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Radiative corrections to the hyperfine-structure splitting of hydrogenlike systems
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We present a complete calculation of the leading nonrecoil radiative corrections to the 1s hyperfine-structure
splitting of highly charged hydrogenlike ions. In particular, we have investigated how the radiative corrections
for ions with a high nuclear charge numberZ are affected by using an extended nuclear magnetization. We also
present the first complete evaluation of the Wichmann-Kroll part of the vacuum polarization correction to all
orders in (Za). To unambiguously incorporate this effect we have also calculated the vacuum polarization
correction to the measured nuclear magnetic moment. Total theoretical results are collected for the experimen-
tally interesting ions209Bi821, 207Pb811, 185Re741, and 165Ho661. Also the low-Z region is considered in order
to compare with the known part of the (Za) expansion.@S1050-2947~98!02608-0#

PACS number~s!: 31.30.Gs, 31.30.Jv, 31.15.Ar
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I. INTRODUCTION

The so-called satellite structure of atomic spectral lin
was an experimentally long known fact when Pauli first
signed it to the different orientations of the valence-elect
in the magnetic field of a nucleus@1#. Because of its relative
smallness when compared to other structures in atomic s
tra, this splitting became known as the hyperfine structur

As a consequence of recent modern experimental de
opments, ways are opened to study atoms in quite unna
states, e.g., highly charged heavy ions, in the hope to
cover new effects or to verify accepted theories in very
treme situations. Investigations of the atomic structure
very highly charged heavy ions are now feasible, for e
ample, at GSI~Germany!, LLNL ~USA!, and RIKEN ~Ja-
pan!.

The first measurement of the ground-state hyperfi
structure splitting of a one-electron ion with high nucle
charge numberZ was performed in 1993 at GSI. The wav
length of the hyperfine-structure splitting in209Bi821 was
found to belexpt.5243.87(4) nm@2#, where the error is
mainly due to the uncertainty in the ion velocity. This corr
sponds to a splitting energy ofDEexpt.55.0840(8) eV.

The high relative accuracy of the measurement in Bi i
plied a first testing scenario of QED corrections in the co
bined presence of a strong magnetic field and a strong C
lomb field of a heavy nucleus. This pioneering measurem
has been followed by similar experiments on other ions@3–
5# and several theoretical investigations on this subject@6–
10#.

In contrast to hydrogen, the nuclear structure plays
much more vital role for heavy ions. Compared to a prot
the size of a heavy nucleus withZ.80 is about five times
larger and in addition the Bohr radius of the 1s electron is
reduced by a factor of 1/Z. To theoretically obtain the correc
splitting between two hyperfine levels in H-like systems, t
first step is to calculate the dominating first-order hyperfi
interaction. The major nuclear size effect on this first-ord
calculation is the extended nuclear charge, which can
handled using realistic charge distributions~e.g., Fermi dis-
PRA 581050-2947/98/58~2!/1055~15!/$15.00
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tributions! @11#. A more limiting uncertainty comes from th
extended nuclear magnetization distribution, the Bo
Weisskopf effect@12#, which has received considerable in
terest lately@9,13–16#. For hydrogenlike Bi this effect is
20.107~7!eV @15#, which can be compared to the extend
nuclear charge effect of20.6482(7)eV.

Beyond these effects also the one-photon self-energy~SE!
and vacuum-polarization~VP! corrections have to be added
For low nuclear charge numbersZ it is appropriate to make
a series expansion in (Za) to obtain the leading radiative
corrections. The known part of the (Za) expansion for the
one-photon QED effects@17–26# can be summarized as

DEQED
~2! 5DEF

a

p
~FSE

~2!1FVP
~2!!, ~1!

whereDEF is the nonrelativistic~point-nucleus! Fermi split-
ting energy@27# and where

FSE
~2!5

1

2
1S ln 22

13

4 Dp~Za!1F2
8

3
ln2~Za!

1S 2
37

36
1

16

3
ln 2D ln~Za!1HSE

~2!G~Za!2 ~2!

and

FVP
~2!5

3

4
p~Za!1F2

8

15
ln~Za!1HVP

~2!G~Za!2. ~3!

The termsHSE
(2) and HVP

(2) have recently been evaluated
leading orders@23–26# and can be expressed as

HSE
~2!517.1221F S 25 ln 21

191

16 Dp ln~Za!G~Za!1•••

~4!

and

HVP
~2!52

8

15
ln 21

34

225
2

13

24
p ln~Za!~Za!1•••. ~5!
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1056 PRA 58P. SUNNERGRENet al.
From Lamb-shift calculations it is known that the (Za) ex-
pansion of the SE correction has increasingly worse con
gence properties for increasingZ. For the interesting region
of Z.80 the effective coupling constant to the Coulom
field is (Za).0.6 and no reasonable result can be obtain
from the badly alternating series expansion. A similar beh
ior shows up for the hyperfine structure.

In this paper we present a calculation of the leading n
recoil QED corrections~of order a), to all orders in (Za),
for the 1s state in hydrogenlike ions. The paper includes
detailed description of how we calculate the self-energy
the vacuum-polarization effects. To unambiguously incor
rate the latter effect we have also included the VP correc
to the measured nuclear magnetic moment. Furthermore
have investigated the effect of having an extended nuc
magnetization~as well as an extended nuclear charge dis
bution! when calculating the radiative corrections. In Sec
we discuss the first-order hyperfine interaction and in Se
III and IV the SE and the VP corrections are considered
the final section we present numerical results for some
perimentally interesting highly charged ions as well as
sults for lowZ where a comparison with the (Za) expansion
is meaningful.

II. FIRST-ORDER HYPERFINE INTERACTION

The first step in calculating the hyperfine-structure sp
ting of a given system is to evaluate the first-order pertur
tion theory result. The relativistic interaction Hamiltonian
given by~units where\5e05c51 will be used throughou
the paper!

Ĥ int5ea•A~r !, ~6!

where A(r ) denotes the nuclear magnetic vector potent
Considering only linear terms in the hyperfine interaction,
s electron is not affected by the angular variation~deforma-
tion! of the nuclear charge distribution. One can theref
assume a spherically symmetric nuclear Coulomb poten
in the Dirac equation. The electron spinor can then be se
rated into an angular and a radial part as

c~r !5S f ~r !xk
m~ r̂ !

ig~r !x2k
m ~ r̂ !

D 5
1

r S F~r !xk
m~ r̂ !

iG~r !x2k
m ~ r̂ !

D , ~7!

where f (r ) and g(r ) are the large and small radial comp
nents of the wave function, respectively, andxk

m( r̂ ) is the
ls-coupled spin-angular function. The Dirac equation th
leads to the coupled radial equations

d

dr
G~r !5

k

r
G~r !2@E2m2V~r !#F~r !, ~8!

d

dr
F~r !52

k

r
F~r !1@E1m2V~r !#G~r !. ~9!

For a point nucleus these equations can be solved ana
cally, but for a parametrized nuclear charge distribution, e
a Fermi-like distribution or a model-independent Fouri
Bessel expansion of the charge distribution, they have to
solved numerically.
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Since the interaction Hamiltonian acts on the nucle
wave function as well as on the electron wave function, o
has to consider the wave function of the coupled system
zeroth order this wave function is given by

CFmF

~0! ~r ,R!5 (
mI ,mj

S I j F

mI mj mF
Dc jmj

~0! ~r !f ImI

~0! ~R!,

~10!

where R denotes the nuclear coordinates andI , j , and F
denote the angular momentum quantum numbers of
nucleus, the electron, and the coupled system. Themi are the
magnetic projection quantum numbers. In the magne
point-dipole approximation, the vector potential is given
~the nuclear magnetic moment is denoted bym)

A~r !5
m3r

4pr 3
5gImN

I3r

4pr 3
, ~11!

where gI is the nuclearg factor, mN denotes the nuclea
magneton, andI is the nuclear spin operator. The first-ord
energy splitting between the ground-state hyperfine-struc
levels can, after angular integrations, be expressed as

DE152
egImN

4p

2

3
@F2~F211!2F1~F111!#2

3E r 2dr
f ~r !g~r !

r 2
. ~12!

Here,F15I 21/2 andF25I 11/2 are the total angular quan
tum numbers of the lower and upper hyperfine level, resp
tively. It should be noted that the effect of an extend
spherical nuclear charge distribution can be included in
Dirac equation above and thus enters in the radial functi
f (r ) andg(r ).

For later convenience we also transform the relevant fi
order corrections into momentum space. In momentum sp
the electron wave function is given by

ca~p!5
1

~2p!3/2E d3re2 ip•rca~r !5S P~p!xk
m~ p̂!

Q~p!x2k
m ~ p̂!

D .

~13!

The interaction potential in momentum space depends on
differenceq5p2p8, wherep and p8 are the outgoing and
incoming momenta, respectively. It has the form

A~q!5
1

~2p!3E d3re2 iq•rA~r !52
i

~2p!3

m3q

q2
. ~14!

The first-order hyperfine energy in momentum space is gi
by the integral
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EF,mF

1 5
2 ie

~2p!3

3E d3pd3p8CFmF

† ~p!
a•@m3~p2p8!#

~p2p8!2
CFmF

~p8!,

~15!

where we implicitly also assume an integration over nucl
coordinates, which in practice only leads to an angular f
tor. Also in the rest of the paper, when we have equati
involving both electron and nuclear quantities, the integ
tions over the nuclear coordinates will be implicitly assum
To separate out the angular dependencies of the denomi
in the Fourier transform of the vector potential, we use
general expansion of a function of cosq, where q is the
angle betweenp andp8,

V~p,p8,cosq!5(
l 50

`

~2l 11!Vl~p,p8!Cl~ p̂!•Cl~ p̂8!.

~16!

Here theCl tensor is related to the spherical harmonicsYm
l as

Cm
l 5A4p/(2l 11)Ym

l . The expansion coefficientsVl(p,p8)
are given by

Vl~p,p8!5
1

2E21

1

d~cosq!V~p,p8,cosq!Pl~cosq!,

~17!

wherePl(cosq) is the Legendre polynomial of orderl . For
the ground state we get contributions from thel 50 and the
l 51 terms only, and the hyperfine splitting can be written

DE152
egImN

4p

2

3
@F2~F211!2F1~F111!#

32
2

pE dpp2E dp8p82@p8V0~p,p8!

2pV1~p,p8!#P~p!Q~p8!, ~18!

where

V0~p,p8!5
1

2F 1

2pp8
lnS ~p1p8!2

~p2p8!2D G , ~19!

V1~p,p8!5
1

2F2
1

pp8
1

p21p82

4p2p82
lnS ~p1p8!2

~p2p8!2D G , ~20!

are the expansion coefficients. Note that we have here
sidered the point-dipole case, but when treating a more g
eral operator the integration in Eq.~17! is performed numeri-
cally.

One of the principal aims of this paper is to investiga
how the radiative corrections are affected by using an
tended nuclear magnetization. To achieve this in a strai
forward manner we have adopted a model for the magn
r
-
s
-
.
tor
e

s

n-
n-

x-
t-

tic

moment distribution suggested by Finkbeineret al. @13#. In
this model a spherically symmetric distribution is assum
for the nuclear magnetic momentM (R)5mw(R). The den-
sity function is given byw(R)5knRn for the interior of the
nucleus andw(R)50 for the outside of the nucleus,n is the
model parameter, andkn normalizes the distribution to the
experimental magnetic moment. The effective radial dep
dence, which replaces a factor 1/r 2 in Eq. ~11!, is then given
by

Veff~r !5
1

r 2S r

R0
D n13

, r<R0 ,

Veff~r !5
1

r 2
, r .R0 , ~21!

whereR0 is the nuclear radius. With this parametrization w
can consider different magnetic moment distributions, ra
ing from a homogeneous distribution (n50) up to the shell
model (n5`) where the magnetic moment is located at t
nuclear surface.

For bismuth we have further employed the dynamical p
ton model~DPM! of Labzowskyet al. @16#. In the DPM the
valence proton of the bismuth nucleus is treated as a D
particle bound in the Woods-Saxon potential of the le
core. The first-order hyperfine splitting is then given as
vector-photon exchange between the electron and the pro

DEDPM
1 5a@F2~F211!2F1~F111!#

~2k!~2K !

~4k221!~4K221!

3E r 2drE R2dR
x,

x.
2 @2 f k~r !gk~r !#

3@2 f K~R!gK~R!#, ~22!

where x, (x.) is the smallest~largest! of r and R. The
kappa values for the electron and proton are denoted bk
andK, respectively. The calculations become identical w
the corresponding ones for the two-electron Lamb shift@28#
with one of the electron wave functions replaced by the p
ton wave function.

In the rest of this paper, we will state all formulas an
equations assuming the point-dipole model. Introducing
extended nuclear magnetization only leads to minor mod
cations of the expressions.

III. THE SELF-ENERGY CORRECTIONS

The Feynman diagrams for the one-photon radiative c
rections can be divided into vacuum polarization@Figs. 1~b!
and 1~c!# and self-energy@Fig. 1~d! and 1~e!# parts. The ex-
pressions for the one-photon effects can be derived in a
mal way, using theS-matrix formalism and the Gell-Mann
Low-Sucher formula@29,30#,

DE5 lim
h→0

1

2
ih@3^auSh

~3!ua&23^auSh
~2!ua&^auSh

~1!ua&#,

~23!
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whereh is the adiabatic switching parameter. Here, the s
ond term represents products of disconnected lower-o
diagrams.

An alternative way of deriving the QED corrections in th
presence of an external vector potential, which gives exp
sions identical to those derived from Eq.~23!, is to perturb
the first-order Coulomb self-energy with the magnetic pot
tial, as summarized in@31#. In first-order in the magnetic
potential A(r ), the binding energy of the electronEa , the
reference wave functionua&, and the propagator for th
bound electronSF are modified as follows:

Ea→Ea1^auea•A~r !ua&1•••, ~24!

ua&→ua&1 (
EmÞEa

um&^muea•A~r !ua&
Ea2Em

1•••

5ua&1uda&1•••, ~25!

SF~x2 ,x1 ;z!→SF~x2 ,x1 ;z!

1E d3x3SF~x2 ,x3 ;z!ea•A~x3!SF~x3 ,x1 ;z!

1•••. ~26!

The wave-function modification term, originating from th
replacement Eq.~25!, takes the form

DESE
WF5(

t

^au~Sbou2dm!ut&^tuea•Aua&
Ea2Et

, ~27!

FIG. 1. Feynman diagrams representing the first-order inte
tion ~a! and the one-photon radiative corrections~b!–~e! to the hy-
perfine splitting. The triangle represents the magnetic interac
with the nucleus.
e
,

le

ss
-
er

s-

-

with EtÞEa . HereSbou denotes the unrenormalized boun
self-energy operator anddm the mass counter term.

The vertex correction, replacement Eq.~26!, leads to the
following expression:

DESE
VE5^aueL•Aua&, ~28!

whereL is the bound vector vertex function. For the bindin
energy term, replacement Eq.~24!, the formula reads as fol
lows:

DESE
BE5^auea•Aua&3^auS ]

]E
S~E! D

E5Ea

ua&. ~29!

To handle the divergences present in these three terms
expand the self-energy and the vertex operator in the nuc
Coulomb potential. The mass and charge divergences
then be isolated in the lowest-order terms and can be c
celed analytically between different diagrams. This pro
dure is done working in momentum space and using dim
sional regularization for the divergent integrals. The fin
higher-order terms are then calculated in coordinate spac
taking the difference between the full unrenormalized e
pression and the divergent parts in the expansion.

We start here by considering the self-energy and the v
tex operator using dimensional regularization. The expr
sions derived will be used later when discussing the calc
tion of the three different contributions. Note that in th
expressions forS(p) andLm(p,p8), the notationp (k) de-
notes the four-momentum whereas it indicates the abso
valuesp5upu (k5uku) elsewhere in the paper.

The free self-energy operator reads in Feynman gaug

S~p!52 i4paE d4k

~2p!4
gm

p”2k”1m

~p2k!22m2
gm

1

k2
, ~30!

which after mass renormalization can be written as@32#

c-

n

S ren
mass~p!5S~p!2dm52

a

4pH ~p”2m!FD121
r

12rS 11
22r

12r
ln r D G1

mr

12rS 12
223r

12r
ln r D J . ~31!
ge
ull
licit
x
let
e-

the
HereD52/«2gE1 ln 4p is the ultraviolet part of the charg
renormalization constant after dimensional regularization«
is the dimensional regularization parameter, andgE is Eul-
er’s constant. We have further introduced the dimension
variable

r5
m22E21p2

m2
52

~p”2m!~p”1m!

m2
, ~32!

which is positive definite for a bound electron. The ma
ss

-

renormalized self-energy Eq.~31! is finite in the infrared
limit since we only extract the ultraviolet part of the char
renormalization constant. Only when extracting the f
charge renormalization constant will there appear an exp
infrared divergence@32#. This is also the case for the verte
operator and it is therefore sufficient to cancel the ultravio
divergency, which vanishes due to the Ward identity, b
tween these two operators to obtain finite expressions.

Taking into account the energy dependence ofr, the de-
rivative of the free self-energy operator with respect to
energy is given by
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FIG. 2. Feynman graphs representing the wave-function correction. In order to isolate divergences, the internal self-energy
propagator is expanded in the nuclear Coulomb potential, which is denoted by a horizontal line with a cross. The divergent zero-
one-potential, and the mass-counter term are grouped together. The remaining many-potential term is finite.
ee

on

de-
x

]S~p!

]E
52

a

4pH g0FD121
r

12rS 11
22r

12r
ln r D G

1
p”

m2F2
2E

~12r!2S 32r1
2

12r
ln r D G

1
8E

m~12r!F11
1

12r
ln rG J . ~33!

This expression is needed for the computation of the fr
electron part of the binding-energy correction.
-

pa
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Finally, the vertex-correction operator for a free electr
is given by

Lm~p,p8!52 i4paE d4k

~2p!4
gn

p”2k”1m

~p2k!22m2

3gm

p” 82k”1m

~p82k!22m2
gn

1

k2
. ~34!

By using the coefficient functionsCi j , which are functions
of p, p8 and given by Feynman parameter integrals, as
fined in Ref. @32#, one finds the complete covariant verte
operator
Lm~p,p8!5
a

4p
$gm@4C242212m2C024pp8~C01C111C121C23!22p2~C111C21!22p82~C121C22!#

1p” pm@4~C111C21!#1p” pm8 @4~C01C111C121C23!#1p” 8pm@4~C01C111C121C23!#

1p” 8pm8 @4~C121C22!#2p”gmp” 8@2~C01C111C12!#2pm@4m~C012C11!#2pm8 @4m~C012C12!#%. ~35!
tum
d

in
ow-
nc-
ere
tion.
Here, the ultraviolet divergencyD is contained in the coef
ficient function C24. The zeroth component ofLm(p,p8)
enters the wave-function correction term and the vector
is needed for the calculation of the vertex correction par

To cancel the infrared and ultraviolet divergences, it
appropriate to organize the different terms into two differe
subgroups, wave-function corrections and vertex plus bi
ing energy corrections, depending on the structure of
divergences in the diagrams.

A. Wave-function corrections

The structure of divergences in the wave-function corr
tion is the same as for the first-order self-energy. We
therefore isolate and subtract the divergences by means
potential expansion of the self-energy operator into a f
self-energy operator~ZP!, a one-potential term~OP!, and a
finite many-potential part~MP!; see Fig. 2. The many
potential part is treated in coordinate space in a similar w
as in previous works@6,28,33,34#. The divergent zero- and
one-potential terms are grouped together with the m
counter term, and by the use of dimensional regulariza
rt

s
t
-
e

-
n
f a
e

y

ss
n

the finite parts can be extracted and calculated in momen
space@32#. The wave-function correction is thus calculate
as two separate parts,

DESE
WF5DEZP

WF,p1DEOP
WF,p1DEMP

WF,x5DEWF,p1DEMP
WF,x ,

~36!

wherep andx indicate that the calculations are performed
momentum and coordinate space, respectively. In the foll
ing we will consider the ket-state as the perturbed wave fu
tion, but there is of course also a symmetrical diagram wh
instead the bra-state is perturbed by the hyperfine interac

1. The zero- and one-potential parts

In terms of the perturbed wave function,

uda&5 (
EmÞEa

um&^muea•A~r !ua&
Ea2Em

, ~37!

the zero- and one-potential terms are given by
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DEWF,p5^auSzero~p!1Sone~p!2dmuda&

5^auS ren
mass~p!1L0~p,p8!Vc~p,p8!uda&. ~38!

Here,Vc(p,p8) is the nuclear Coulomb potential,S ren
mass(p) is

given by Eq.~31!, andL0(p,p8) is the zeroth component o
the vertex function Eq.~35!. The ultraviolet divergent parts
are cancelled by omitting the term proportional toD in these
expressions and the remainder of the charge renormaliza
constant vanishes when adding the zero- and one-pote
terms.

To discuss the calculation of the zero-potential part
first separate the tensor structure by writingS ren

mass(p)
5a(r)1p”b(r). For thea part, which is diagonal, the angu
lar integrations can be done straightforwardly, which yiel

C~p!5E dVca
†~p!g0cda~p!5PaPda2QaQda . ~39!
un
on
tial

e

For thep” term we use the explicit form

p”5S E 2s•p

s•p 2E D , ~40!

together with the identitys•pxk
m( p̂)52px2k

m ( p̂), to obtain

D~p!5E dVca
†~p!g0p”cda~p!

5E~PaPda1QaQda!1p~PaQda1PdaQa!. ~41!

The remaining radial integral

E dpp2@C~p!a~r!1D~p!b~r!# ~42!

is performed numerically using Gauss-Legendre quadrat
The one-potential part is given by the integral
ve

n for

to a

llowing
DEOP
WF,p5eE d3pd3p8ca

†~p!g0@g0f 1~p,p8,cosq!1p” f 2~p,p8,cosq!1p” 8 f 3~p,p8,cosq!1p”g0p” 8 f 4~p,p8,cosq!

1 f 5~p,p8,cosq!#Vc~p,p8!cda~p8!, ~43!

where thef i functions are abbreviations for the coefficient functions in Eq.~35!. The angular dependence of the wa
functions can be reduced to a dependence on the intermediate angle by utilizing the identity

1

2 j 11 (
m52 j

j

xk
m†~ p̂!xk

m~ p̂8!5
1

4p
Puk11/2u21/2~cosq!, ~44!

wherePuk11/2u21/2(cosq) is a Legendre polynomial. Performing the matrix multiplication and using this identity we obtai
the 1s state

4pca
†~p!g0L0~p,p8!cda~p8!5 f 1@PP81QQ8cosq#1 f 2@EPP81pQP81~pPQ81EQQ8!cosq#

1 f 3@EPP81p8PQ81~p8QP81EQQ8!cosq#1 f 4@E2PP81pEQP81p8EPQ81pp8QQ8

1~pp8PP81pEPQ81p8EQP81E2QQ8!cosq] 1 f 5@PP82QQ8cosq#, ~45!

where P5Pa(p) and P85Pda(p8) and similarly for Q. The expression for the one-potential part is thus reduced
three-dimensional integral overp, p8 and cosq, which is evaluated numerically.

2. The many-potential parts

The many-potential part is convergent and can be calculated straightforwardly in coordinate space from the fo
expression:

DEMP
WF,x52

a

p (
l 50

`

~2l 11!E kdkH(
n

^auam j l~kr3!Cl un&^nu j l~kr2!Clamuda&
Ea2En2sgn~En!k

2(
q

^auam j l~kr3!Cl uq&^qu j l~kr2!Clamuda&
Ea2Eq2sgn~Eq!k

2(
p,q

^auam j l~kr3!Cl up&^puVc~r 2!uq&^qu j l~kr1!Clamuda&
@Ea2Ep2sgn~Ep!k#@Ea2Eq2sgn~Eq!k#

3FJ , ~46!
tial
ro-
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y by
as

e-
whereun& denotes bound electron states andup&,uq& denote
free electron states, and where we have introduced the f
tion F defined by

F511@sgn~Ep!2sgn~Eq!#
k

Ep2Eq
. ~47!
c-
To compute this contribution, as well as the many-poten
parts of the vertex and binding energy corrections, we p
ceed as follows. The radial and the angular integrations
separated and the angular parts are treated analyticall
using the graphical angular momentum coupling scheme
discussed in@35–37#. To generate a complete set of interm
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FIG. 3. Feynman graphs representing the binding energy and vertex correction. In this part the divergences occur only in
potential terms, which are grouped together.DE1 denotes the first-order hyperfine splitting.
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diate bound- and free-electron states we use the sp
discretization method developed by Salomonson and O¨ ster
@38#. The resulting wave functions are then numerical d
crete valued functions in the chosenr grid. To integrate the
overlap with the spherical Bessel functions, which oscilla
strongly for high photon momentum, we interpolate the
merical states to continuous space using Lagrange polyn
als @39,40#. The radial integrations are thereby reduced
sums over the values at the given radial grid points time
weighting factor. The remainingk integration is handled nu
merically, using Gauss-Legendre and Gauss-Lagu
quadrature. This procedure is performed for several par
wave terms, the maximum number ofl depending on the
convergence properties of the given contribution. Finally,
extrapolate tol→`.

B. Vertex and binding energy corrections

The vertex and the binding terms, which are shown in F
3, are both infrared divergent and ultraviolet charge div
gent, but the divergences cancel between the two terms.
infrared divergences can explicitly be shown to cancel
tween these terms@41#. Furthermore, the ultraviolet charg
divergences will also cancel due to the Ward identity.
formulate an unambiguous regularization, we expand the
termediate bound-electron propagators in Eqs.~28! and ~29!
into free-electron propagators interacting zero, one, or
eral times with the nuclear potential. After separating out
canceling the infrared divergences@28#, the one-potentia
and many-potential terms are finite and can readily be ca
lated in coordinate space using basis-set procedures as
ce-

-

s
-
i-

o
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re
l-

e

.
-
he
-

n-

v-
d
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is-

cussed above. The zero-potential terms are grouped tog
and by the use of dimensional regularization the ultravio
divergences can be identified and canceled. The finite
mainder was evaluated in momentum space.

The calculation of the vertex and binding energy corr
tions are thus arranged as follows:

DESE
VE 1 BE5DEZP

VE,p1DEZP
BE,p1DEHO

VE 1 BE,x

5DEZP
VE 1 BE,p1DEHO

VE 1 BE,x , ~48!

where p and x again indicate momentum and coordina
space, respectively.

1. Zero-potential terms

The energy contribution from the zero-potential terms
given by

DEZP
VE 1 BE,p5^aueL~p,p8!•A~p,p8!ua&

1DE1^au
]

]E
S~p!ua&, ~49!

where DE1 is the first-order hyperfine splitting and whe
L(p,p8) and (]/]E)S(p) are given by Eqs.~35! and ~33!,
respectively. It is here implicitly understood that the canc
ing ultraviolet divergenceD is omitted in the two parts.

The binding energy correction,DEZP
BE,p , has the same in

tegral structure as the zero-potential part of the wa
function correction and it is evaluated in the same mann

To compute the energy shift induced by the vertex corr
tion one has to evaluate the following integral:
one for the
DEZP
VE,p5

2 ie

~2p!3E d3pd3p8CFmF

† ~p!g0@gf 1~p,p8,cosq!1p”pf 2~p,p8,cosq!1p”p8 f 3~p,p8,cosq!1p” 8pf 4~p,p8,cosq!

1p” 8p8 f 5~p,p8,cosq!1p”gp” 8 f 6~p,p8,cosq!1pf 7~p,p8,cosq!1p8 f 8~p,p8,cosq!#
m3~p2p8!

~p2p8!2
CFmF

~p8!,

~50!

where thef i functions are abbreviations for the coefficient functions of the vector part of Eq.~35!. Due to the vector structure
of this expression, we cannot reduce the angular part to some simple dependence on the intermediate angle as was d
zeroth component of the vertex function. By defining the functions

Vi~p,p8,cosq!5
f i~p,p8,cosq!

~p2p8!2
, ~51!
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and expanding those according to Eq.~16!, the angular dependencies can be separated. The angular integrations can
be performed analytically by using angular diagram techniques@35#. The final expression then contains the expansion inte
Eq. ~17! and the radial integrals overp andp8, which are performed numerically.

2. One- and many-potential parts

The remaining contribution beyond the zero-potential part of the vertex diagram is convergent and can be calcu
coordinate space using the following expression:

DEHO
VE,x52

a

p (
l 50

`

~2l 11!E kdkH(
m,n

^auam j l~kr3!Cl um&^muea•A~r2!un&^nu j l~kr1!Clamua&
@Ea2Em2sgn~Em!k#@Ea2En2sgn~En!k#

F

2(
p,q

^auam j l~kr3!Cl up&^puea•A~r2!uq&^qu j l~kr1!Clamua&
@Ea2Ep2sgn~Ep!k#@Ea2Eq2sgn~Eq!k#

FJ , ~52!

where um&,un& denotes bound-electron states andup&,uq& denotes free-electron states. Similarly, the higher-order bind
corrections can be expressed as

DEHO
BE,x5

a

p (
l 50

`

~2l 11!E kdkH ^auea•A~r !ua&(
m

^auam j l~kr2!Cl um&^mu j l~kr1!Clamua&

@Ea2Em2sgn~Em!k#2

2^auea•A~r !ua&(
p

^auam j l~kr2!Cl up&^pu j l~kr1!Clamua&

@Ea2Ep2sgn~Ep!k#2 J , ~53!
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where um& denotes bound-electron states andup& denotes
free-electron states. The evaluation scheme for these
contributions is discussed in the wave-function man
potential part.

IV. THE VACUUM-POLARIZATION CORRECTIONS

There are two different one-photon vacuum polarizat
diagrams that contribute to the hyperfine structure, see F
1~b! and 1~c!. The first is called the electric-loop correctio
~EL! since the polarization loop connects with the electri
potential of the nucleus. In the second diagram the loop c
nects with the nuclear magnetic vector potential and it
therefore called the magnetic-loop correction~ML !. In the
language of the self-energy corrections the EL part can
viewed as a wave-function modification and the ML part a
propagator modification. There is no binding energy te
since the first-order vacuum polarization is independen
the reference energyEa .

We have further considered the vacuum polarization c
rection to the measured nuclear magnetic moment.
Feynman diagram for this correction is shown in Fig. 4. T
contribution contains a divergence due to the singular 1r 2

dependence of the point-dipole hyperfine potential. The
vergence is also present in the Wichmann-Kroll part of
ML correction, and by combining the two effects we c
eliminate the divergence and obtain a finite contribution
should be pointed out that it is the unphysical nature of
nonrecoil point-dipole model that causes this divergence
it is not present when considering an extended nuclear m
netization model.
o
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n
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l
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e
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e
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e
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A. The electric-loop correction

The contribution from the electric-loop correction is give
by

DEVP
EL5(

t

^auVVPut&^tuea•AHFSua&
Ea2Et

1c.c.,

with EtÞEa . Here we have explicitly indicated the hype
fine potentialAHFS to separate it from other vector potentia
appearing later. The vacuum-polarization potentialVVP con-
sists of the charge renormalized Uehling part~Ue! ~one-
potential term! @42# and the Wichmann-Kroll part~WK!
~many-potential term! @43#. This contribution is readily
evaluated using the techniques described in Ref.@44#.

The electric-loop contribution can also be computed to
orders inVVP by including the vacuum polarization potenti
when solving the Dirac equation. The wave functions o
tained are then used when evaluating the first-order hyper
splitting.

FIG. 4. Feynman diagram representing the vacuum polariza
correction to the nuclear magnetic moment. The filled line indica
the nuclear wave function and the crossed circle represents th
teraction with the external homogeneous magnetic field.
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B. The magnetic-loop correction

For the magnetic-loop correction the expression reads

DEVP
ML52

4a

p (
l 50

`

~2l 11!E dk^auam j l~kr1!Cl ua&

3(
n

1

(
m

2
^nuam j l~kr2!Cl um&^muea•AHFSun&

En2Em
,

~54!

where the different signs at the sum symbols indicate that
loop contains only virtual electron-positron pairs. This e
pression can also be written in the compact form

DEVP
ML522(

n

1

(
m

2
^nuea•A1sum&^muea•AHFSun&

En2Em
,

~55!

where we have defined the potential from the 1s electron as

eA1s~r !52
2a

p (
l 50

`

~2l 11!Cl~ r̂ !E dk jl~kr !

3^auaj l~kr8!Cl~ r̂ 8!ua&. ~56!

By expanding the loop propagators in the nuclear Coulo
potential one obtains a zero-potential term, two one-poten
terms, and finally higher-order terms with two or mo
nuclear Coulomb interactions. Terms with an odd numbe
loop vertices will vanish due to Furry’s theorem. This im
plies that only the terms with an even number of nucl
Coulomb interactions will survive in the expansion.

The zero-potential part represents the Uehling correc
and is renormalized and calculated separately. We have c
puted the Uehling contribution in both coordinate and m
mentum space. In the momentum space calculation
evaluate the first-order splitting with the Uehling potentia

AUe~q!5P ren~q2!AHFS~q!, ~57!

whereP ren(q2) is the renormalized free-electron polarizatio
function @45#. The corresponding expression for the ener
contribution in coordinate space is given by@23#
e
-

b
al

f

r

n
m-
-
e

y

DEVP
ML-Ue52

egImN

4p

2

3
@F2~F211!2F1~F111!#

3F2
2

3

a

pE1

`

dzA12
1

2z2S 11
1

2z2D 1

z

3E
0

`

r 2dr
f ~r !g~r !

r 2
e22mrz@2mrz11#G ,

~58!

and is straightforward to evaluate.
The higher-order terms in the expansion are togeth

called the Wichmann-Kroll part and are evaluated by takin
the difference between the unrenormalized bound- and fr
loop expressions@28,44#. The first nonvanishing terms are
the two-potential terms~light-by-light scattering!, which
contain a spurious gauge-dependent piece that has to be
moved. This can be done by expanding the loop propagat
in partial waves (k) and restricting the expansion to a finite
number of terms@46–48#. The Wichmann-Kroll contribution
is given by the subtraction

DEVP
ML-WK 522H(

n

1

(
m

2
^nuea•A1sum&^muea•AHFSun&

En2Em

2(
p

1

(
q

2
^puea•A1suq&^quea•AHFSup&

Ep2Eq
J ,

~59!

whereun&,um& denote bound intermediate states andup&,uq&
denote the corresponding free states. The singular 1/r 2 de-
pendence of the point-dipole hyperfine potential leads to
vergent integrals in this expression. With an extended ma
netization the singularity is removed and the correction
finite. The divergence of the Wichmann-Kroll part is prese
also in the correction to the measured nuclear magnetic m
ment, and we can cancel the divergence by combining
two effects, as will be shown in the following subsection.

C. Vacuum polarization correction to the nuclear
magnetic moment

Similarly as for the electrong factor @49#, the Wichmann-
Kroll effect gives a correction to the measured nuclear ma
netic moment. This correction, as well as the correctio
DEVP

ML-WK given above, diverges in the point-dipole mode
TABLE I. The low-Z self-energy corrections given in terms of the functionFSE
(2)(Za). As a comparison,

the values of the (Za) expansion and the results of Ref.@8# are also given.

Z ESE
WF EZP

BE,p EZP
VE,p EHO

VE1BE,x Total SE F(Za) Ref. @8#

1 20.0110 7.7895 25.0795 22.2610 0.4380~1! 0.438 11 0.438 08
3 20.0519 5.6036 23.1124 22.1318 0.3075~1! 0.307 73 0.307 59
5 20.1049 4.5996 22.3008 22.0197 0.1741~1! 0.174 75 0.174 05
7 20.1651 3.9487 21.8226 21.9215 0.0395~1! 0.041 54 0.039 50
10 20.2639 3.2744 21.3779 21.7954 20.1628~1! 20.156 57 20.162 83
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TABLE II. The self-energy corrections for the high-Z region given in terms ofFSE
(2)(Za). In the last two

columns the results of Refs.@7,10# are given as a comparison. These values are scaled to our units by
the first-order values~from a uniform nuclear charge distribution! given in Table V.

Z ESE
WF EZP

BE,p EZP
VE,p EHO

VE1BE,x Total SE Ref.@10# Ref. @7#

67 23.8506 0.3309 20.7515 21.3894 25.6605 25.662 25.6625

75 25.0639 0.1818 20.9484 21.5295 27.3599 27.362

82 26.5211 0.0508 21.1896 21.7085 29.3683

83 26.7694 0.0316 21.2307 21.7393 29.7078 29.707 29.7111
er
el
en
e

Cutting off the small distances leads to a logarithmic div
gence in the cutoff radius. This logarithmic behavior is w
known from calculations of the anomalous magnetic mom
of the muon@50–52#, and also from earlier treatments of th
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nuclear magnetic moment correction@53,54#.
In an external homogeneous magnetic fieldB, described

by the vector potentialAmag52(r3B)/2, the correction to
the nuclear magnetic moment can be written as
d in the

ulating the
t-order
DmWK52
2mbare

gImImNuBu H(n

1

(
m

2
^nuea•Amagum&^muea•AHFSun&

En2Em
2(

p

1

(
q

2
^puea•Amaguq&^quea•AHFSup&

Ep2Eq
J , ~60!

wherembare is the bare magnetic moment, i.e., the unperturbed nuclear magnetic moment. This correction is include
measured nuclear magnetic moment

mexpt.5mbare1DmWK5mbare~11e!, ~61!

and cannot be separated out. In order to avoid double counting, the bare magnetic moment should be used when calc
hyperfine structure. Specifically, one should correct for the shift in the magnetic moment when calculating the firs
hyperfine splitting,

DEHFS
1, bare5DEHFS

1, expt.~12e!. ~62!

This opens the possibility to ‘‘renormalize’’ the point-dipole divergency in the corrections Eqs.~59! and ~62!. We therefore
employ the calculation scheme

DEVP
ML-WK-ren5DEVP

ML-WK 2DEHFS
1, expt.3e

522H(
n

1

(
m

2
^nuea•~A1s2bAmag!um&^muea•AHFSun&

En2Em
2(

p

1

(
q

2
^puea•~A1s2bAmag!uq&^quea•AHFSup&

Ep2Eq
J ,

~63!
are
the
s V
se
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last

27
99
70
31
28
whereb5DEHFS
1, expt./(gImImNuBu). With this scheme the 1/r 2

divergence is eliminated and we can obtain the combi
effect of the Wichmann-Kroll correction to the hyperfin
structure and to the nuclear magnetic moment. It should
pointed out that we take the effect of the corrected magn
moment into account only in the first-order splitting, since
would lead to uncontrolled higher-order effects when appl
to the QED corrections.

V. NUMERICAL RESULTS

Our results for the self-energy and vacuum-polarizat
corrections to the hyperfine structure can be divided i
different categories. LowZ are considered in order to com
pare with the known part of the (Za) expansion. The hyper
fine structure for several high-Z ions has recently been mea
sured and calculations for some of these systems are
presented here. In Tables I and II our SE results are gi
and the VP results are presented in Tables III and IV.
d

e
ic
t
d

n
o

lso
n

e

have further investigated how the SE and VP corrections
affected by using an extended nuclear magnetization for
high-Z systems and these results are displayed in Table
and VI. Finally, we collect recent theoretical results for the
high-Z ions and compare with experiment in Table VII.

All values, except those in Tables VI and VII, are pr

TABLE III. The low-Z Uehling vacuum-polarization correc
tions given in terms of the functionFVP

(2)(Za). The results of the
(Za) expansions are given in columns three and five, and in the
column the total numerical value is collected.

Z EVP
EL-Ue FEL(Za) EVP

ML-Ue FML(Za) Total num.

1 0.008 769 1 0.008 768 7 0.008 557 8 0.008 556 6 0.017 3
3 0.027 112 0.027 067 0.025 487 0.025 455 0.052 5
5 0.046 414 0.046 194 0.042 257 0.042 109 0.088 6
7 0.066 671 0.066 043 0.058 960 0.058 558 0.125 6
10 0.098 955 0.097 033 0.084 072 0.082 908 0.183 0
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TABLE IV. The vacuum polarization corrections given in terms of the functionFVP
(2)(Za). The Rrms

values used for the nuclear electric charge distribution are given in the second column~fm!. In columns three
and four the EL and ML Uehling parts are displayed. The Wichmann-Kroll part of the EL diagram is g
in column five followed by the ‘‘renormalized’’ ML Wichmann-Kroll contribution~from Table V!.

Z Rrms EVP
EL-Ue EVP

ML-Ue EVP
EL-WK EVP

ML-WK-ren Total VP

10 2.99 0.094 922 0.080 275 20.000 054 20.000 271 0.174 871

18 3.42 0.188 65 0.144 80 20.000 35 20.001 60 0.331 50

32 4.07 0.411 76 0.271 53 20.002 18 20.009 70 0.671 41

54 4.78 1.083 1 0.563 0 20.014 6 20.060 9 1.570 7

67 5.21 1.900 0.847 20.037 20.147 2.562

75 5.351 2.742 1.102 20.063 20.249 3.533

82 5.497 3.843 1.404 20.102 20.391 4.754

83 5.519 4.038 1.455 20.109 20.418 4.967
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sented in terms of the functionF, which is defined through

DE5DEF

a

p
F, ~64!

where DEF is the nonrelativistic, point-nucleus first-orde
hyperfine splitting. Note that this definition differs from th
one used in a previous paper@6#, where the relativistic and
extended nuclear charge effects were incorporated in
first-order value.

To make a consistent comparison with the (Za) expan-
sions we have performed the low-Z calculations~Tables I
and III! using a point nuclear-charge model. All other QE
corrections are evaluated with a uniform nuclear-charge
tribution with Rrms values as given in Table IV.

A. Self-energy

The self-energy corrections are presented in Tables I
II for the low- and high-Z regions, respectively. The total S
value is composed of various parts as described in the
Our values agree well with those of@8# and the discrepancie
between their values and values from an earlier calcula
presented in@6# are now absent. The earlier deviation w
originating from a small computational error in our evalu
tion of the termEZP

VE,p . The low-Z values presented in@8# are
still an order of magnitude more accurate than ours, so
cannot add more information about the (Za)-expansion
comparison than was done in their paper. The limitations
our computation come mainly from theEHO

VE1BE,x term where
a large number of partial-wave terms have to be calculate
order to decrease the extrapolation error. We should be
to increase our accuracy substantially if we could evalu
the slowly converging one-Coulomb potential vertex te
semianalytically as was successfully accomplished in
gj -factor case@49#. It would then also be necessary to im
prove the accuracy in the computation of theESE

WF term.

B. Vacuum polarization

The results for the vacuum polarization corrections
presented in Tables III and IV. The low-Z values displayed
in Table III are the results in the Uehling approximatio
since the (Za) expansion is evaluated in this approximatio
he
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The (Za) expansion for the VP corrections can be separa
in two parts@55#, corresponding to the electric@Fig. 1~b!#
and magnetic@Fig. 1~c!# diagrams

DEVP
~2!5DEF

a

p
~FVP-EL

~2! 1FVP-ML
~2! !, ~65!

where

TABLE V. The constituents and the ‘‘renormalization’’ of th
magnetic loop Wichmann-Kroll correction using different magne
zation models. For the point-dipole model only the combined eff
can be evaluated directly. All values~excepte) are given in units of
(a/p)EF and the number in parentheses indicates the power of

Z Model EVP
ML-WK e DEHFS

1, expt. DEVP
ML-WK-ren

10 pnt 433.48 20.000 271
n50 0.009 670 2.292(25) 433.30 20.000 261

18 pnt 440.81 20.001 60
n50 0.029 78 7.110(25) 440.40 20.001 53

32 pnt 465.52 20.009 70
n50 0.089 89 2.133(24) 464.46 20.009 16

54 pnt 546.18 20.060 9
n50 0.2638 5.898(24) 542.69 20.056 2

67 pnt 632.17 20.147
n50 0.4304 9.021(24) 625.14 20.134
n52 0.4203 8.841(24) 623.90 20.131

75 pnt 709.08 20.249
n50 0.5754 1.143(23) 698.36 20.223
n52 0.5614 1.120(23) 696.45 20.219

82 pnt 798.04 20.391
n50 0.7351 1.382(23) 782.20 20.346
n52 0.7163 1.353(23) 779.38 20.338

83 pnt 812.86 20.418
n50 0.7614 1.419(23) 796.05 20.368
n52 0.7410 1.388(23) 793.09 20.360
DPM 0.8037 1.483(23) 802.46 20.386
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FVP-EL
~2! 5

3

8
p~Za!2

8

15
ln~Za!~Za!21S 214

225
2

8

15
ln 2D

3~Za!22
p

6
ln~Za!~Za!3 ~66!

and

FVP-ML
~2! 5

3

8
p~Za!2

4

5
~Za!22

3

8
p ln~Za!~Za!3. ~67!

As can be seen from Table III, the agreement between
numerical results and the (Za) expansion is very good fo
low Z.

TABLE VI. The first-order splitting ~using a Fermi nuclear
charge distribution! and the QED values for some different magn
tization models. The values for Pb are computed using the v
0.592 583(9)mN @57# for the nuclear magnetic moment. Note th
the finite magnetization effect on the QED values nearly vanis
due to cancellations between the vacuum polarization and the
energy parts. All values are given in eV.

Ion Model DEFermi
1 VP SE VP1SE

165Ho661 pnt 2.1954 0.008 90 20.019 65 20.010 76
n50 2.1740 0.008 53 20.019 23 20.010 70
n52 2.1702 0.008 47 20.019 16 20.010 69

185Re741 pnt 2.7976 0.013 93 20.029 02 20.015 09
n50 2.7594 0.013 24 20.028 22 20.014 98
n52 2.7526 0.013 12 20.028 08 20.014 95

207Pb811 pnt 1.2755 0.007 59 20.014 96 20.007 37
n50 1.2526 0.007 15 20.014 44 20.007 29
n52 1.2486 0.007 07 20.014 34 20.007 27

209Bi821 pnt 5.1911 0.031 70 20.061 96 20.030 26
n50 5.0914 0.029 81 20.059 71 20.029 90
n52 5.0739 0.029 49 20.059 32 20.029 83
DPM 5.1233 0.030 52 20.060 56 20.030 04
e

In Table IV the VP corrections forZ>10 are presented
TheRrms values used for the nuclear electric charge distrib
tion are given in the second column. The total VP correct
consists of the electric and magnetic Uehling parts~columns
three and four!, the electric Wichmann-Kroll part~column
five!, and finally the ‘‘renormalized’’ Wichmann-Kroll cor-
rection to the magnetic loop diagram~column six!. Here only
the total magnetic loop WK correction is listed since t
individual parts cannot be directly calculated using a po
nuclear magnetization. The breakup and structure of this
rection is discussed further in the next subsection.

C. Effects of extended nuclear magnetization on QED

The Wichmann-Kroll corrections to the magnetic loo
diagram (EVP

ML-WK), to the nuclear magnetic moment (e), and
the combined effect of those (EVP

ML-WK-ren) are presented in
Table V. For eachZ the calculations are performed usin
different models for the nuclear magnetization distributio
Here and later on we will use the notation ‘‘pnt’’ for th
point-dipole model, ‘‘n50’’ and ‘‘ n52’’ refer to the model
of Ref. @13# @see Eq.~21!#, and ‘‘DPM’’ stands for the dy-
namical proton model@16#. We have implemented the DPM
using the same parameters as in Ref.@16# and scaled the
interaction to achieve the experimental nuclear magnetic
ment.

The individual WK corrections diverge in the point-dipo
model and can only be calculated with an extended nuc
magnetization. Their combined contribution is, however, fr
from the divergent part and can thus be evaluated also for
point-dipole model. It is interesting to note the differentZ
scaling laws for the constituents and the combined va
From the table one can see thatEVP

ML-WK and eEHFS
1, expt. scale

with approximately the same power ofZ, i.e., nearly qua-
dratic in these units. The combined value scales faster~'Z3)
and exhibits almost exactly the expected extra two power
Z in comparison with the Uehling part (EVP

ML-Ue in Table IV!.
The Wichmann-Kroll correction to the nuclear magne

moment has earlier been considered by Milstein a
Yelkhovsky @53,54#. The point nucleus model was use

e

s
lf-
s. The
two
TABLE VII. The total theoretical values are collected and compared with recent experimental result
QED values are taken from then52 magnetization model in Table VI. For Pb we give the results using
different experimental values for the magnetic moment, 0.592 583(9)mN @57# in the first row and
0.582 19(2)mN @57# in the second row. All values are given in eV.

Ion DEFermi
1 BW QED Total theory Experiment

165Ho661 2.1954~5!~27! 20.0195~59!a 20.0107 2.1652~65! 2.1645~6! b

185Re741 2.7976~15!~3! 20.034~10! a 20.0150 2.749~10! 2.719~2! c

207Pb811 1.2755~1!~0! 20.0534~53!a 20.0073 1.2148~53! 1.2159~2! d

1.2531~1!~0! 20.0525~53!a 20.0071 1.1934~53!

209Bi821 5.1911~7!~3! 20.107~7! e 20.0298 5.0542~70! 5.0840~8! f

20.061~27! a 20.0298 5.1002~270!
20.0678 g 20.0300g 5.0933~8! g

aTaken from Refs.@9,56#. eTaken from Ref.@15#.
bReference@3#. fReference@2#.
cReference@4#. gResults using the dynamical proton model~DPM!.
dReference@5#.
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~both for the charge and the magnetization! and the diver-
gency was regularized by introducing a small distance cu
(Rc). They further set the electron mass to zero and impo
therefore also a large distance cutoff at the electron Comp
wavelength (|e). With these conditions they obtained th
logarithmic term

e5
2a

3p
lnS |e

Rc
DF~Za!. ~68!

The functionF(Za) was evaluated to all orders in (Za) and
was shown to have a quadratic low-Z dependence,

F~Za!'~Za!2@110.657~Za!2#. ~69!

To check the consistency with our complete Wichman
Kroll calculations, we have, in addition to the full calcul
tion, performed this cutoff regularization procedure. Wher
Milstein and Yelkhovsky considered only the logarithm
part in their work, we obtain in our calculation also nons
gular terms beyond the logarithm. These terms are signific
and lead to a rather large deviation ('50%) between the
results when using experimental nuclear radii as the cut
Decreasing the radius will enhance the logarithmic term
the agreement between the results becomes increasingly
ter.

To compare the two different calculations we perform
fittings of our numerical values to the expression

e5A~Rc ,Za!1B~Za!lnS |e

Rc
D , ~70!

for different values ofZ andRc . With such fittings we could
verify the result of Milstein and Yelkhovsky with an accu
racy of about 2%. For lowZ (Z<18), our result can be
expressed in the form

e5
a

p
~Za!2F2

3
lnS |e

Rc
D1CG , ~71!

with C'21.2.
Table VI shows the effect of using an extended nucl

magnetization on the QED and the first-order values. N
that the first-order splitting is here calculated using a tw
parameter Fermi model for the nuclear charge distributi
The Fermi model parameters and the nuclear magnetic
ments used are displayed in Table VIII.

From Table VI it is seen that the effect of an extend
nuclear magnetization is very small for the total QED valu
This is due to a large cancellation between the VP and
corrections. This implies that not only the absolute effect
also the relative effect is smaller for QED than for the fir
order value. The total effect of an extended nuclear mag
tization on the hyperfine splitting is thus almost complet
determined by the effect on the first-order value. We ha
also investigated the sensibility of the QED corrections d
to variations of the nuclear charge radius. Also in this c
there is a large cancellation between the VP and SE parts
the resulting uncertainty is found to be unimportant in co
parison to the effect of varying the magnetization distrib
tion. The conclusion is thus that the uncertainty due to
ff
d
n

-

s

-
nt

ff.
d
et-

r
te
-
.
o-

.
E
t

-
e-

e
e
e
nd
-
-
e

nuclear charge and magnetic distribution is completely do
nated by the effects on the first-order splitting.

Comparing the first-order values displayed in Table
and the Bohr-Weisskopf values of Table VII, it can be d
duced that the Bohr-Weisskopf effect for then50 andn52
models is in fair agreement with earlier published resu
@9,15# for Ho, Re, and Bi. For Pb there is, however, a lar
deviation between the result given in Ref.@9#~253.4 meV!
and the values presented here (222.9 meV for n50
and226.9 meV for n52), indicating a magnetization lo
cated far out from the nuclear center. For that reason we h
also calculated the QED values for Pb assuming that
magnetization is located at the nuclear surface (n5`). We
obtain then 6.91 meV for the VP correction and214.14
meV for the SE correction. This yields a total QED corre
tion of 27.23 meV, which corresponds only to a 2% diffe
ence between the shell model and the point-dipole mode

D. Comparison with experiment

In order to obtain total theoretical values we have a
collected different values of the Bohr-Weisskopf effect fro
the literature. These are added to our first-order hyper
energies~using point nuclear magnetic moment! together
with the QED corrections in Table VII. Finally, the tota
results are compared with experiment.

For Pb we give results for two different experimental va
ues of the nuclear magnetic moment. In the first row we h
used the value 0.592 583(9)mN @57#, which is also the one
used in Table VI. This value was obtained using NMR in
liquid solution and the chemical shift correction is not tak
into account. The results in the second row are obtained
using the value 0.582 19(2)mN @57# from an optical pumping
measurement.

The first-order splitting has been calculated using the tw
parameter Fermi model for the nuclear charge distributi
with the parameters tabulated in Table VIII. There are t
different error bars assigned to the first-order value. The fi
is due to the experimental uncertainties in theRrms and skin
thickness values and the second error is obtained from
uncertainty in the magnetic moment~see Table VIII!.

The Bohr-Weisskopf values are taken from Refs.@9,56#.
For Bi we also give results using the Bohr-Weisskopf va
of Ref. @15# and results using the DPM~last row!. The Bohr-

TABLE VIII. Table of the nuclear parameters used in this wor
The Fermi parametera is related to the skin thickness (t) via the
relation t54a ln 3.

Ion a ~fm! Rrms ~fm! m(mN)

67
165Ho 0.57~1! a 5.21~3! a 4.132~5! b

75
185Re 0.524~20! c 5.351~50! d 3.1871~3! e

82
207Pb 0.546~10! a 5.497~2! a 0.592 583~9! e

83
209Bi 0.468~39! a 5.519~4! a 4.1106~2! e

aFrom Ref.@11#.
bFrom Refs.@3,58,59#.
cDefault skin thickness.
dFrom Ref.@60#.
eFrom Ref.@57#.



cy
ru
e

th

r-
ta
he
ve
o
t

le
ot
s
ec
e

lf
e

-
all
the
t-
e to
is-

etic
are
cal

a

H.

s-
for
roll
ar-

fi-
by

1068 PRA 58P. SUNNERGRENet al.
Weisskopf effect is difficult to calculate with high accura
since this requires a detailed knowledge of the nuclear st
ture. The uncertainties assigned to these values should th
fore be considered only as the order of magnitude of
expected error@9#.

The QED values are taken from then52 magnetization
model in Table VI. Adding the first-order splitting, the Boh
Weisskopf effect, and the QED value we obtain the to
theoretical hyperfine splitting displayed in column five. T
agreement between theory and experiment is fair e
though the uncertainties associated with the Bohr-Weissk
effect and the nuclear magnetic moment restrict the tes
the QED corrections.

VI. CONCLUSIONS

We have considered the influence of the extended nuc
charge and magnetic moment distributions on the one-ph
QED corrections to the 1s hyperfine structure. This include
the complete evaluation of the vacuum polarization corr
tions, i.e., also the Wichmann-Kroll effect on both th
magnetic-loop and electric-loop diagrams.

In the point magnetic moment case, we find for the se
energy correction good agreement with other recently p
r,
.

K

B
s-

I

. A

et

r-

cl

, J

G

c-
re-
e

l

n
pf
of

ar
on

-

-
r-

formed calculations@7–9#. Furthermore, when using differ
ent extended magnetization distributions we find only sm
variations in the QED values. Thus, we conclude that
totally dominating theoretical uncertainty lies in the firs
order hyperfine splitting value. These uncertainties are du
the lack of detailed knowledge about the magnetization d
tribution, and also the experimental values of the magn
dipole moments are not fully reliable. The moments that
measured in a chemical solution may suffer from chemi
shifts, but this source of error could be eliminated using
more accurate experimental method.
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