last term can be treated using
perturbation theory. The mass factor that scales the field-
dependent term was discussed previously by DracHm2in
The three-body Hamiltonian for the homonuclear di-The Hamiltoniard, the total squared angular momentif)

atomic molecular ion o, =m,=m,mz=1) in an external ;4 e, component of angular momentuly, are con-

r{+ro

N’

-

(209

nlye can separate out the center-of-méss) motion. The
plamiltonian for the relative motion in the SF frame is

———+(1+e)én-r, (3)

F—é-f—
Er

A. Transformation to the body-fixed frame

electric field€=¢£n is given in atomic units as stants of motions with corresponding eigenvaligsL (L
2 2 2 +1), andM.
0= — &_ E_ E _ 1 _ 1 _ 1 _ We adopt the conventions introduced by Pack and Hir-
2m 2m 2 |r -1, |ri—rg| |ro—ry schfelder for diatomic molecular iongl3], whereby the
o transformation from the SKprimed coordinates to the
—&n-(ry+ry—rs). (1 body-fixed (unprimed coordinates is affected through a ro-

tation R that aligns thez axis with R, and leaves thg axis
The coordinates of the three particles with respect to thén the x’y’ plane. The matrix representation & is
laboratory frame are;, x5, and x3, where the prime indi- R(®’,0',0), where the Euler angles are the spherical polar
cates the space-fixé@F frame. The direction of the electric coordinates oR in the SF frame. The electronic and nuclear
field n must be specified in a SF frame. Defining coordinates in the body-fixeBF) frame are related to those
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in the SF frame bx=Rx’ andX=RX'. The physical vec- ¥ and () are solutions of the zeroth- and first-order
torsr andR are unchanged in the frame transformation; only€dguations of perturbation theory:

the componentsf vector are frame dependent. Siriceand HW (0 =EOnp 0 (93

H are invariant with respect to rotation, they remain con- .

stants of the motionk_, (with corresponding eigenvalu@) (H-EN WD =—(1+e)én-re. (9b)
doesnot commute withH in the BF frame. (The superscript in parentheses indicates the order of the

In the BF frame, the field-free Hamiltonian becomes perturbation).
First we solve the zeroth-order equation for the ground-

. PR L1, 1 . state energ(?) and the corresponding wave functidf(®)
H= Z“L R Vi~ avr +V(r,R), (4 in the BF frame For the special case=0, the BF Hamil-
M tonian of Eq.(6) is diagonal:
where "2
N Pz (1 1)\.
(0) 2R 24— |p2
o . Aw©(0,0 2M+(2 + Su)p,
VILR)=o=—= 1 1 1.
R |t =+ ——]|[2
Z+r2—Rr cosd 2uR? " 2r2  8ur?) e
1 - +V(F,R)}\P(O)(O,O). (10
- . 5
2
R_szL Rr cos) The wave function? (9)(x,R;0,0) is independent of the elec-
4 tronic azimuthal angle. Using the elliptical coordinates
The BF Hamiltonian of Eq(4) is identical to field-free SF R=R, (113
Hamiltonian of Eq.(3) with one exception:—V'é, has been rotr
-~ A A A~ ~ N 1 2
replaced with pi+(L¥R?), where [3=[2+[2-2[2 E=—Fx (11b
~Le L ~Le L_. The transformation to the BF frame has
eliminated two degrees of freedom, but the Hamiltonian is n= fi—rs (110
not diagonal in the basis spanned by the eigenstatesaoid R
L;: wherer ; ,= VR?/4 +r?=rR cod , the eigenvalue problem
. described by Eq(9a) is solved with three-dimensional finite
HW(L,Q)=Hg oW (L,Q)+Hq o+ 1P (L,Q+1) element analysis as described in R@#]. With this choice
of coordinates, all the matrix elements are simple polynomi-
+Ho o V(LQ-1), (6a) als and can be evaluated exactly.
- Next we solve the first-order equation of perturbation
_ Pr 2 ror Lo theory for the correction to the wave functidf®) in the BF
HQ,Q_ﬂJF 2MR2[L(L+1)_ZQ +lel- EVF frame If we choose the field along the laboratary axis,
then
1 -
2 A > A >
_QVH‘VU-R): (6b) n-r=z-r=cod’cosh—r sin®’sinfd cosp (12

where®' is the Euler angle, and and ¢ are the electronic
(60) angular coordinates in the BF frame. The first-order correc-

tion to the wave function, which hds=1,M,,=0 character

owing to the Wigner-Eckart theorem, can be written as

1
YO X510= 2 WHXRLO)DH(R)
Q=-1

\/L(L—i—l)—M(Mil)r
2uR? es

Hoo+1=—

The SF wave function with total angular momentunandz
componentM is related to the BF wave functions by

L
T XSLM)= X PGRLO)Dgy(R). (1) Sin®’
et =-—F=VYW(xRi1-1)
V2
B. Perturbation theory +co®' ¥V (x,R;1,0
The scalar dipole polarizability for a homonuclear di-
. . . . . _ SIn@/
atomlc.molecular ion is d((e;;ngd in terms of the second. order 4 YO (xR11). (19
correction to the energ¥#'<’ induced by an external field 2

fixed in the laboratory frame:
. Using Egs.(12) and(13) in Eq. (9b), and noting thaH and
E@=—-1a2=(VD|(1+e)én-r|¥O), (8) ¥ are independent of the Euler angles, we can eliminate
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the dependence df’ by equating the terms proportional to wheref andg are still undetermined functions of the remain-

sin®’ and cod®’, respectively:

(Hoo= E)WI(1,00+Hg ¥ (1, +Ho_, ¥ (1,-1)

=—r cost¥?(0,0), (1439
v(1,1) PD(1,-1)
H,.—EO\ —~" _(H_, ,—EOy " -~
(Hyg ) (Hop g ) 2
+(HyotHo19W (1,0
=rsind cosp¥(?(0,0), (14b
where
~2
P 1 (1 1.,
Ho,o—ﬂ+ WRE E“‘@ Pr

L2+V(r,R), (153

+—21 + 1+—21
2uR 2r2" 8

r ur
Hy=H_; 1=Hgo— R (15b)
Lo
Hos1=Horo= — ——. (150
01 1,0 2R

We can now eliminate thep dependence from E@l4) ana-
lytically. Since the right-hand side of E¢l4a is indepen-

dent of ¢, it follows that w)(1,0) and[L, ¥™*(1,1)
+Le, w(1,~1)] must be independent op. From Eq.
(14b), we have the additional constraint thg¥(1)(1,1)

—¥®)(1,—1)] must be proportional to cas. It is straight-
foward to show that these equations are satsiiel if

v (1,0="1(r,6,R), (168
\P<1>(1,i1):tig(r,e,R)exp(ii@, (16b)
J2
R: 0 0.8 1.4 1.8 2
& 1 1.001 1.1 1.5 2
7 0 0.5 0.9 0.999 1

ing three variables. Substituting EQL6) into Eq. (14), we
obtain a set of coupled equations for the functiérendg:

1 /9
(Hoo—E@)f+ LR?| gg ot 6>g= —r coxv(©),

a0
(17a
Hy,—E@+ AL M +1§f
Lt 2uR2 " 2r2 " 8ur?)sie|9 " uR? 50
=r sing¥(®), (17b
where f(r,7—6,R)=—1(r,0,R) and g(r,7— 6,R)

=g(r,0,R). The symmetry conditions ol and g, along
with Egs. (13) and (16), guarantee that the wave function
W) has odd total parity. Because of the indicial behavior of
g(r,0,R) at 6=0, we also require thag vanish at6=0.
Carrying out a transformation to elliptical coordinates
¢, n, andR, we solve the resulting set of linear equations
using three-dimensional3D) finite element(FE) analysis
subject to the appropriate boundary conditions. Because the
functiong(¢, ,R) goes to zero very rapidly &=1 andy
==+1, a much finer mesh is needed in the vicinity of these
points in order to obtain an accurate representation of the
wave function. Unlike the solution of the zeroth-order equa-

tion, the matrix elements arising froﬁﬁ andI:et operating

on cosg are not simple polynomials in elliptical coordinates
and must be integrated numerically. The zeroth-order wave
function and first-order wave functions, which are repre-
sented as products of FE basis functions and analytical func-
tions of ®',®’ and ¢, can now be used in E¢8) to obtain

the polarizability.

Ill. RESULTS

The zeroth- and first-order equations of perturbation
theory were solved for 5 and D,* using identical FE
grids. The results reported were obtained using 360 ele-
ments; the 3D space was truncated and discretized as fol-
lows:

2.2 2.6 3.2 4 6 10
2.5 3 4 6 12

The local basis functions were products of fourth degreeslower convergence for J as compared to 5 is a con-
polynomials in three variables; over 23 000 basis functiongequence of the increased localization of the wave function

were used to approximate each of the three functibfg, f,
andg.

The FE ground-state energy for,His —0.597 139 055

about the equilibrium separation. The energy was very stable
with respect to variations in the grid. The small elements
nearnp=1 and¢é=1 could be completely eliminated without

(8)a.u., where the number in parentheses is the error in theny loss of accuracy to the energy.
last digit. The error was determined by comparison with the Qur intent here was not to obtain benchmark values for

best variational result of-0.597 139 063 123 a.y15,1§.

the ground-state energy; rather we attempted to find a “uni-

For D,*, the FE energy is-0.598 787 6(11), compared to versal” grid on which the equations of perturbation theory

the variational value—0.598 788 784 331[17,18. The

for both systems could be solved with sufficient accuracy to
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TABLE I. The nonadiabatic values for the scalar polarizability ANEL )2
of H,™ and D,* are compared with experimental calculations and — Ea(R)gZZ 2 |< ¢n(R,r)|€ r|¢O(R,r))| (18)
two adiabatic calculations: the clamped nucleus approach and the 2 n Eo(R)—En(R)

sum over rovibronic states method. Experimental resodisidethe

factor of (1+ €)? as explained in the text. The clamped nucleus

calculation does not include ) in the perturbation. All results  Here E,(R) and ¢,(R;r) are the BO electronic potential
are In atomic units. energy and wave function at fixéRl [The results of Bishop
and co-workers do not include the factor of %) in the

System Method as . . . . .
perturbation; this is consistent with perturbing only the elec-
Hy" Clamped nucleus$ 3.1713 tronic state]l a(R) is then averaged over the rovibronic state
Adiabatic® 3.1667 3 .
Experiment 3.16817) f;,(R). For the ground-state polarizability, we have
FE nonadiabati€ 3.16824)
D,* Clamped nucleu8 3.0731 = = =
Adiabatic? 3.0708 as=(fod R a(R)[fodR)). (19
Experiment 3.07127)
FE nonadiabatic F& 3.07144) ) , ) ]
In the sum over rovibronic states approach, the adiabatic
8Bishop and Lani10]. molecular wave function is written as a product of an elec-
bClark and Greeng22). tronic and nuclear function. The molecwds a wholes per-
¢Jacobsoret al. [7]. turbed by the field:
YBabb[21].

determine the nonadiabatic contributions to the polarizabilty. 1

S 2
Ground-state energies obtained with the adaptive FE method, 2 at

which automatically refines the grid for energy optimization, Kn(RD 5, (R)|(1+ €)&-r|tho(R;N) fo f R))?
are far more accurate:0.597 139 062(1) for K" and :ngv Eooo—Eny :
—0.598 788 779(5) for B [19,20. o SR T (20

The accuracy of the FE wave functich(®) can be esti-

mated from the error in expectation values of NON"This approach is expected to be an improvement over the

o h
Hamﬂtoman operators. In Refl4], the error for_ B’ FE clamped nuclear approximation, as it includes the effect of
expectation values is only one order of magnitude greatef perturbation on the nuclear motion

than the error in the FE energy, even for the delta function The experimental results from Rdf] have been multi-
opergtor(&(rl)z. We+th_erefore assume that Ehe e7r5r0r in .Waveplied by (1+ €)? to be consistent with our definition af,
funcUon for H (Pz ) is on the order of 10°(10"°). This which includes the factor (te) from the center-of-mass
is considerably higher than one expects based on the error gbparation as part of the perturbation. In Eg).of Ref. [7]

the energy, and is a direct consequence of local interpolatioqhe coefficient of the quadrupole term is givenBas= — (1
We conclude that the error ir(?) is not a significant source +6)2(ayd2); we have instead takeBy= — a 2. It is the
s'e)s .

of uncertainty in the final value for the polarizability for value ofB, that is fitted to the experimental data. The nona-

+ + ; ; ; i
H, " . For DZ. » any overestimation of the pOIa”Zab'“tY due diabatic results agree with experiment within the stated un-
to the error in the binding energy of the ground state is well

ithin the final barsA lier bindi impli certainties. The difference between the nonadiabatic and the
within the hinal error _ars( smaller binding energy Implies lamped nucleus results for,H is double that for " as
larger polarizability, since the state is more easily distorte

in the field) xpected.
. o . . In conclusion, nonadiabatic theory and experiment are in
The sensitivity of the polarization to the grid discretiza- Y b

i ticularl —1 andé=1 d th dual agreement at the current level of accuracy. Finally, we note
lon, particularly near=1 and¢=1, and the residual error that several other groups are in the process of calculating the

from numerical integration of certain matrix elements, were . o il + o

: . S nonadiabatic dipole polarizability of s and D,*. Prelimi-
';_he lmalln som:rces O_T_:]he.St%tﬁq ungetrtatl)nt)t(?._ooozt.m tthe f nary results from Moss, who obtained rotationally averaged
Inal values loras. This 1S believed 1o be a 1air estimalé ol 44, apilities from scattering theory, are in good agreement
the final error based on convergence studies in which th ith the FE result23]. Bhatia and Drachman have also
number of Gauss quadrature points and the element size N€glicated the polarizabilities using second-order perturba-

n=1 and¢=1 were varied. tion theory with intermediatp pseudostatef24
In Table I, the FE nonadiabatic values for the polarizabil- y PP 24,

ity of the ground state are compared with experiment and
two adiabatic calculations: the clamped nucleus calculation
of Bishop and co-worker8—10] and a recent calculation by
Clark and Greeng22] which uses a sum over rovibronic  J.S. acknowledges the support of the N&Frant No.
states. Various approaches for obtaining the polarizability irPHY-9024142, ITAMP, and the Cornell Theory Center. She
the adiabatic approximation were discussed in RET]. also wishes to thank A. Bhatia, R. Drachman, J. Babb, and S.

In the clamped nucleus approximation, the electronic moLundeen for many helpful discussions. C.G. acknowledges
tion is perturbed by the electric field, and the polarizability isNSF support and a number of helpful comments by W.
obtained as a function of the internuclear separation: Clark.
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