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Radiative corrections to the hyperfine-structure splitting of hydrogenlike systems
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We present a complete calculation of the leading nonrecaoil radiative corrections te llypdrfine-structure
splitting of highly charged hydrogenlike ions. In particular, we have investigated how the radiative corrections
for ions with a high nuclear charge numbgare affected by using an extended nuclear magnetization. We also
present the first complete evaluation of the Wichmann-Kroll part of the vacuum polarization correction to all
orders in Za). To unambiguously incorporate this effect we have also calculated the vacuum polarization
correction to the measured nuclear magnetic moment. Total theoretical results are collected for the experimen-
tally interesting ions?%Bi®2", 2Pt 185Re*" and 1%H0%¢" . Also the lowZ region is considered in order
to compare with the known part of th& &) expansion][S1050-29478)02608-0

PACS numbdss): 31.30.Gs, 31.30.Jv, 31.15.Ar

I. INTRODUCTION tributiong [11]. A more limiting uncertainty comes from the
extended nuclear magnetization distribution, the Bohr-
The so-called satellite structure of atomic spectral linesVeisskopf effecf{12], which has received considerable in-
was an experimentally long known fact when Pauli first as-terest lately[9,13-168. For hydrogenlike Bi this effect is
signed it to the different orientations of the valence-electron—0.1017)eV [15], which can be compared to the extended
in the magnetic field of a nucle(i4]. Because of its relative nuclear charge effect of 0.64847)eV.
smallness when compared to other structures in atomic spec- Beyond these effects also the one-photon self-ene3&y
tra, this splitting became known as the hyperfine structure. and vacuum-polarizatiofVP) corrections have to be added.
As a consequence of recent modern experimental deveFor low nuclear charge numbeZsit is appropriate to make
opments, ways are opened to study atoms in quite unnatural series expansion inZg;) to obtain the leading radiative
states, e.g., highly charged heavy ions, in the hope to urcorrections. The known part of th&§) expansion for the
cover new effects or to verify accepted theories in very ex-one-photon QED effectsl7-26 can be summarized as
treme situations. Investigations of the atomic structure of

very highly charged heavy ions are now feasible, for ex- (2 _ X @ @
ample, at GSI(Germany, LLNL (USA), and RIKEN (Ja- ABgep=ABr_(Fse+Fyp), (€
pan.

The first measurement of the ground-state hyperﬁney_vhereAE,: is the nonrelativisti¢point-nucleug Fermi split-
structure splitting of a one-electron ion with high nuclearting energy[27] and where
charge numberZ was performed in 1993 at GSI. The wave-

length of the hyperfine-structure splitting it?*Bi®** was |:<S2E):1+ In2—1—3) m(Za)+ —§In2(Za)

found to behe,,=243.87(4) nm[2], where the error is 2 4 3

mainly due to the uncertainty in the ion velocity. This corre- 37 16

sponds to a splitting energy d&fE,,=5.0840(8) eV. ( ——+=1In 2) IN(Za)+HZ|(Za)? (2
The high relative accuracy of the measurement in Bi im- 6 3

plied a first testing scenario of QED corrections in the com-

bined presence of a strong magnetic field and a strong Cou-

lomb field of a heavy nucleus. This pioneering measurement 3 38

has been followed by similar experiments on other iBs F§,2F3=er(2a)+ - l—5|n(Za)+ HZA(Za)2 (3

5] and several theoretical investigations on this subjéet

10]. The termsHZ and H{Z) have recently been evaluated to

In contrast to hydrogen, the nuclear structure plays %ading order§23—26 and can be expressed as
much more vital role for heavy ions. Compared to a proton,

the size of a heavy nucleus wi#=80 is about five times @ 191

larger and in addition the Bohr radius of the glectron is HSE:17'122+[( —5In2+ E) mIn(Za)
reduced by a factor of Z/ To theoretically obtain the correct

splitting between two hyperfine levels in H-like systems, the

first step is to calculate the dominating first-order hyperfineand

interaction. The major nuclear size effect on this first-order 8 13
calculation is the extended nuclear charge, which can be @__° i

handled using realistic charge distributiofesg., Fermi dis- HVp=—15iN2+ 55557 NZ)(Za)+ -+ (B

(Za)+---
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From Lamb-shift calculations it is known that thE) ex- Since the interaction Hamiltonian acts on the nuclear
pansion of the SE correction has increasingly worse convemwave function as well as on the electron wave function, one
gence properties for increasidy For the interesting region has to consider the wave function of the coupled system. In
of Z=80 the effective coupling constant to the Coulombzeroth order this wave function is given by

field is (Za)=0.6 and no reasonable result can be obtained

from the badly alternating series expansion. A similar behav- | F
ior shoyvs up for the hyperfine structure. . ‘I’(FO%F(V,R): 2 ( )t//,(%).(f)ﬂ%)l(l?),
In this paper we present a calculation of the leading non- mp,m \ My My | Mg ]
recoil QED correctiongof order @), to all orders in Za), (10

for the 1s state in hydrogenlike ions. The paper includes a

detailed description of how we calculate the self-energy angynere R denotes the nuclear coordinates dnd, and F

the vacuum-polarization effects. To unambiguously incorpogenote the angular momentum quantum numbers of the
rate the latter effect we have also included the VP correctiomcleys, the electron, and the coupled system.rfihare the

to the measured nuclear magnetic moment. Furthermore, Waagnetic projection quantum numbers. In the magnetic
have investigated the effect of having an extended nuclegisint-dipole approximation, the vector potential is given by

magnetizatior(as well as an extended nuclear charge distri-he nyclear magnetic moment is denotedgy

bution) when calculating the radiative corrections. In Sec. Il

we discuss the first-order hyperfine interaction and in Secs.

Il and IV the SE and the VP corrections are considered. In mXr I Xr

the final section we present numerical results for some ex- Ar)= Amr3 :glﬂNm' 1D
perimentally interesting highly charged ions as well as re-

sults for lowZ where a comparison with th&¢) expansion

is meaningful. where g, is the nuclearg factor, uy denotes the nuclear
magneton, and is the nuclear spin operator. The first-order
Il. FIRST-ORDER HYPERFINE INTERACTION energy splitting between the ground-state hyperfine-structure

) . . . _ levels can, after angular integrations, be expressed as
The first step in calculating the hyperfine-structure split-

ting of a given system is to evaluate the first-order perturba-

tion theory result. The relativistic interaction Hamiltonian is 1 €9un?2 B
given by (units whereh = e,=c=1 will be used throughout ART= 4ar B[FZ(F2+1) Fi(Fat1D)]2
the paper
f(rg(r)

~ 2

H=ea-A(r), (6) Xfr dr 2 (12
where A(r) denotes the nuclear magnetic vector potential.
Considering only linear terms in the hyperfine interaction, arHere,F,=1-1/2 andF,=1+ 1/2 are the total angular quan-

s electron is not affected by the angular variatioleforma-  tum numbers of the lower and upper hyperfine level, respec-
tion) of the nuclear charge distribution. One can thereforeijvely. It should be noted that the effect of an extended
assume a spherically symmetric nuclear Coulomb potentiadpherical nuclear charge distribution can be included in the
in the Dirac equation. The electron spinor can then be sepairac equation above and thus enters in the radial functions
rated into an angular and a radial part as f(r) andg(r).
o o For later convenience we also transform the relevant first-
o _( f(r)XK(r)) 1 F(r)XK(r)) @ order corrections into momentum space. In momentum space
ig(r)x™ (F) iG(Nx™(7) the electron wave function is given by

r
wheref(r) andg(r) are the large and small radial compo- m, 2
) ) Ay 1 B P(P)x.,(P)
nents of the wave function, respectively, agfl(r) is the wa(p)z_mf dBre 1Py (r) = .
Is-coupled spin-angular function. The Dirac equation then (2m) Q(P)xT (p)
leads to the coupled radial equations (13

d K . . -

—G(r)=—=G(r)—[E—m—=V(r)]F(r), (8)  The interaction potential in momentum space depends on the

dr r differenceq=p—p’, wherep andp’ are the outgoing and
incoming momenta, respectively. It has the form

d K
aF(r)=—FF(r)+[E+m—V(r)]G(r). 9
— 1 d3 —ig-r — ,u,X
For a point nucleus these equations can be solved analyti-  A(d)= 23 re AN =— 3 2
.  SOVee (2m) (2m)® q
cally, but for a parametrized nuclear charge distribution, e.g.,
a Fermi-like distribution or a model-independent Fourier-
Bessel expansion of the charge distribution, they have to b&he first-order hyperfine energy in momentum space is given
solved numerically. by the integral

a . (19
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—ie moment distribution suggested by Finkbeirral. [13]. In
,'l:Ysz—s this model a spherically symmetric distribution is assumed
(2m) for the nuclear magnetic momel(R) = uw(R). The den-

sity function is given byw(R)=k,R" for the interior of the

% f dpdp' Wl (p)“' [ex(P—p")] (0 nucleus andv(R) =0 for the outside of the nucleus,is the
Fme (p—p')? MR model parameter, ankl, normalizes the distribution to the
(15 experimental magnetic moment. The effective radial depen-

dence, which replaces a factoriin Eq. (11), is then given

where we implicitly also assume an integration over nucleaPy
coordinates, which in practice only leads to an angular fac-

tor. Also in the rest of the paper, when we have equations 1 r\n*3

involving both electron and nuclear quantities, the integra- Vei(r) = r_2 R_o » <R,

tions over the nuclear coordinates will be implicitly assumed.

To separate out the angular dependencies of the denominator L

in the Fourier tr_ansform of the vector potential, we use the Vei(r)=—, r>Ry, (21)
general expansion of a function of coswhere ¢ is the r2

angle betweem andp’,
whereR, is the nuclear radius. With this parametrization we
can consider different magnetic moment distributions, rang-
ing from a homogeneous distribution 0) up to the shell
(16) model (h=«) where the magnetic moment is located at the
nuclear surface.

o

V(p,p’,cosﬁ)=|=20 (21+1)V,(p,p")C'(p)-C'(p").

Here theC' tensor is related to the spherical harmoh’({:@as For bismuth we have further employed the dynamical pro-
C'm: Jaml(21+ 1)Y|m' The expansion coefficien (p,p’) ton model(DPM) of Labzpwskyet al. [16]: In the DPM the .
are given by valence proton of the bismuth nucleus is treated as a Dirac

particle bound in the Woods-Saxon potential of the lead
171 core. The first-order hyperfine splitting is then given as a
Vi(p,p’)= Ef,ld(c"sa)v(p'p’ ,cosd) P, (cosd), vector-photon exchange between the electron and the proton,

17) . (2K)(2K)
AEppy= a[Fa(Fa+1)—Fy(F + 1)](4K2— 1)(4K2—-1)

whereP|(cosd) is the Legendre polynomial of ordér For

the ground state we get contributions from thke0 and the 5 5 X<
| =1 terms only, and the hyperfine splitting can be written as Xf r drf R dRX—z[ZfK(f)gx(f)]
>
gy 2 X[2f(RIgk(R)], (22
AE'=— = — Z[Fa(Fpt 1) = Fy(Fy+1)]
where x. (x-) is the smallest(largesj of r and R. The
2 o , kappa values for the electron and proton are denoted by
XZ;J dppzf dp’p’“[p"Vo(p.p’) andK, respectively. The calculations become identical with
the corresponding ones for the two-electron Lamb $Rif
—pVi(p,p" ) IP(P)Q(p’), (18 with one of the electron wave functions replaced by the pro-
ton wave function.
where In the rest of this paper, we will state all formulas and
equations assuming the point-dipole model. Introducing the
1 (p+p’)2 extgnded nuclear mag.netization only leads to minor modifi-
Vo(p,p') == _In 5 1 (190  cations of the expressions.
2[2pp" "\ (p—p")
Ill. THE SELF-ENERGY CORRECTIONS
Vool - L PR [(ptp’)? o _ o
1(p,p") 2| " pp " ap2p2 n (p-p"?) |’ (20 The Feynman diagrams for the one-photon radiative cor

rections can be divided into vacuum polarizat[éigs. 1(b)

are the expansion coefficients. Note that we have here Cor?-nd 10)] and self-energyFig. 1(d) and 1e)] parts. The ex-

, D : rpressions for the one-photon effects can be derived in a for-
sidered the point-dipole case, but when treating a more gen- | ing th i f i d th I
eral operator the integration in EA.7) is performed numeri- mal way, using thes-matrix formalism and the Gell-Mann-
cally Low-Sucher formuld 29,30,

One of the principal aims of this paper is to investigate 1

how the radiative corrections are affected by using an ex- AE= lim=i 1;[3(a|S(3)|a>—3(a|8<2>|a><a|8(1)|a>],
tended nuclear magnetization. To achieve this in a straight- 702 7 7 7
forward manner we have adopted a model for the magnetic (23
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, with E;#E,. HereX,,, denotes the unrenormalized bound
¢ ¢ self-energy operator anéim the mass counter term.
B -O O %\ o The vertex correction, replacement Eg6), leads to the
following expression:

b d (e)
(@) (®) © @ AEYE=(aleA-Ala), (28

FIG. 1. Feynman diagrams representing the first-order interac-
tion (a) and the one-photon radiative correctidibg—(e) to the hy-
perfine splitting. The triangle represents the magnetic interactio
with the nucleus.

I){vhereA is the bound vector vertex function. For the binding
energy term, replacement E@4), the formula reads as fol-
lows:

where 7 is the adiabatic switching parameter. Here, the sec-

ond term represents products of disconnected lower-order BE d
diagrams. AEge=(alea-Ala)X(al| -=%(E) la). (29
An alternative way of deriving the QED corrections in the E=E,
presence of an external vector potential, which gives expres-
sions identical to those derived from E@3), is to perturb To handle the divergences present in these three terms, we

the first-order Coulomb self-energy with the magnetic potenyynand the self-energy and the vertex operator in the nuclear
tial, as summarized if31]. In first-order in the magnetic coylomb potential. The mass and charge divergences will
potential A(r), the binding energy of the electrd,, the  then pe isolated in the lowest-order terms and can be can-
reference wave functiona), and the propagator for the cejed analytically between different diagrams. This proce-
bound electrorf: are modified as follows: dure is done working in momentum space and using dimen-
sional regularization for the divergent integrals. The finite
Ea—Eat(alea-A(nja)+- -, 24 higher-order terms are then calculated in coordinate space by
) taking the difference between the full unrenormalized ex-
|a)—|a)+ > [m)(mlea- A(r)|a) . pression and the divergent parts in the expansion.
Em? Ea=Em We start here by considering the self-energy and the ver-
_ tex operator using dimensional regularization. The expres-
=lay+|oap+ -, (25 sions derived will be used later when discussing the calcula-
tion of the three different contributions. Note that in the
expressions fok (p) andA ,(p,p’), the notationp (k) de-
3 _ _ notes the four-momentum whereas it indicates the absolute
+f d°X3Se (X2, X3:2)@ A(X5)Se(X3,%132)  valuesp=|p| (k=|k|) elsewhere in the paper.
The free self-energy operator reads in Feynman gauge

a

Sr(X2,X1;2)— Sp(X2,X1;2)

+oee (26)
The wave-function modification term, originating from the _ d4k p—K+m 1
replacement Eq(25), takes the form 3(p)= —|47Taf (2 7“(p_k)2_m2 Yuiz: (30
spvre s @G Wea Ay - |
T E.—E; which after mass renormalization can be writter] 2@
Efgﬁsfp)=2(p)—5m=—%[(p—m) A+2+1f;p 1+ i:—ﬁmp +1”l—’;(1— 21__3pp|np)]. 31)

HereA =2/ — yg+In4mis the ultraviolet part of the charge renormalized self-energy Eq31) is finite in the infrared
renormalization constant after dimensional regularization, limit since we only extract the ultraviolet part of the charge

is the dimensional regularization parameter, apdis Eul- ~ renormalization constant. Only when extracting the full
er's constant. We have further introduced the dimensionlesgharge renormalization constant will there appear an explicit
variable infrared divergencg32]. This is also the case for the vertex
operator and it is therefore sufficient to cancel the ultraviolet
m?— E2+ p? (p—m)(p+m) divergency, which vanishes due t_o thg Ward idgntity, be-
p= =— (32 tween these two operators to obtain finite expressions.

m?2 m? ’

Taking into account the energy dependence othe de-
rivative of the free self-energy operator with respect to the
which is positive definite for a bound electron. The mass-energy is given by
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FIG. 2. Feynman graphs representing the wave-function correction. In order to isolate divergences, the internal self-energy electron
propagator is expanded in the nuclear Coulomb potential, which is denoted by a horizontal line with a cross. The divergent zero-potential,
one-potential, and the mass-counter term are grouped together. The remaining many-potential term is finite.

J3.(p) _ Aot o " 2-p . . g;:il\?earll)E;ythe vertex-correction operator for a free electron
JE 4| Y0 1—p\= " 1=p"'P
Au(pp)=—id f d*k p—Kk+m
P )=—147a v
p[ 2 2 wPP 2m* " (p—k)2—m?
—| = 3—p+——Inp
m?  (1-p)? 1=p
L P kem 1 a
8E 1 T ——m ke
o [1+ el (33
m(1=p) p By using the coefficient function§;; , which are functions

of p, p’ and given by Feynman parameter integrals, as de-
This expression is needed for the computation of the freefined in Ref.[32], one finds the complete covariant vertex
electron part of the binding-energy correction. operator

o
A, (p,p')= E{YM[AszA_ 2+2m?Cy—4pp’ (Co+ Cyy+ Cypt Cpz) —2p%(Cyy+Cpy) — 2p"%(Cypt+Cyy) ]

+Pp,[4(C11t+Cop) ]+ PP, [4(Co+Cryt+ Ciot Cod) |+ P pul[4(Cot Cryt+ Ciot Cog)]

+P'P[4(CiotCo) =Py, [2(Cot Crat C1p) ] p,[4m(Co+2C11) ]~ p,[4M(Co+2Co) ]} (39

Here, the ultraviolet divergencX is contained in the coef- the finite parts can be extracted and calculated in momentum
ficient function C,,. The zeroth component of ,(p,p’)  space[32]. The wave-function correction is thus calculated
enters the wave-function correction term and the vector pa@s two separate parts,

is needed for the calculation of the vertex correction part.

To cancel the infrared and ultraviolet divergences, it is AE\Q/EF:AEZVF’F'MAE\C[JV'E'MAE\'\I/IVFF"X:AEWF'MAE\'(X'E'X'
appropriate to organize the different terms into two different (36)
subgroups, wave-function corrections and vertex plus bind-
ing energy corrections, depending on the structure of thevherep andx indicate that the calculations are performed in
divergences in the diagrams. momentum and coordinate space, respectively. In the follow-

ing we will consider the ket-state as the perturbed wave func-
tion, but there is of course also a symmetrical diagram where
A. Wave-function corrections instead the bra-state is perturbed by the hyperfine interaction.

The structure of divergences in the wave-function correc-
tion is the same as for the first-order self-energy. We can 1. The zero- and one-potential parts
therefore isolate and subtract the divergences by means of a | terms of the perturbed wave function,
potential expansion of the self-energy operator into a free
self-energy operatofZP), a one-potential ternfOP), and a
finite many-potential partMP); see Fig. 2. The many-
potential part is treated in coordinate space in a similar way |5a>:E§E
as in previous work$6,28,33,34. The divergent zero- and mee
one-potential terms are grouped together with the mass
counter term, and by the use of dimensional regularizatiothe zero- and one-potential terms are given by

[m)(ml|ea-A(r)|a)
Ea—Em :

(37



1060 P. SUNNERGRENEet al. PRA 58

AEWFP=(a|3,od P) + = ond P) — 6m| 5a) For thep term we use the explicit form
= (al2M2%p)+ Ao(p.p')Ve(p.p')| 68). (38) E —op

Here,V (p,p’) is the nuclear Coulomb potentid,ra{p) is

given by Eq.(31), andAy(p,p’) is the zeroth component of together with the identityr- px™(p) = —px™ .(p), to obtain

the vertex function Eq(35). The ultraviolet divergent parts

are cancelled by omitting the term proportionalAdn these _ +

expressions and the remainder of the charge renormalization ~ P2(P)= | d€24a(P)YoP¥sa(P)

constant vanishes when adding the zero- and one-potential

terms. = E( PaP5a+ QaQ&a) + p( PaQ§a+ PﬁaQa)- (41)
To discuss the calculation of the zero-potential part w

®rhe remaining radial integral
first separate the tensor structure by writigfga>{p) g g

=a(p)+pb(p). For thea part, which is diagonal, the angu-
lar integrations can be done straightforwardly, which yields J’ dpp’[C(p)a(p)+D(p)b(p)] (42)
_ + _ . is performed numerically using Gauss-Legendre quadrature.
C(p)—J dQ72(P) Yota(P) = PaPsa = QaQsa- (39 The one-potential part is given by the integral

AE‘éVE’p=ef d3pd3p’ Y1(P) Yol yof 1(p.p’,cOS) + pfo(p,p’,cOS9) + P’ f3(p,p’,cosD) + Pryoh’ f4(p,p’,cOSH)

+f5(p,p’,cos9) IV (p,p") sa(P’), (43

where thef; functions are abbreviations for the coefficient functions in Bp). The angular dependence of the wave
functions can be reduced to a dependence on the intermediate angle by utilizing the identity

J

mt, 2\ .ome Sy 1
2171 2 Xx (PIXR(P) =7 Pl el COSD), (44)

whereP|, . 15— 12(c0s9) is a Legendre polynomial. Performing the matrix multiplication and using this identity we obtain for
the 1s state

4mgl(p) Yo o(P.P') ¥sa(P)=F1[ PP’ +QQ'cosd]+f,[EPP' +pQP +(pPQ + EQQ')cosd]
+f3[EPP’+p’PQ’+(p’QP’+EQQ’)cosﬁ]+f4[E2PP’+pEQP’+p’EPQ’+pp’QQ’
+(pp’PP’+pEPQ’+p’EQP’+E2QQ’)cosﬂ] +f5[PP'—QQ’cosd], (45)

where P=P,(p) and P'=P4(p’) and similarly for Q. The expression for the one-potential part is thus reduced to a
three-dimensional integral over, p’ and cos9, which is evaluated numerically.
2. The many-potential parts

The many-potential part is convergent and can be calculated straightforwardly in coordinate space from the following
expression:

wex_ @ < (ala,ji(kra)CInKnlji(kr)Clak|sa) o (ala,ii(krs)C'la)(alii(kro)Ca*| 5a)
AByp”= E.ZO(Z'H)Jkdk(En: Ea—En—sgr(Eyk % Ea—Eq—sgrEqgk
s (ala,ji(kry) CIp)(pIVc(ra)la)(alji(kry) Cla¥| 5a)

X [Ea—Ep—SgnEp)KI[Ea—Eq—sgn(Eq)K] ' (46)

where|n) denotes bound electron states apdl,|q) denote  To compute this contribution, as well as the many-potential
free electron states, and where we have introduced the fungarts of the vertex and binding energy corrections, we pro-

tion F defined by ceed as follows. The radial and the angular integrations are
K separated and the angular parts are treated analytically by
F=1+[sgnE,)—sgnEy)]=——. (47) using the graphical angular momentum coupling scheme as

P Y E,—Eq discussed if35—37. To generate a complete set of interme-
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d d VE+BE
AEl dE + = AEI dE + + AEno.
BE VE BE VE
AE AE AE,, AE 7

FIG. 3. Feynman graphs representing the binding energy and vertex correction. In this part the divergences occur only in the zero-
potential terms, which are grouped togeth®E® denotes the first-order hyperfine splitting.

diate bound- and free-electron states we use the spaceussed above. The zero-potential terms are grouped together
discretization method developed by Salomonson asteiO and by the use of dimensional regularization the ultraviolet
[38]. The resulting wave functions are then numerical dis-divergences can be identified and canceled. The finite re-
crete valued functions in the chosemyrid. To integrate the mainder was evaluated in momentum space.

overlap with the spherical Bessel functions, which oscillates The calculation of the vertex and binding energy correc-
strongly for high photon momentum, we interpolate the nu-tions are thus arranged as follows:

merical states to continuous space using Lagrange polynomi-

als [39,40. The radial integrariions aregther%by gEedpuc)(gd to AEgE " PF=AEZEP+AEZRP+AENG T P

sums over the values at the given radial grid points times a _ AEVE +BEp | A EVE + BEX (48)
weighting factor. The remaininl integration is handled nu- zpP HO ’
merically, using Gauss-Legendre and Gauss-Laguert@here p and x again indicate momentum and coordinate
quadrature. This procedure is performed for several partialspace, respectively.

wave terms, the maximum number bfdepending on the

convergence properties of the given contribution. Finally, we 1. Zero-potential terms

extrapolate td —o. The energy contribution from the zero-potential terms is
given by
B. Vertex and binding energy corrections
NG enerey e - AEYS " ®EP=(aleA(p,p)-A(p.p')]a)
The vertex and the binding terms, which are shown in Fig.
3, are both infrared divergent and ultraviolet charge diver- .9
gent, but the divergences cancel between the two terms. The +AE (a|(9—EE(p)|a), (49)
infrared divergences can explicitly be shown to cancel be-
tween these termgtl]. Furthermore, the ultraviolet charge Where AE* is the first-order hyperfine splitting and where
divergences will also cancel due to the Ward identity. ToA(p,p’) and (9/9E)>(p) are given by Eqs(35) and(33),
formulate an unambiguous regularization, we expand the inrespectively. It is here implicitly understood that the cancel-
termediate bound-electron propagators in E88) and(29)  ing ultraviolet divergence\ is omitted in the two parts.
into free-electron propagators interacting zero, one, or sev- The binding energy correction EEE'F’, has the same in-
eral times with the nuclear potential. After separating out andegral structure as the zero-potential part of the wave-
canceling the infrared divergenc¢28], the one-potential function correction and it is evaluated in the same manner.
and many-potential terms are finite and can readily be calcu- To compute the energy shift induced by the vertex correc-
lated in coordinate space using basis-set procedures as difn one has to evaluate the following integral:

ie
}’E'p=(27)3f dpd®p’ Wi, (P) Yol ¥11(p,p’,COST) + Ppfa(p,p’,COS) + PP’ f5(p.p’,cOS) + B’ pfa(p,p’ ,cOSD)
! ’ ! ! ’ ! ! ! Mx(p_p/) !
+p'p'fs(p,p’,cosd) +pyp fe(p,p’,cosd)+pfs(p,p’,cosd) +p’fg(p,p ,cosﬁ‘)]—(p_p,)2 Fme(P"),
(50)

where thef; functions are abbreviations for the coefficient functions of the vector part of35g.Due to the vector structure
of this expression, we cannot reduce the angular part to some simple dependence on the intermediate angle as was done for th
zeroth component of the vertex function. By defining the functions

Vi(p.p’.cosﬂ)=m, (51)
(p—p")
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and expanding those according to E&), the angular dependencies can be separated. The angular integrations can thereby
be performed analytically by using angular diagram techni¢i88ks The final expression then contains the expansion integral
Eqg. (17) and the radial integrals ovgr andp’, which are performed numerically.

2. One- and many-potential parts

The remaining contribution beyond the zero-potential part of the vertex diagram is convergent and can be calculated in
coordinate space using the following expression:

VEx_ ¢ - (ala,j(krg)C'im)(mlea: A(r,)[n)(nlj,(kr;)C'a*|a)
A= 3 @ f kd"kmz,n [Ea— En SOTE,KI[Es—Ey— SOTEL K]

s (ala,ii(kra)C'lp)(plea- A(ry)|a)(alji(kry)C'a¥|a)
p.q [Ea_ Ep_sgr(Ep)k][Ea_ Eq_sgr(Eq)k] ,

(52

where |m),|n) denotes bound-electron states dpdl,|q) denotes free-electron states. Similarly, the higher-order binding
corrections can be expressed as

Ldi(krp) Cm)(mlj (kry)C'a¥|a)
[Ea_ Em_ Sgr(Em) k]z

AEBE*= % 2 (@ +1)f kdk[ (alea-A(r)|a)> e

B (ala,ji(krp)C'p)(plji(kry)C'a*|a)
(a|ea~A(r)|a>§p: T —r : (53

where |m) denotes bound-electron states gpd denotes A. The electric-loop correction

free-electron states. The evaluation scheme for these two The contribution from the electric-loop correction is given
contributions is discussed in the wave-function many-by

potential part.

alVyp|t)(tlea- Ayegda
AE\E:SZE < | VP| >< | HFS| >+C.C.,
t Ea_Et

IV. THE VACUUM-POLARIZATION CORRECTIONS

with E;#E,. Here we have explicitly indicated the hyper-

There are two different one-photon vacuum polarizationfine potentialA g to separate it from other vector potentials
diagrams that contribute to the hyperfine structure, see Figappearing later. The vacuum-polarization potentigy con-
1(b) and Xc). The first is called the electric-loop correction Sists of the charge renormalized Uehling péde) (one-
(EL) since the polarization loop connects with the electricalpotential term [42] and the Wichmann-Kroll parfWK)
potential of the nucleus. In the second diagram the loop condmany-potential term [43]. This contribution is readily
nects with the nuclear magnetic vector potential and it is€valuated using the techniques described in Rief.
therefore called the magnetic-loop correctivL). In the The _electrlc-lc_Jop cqntnbunon can also b.e cqmputed to all
language of the self-energy corrections the EL part can bgrders mVYP by |nclu.d|ng the vacuum polarization pptenual
viewed as a wave-function modification and the ML part as when solving the Dirac equaﬂon..The wave functions Ot.)_

e . o Rained are then used when evaluating the first-order hyperfine

propagator modification. There is no binding energy term?plitting.
since the first-order vacuum polarization is independent o
the reference enerdy, .

We have further considered the vacuum polarization cor-
rection to the measured nuclear magnetic moment. The
Feynman diagram for this correction is shown in Fig. 4. This
contribution contains a divergence due to the singulaf 1/ @
dependence of the point-dipole hyperfine potential. The di-
vergence is also present in the Wichmann-Kroll part of the
ML correction, and by combining the two effects we can
eliminate the divergence and obtain a finite contribution. It
should be pointed out that it is the unphysical nature of the FIG. 4. Feynman diagram representing the vacuum polarization
nonrecoil point-dipole model that causes this divergence angorrection to the nuclear magnetic moment. The filled line indicates
it is not present when considering an extended nuclear magke nuclear wave function and the crossed circle represents the in-
netization model. teraction with the external homogeneous magnetic field.
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B. The magnetic-loop correction ML-U egun 2
-Ue__ _ — —
For the magnetic-loop correction the expression reads ABy = 47 3[':2(':2Jr D=FuFat 1]
w_ Aes : [ 2a (= 1 1\1
AEVP=—7IZO(2I+1) dk(a]a,j (kr;)C'|a) y 2__f dza]1— =14 =12
371 272 27%)2
+ - . |
n|a*j(kry)C'Imy{m|ea- Ayegn
XE < | | 2 | >< | HFSl >, o 5 f(r)g(r) Comr
el E,—En X[ riddr———e 12mrz+1]],
0 r

59 (58)

where the different signs at the sum symbols indicate that thg, is straightforward to evaluate.
loop (_:ontains only virtual ele_ctron—positron pairs. This ex- The higher-order terms in the expansion are together
pression can also be written in the compact form called the Wichmann-Kroll part and are evaluated by taking
the difference between the unrenormalized bound- and free-
L to- (n|ea- A /m)(m|ea-Ayegn) loop expressiop$28,44]. The first_nonvanishing terms are
AEvp=—22 E E_E ' the two-potential terms(light-by-light scattering, which
nom noem (55) contain a spurious gauge-dependent piece that has to be re-
moved. This can be done by expanding the loop propagators
in partial waves k) and restricting the expansion to a finite
number of term$46—48. The Wichmann-Kroll contribution
is given by the subtraction

where we have defined the potential from theelectron as

2a .
eAls(r>=—7“|§0<2|+1>c'(r>fdkh(kr) AEMLYK_ 2 5 {nlea- AsJm)(mlea: Anedn)
VP - ~ En_Em
x(a|ajy(kr')C'(r")|a). (56)

_i (plea-Asda)(dlea- Auedp)
. . P q Ep—Eq '
By expanding the loop propagators in the nuclear Coulomb
potential one obtains a zero-potential term, two one-potential (59)
terms, and finally higher-order terms with two or more
nuclear Coulomb interactions. Terms with an odd number ofvhere|n),|m) denote bound intermediate states &pg|q)
loop vertices will vanish due to Furry’s theorem. This im- denote the corresponding free states. The singuler dg-
plies that only the terms with an even number of nucleampendence of the point-dipole hyperfine potential leads to di-
Coulomb interactions will survive in the expansion. vergent integrals in this expression. With an extended mag-
The zero-potential part represents the Uehling correctiometization the singularity is removed and the correction is
and is renormalized and calculated separately. We have corfinite. The divergence of the Wichmann-Kroll part is present
puted the Uehling contribution in both coordinate and mo-also in the correction to the measured nuclear magnetic mo-
mentum space. In the momentum space calculation wenent, and we can cancel the divergence by combining the
evaluate the first-order splitting with the Uehling potential two effects, as will be shown in the following subsection.

C. Vacuum polarization correction to the nuclear

Uey ) — 2
A™(a)=I1"1q°) Anes(a), (57) magnetic moment

Similarly as for the electrog factor[49], the Wichmann-
wherell™Yq?) is the renormalized free-electron polarization Kroll effect gives a correction to the measured nuclear mag-
function [45]. The corresponding expression for the energynetic moment. This correction, as well as the correction
contribution in coordinate space is given [38] AEVEWK given above, diverges in the point-dipole model.

TABLE I. The low-Z self-energy corrections given in terms of the funct}é&)(Za). As a comparison,
the values of thed«) expansion and the results of RE8] are also given.

z ENF ESEP EYEP EySBEX Total SE F(Za) Ref.[8]

1 —-0.0110  7.7895 —5.0795 —2.2610 0.438Q1) 0.43811 0.43808
3 —-0.0519 56036 —3.1124 —2.1318 0.30768) 0.30773 0.30759
5 —-0.1049 45996 —2.3008 —2.0197 0.17441) 0.17475 0.17405
7 —-0.1651  3.9487 —1.8226 —1.9215 0.0398.) 0.04154 0.03950

10 —0.2639 3.2744 —-13779 —1.7954 —0.16281) —0.15657 —0.16283
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TABLE II. The self-energy corrections for the highregion given in terms oFgZE)(Za). In the last two
columns the results of Reff7,10] are given as a comparison. These values are scaled to our units by using
the first-order value¢from a uniform nuclear charge distributipgiven in Table V.

z ESE ESEP EYEP EYSBE*  Total SE Ref[10] Ref. [7]
67 —-3.8506  0.3309 -0.7515 —1.3894 -56605  —5.662 —5.6625
75 -5.0639  0.1818 —0.9484 —15295 —7.3599  —7.362

82 -6.5211  0.0508 —1.1896  —1.7085  —9.3683

83 -6.7694  0.0316 —1.2307 —17393 -97078  —9.707 -9.7111

Cutting off the small distances leads to a logarithmic diver-nuclear magnetic moment correctifsi3,54.

gence in the cutoff radius. This logarithmic behavior is well  In an external homogeneous magnetic fiBlddescribed
known from calculations of the anomalous magnetic momenby the vector potentiah,,;= — (r X B)/2, the correction to
of the muon[50-52, and also from earlier treatments of the the nuclear magnetic moment can be written as

+

2I"bare z <n|ea Amadm><m|ea'AHFS|n> _z i <p|ea'AmaJQ><q|ea'AHFS|p>
9|m|MN|B| En—Em Ep—Eq ,

where pp.e IS the bare magnetic moment, i.e., the unperturbed nuclear magnetic moment. This correction is included in the
measured nuclear magnetic moment

A pwk= (60)

Mexpt= MoarsT A sk = Mpard 1+ €), (61
and cannot be separated out. In order to avoid double counting, the bare magnetic moment should be used when calculating the
hyperfine structure. Specifically, one should correct for the shift in the magnetic moment when calculating the first-order
hyperfine splitting,
AERRS" = AEGZP(1-e). (62)
This opens the possibility to “renormalize” the point-dipole divergency in the corrections (B§sand (62). We therefore
employ the calculation scheme

AEML -WK-ren_ AEML -WK AEﬁFesXpt

P é % <n|ea.(Als—B';:aE)L:><mlea-AHF§n> _é i <p|ea.(AlS—BAE:ig)IL?<q|ea.AHFS|p> |

(63)

whereB=AE}SPY (g,m un|B|). With this scheme the i have further investigated how the SE and VP corrections are
divergence is eliminated and we can obtain the combine@ffected by using an extended nuclear magnetization for the
effect of the Wichmann-Kroll correction to the hyperfine high-Z systems and these results are displayed in Tables V
structure and to the nuclear magnetic moment. It should band VI. Finally, we collect recent theoretical results for these
pointed out that we take the effect of the corrected magnetibigh-Z ions and compare with experiment in Table VII.
moment into account only in the first-order splitting, since it  All values, except those in Tables VI and VII, are pre-
would lead to uncontrolled higher-order effects when applied

to the QED corrections. TABLE lll. The low-Z Uehling vacuum polarization correc-

tions given in terms of the functloﬁ (Za) The results of the
(Za) expansions are given in columns three and five, and in the last

V. NUMERICAL RESULTS column the total numerical value is collected.
Our results for the self-energy and vacuum-polarizatio ELUe FEY(Za) EMLUe  EML(Za4) Total num.

corrections to the hyperfine structure can be divided inta
different categories. Lo are considered in order to com- 1 0.0087691 0.0087687 0.0085578 0.0085566 0.017327
pare with the known part of theZr) expansion. The hyper- 3 0.027112 0.027067 0.025487 0.025455 0.052599
fine structure for several high-ions has recently been mea- 5 0.046414 0.046194 0.042257 0.042109 0.088670
sured and calculations for some of these systems are also 0.066671 0.066043 0.058960 0.058558 0.125631

presented here. In Tables | and Il our SE results are givemg 0.098955 0.097033 0.084072 0.082908 0.183028
and the VP results are presented in Tables Il and IV. We
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TABLE IV. The vacuum polarization corrections given in terms of the funclﬁiﬂ(Za). The Ryns
values used for the nuclear electric charge distribution are given in the second d¢fomim columns three
and four the EL and ML Uehling parts are displayed. The Wichmann-Kroll part of the EL diagram is given
in column five followed by the “renormalized” ML Wichmann-Kroll contributidffrom Table \j.

z Rims ESEYe EVs Ve ESEWK EVs WK-ren Total VP
10 2.99 0.094 922 0.080275 —0.000054 —0.000271 0.174871
18 3.42 0.18865 0.144 80 —0.00035 —0.00160 0.33150
32 4.07 0.41176 0.27153 —0.00218 —0.00970 0.67141
54 4.78 1.0831 0.5630 —-0.0146 —0.0609 1.5707
67 5.21 1.900 0.847 —0.037 —0.147 2.562
75 5.351 2.742 1.102 —-0.063 —0.249 3.533
82 5.497 3.843 1.404 —0.102 —0.391 4.754
83 5.519 4.038 1.455 —-0.109 -0.418 4.967

sented in terms of the functiof, which is defined through The (Za) expansion for the VP corrections can be separated
in two parts[55], corresponding to the electri¢cig. 1(b)]

and magneti¢Fig. 1(c)] diagrams
AE:AEF%F, 64) gneti¢Fig. 1(c)] diag

AEQ=AE¢ - (FRet Fidw), (65
where AEg is the nonrelativistic, point-nucleus first-order 77
hyperfine splitting. Note that this definition differs from the

one used in a previous papid], where the relativistic and |, ore
extended nuclear charge effects were incorporated in the
first-order value.

To make a consistent comparison with tHx expan- TABLE V. The constituents and the “renormalization” of the

sions we have performed the Iafvcalculations(Tables | magnetic loop Wichmann-Kroll correction using different magneti-
zation models. For the point-dipole model only the combined effect

and Ill) using a point nuclear-charge model. All other QED can be evaluated directly. All valuésxcepte) are given in units of

Cc_)rre_ctlons_ are evaluated Wlth a “’.“form nuclear-charge dIS('oz/w)EF and the number in parentheses indicates the power of ten.
tribution with R, values as given in Table IV.

Z  Model EVY¢ € AELZP AEyEYETen

A. Self-energy
pnt 433.48 —0.000271

10

The self-energy corrections are presented in Tables | and  1—o 0009670 2.292¢5) 433.30 —0.000261
I for the low- and highZ regions, respectively. The total SE
value is composed of various parts as described in the text8 pnt 440.81 —0.00160
Our values agree well with those [@] and the discrepancies n=0 0.02978 7.110(5) 440.40 —0.00153
between their values and values from an earlier caIcuIatio%2
presented if6] are now absent. The earlier deviation was
originating from a small computational error in our evalua-
tion of the termEY5 " . The lowZ values presented {i8]are 54  pnt 546.18 —0.0609
still an order of magnitude more accurate than ours, so we n=0 0.2638  5.898(4) 542.69 —0.0562
cannot add more information about th&«)-expansion

pnt 465.52 —0.00970
n=0 0.08989 2.133(4) 464.46 —0.00916

comparison than was done in their paper. The limitations irff7 ~ Pnt 63217 -0.147
our computation come mainly from tHg’5®5* term where n=0 04304 9021{4) 62514 -0.134
a large number of partial-wave terms have to be calculated in n=2 04203  8.841€4) 623.90 -0.131
order to decrease the extrapolation error. We should be ablg pnt 709.08 —0.249

tﬁ mclrealse our accuracy suéjst?ntlaltjlly if we ciould evaluate n=0 05754 1.143(3) 698.36 —0.223
the slowly converging one-Coulomb potential vertex term n=2 05614 112063) 69645 —0.219
semianalytically as was successfully accomplished in the

gj-factor casg49]. It would then also be necessary to im- 82 pnt 798.04 —0.391
prove the accuracy in the computation of BE term. n=0 0.7351  1.382¢3) 78220 —0.346
n=2 0.7163 1.353(3) 779.38 —-0.338

B. Vacuum polarization 83 pnt 81286 —0.418

The results for the vacuum polarization corrections are n=0 0.7614  1.419(3) 796.05 —0.368
presented in Tables Il and IV. The loi#-values displayed n=2 0.7410  1.388¢3) 793.09 —0.360
in Table Ill are the results in the Uehling approximation DPM 0.8037  1.483(3) 802.46 —0.386

since the Z«) expansion is evaluated in this approximation.
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TABLE VI. The first-order splitting(using a Fermi nuclear In Table IV the VP corrections foZ=10 are presented.
charge distributionand the QED values for some different magne- The R,,,c values used for the nuclear electric charge distribu-
tization models. The values for Pb are computed using the valugion are given in the second column. The total VP correction
0.592 583(9)y [57] for the nuclear magnetic moment. Note that ~gnsists of the electric and magnetic Uehling p&rtdlumns
the finite magnetization effect on the QED values nearly vanisheghree and four the electric Wichmann-Kroll partcolumn
due to cancellations between _the vacuum polarization and the Se'fl“ve), and finally the “renormalized” Wichmann-Kroll cor-
energy parts. All values are given in eV. rection to the magnetic loop diagraeolumn siX. Here only
the total magnetic loop WK correction is listed since the
individual parts cannot be directly calculated using a point
16586+ pnt  2.1954 0.00890 —0.01965 —0.01076 huclear magnetization. The breakup and structure of this cor-

=0 21740 0.00853 —0.01923 —0.01070 rection is discussed further in the next subsection.

n
n=2 21702 0.00847 —0.01916 —0.01069

lon Model AE}

Fermi

VP SE VP+SE

C. Effects of extended nuclear magnetization on QED
18R’ pnt  2.7976 0.01393 —0.02902 —0.01509 g Q

n=0 2.7594 0.01324 —0.02822 —0.01498 The Wichmann-Kroll corrections to the magnetic loop

n=2 27526 001312 —0.02808 —0.01495 diagram EVs""), to the nuclear magnetic momen#)( and

pr— the combined effect of thoseEls"<™") are presented in
P pnt  1.2755 0.00759 —0.01496 —0.00737  Tapje V. For eactZ the calculations are performed using
n=0 12526 0.00715—-0.01444 —0.00729  (jfferent models for the nuclear magnetization distribution.
n=2 12486 0.00707 —0.01434 —0.00727  Here and later on we will use the notation “pnt” for the
209582+ pnt 51911 0.03170 —0.06196 —0.03026 point-dipole model, h=0" and “n=2" refer to the model
_ B B of Ref.[13] [see Eq.21)], and “DPM” stands for the dy-
n=0 5.0914 0.02981 —0.05971 —0.02990 . .
_ namical proton modgl16]. We have implemented the DPM
n=2 50739 002949 —0.05932 ~0.02983 using the same parameters as in R46] and scaled the
DPM 5.1233 0.03052 —0.06056 -—0.03004 . 9 . p - .
interaction to achieve the experimental nuclear magnetic mo-
ment.
) The individual WK corrections diverge in the point-dipole

model and can only be calculated with an extended nuclear
magnetization. Their combined contribution is, however, free
- from the divergent part and can thus be evaluated also for the
X(Za)?>—=In(Za)(Za)® (66)  point-dipole model. It is interesting to note the differemt
6 scaling laws for the constituents and the combined value.
and From the table one can see tHlfs"V" and eE}; 2" scale
with approximately the same power df, i.e., nearly qua-
@ ) 3 dratic in these units. The combined value scales fdst@?®)
Fipm =g m(Za) ~g(Za)*—gmIn(Za)(Za)®. (67)  and exhibits almost exactly the expected extra two powers of
Z in comparison with the Uehling parE{/s™V® in Table IV).
As can be seen from Table Ill, the agreement between the The Wichmann-Kroll correction to the nuclear magnetic
numerical results and th&Z¢) expansion is very good for moment has earlier been considered by Milstein and
low Z. Yelkhovsky [53,54. The point nucleus model was used

2 3 8 )
FVP—EL:§7T(ZQ’) —1—5|n(Za)(Za) +

TABLE VII. The total theoretical values are collected and compared with recent experimental results. The
QED values are taken from the=2 magnetization model in Table VI. For Pb we give the results using two
different experimental values for the magnetic moment, 0.592588(9)57] in the first row and
0.582 19(2 )y [57] in the second row. All values are given in eV.

lon AEFmi BW QED Total theory Experiment
16540%6"  2.19545)(27) —0.019559)2 —-0.0107 2.165(B5) 2.16456) °
18R/ 2.797615)(3) —0.03410) ® —0.0150 2.74010) 2.7192) ¢
207ppL+ 1.27551)(0) —0.053453)2 —0.0073 1.214663) 1.21592) ¢
1.25311)(0) —0.052553)2 —-0.0071 1.19363)
20982+ 5.19117)(3) -0.1077) °© —0.0298 5.054¢70) 5.08448) f
—0.06127) @ —0.0298 5.100270)
-0.0678 9 —0.0306 5.09338) 9
&Taken from Refs[9,56). €Taken from Ref[15].
bReferencd 3]. ‘Referencd?2].
‘Referencd4]. 9Results using the dynamical proton mod®ePM).

dreferencd5].
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(both for the charge and the magnetizajiamd the diver- TABLE VIII. Table of the nuclear parameters used in this work.
gency was regularized by introducing a small distance cutofffhe Fermi parametea is related to the skin thickness)(via the
(Ry). They further set the electron mass to zero and imposetglationt=4aln 3.

therefore also a large distance cutoff at the electron Compton

wavelength £.). With these conditions they obtained the !on a (fm) Rims (fim) m(pn)
logarithmic term 1650 0.571) 2 5.21(3) 2 4.1375)"°
X ®Re 0.52420) 5.35150) ¢ 3.18713)°
e=3_In R—e F(Za). (68  29%Pb 0.546100%  5.4972)2 0.5925889) ©
T\ 2098 0468392  55194)2 4.11062) ©
The functionF(Za) was evaluated to all orders iZ&) and  aFrom Ref.[11].
was shown to have a quadratic |&vedependence, bFrom Refs[3,58,59.
5 5 Default skin thickness.
F(Za)~(Za)[1+0.651Za)"]. (69 dFrom Ref.[60].

. . , ®From Ref.[57].
To check the consistency with our complete Wichmann-

Kroll calculations, we have, in addition to the full calcula- o )
tion, performed this cutoff regularization procedure. Whereadluclear charge and magnetic distribution is completely domi-
Milstein and Yelkhovsky considered only the logarithmic Nated by the effects on the first-order splitting.

part in their work, we obtain in our calculation also nonsin- Comparing the first-order values displayed in Table VI
gular terms beyond the logarithm. These terms are significargnd the Bohr-Weisskopf values of Table VI, it can be de-
and lead to a rather large deviatior-50%) between the duced that the Bohr-Weisskopf effect for the=0 andn=2
results when using experimental nuclear radii as the cutoffmodels is in fair agreement with earlier published results
Decreasing the radius will enhance the logarithmic term andl9,15] for Ho, Re, and Bi. For Pb there is, however, a large
the agreement between the results becomes increasingly befeviation between the result given in RE9](—53.4 meVj

ter. and the values presented here-22.9 meV for n=0
To compare the two different calculations we performedand-26.9 meV forn=2), indicating a magnetization lo-
fittings of our numerical values to the expression cated far out from the nuclear center. For that reason we have

also calculated the QED values for Pb assuming that the
Xe magnetization is located at the nuclear surface ¢). We
6_A(RC'ZO‘)+B(Za)m(R_C)' (70 obtain then 6.91 meV for the VP correction andl4.14
meV for the SE correction. This yields a total QED correc-

for different values o andR;. With such fittings we could tion of —7.23 meV, which corresponds only to a 2% differ-
verify the result of Milstein and Yelkhovsky with an accu- €nce between the shell model and the point-dipole model.
racy of about 2%. For lowZ (Z=<18), our result can be
expressed in the form
D. Comparison with experiment
2 In(ﬁ In order to obtain total theoretical values we have also
3 \Re collected different values of the Bohr-Weisskopf effect from
the literature. These are added to our first-order hyperfine
with C~—1.2, energies(using point nuclear magnetic momgnbgether
Table VI shows the effect of using an extended nucleawith the QED corrections in Table VII. Finally, the total
magnetization on the QED and the first-order values. Not@esults are compared with experiment.
that the first-order splitting is here calculated using a two- For Pb we give results for two different experimental val-
parameter Fermi model for the nuclear charge distributionues of the nuclear magnetic moment. In the first row we have
The Fermi model parameters and the nuclear magnetic massed the value 0.592 583(8), [57], which is also the one
ments used are displayed in Table VIII. used in Table VI. This value was obtained using NMR in a
From Table VI it is seen that the effect of an extendedliquid solution and the chemical shift correction is not taken
nuclear magnetization is very small for the total QED valuesinto account. The results in the second row are obtained by
This is due to a large cancellation between the VP and SHEsing the value 0.582 19(2), [57] from an optical pumping
corrections. This implies that not only the absolute effect butmeasurement.
also the relative effect is smaller for QED than for the first-  The first-order splitting has been calculated using the two-
order value. The total effect of an extended nuclear magneparameter Fermi model for the nuclear charge distribution,
tization on the hyperfine splitting is thus almost completelywith the parameters tabulated in Table VIII. There are two
determined by the effect on the first-order value. We havalifferent error bars assigned to the first-order value. The first
also investigated the sensibility of the QED corrections duas due to the experimental uncertainties in g and skin
to variations of the nuclear charge radius. Also in this casehickness values and the second error is obtained from the
there is a large cancellation between the VP and SE parts anohcertainty in the magnetic momefsee Table VII).
the resulting uncertainty is found to be unimportant in com- The Bohr-Weisskopf values are taken from Réfs56).
parison to the effect of varying the magnetization distribu-For Bi we also give results using the Bohr-Weisskopf value
tion. The conclusion is thus that the uncertainty due to theof Ref.[15] and results using the DPiast row). The Bohr-

+C|, (77

@
e=—(Za)?
T
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Weisskopf effect is difficult to calculate with high accuracy formed calculation$7—9]. Furthermore, when using differ-
since this requires a detailed knowledge of the nuclear struent extended magnetization distributions we find only small
ture. The uncertainties assigned to these values should theneariations in the QED values. Thus, we conclude that the
fore be considered only as the order of magnitude of theotally dominating theoretical uncertainty lies in the first-
expected errof9]. order hyperfine splitting value. These uncertainties are due to

The QED values are taken from time=2 magnetization the lack of detailed knowledge about the magnetization dis-
model in Table VI. Adding the first-order splitting, the Bohr- tribution, and also the experimental values of the magnetic
Weisskopf effect, and the QED value we obtain the totaldipole moments are not fully reliable. The moments that are
theoretical hyperfine splitting displayed in column five. Themeasured in a chemical solution may suffer from chemical
agreement between theory and experiment is fair eveshifts, but this source of error could be eliminated using a
though the uncertainties associated with the Bohr-Weisskophore accurate experimental method.
effect and the nuclear magnetic moment restrict the test of
the QED corrections.

ACKNOWLEDGMENTS

VI. CONCLUSIONS .
The authors are very grateful to W. Greiner, M. G. H.

We have considered the influence of the extended nuclegBustavsson, S. G. Karshenboim, A. |. Milstein, A. Seha
charge and magnetic moment distributions on the one-photov. M. Shabaev, and A. S. Yelkhovsky for enlightening dis-
QED corrections to thed hyperfine structure. This includes cussions. We want to thank V. M. Shabaev, in particular, for
the complete evaluation of the vacuum polarization correcthe suggestion to treat the magnetic-loop Wichmann-Kroll
tions, i.e., also the Wichmann-Kroll effect on both the part together with the VP correction to the measured nuclear-
magnetic-loop and electric-loop diagrams. magnetic moment. S.M.S. wants to thank the DAAD for fi-

In the point magnetic moment case, we find for the self-nancial support. The work of H.P. and I.L. was supported by
energy correction good agreement with other recently perthe Alexander von Humboldt Stiftung.

[1] W. Pauli, Naturwissenschaftei?, 741(1924). [18] N. M. Kroll and F. Pollock, Phys. Re\85, 876 (1952.
[2] I. Klaft, S. Borneis, T. Engel, B. Fricke, R. Grieser, G. Huber, [19] R. Karplus and A. Klein, Phys. Re85, 927 (1952.
T. Kuhl, D. Marx, R. Neumann, S. Schier, P. Seelig, and L. [20] D. E. Zwanziger, Phys. Rew.21, 1128(1961).

Volker, Phys. Rev. Lett73, 2425(1994. [21] S. J. Brodsky and G. W. Erickson, Phys. R&48 26 (1966.
[3] J. R. Crespo Lopez-Urrutia, P. Beiersdorfer, D. Savin, and K[22] J. R. Sapirstein, Phys. Rev. Lefd, 985(1983.
Widmann, Phys. Rev. Let?7, 826 (1996. [23] S. M. Schneider, G. Soff, and W. Greiner, Phys. Rev5G\

[4] J. R. Crespo-Lopez-Urrutia, P. Beiersdorfer, K. Widmann, B. 118(19949.
B. Birkett, A.-M. Martensson-Pendrill, and M. G. H. Gustavs- [24] S. G. Karshenboim, Z. Phys. 86, 11 (1996.

son, Phys. Rev. A7, 879 (1998. [25] K. Pachucki, Phys. Rev. A4, 1994 (1996.
[5] P. Seeliget al. (unpublishegl [26] M. Nio and T. Kinoshita, Phys. Rev. B5, 7267(1997).
[6] H. Persson, S. M. Schneider, G. Soff, W. Greiner, and 1.[27] E. Fermi, Z. Phys60, 320(1930.
Lindgren, Phys. Rev. LetZ6, 1433(1996. [28] H. Persson, S. Salomonson, P. Sunnergren, and I. Lindgren,
[7] S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. A Phys. Rev. Lett76, 204 (1996.
55, 1857(1997. [29] M. Gell-Mann and F. Low, Phys. Re®4, 350(1951).
[8] S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. Lett.[30] J. Sucher, Phys. Re07, 1448(1957).
78, 4914(1997). [31] P. Indelicato and P. J. Mohr, Theor. Chim. Acgf, 207
[9] V. M. Shabaev, M. Tomaselli, T. K, A. N. Artemyev, and (199)).
V. A. Yerokhin, Phys. Rev. A6, 252(1997). [32] N. J. Snyderman, Ann. Phy&\.Y.) 211, 43(199)).
[10] V. M. Shabaev, M. B. Shabaeva, I. |. Tupitsyn, V. A. Yer- [33] S. A. Blundell and N. J. Snyderman, Phys. Rev44 R1427
okhin, A. N. Artemyev, T. Kial, M. Tomaselli, and O. M. (1991).
Zherebtsov, Phys. Rev. B7, 149 (1998. [34] K. T. Cheng, W. R. Johnson, and J. Sapirstein, Phys. Rev. A
[11] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. 47, 1817(1993.
Data Tables36, 495 (1987). [35] I. Lindgren and J. Morrison,Atomic Many-Body Theory
[12] A. Bohr and V. F. Weisskopf, Phys. Re¥7, 94 (1950. (Springer, Berlin, 198R
[13] M. Finkbeiner, B. Fricke, and T. Kal, Phys. Lett. A176, 113 [36] I. Lindgren, H. Persson, S. Salomonson, and L. Labzowsky,
(1993. Phys. Rev. A51, 1167(1995.
[14] S. M. Schneider, J. Schnaffner, G. Soff, and W. Greiner, J[37] S. M. Schneider, doctoral thesis, Johann Wolfgang Goethe-
Phys. B26, L581 (1993. Universita, Frakfurt am Main, 1995unpublishegl
[15] M. Tomaselli, S. M. Schneider, E. Kankeleit, and T.Hu [38] S. Salomonson and P.s@r, Phys. Rev. A0, 5548(1989.
Phys. Rev. (51, 2989(1995. [39] H. Persson, I. Lindgren, and S. Salomonson, Phys. B8,
[16] L. N. Labzowsky, W. R. Johnson, S. M. Schneider, and G. 125(1993.
Soff, Phys. Rev. A61, 4597(1995. [40] H. Persson, doctoral thesis, t@borg University, Gteborg,

[17] J. Schwinger, Phys. ReV3, 416 (1948. 1993 (unpublishegl



PRA 58 RADIATIVE CORRECTIONS TO THE HYPERFINE. . . 1069

[41] P. Sunnergren, licenciate thesis, t€worg University, Gte- [51] J. Calmet, S. Narison, M. Perrottet, and E. de Rafael, Rev.
borg, 1996(unpublishegl Mod. Phys.40, 21 (1977.

[42] E. A. Uehling, Phys. Rew8, 55 (1935. [52] B. E. Lautrup and M. A. Samuel, Phys. Let2B, 114(1977).

[43] E. H. Wichmann and N. M. Kroll, Phys. Re%01, 843(1956. [53] A. I. Milstein and A. S. Yelkhovsky, Phys. Lett. B33 11

[44] H. Persson, I. Lindgren, S. Salomonson, and P. Sunnergren, (1989.

Phys. Rev. A48, 2772(1993. [54] A. S. Yelkhovsky and A. I. Milstein, Zh. Eksp. Teor. Fi9,
[45] W. Greiner, B. Miier, and J. RafelskiQuantum Electrody- 1068(199) [Sov. Phys. JETR2, 592(1991)].
namics of Strong Field&Springer-Verlag, Berlin, 1985 [55] S. G. Karshenboinfprivate communication
[46] M. Gyulassy, Nucl. Phys. 244, 497 (1975. [56] V. M. ShabaeWprivate communication
[47] G. Soff and P. J. Mohr, Phys. Rev. 38, 5066(1988. [57] P. Raghavan, At. Data Nucl. Data Tabk 189 (1989.
[48] A. N. Artemyev, V. M. Shabaev, and V. A. Yerokhin, Phys. [58] G. Nachtsheim, doctoral thesis, Institit fAingewandte Physik
Rev. A56, 3529(1997. der Universita Bonn, 1980(unpublishedl
[49] H. Persson, S. Salomonson, P. Sunnergren, and I. Lindgref59] L. K. Peker, Nucl. Data Shee&0, 137 (1987.
Phys. Rev. A56, R2499(1997). [60] W. R. Johnson and G. Soff, At. Data Nucl. Data Tak#3s

[50] J. Aldinset al, Phys. Rev. D1, 2378(1970. 405 (1985.



