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Relativistic many-body calculations of energy levels, hyperfine constants, and transition rates
for sodiumlike ions, Z=11-16
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All-order relativistic many-body calculations of removal energies are carried ousf@8,,, 3P, 3da,
3ds,, and 4 states of sodium and sodiumlike ions with nuclear chaiyés the range 12—16. Hyperfine
constants are evaluated for each state, and reduced dipole matrix elements are determinggd3esy 3p;/-
3s, 3d3/-3P1/2, 3d3/-3P3, 3ds-3P30, 4S-3p1n, and &-3pg), transitions. The calculations include single
and double excitations of the Hartree-Fock ground state to all orders in perturbation theory. Corrections to
energies are made for a dominant class of triple excitations. The Breit interaction, with all-order correlation
corrections, is evaluated. Reduced-mass and mass-polarization corrections are included to third order in per-
turbation theory. The predicted removal energies, when corrected for the Lamb shift, agree with experiment at
the 1-20-cm? level of accuracy for all states considered. Theoretical fine-structure intervals agree with
measurements to about 0.3% fqp 3tates and to about 3% fod3states. Theoretical hyperfine constants and
line strengths agree with precise measurements to better than [(638&0-294{®8)01308-7

PACS numbg(s): 31.25.Jf, 31.15.Dv, 32.10.Fn, 32.70.Cs

[. INTRODUCTION calculations: It is also of interest to determine the point in
the sodium isoelectronic sequence beyond which all-order
. %F\Iculations are no longer necessary and third-order MBPT
In the present paper, we calculate removal energies an . )
gives 99% or more of the correlation energy. In this paper,

hyperfine constants fors3 3py,, 3ps2, 3dsp,, 3ds,, and S
4s states of sodiumlike ions with nuclear charges in the o US€ the all-order SD approximation to study these ques

- : tions in low-Z sodiumlike ions.
ranggZ—ll—le. In addition, we calculate reduced dipole To evaluate the higher-order correlation corrections, we
matrix elements for B4,,-3s, 3p3>-3S, 45-3P1/2, 4S-3P30,

30, 3p 3d,-3p and Rlg,3pa, electric-dipole solve the relativistic SD equations, which are linearized
3/2'__ 1/2» 3/279M3/21 ) 5/279°M3/2 - - led-cl r sinale- ion h in-
transitions. These calculations are based on the relat|V|st|COUp ed-cluster single-doubl€CSD equation6] that

. : . . Cude single and double excitations of the DHF wave func-
E"”E"?'d‘;”tf"e(zs'? e(iudanolfns;sed |r(1jF\(’:djl] todsfcud%/ I%atnd tion to all orders in perturbation theory. In our calculations,

€', in Ref. [2] to study LI, a and %S, and in 4g] O corrections are also made for a dominant class of triple ex-
study Cs. The present calculations complement, and in pa

d lier third-ord lativisti bod h Etitations. The resulting energies and matrix elements are
supersede, earlier third-order refaivistic many-body Perture., ,5iete through third order in perturbation theory, and in-
bation theory(MBPT) calculations[4], in which removal

. £33 d tat ¢ sodiumlike i clude important contributions from fourth and higher orders.
energies of 8, 3py;;, and Iy, states of sodiumlike ions The Breit interaction, which is very sensitive to correlation,

were evaluated throughout the sodium isoelectronic seg inqjuded by calculating the matrix element of the two-

quence. FOZ <16, the differences between the MlBPT cal- hody Breit operator using SD wave functions: it, therefore,
culations and measured removal energiedQ0 cm ) are  jncjudes Coulomb correlation corrections to all orders in per-
due to omitted correlation corrections, while for higiethe  rpation theory. Mass-polarization corrections are treated to
differences between theory and experiment were dominateghird order in perturbation theory following the procedure
by omitted QED correctiongs]. described in Ref{4].

The “experimental” correlation energy of thesg, state We also use the SD wave functions to evaluate hyperfine
in Na1 is found to be about 1500 cm after subtracting the constants for the states considered, &id reduced matrix
Dirac-Hartree-Fock(DHF) energy, the Breit energy, the elements for transitions between these states. The present
reduced-mass correction, and the mass-polarization correc-
tion from the experimental ionization energy. The DHF en-

ergy is precisely known and the other three corrections aréitpg thirg-order correlation energy for sodium given above differs
tiny for Nal. The second- and third-order correlation ener-f.om the value given in Ref4], which was obtained by summing

gies are 1293 and 80 cm, respectively, from which one partial waved =0-4 and omitting contributions from thes4 core
infers that 127 cm' come from fourth and higher orders. shell. To obtain more accurate values, we recalculated the third-
Since the third-order MBPT correlation energy disagreesrder energies along the isoelectronic sequence including all shells,
with the “experimental” correlation energy by 8.5% for the summed partial waveb=0-6, and extrapolated the partial-wave
3s state of Na, it is clearly of interest to carry out all-order sequence to obtain tHe=7 remainder.
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calculations supersede previous third-order MBPT calcula- A. Coupled equations for singles and doubles
tions of hyperfine constants for sodium], which were ac- The coupled equations for the core excitation coefficients
curate to about 3%, and third-order calculations @f3s are[1]
and 4s-3p transition rate$8], which differ from recent mea-
surements in sodiurf®] by about 1%. ~ ~
For neutral sodium, previous SD calculation,10], (€a— em)PmaZ% gmbarpnb"';r OmbniPnrab
CCSD calculation$11], and configuration-interaction calcu-
lations[12], all give values for hyperfine constants and tran- ~
sition rates that agree with experiment to within a fraction of - g’n 9bcanPmnbes 2
a percent. The previous SD and the CCSD calculations also
give removal energies in close agreement with experiment.(e +ep—em—€n)p
The present SD calculations give removal energies for @ > ~m ~"Fmnab
Na! accurate to better then 2 ¢rh and give hyperfine con-
stants and dipole line strengths that agree with precise ex- :gmnab’L% gcdabpmnchF% OmnrsPrsab
periments to better than 0.3%. The SD method also gives
removal energies for sodiumlike iond=12-16, that agree -~ o~
with experiment at the level 1-20 c¢rh assuming that + zr: gmnrbpra_}; gcnabme“L% GenrbPmrac
Lamb-shift corrections are made fors tates. From the
comparison of the present all-order correlation energies with
previous third-order calculations, we find that fourth- and +
higher-order corrections are less than 1% of the correlation

energy forZ>20. The present calculations bridge the gapHere ¢; is the single-body DHF energy for the stateThe

fromll\.|a|_, where c_orrelation correction; are much larger thaf‘quantitiesgijm are two-body Coulomb matrix elements, and
relativistic corrections, to 8I, where higher-order correla- —

ti fi h ler th lativisti Jijki = Yijki — Yijik are antisymmetrized Coulomb matrix ele-
t:gzsco”ec lons are much smaller than relalivisic CorreéCipants  Antisymmetrized excitation amplitudes are desig-

nated byf;im =pijx — Pijik - The correlation correction to the
core energy is given in terms of the core excitation ampli-

a—b

: )

m«—n

IIl. METHOD tudes by
The relativistic SD equations were discussed at length in
Refs.[1-3], so we will give only a brief reprise of the equa- _1 ~
tions here. In the SD approach, the wave functibp of an OF. zm%b GabmrPmnab- @

atomic system with one valence electron is represented as
The equations governing the valence excitation amplitudes
are

Vo=|1+ a'a,+1 Talapa, N = ~
v ;a Pmaima 2m;abpmnatﬁm n“b%a (€,— €m™ 5Ev)va_% gmbvnpnb"'%:r OmbnrPnrub

T t 4t
+ a.a,+ a.a.aza,|®,, (1 ~
E Pmv m*v n;apmnva m“n“a“v v ( ) _gn gchnpmana (5)

m#v

where®, is the lowest-order atomic state function, which is (e, + €,— €m— €1+ SE,) P
taken to be thdrozen-coreDirac-Hartree-Fock wave func-
tion of a statev. In this equationaiT anda; are creation and
annihilation operators, respectively, for statélere and be-
low, we use the convention that indices at the beginning of
the alphabetd,b, .. .), refer to occupied core states, those +
in the middle of the alphabet(,n, ...), refer to excited
states, an@ andw refer to valence orbitals. We use indices
i, j, k, andl to describe arbitrary orbitals.

The coefficientp,, and pmnap @re amplitudes for single
and double excitations from the core, respectivgly; is the
amplitude for a single excitation of the valence electron, andvheresE, is the correlation correction to the valence energy
pPmma IS the amplitude for excitation of the valence electronfor the statev, which is given in terms of the excitation
and a core electron. Substituting the wave funcfibninto ~ amplitudes by
the many-body Schdinger equation, where the Hamiltonian
is taken to be the relativistino-pair Hamiltonian[13] with
Coulomb interactions, one obtains the coupled equations for _3% = ~ ~
single- and double-excitation coefficients written down in OB, % GoaumPma™ mZa:b GabomPmuab™* r%;a GubmPmmt
Sec. Il A. (7

=Ommwbt % JcdvbPmncd™ % ImnrsPrsuvb

Z gmnrbpru_g gcnubpmc"'; JenrbPmroc

veb
{ : (6)

m«n
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To solve Eqs(2)—(7), an angular momentum decomposi- B. Triple excitations and perturbation theory
tion is first carried out, and the equations are then reduced to
coupled equations involving single-body radial wave func- One can show that the core correlation eneéf; ob-
tions only. The radial wave functions for statesm, n, a,  tained from Eq.(4) is complete through third order in per-
b, ... are taken from &8-spline basis sdftl4], and the re- turbation theory. The valence correlation enegdfy, given
sulting coupled radial equations are solved iteratively. Then Eq. (7), by contrast, includes only part of the third-order
core equations2) and (3) are solved first, and the valence correlation energy. Indeed, the third-order contribution to the
equations(5)—(7) are then solved successively for each ofenergy obtained by iterating Eq2) and(3) and(5) and(6)
the six states being considered using the converged core amnce, substituting into Eq(7), and omitting second- and
plitudes. fourth-order terms, is

5E(3)= E GabvmYcdablImucd Gabvm9morsrsab YabvmYecorb9mrac
v

mabcd (€ap— €ym) (€cd— €my)  mabrs (€ap— €ym) (€ap— €rs)  maber (€ap— €ym)(€ac™ €mr)

+ 2 JabvmIemradorbe GJyvavmImbnOnrab 9vavmIbcarOmnbe

mabcr (€ap— €;m)(€pc— €yr)  mabnr (€a— €m)(€ap— €nr)  maben (€a— €m) (€pc— Emn)

+ E JvbmrIcdvbImned JvbmrImnrGrsub JvbmrenrbImruc

mnbed (€,5— €mn) (€cd™ €mn)  minbrs (€yb— €mn) (€,p— €rs)  minbre (€,5~ €mn) (€4~ €my)

JubmrIemrOnrbe
L
mnbre (€,b— €mn) (€pc— €nr)

®

which differs from the results of third-order MBPT given in REf5]. The missing third-order terms are accounted for entirely
by adding triple excitations of the form

1 totat
6 2 Pmnrab@m@ndy a,a8,8,?P,
abmnr

to the right-hand side of the wave function in Ef). The contribution of this term to the valence energy is

E, extra:% E JabmrPmmyvab - 9
mnab

When this term is evaluated to lowest nonvanishing oftlerd ordey, it leads to the following contribution to the correlation
energy:

3 Gabmrcma Invbe GabmnvasImsb Gabm3cubyImnca

E()
mnabc (€ap— €mn) (€pc— €ny)  mnabs(€ap— €mn) (€yp— €ms)  mnabc (€ab— €mn)(€ca™ €mn)

v extra:

+ E JabmlImusuInsba Jabm@mmusYusba Jabmlcvba9mmoc
mnabs (€ab— €mn) (€ab— €ns)  mnabs(€ap— €mn)(€ap— €,s)  mnabe (€ap— €mn) (€, €mn)
+ 2 Gabmdcma@unoc + E Jabm@mnadusub (10)

mnabc (€ap— €mn)(€c— €n)  mnabs(€ap— €mn) (€p— €5)

The sumsE®+EB) - gives the entire third-order valence [1], where it was applied to determine hyperfine constants
correlation energy[15]. In our final tabulations, we add and transition matrix elements for Li and BeHere, we
Efgxtra to the SD correlation energ§E, to account for the ~apply the formalism to calculations of electric-dipole matrix
missing third-order terms. elements, as well a& andB hyperfine constants along the
sodium isoelectronic sequence. A one-body operator is rep-
resented in second quantization as
C. Matrix elements of one-body operators

The formalism for calculating matrix elements of a one- Z=> z.a'a (12)
body operatoZ in the SD approach was developed in Ref. TR
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where z;; is the matrix element of the operatarbetween - a2+(a1,;12)(a2,;12)
single-particle orbitals. Herez is the coordinate operator Biji=—(ij| 5

when one is evaluating dipole transition matrix elements or !
the hyperfine operator written down and discussed in Ref o ;5 outiine the formalism used to determine matrix ele-
[16] when one is evaluating the magnetic-dipole hyperﬁnements of two-body operators. Any two-body operaocan
constant. Substituting wave functions of the form Eg.into be decomposed as a sum .of normally ordered zero-body

the matrix element{¥,|Z|¥,), and correcting for normal- B, one-bodyB®), and two-bodyB® operators:
ization, one obtains the size-consistent expresgign

k).  (14)

(V,|Z| W)= 6,,Z Zval BO=3 % Pabas. (19
W £ o) = S Loarst [(1+ 6N,,)(1+8N,) ¥
12 ~
BY=2 ( biaja|:aa; 1, (16)
The termZ,, consists of the lowest-ordéDHF) matrix el- i\ a
ementz,,, corrected by a set of 20 terms, given together with
normalization correctiodN,, in Ref.[1]. Two of the impor- B2 = 22 biji - aTaTalak (17)

tant contributions to Z,, are the random-phase-
approximation(RPA)-like term Z3P#, and the polarization-

like [Brueckner orbita(BO)] correctlonZWU , given by Here :: denotes the normal form of operator products. The

zero-body operatoB(®) does not contribute to valence re-
moval energies. The calculation of the matrix element of the
2 Zampwmva c.c, one-body operatoB(!) follows exactly the pattern described
previously for the operatoZ. The matrix element of the
two-body operatoB(®) is more complicated, leading to 36
z%0= 2 ZymPmy T C-C. distinct terms. These terms can be classified by an “effec-
tive” MBPT order, taking into account that single excita-
tionSpIJ appear in the expression for the wave function start-
ing in second order of MBPT, while double exmtaﬂqm;‘k,
appear starting in first order. We assume that the major con-
tribution toB(®) arises from the second effective order. There
are two such terms contributing to the valence removal en-

ZRPA

The remaining 18 contributions &, are linear or quadratic
functions of the SD excitation amplitudes that can be evalu-
ated once the SD equations are solved. The t&gg. con-
tributes only for scalar operators; it was written down and
discussed recently in Ref17].

ergies
D. Expectation value of the Breit operator ) -
; P ; B‘(a )= E PmmaPmmwatC.C., (18)
The atomic Hamiltonian employed to determine the wave amn
functions did not contain the Breit interaction. The contribu-
tion of the Breit interaction to the removal energies is found ~
. . . 5 B(z): 2 b bP b+ C.C. (19)
by calculating the expectation value of Breit operdBor b & mvabFuma
BfD=(\PU|I§|\IfU>. The expression for the normalized two-body matrix element

in second effective order is similar to the corresponding ex-
This expression treats the Breit interaction to first order, bupression(12) for the one-body operatdt:
includes Coulomb corrections to all orders. In Ref], the
Breit energy shift was evaluated to third order in MBPT 2 BE+BY
(first-order Breit and second-order Coulonibcluding RPA Brom= 173N - (20)
and polarization corrections. A strong dependence of the
Breit interactio.n on correlation_ effects was found in these ;g £ | Ppartial-wave contributions t@E, (cm™Y) for Al .
MBPT calculations. To study this problem further, we calcu- The row labeled Err. contains an estimate of the extrapolation error.
late the expectation value of the Breit operator using the SD

wave function¥, . The SD approach is expected to be more, 35 3Py, 3Pan 4s 3ds,  3dep

accurate, since the SD approximation recovers the entire

third-order contribution for one-body operators, and contain® 56.1 94.4 94.0 107 -0.7 -0.7

polarization corrections and the dominant RPA corrections —506.8 —168.9 —-166.4 —164.8 —-88.0 —884

as a subclass of all-order diagrams. 2 —2688.9 —1785.8 —1774.6 —749.0 —465.5 —465.0
The two-body Breit operator can be represented in th&  —2990.3 —2014.9 —2002.4 —829.0 —1001.1 —1000.4

static limit as 4 —3057.6 —2080.4 —2067.6 —847.1 —1080.8 —1080.1

5 —3080.9 —2100.4 —2087.5 —853.5 —1103.8 —1103.0
(13 6 —3090.9 —2108.5 —2095.6 —856.3 —1110.8 —1110.0

6E, —3106.1 —2120.4 —2107.5 —860.6 —1115.1 —1114.3

Err. 1.9 1.0 0.9 0.5 5.9 6.0

A1 tof
—Ei% bijwajajajay,

where
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TABLE II. Contributions to the removal energies (¢ for sodiumlike ionsZ=11-16.

Term > 3P 3P 4s 3dap 3dsz
Nal
EDHF —39951.6  —24030.4  —24014.1  —153989  —12217.4  —12217.5
SE, —1488.8 —463.9 —461.6 -308.5 -58.9 —58.9
E® va -9.2 -15 -1.6 -21 1.0 1.0
BSP 1.2 1.4 0.1 0.3 -0.1 -0.1
RM+MP 1.0 0.5 0.5 0.4 0.3 0.3
Etot —41447.3  —244939  —24476.7  —15708.7  —122751  —12275.1
Eexpt —41449.4  —24493.3  —-24476.1  —15709.4  —12276.6  —12276.6
Err. 0.4 0.0 0.0 0.1 0.0 0.0
Mg 1l
EDHF —-118824.0  —84293.9  —84203.6  —50858.1  —49341.2  —49342.0
SE, —2462.2 -1322.3 —1315.0 —-609.9 —4335 —433.4
E® e 12.0 4.7 4.6 4.6 4.3 4.3
BSP 6.9 8.9 2.7 2.0 -0.4 -0.6
RM+MP 2.8 1.5 1.5 1.2 1.0 1.0
Etot —-121264.6 ~ —85601.1  —85509.8  —51460.2  —49769.8  —49770.7
Eexpt —-121267.6 ~ —85598.3  —85506.8  —51462.7 —49776.6  —49777.4
Err. 1.0 0.3 0.3 0.2 1.4 1.4
Al
EDHF —-226396.4 —173686.9 —173452.1 —102439.3 —112371.9 —112373.9
SE, —3106.1 —-2120.4 —2107.5 —860.6 —-1115.1 -1114.3
E® e 335 18.4 18.2 125 10.2 10.1
BSP 17.3 23.8 9.3 5.3 -0.8 -1.8
RM+MP 4.6 2.5 2.5 2.2 1.7 1.7
Etot —229447.0 —175762.6 —175529.6 —103280.0 —113475.9 —113478.2
Eexpt —229445.7 —175762.8 —175529.1 —103281.6 —113487.2 —113489.5
Err. 1.9 1.0 0.9 0.5 5.9 6.0
Siv
EDHF —-360613.7 —290073.8 —289606.1 —169076.7 —201807.3 —201807.4
SE, —-3578.3 —2809.3 —2790.6 —1071.8 —-1915.8 -1913.1
E®) ea 49.4 32.3 31.9 19.0 18.9 18.7
BSP 33.1 47.3 21.1 10.6 0.1 -35
RM+MP 6.9 3.7 3.7 3.4 2.4 2.4
Etot —-364102.5 —292799.8 —292340.0 —1701156 —203701.8 —203702.8
Eexpt —364093.1 —292805.6 —292344.5 —170114.2 —203717.5 —203718.7
Err. 2.2 1.4 1.6 0.8 13.0 13.0
Pv
EDHF —520666.6 —432533.4 —431722.3 —250303.9 —317578.4 —317567.4
SE, —3945.9 —3397.9 —3372.7 —-1252.1 —2700.6 —2694.9
E® e 60.3 43.9 43.4 24.0 28.7 28.5
BSP 55.1 80.8 39.1 18.2 35 —-4.9
RM+MP 9.0 4.8 4.8 4.5 2.9 2.9
Etot —524488.1 —435801.7 —435007.7 —251509.4 —320243.8 —320235.7
Eexpt —524462.9 —435811.0 —435015.6 —251503.6 —320263.9 —320256.9
Err. 3.3 2.8 2.6 1.0 21.3 21.3
Svi
EDHF —706161.1 —600593.4 —599302.4 —345878.2 —459392.4 —459354.6
S5E, —4242.8 —3901.8 —3870.1 —1407.9 —-3412.6 —3402.9
E® wa 67.6 53.0 52.3 28.2 38.3 38.0
BSP 84.1 125.9 64.2 28.4 10.7 —-5.4
RM+MP 11.7 6.2 6.2 6.0 3.6 3.6
Etot —710240.5 —604310.2 —603049.8 —3472235 —462752.5 —462721.3
Eexpt —710194.7 —604321.1 —603057.0 —347205.9 —462772.2 —462739.7
Err. 4.6 4.2 4.3 1.6 29.9 29.8
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FIG. 2. Third- and higher-order correctiosE, —E(? to va-
FIG. 1. The SD correlation correctiort, to valence removal lence removal energies as functionsZofor sodiumlike ions.
energies as functions & for sodiumlike ions.

For a more detailed description, the reader is referred to ReEE’ exradre plotted. These contributions are small for sodium,

[17], where the “effective”-order formalism was applied to ut grow very rapidly withZ. For the highesE. considered

. . : > - 3) 0 (3) _
the calculation of the static atom-wall interaction c:onstant(Z 35), E_v exra!S 85% OFE,™ for the 3s_state and of_com
Cs. parable size for the other states considered. In Fig. 4, we

show E®"—E(*3)  where E®"= 6E,+E®), ... These are

the contributions to the correlation energy of fourth and
. VALENCE REMOVAL ENERGIES higher orders(In preparing this figure, only the second-order
energies were extrapolated to avoid introducing additional
extrapolation errors into the small differences shovifrhe

3qt3h/2’ 3d|5/2' ar?d ‘st'f_atlezs ‘ifBSOd";m ag? SOd'Em;')keA'onS higher-order correlation contributions are seen to decrease by
with nuclear charge&=12-16 are found from Edy7). As a factor of 6 over the rangé=11-35 for 3 states. For 4,

mentioned previously, we first solve the core equati(ﬁ)s_ 3p, and 3 states the higher-order corrections have maxima
and (3) complet_ely, and then solve t_he valence_ equat'onsatZ:ﬂ 13, and 15, respectively. The relative size of the
(5=(7) succes_swely for each of the six states being COnSIdhigher-order correlation corrections decreases from 6-9 %
ered. We retain terms in the angular-momentum decompos*—

= 0, = ird-
tion from single-body states with=0—-6, and extrapolate to or Z=11 1o 1% forz=20. ForZ2=>20, third-order MBPT,

. . ) . o : therefore, recovers more than 99% of the correlation energy.
obtain the final correlation energies. We limit our basis set to . ; A
In Table II, we list the various contribution to the removal

n=27 out of 30 spline basis functions for each value of ed“lergies of 8, 3Dy, 33z 4, 3d and 3., states of
ial- ' 1/2» 3/2 ’ 3/2» 5/2
The convergence pattern of the partial-wave sequence and < WithZ=11— 16. The zeroth-order DHE energy is given

our estimate of the numerical uncertainty is illustrated in
Table | for the case of Ali. The procedures used to extrapo-
late E, and estimate extrapolation errdiissted as Err. in

The SD correlation energie8E, for 3s, 3py», 3pap»,

Tables | and Il are described in the Appendix. 035 ¢ 1
In Fig. 1, we plot the all-order correlation ener@, 030 [ ]

against nuclear charge for the six states considered. Con-

tributions forZ=18, 26, 29, and 35 are also included here 025 ]

and in the next three figures to help clarify thelependence. -~

The graphs in Fig. 1 are dominated by the second-order cormi 020 ¢ ]

relation energy, which is 80-90 % dfE, over the range S 5t ]

considered. For neutral sodium, the correlation energy isvg

seen to be largest for thesZtate; however, at highet the & 010
correlation energy is largest for thed 3states. For neutral h
sodium, the 85, and 3s, correlation energies are small 005
(about 60 cm?), but they increase very rapidly witd.
Since the second-order energy determines the shapes of tt
curves in Fig. 1, we plosE,—E'® in Fig. 2 to gain a more 005 !
detailed view of third- and higher-order contributions given

by the SD method. This graph shows that these contributions

still grow very rapidly atZ=16; a somewhat unexpected FIG. 3. Contributions to the valence removal energies from
result. In Fig. 3, contributions to the correlation energy fromg(®), . _as functions ofZ for sodiumlike ions.

v extra

0.00 -

10 15 20 25 30 35

Nuclear charge Z
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FIG. 5. Differences between experimental and theoretical ener-

010 15 20 25 30 35 gies for 3 states of sodiumlike ions are compared with theoretical
Nuclear charge Z estimates of the 8Lamb shift.

FIG. 4. Fourth- and higher-order correlation corrections to theLamb shift from the MCDF code of Grast al. [20], which
valence removal energies as functionsZofor sodiumlike ions. were also obtained by scaling Coulomb-field values of the
_ DHE ) self-energy, but contain estimates of vacuum-polarization
in the row labeled=;"™ . The row labeledSE, lists all-order  corrections. Finally, we present values of the Lamb shift
results obtained by calculating the first seven partial wavesyom Kim et al.[21], determined using Welton's approxima-
and extrapolating the remainder as explained in the Appenion [22] to the self-energy, and including corrections for
dix. The row labeledE?), ., is the “extra” third-order con-  vacuum polarization. The values from RE20] agree well
tribution given in Eq.(10). The relative contribution of with the Z—7 Coulomb values from Ref19], while those
E(®). increases withZ to about 1.6% of the correlation from Ref.[21] lie between theZ—5 andZ—6 Coulomb-
energy for the 8 state in SvI and its absolute value for this field values. It can be seen that if we add any of these esti-
state is large, 68 cit. Clearly, this contribution cannot be mates of the Lamb shift to the theoretical energy, the result-
omitted in precision calculations. The row labeBgP gives  ing value will be within 20 cm? of the experimental energy.
the Breit contribution evaluated as the expectation value ofn the absence of more reliable values for the low-order QED
the Breit operator using SD wave functions. The evaluatiorcorrections, it is impossible to reduce the difference between
of the Breit correction is discussed further in Sec. IV C. Thetheory and experiment for these states further.
row labeled RM-MP contains the sum of the reduced-mass All-order methods were used previously in Rg2] to
and mass-polarization corrections, which are evaluated toalculate correlation energies fos,33p;/,, 3ps;,, and 4
third order using the method described in Rdfl. The row  states of Na, and in Ref[11] to calculate correlation ener-
labeledE, lists the theoretical energy, which is the sum of gies for the 3 state of Na. In Table Ill, we compare our
all of the above contributions. The row label&g,,, gives  results with these two calculations and with the “experimen-
experimental removal energies taken from the National Instital” correlation energy. To obtain the experimental correla-
tute of Standards and Technology databjds}. Finally, the tion energy, we subtracted the DHF energy, the Breit energy,
row labeled Err. gives our estimate of the numerical uncerand the reduced mass plus mass polarization corrections
tainty in the theoretical energies. Note that this uncertaintyfrom the experimental date8]. Our value ofSE, is more
grows withZ because the correlation energy increases wittprecise than the SD result from R2] since, in that work,

Z. The relatively large value of Err. fordstates is a result only partial waves withl<4 were included,E®),,, was

of the fact that including only seven partial waves permits uomitted, and no extrapolation was made. In Réfl], accu-

to extrapolate the @ correlation energies with only 1% ac- rate nonrelativistic calculations of s3correlation energy
curacy forZ>13. were made using the CCSD approach. Relativistic correc-

Differences between the theoretical and experiment enetions and certain three-body cluster contributions to tke 3
gies for 3 states of ions wittZ<13 range from 1 to 3cm',  energy were also included in the correlation energy. Al-
but these differences increase rapidly #or 13 as shown in  though the two calculations account for different classes of
Fig. 5. We attribute the major part of the differences Zor _ _
>13 to omitted QED corrections, which are dominated by TABI__E Ill. Comparison of the_ present SD calcu_latlons of the
the 35 self-energy. Codes to evaluate the self-energy in {orrerllatlon energ;l(a.lu)_for Nefu with the SdD calc_ulatlons of Ref.
realistic atomic potential, such as the one described in Re .2]’ the CCSD calculations of Ref11], and experimen{18].

[5], do not converge for the low values Bfconsidered here,

S0 it is necessary to turn to approximate schemes to estim;matate Present Se] ccsbi Expt

QED corrections. In Fig. 5, we show several different esti-3s —0.006835 —0.00657 —0.006840 —0.006825
mates. First, we show values of the self-energy obtained bgp,, = —0.002118 —0.00204 —0.002121
replacingZ by Z—5,7—6, andZ—7 in the precisely calcu- 3p,;, —0.002108 -0.00203 —0.002110
lated Coulomb-field self-energies given fois &tates by 4s —0.001418 —0.00136 —0.001415

Mohr and Kim[19]. Next, we compare with values of the
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TABLE IV. Comparison of theoretical and experimental fine-  TABLE VI. Comparison of reduced dipole matrix elements
structure intervals (cm') for 3p and 3 states in sodium and (a.u) in length and velocity forms for Na.
sodiumlike ionsZ=12-16. The experimental values are from Ref.

[18]. Transition Length Velocity
3Paz3P12 3ds/-3d3,, 3p1z-3S2 3.531 3.531
3P32-3S2 4.994 4.991
z Theory Expt. Theory Expt. 45,,-3p1) 3.576 3.574
11 17.15 17.20 ~0.04 ~0.05 4S12-3P3s2 5.068 5.067
12 91.33 91.57 —-0.90 -0.87 3d3-3p1s2 6.802 6.806
13 233.13 233.67 -2.32 —-2.29 3d3-3P3p2 3.046 3.047
14 459.93 461.10 ~1.06 ~1.19 30s1-3P3r2 9.137 9.143
15 793.96 795.38 8.10 7.05
16 1260.53 1264.10 31.22 32.50

and[25] explain the differences with the present work and
with experiment. The results in RdR4] for the 3d interval

lation di both th t calculati d thwere obtained by two different methods: nonrelativistic
correfation diagrams, bo € present calculation an fBPT including core polarization to first order in the spin-

CCSD calculation are in close agreement with each Othe_rérbit coupling and to all orders in the Coulomb interaction

moreover, they are both in excellent agreement with eXpe”(designated by superscriptin Table V), and a relativistic

mef“- V\?e a'ZSE f?mffred caur 1rgsult_sr:‘csr, 3[:" an(:_zs €N central-field approach using the Pauli approximatidesig-

arg|es gr k_MC;F ’ aln lati W'2t3 rggfftlcon |gura;|on nated byc in Table V). The differences betwedn and our
artree-Fock ( ) calculations [23]. Differences be- data are due to relativistic effects and omitted correlation

tween the nonrelativistic MCHF calculations and the presenf .. ions The agreement withis unexpectedly good, ow-

\;ﬂulels of f;i? reﬁrrlu?valzejniré;n,a\;ls ranged frr?m o4 cfor ¢ ing to a fortuitous cancellation between second-order Cou-
=1llto cm " for 2=16. Moreover, the estimates of 15, correlation corrections and Breit corrections.

relativistic shifts given in Ref[23], which range from 48

cm ! for Z=11 to 1850 cm? for Z=16, do not completely

account for observed differences. IV. REDUCED DIPOLE MATRIX ELEMENTS
In Table IV, we present the (&,-3p1,, and 3s;-3ds), AND HYPERFINE CONSTANTS

fine-structure intervals. These values were calculated ex- A. E1 transitions

trapolating the second-order energy only to avoid introduc-

ing extrapolation errors into the intervals. Our uncertainties The SD wave functions are used to evaluBte reduced
for the 3p intervals range from 0.2 cnt for Z=11 to 0.4 matrix elements for By/,-38, 3pg»-38, 45-3py5, 45-3Pgp,

cm ! for Z=16; the corresponding uncertainties for the 3 3.‘13’2'3‘)(11’2’ 3q3’2]3kp3’.2' and Eajf’z'gp:*”é transitiolns in ﬁo'
splittings are 0.1—-0.2 cit. The third- and higher-order con- ium and sodiumlike ions it =12-16. To evaluate these

tributions to the splitting are less than 1%, and there is submMatrix elements, we followed the method outlined in Sec.

stantial cancellation between the second-order Coulomb cor}t - Szlnglg- and ddgubl7e-ex0|tat|0n damplltlljdels obtﬁuned from
tribution and the full Breit contribution. The all-order =9S:(2. (3), and(5)—(7) were used to calculate the twenty

calculations are in better agreement with experiment than th rms In Z_Va" Since the excitation amp“tUdQS“'.‘ab’ etc.
third-order calculations, as is to be expected. The overaffccurning in the expressions fa,, included partial waves

agreement with experiment is seen to be excellent, except fd}ith =6, the sums over excited states Zy, were also
the 3d interval in Pv. limited to partial waves with<6. To estimate the truncation

In Table V, we give some comparisons of our results forerror caused by limiting the number of partial waves, we

the 3p3,-3py, and Xs-3dsy, fine-structure intervals with edid all calculations using<5, and found that resulting

theoretical results from Ref624] and[25]. The value from Matrix elements were unchanged to four digits.
Ref. [24] for the 3p fine-structure interval in Nawas ob- The level of agreement between length and velocity forms

tained using nonrelativistic MBPT including the polarization for eIectrlc-dlp_oIe transition matrix glements SErves to mea-
correction only. Omitted correlation corrections in R&24] sure the consistency of the theoretical formalism as well as

TABLE VII. Reduced dipole matrix element@.u) in length

TABLE V. Comparison of the present calculations of the fine- ST
form for sodiumlike ions.

structure intervals (cm') of 3p and 3 states with other theoreti-
cal data.

Transiton Na Mgu Al Siv Pv Svi
z Present Other Other  Expt.  3p,.3s,, 3531 2.369 1.845 1523 1.314 1.154
11 3pyy3py, 1715  15.46% 17.20 3pyr-3sy, 4994 3.351 2611 2165 1.859 1.634
11 3dgy3dy, -0048 —00448 —00428 —0050 4Suz3pyz 3576 1693 1092 07959 0.6209 05058
14 3dgy3dy, -106 —3.32 _16£ —-119 4s,,3py, 5.068 2404 1552 1133 0.8855 0.7226
3dy,3py, 6.802 4.158 3.074 2.436 2.013 1.712
3R MBPT [24]. 3dsy,3ps, 3.046 1.862 1.376 1.091 0.9013 0.7667
PNR MBPT [25]. 3ds;,-3ps, 9.137 5587 4.130 3.273 2.705 2.301

‘Rel. HF[25].
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TABLE VIII. Comparison of line strength$ (a.u) for the 3p- TABLE X. Comparison of lifetimegns) of 4s,,, and 33, lev-
3s transition in sodium with other theoretical and experimentalels in sodiumlike ions with available experimental data.
data.

z 4syp 3d3p
Method S (3p-39) Present Expt. Ref. Present Expt. Ref.

Present sb 37.397) Mg  2.88 24%300® [34] 2.07 1.92) [29]
Theory SD[2] 37.512) Al 1 0.721  0.9080)2 [32]

SD[10] 37.3811 Siv 0.281 0.314) [30] 0.392 0.425) [30]

MBPT [10] 37.65 Pv 0.136 0263 032" [33]

ccsP [11] 37.56 Swvi 0.0754 0.08615 [31] 0.198 0.201) [31]

Cl [12] 37.35 . . -

clP [12] 37.26 &The yalue is obtained by e_tveraglng ovgr two decay branches. The
Expt. C, analysis[26] 37.314) S;(ﬁgr;;r;r;ﬁl gfr:ﬁ;qsgée?efe:jue to a single branch.

Beam-gas-laser spectrosco 37.285) )

Linewidth [27] 37.308)

C; analysis[28] 37.3312 the CCSD approach; this nonrelativistic matrix element was

corrected for relativistic effects using a scaling factor deter-
3 rror estimate is based on difference of Iength and VeIOCity fOfmSmined by Comparing relativistic and nonrelativistic Hartree-
PCorrected for relativistic effects using the ratio between DHF andrgck matrix elements. Accurate nonrelativistic
HF values. configuration-interactioCl) calculations of the 8-3p line
strengths were performed in R¢12], and corrected for rela-

the accuracy of the numerical algorithms. A sample comparitivistic effects as explained above. Line strengths from the
son of length and velocity forms fdE1 transitions in Na, present calculation are in fair agreement with these other
where the correlation contribution is most important, is giventheoretical calculations. Moreover, our calculated line
in Table VI. The length and velocity forms are seen to agreestrength agrees with the most precise experimental value to
to better than 0.05% for the seven transitions considered. Theetter than 0.2%. The corresponding difference for the dipole
length-velocity agreement improves with increasing nucleamatrix element is about 0.1%, which is smaller than the dif-
chargeZ along the isoelectronic sequence. ference between theory and experiment for tlsehgperfine

In Table VII, we list length-form reduced dipole matrix constantA in sodium, discussed below. It is worth noting
elements for ions witZ=11-16 for each of the seven tran- that the accuracy could possibly be improved by including a
sitions listed above. We estimate that the theoretical uncerset of triple excitations, since the CI calculatiddg] of line
tainty is less than 0.05% for the data presented in this tablestrengths for Na, which include a limited set of triples, give

New precise measurements recently became available foesults closer to the most precise experimental vaRe.
the 3p-3s transition in neutral sodiurf®,26—2§. For a re- Comparing the scaled relativistic and nonrelativistic results
view of the recent experimental results, we refer the reader trom Ref. [12], one finds that relativistic corrections are
the paper by Volz and Schmoran8f. Comparisons of our about twice as large as the error estimate in the most precise
results with the accuratab initio calculations of -3sline  experiment[26]. Thus, at this level of agreement between
strengths in sodium from Reff2,10-13, and with the re- theoretical and experimental data, relativistic and higher-
cent experimental line strengths from Ref8,26—28 are  order correlation corrections are approximately the same
given in Table VIIl. These comparisons are based on linesize, emphasizing the importance of aln initio relativistic
strengths to amplify discrepancies and to facilitate compariapproach.
sons with nonrelativistic calculations(The 3p-3s line Comparisons of our results with available experimental
strength from the present relativistic calculation is the sum oflata Refs.[9,26,29-31 for 3p4;»-3S1/2, 3P3-3S12, and
the squares of the8,,-3s and 33/,-3s reduced matrix el-  3ds;-3ps), transitions in sodiumlike ions are given in Table
ements. The SD values from Refd.2,10] were obtained IX, where we list reduced matrix elements to eliminate the
from an all-order relativistic many-body calculation similar strong dependence of decay rates on photon energy. Our cal-
to the present one. In Refl1], an accurate nonrelativistic culations agree with experimental values to within the ex-
calculation of the p-3s matrix element was obtained using perimental error bars for all three transitions in MgSi v,

TABLE IX. Comparison of reduced dipole matrix elemerigsu) for sodiumlike ions with available
experimental data.

3py2-3s12 3P3/2-3syy2 3ds/3P3p2
lon Present Expt. Ref. Present Expt. Ref. Present Expt. Ref.
Nal 3.531 3.526717)  [26] 4.994 4987825  [26]
3.524623) [9] 4.983834) [9]
Mg 2.369 2.37@) [29] 3.351 3.36616) [29]
Siv 1.523 1.583) [30] 2.165 2.175) [30] 3.273 3.12) [30]

Swvi 1.154  1.19) [31] 1.634  1.643) [31] 2301 221 [31]
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TABLE XI. Magnetic dipole hyperfine constants (MHz) for 2Na.

3s112 3pas 3Pz 4syp, 3dsp, 3ds),
DHF 623.5 63.39 12.59 150.7 0.5883 0.2522
SD 888.1 94.99 18.84 204.8 0.5314 0.1137
SD? 884.51.0) 92.42) 19.31) 202.23)
cr° 882.2 94.04 18.80
ccsr¥ 883.8 93.02 18.318
MBPTY 860.9 91.40 19.80
Expt. 885.81 94.4219)f 18.7912)9 2023)" 0.52725) 0.108524)'
94.4413) 18.53415)
3Referencd?2]. 9Referencq 39].
bReferencg12]. "Referencd 41].
‘Referencd11]. 'Referencd42].
dReferencd7]. IReferencd 38].
*Referencd 36). kReferencd 40].

Referencd 37].

and Svi, except for the B,,-3sy), transition in Svi. For  relatively large disagreement is difficult to judge, since there
Nal, where high-precision experiment data are available, ouare no other theoretical or experimental values fdrsgates
data differ from experiment by about 0.1%. in sodium.

In Table X, we compare our theoretical lifetimes for two-  The magnetic-dipole hyperfine constams of the six
branch transitions, where the energy cannot be factored, witgtates considered in sodiumlike ions are presented in Table
experimental values from Refl29—34. The theoretical and ||, The precise experimental value for the 8tate in sodi-
experimental lifetimes agree to within the experimental error,mike 259\Mg, given in Ref.[43], A(3s)= —596.254 MHz,
bars, except for 20% differences found for the3 states of  giffers by 0.2% with the value—597.56 MHz from the
Al iiand Pv. We attribute these differences to experimentalyesent work.
errors, since the accuracy of the SD calculation is expected \/iyes of electric quadrupole hyperfine constaBtsor
to improve with increasing nuclear charge along the isoelecz . 34, and 3, states in?®Na can be found in Table

tronic sequence. XIIl, where we list ratios ofB to the nuclear quadrupole
momentQ. The present SD calculation gives a higher value
B. Hyperfine constantsA and B of ratio B/Q for the 3pg, state of?*Na than found in previ-
Calculations of hyperfine constants follow the same patOUs accurate atomic calculatiofs1,12. A possible reason
tern as the calculations of reduced dipole matrix elementt that our calculations arab initio relativistic calculations,
described in Sec. IV A. The magnetic moments and nucleal contrast to the previous calculations of B&Q ratio. The
spins used in the present calculations are taken from Reglectric quadrupole interaction contains a factar® Livhich
[35]. In Table XI, we give the present SD values of the amplifies the behavior of wave functions near the nucleus.
magnetic-dipole hyperfine constamsfor ?Na, and com- The motion of an electron in that region is relativistic, and
pare our values with available theoretif2)7,11,13 and ex-  the consequent increase of electron densities at sniedlds
perimental[36—47 data. The present SD value fBg dis- 0 larger values 0B/Q compared to nonrelativistic calcula-
agrees with the very precise experimental value from Reftions. Thes,, and py, states are those most affected; thus
[36] by about 0.25%. The agreement with other experimentaihe correlation contribution is modified by relativity more
values is at the level of 0.5%, except #gq, . For this case  than the 35, DHF contribution. ForB5p, , the correlation
the disagreement is 5%, and theoretical and experimental

values differ by two standard deviations. The reason for this TABLE Xlll. Quadrupole hyperfine coupling constantsB/Q
(MHz/b) for *Na.

TABLE XlI. Magnetic dipole hyperfine constants (MHz) for

sodiumlike ions. 3Py 3dsp 3ds
DHF 15.76 0.2458 0.3502
25 27 29 3y 33
State Mg i Al Silv Pv SV sD 26.85 1.238 1.768
3syn —597.6 4885 —6060 18407 4910 CPR 25.79
3P —103.4 1013 —1388 4488 1250 cest 26.14
3pap -19.29 1824 —2452  783.4 216.8
4s,)» -163.4 1462 —1919 6070 1667 “Referencd 12] with included relativistic correction using the ratio
3dap, —1.140 19.75 —39.65 165.4 55.02 of DHF and HF values.

3ds), 0.1196  —2.757 3.238 —2.520 2.358 bReferencd11]. Relativistic correction was estimated by using fac-
tor from Ref.[44].
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TABLE XIV. Contributions to the expectation value of the Breit 10° , .

operator(a.u) for the 3s,), state of Naa[ —b]=ax 107", e "a

BDHF 2.63-5] 10tk E

B —1.83-5] 3 -

(2) —237—6 & o — e DHF
B .31—6] o 05 | o---a MBPT (RPA+BO) |
BSP 5.60 — 6] *—+SD
-6 ( ( 1 ( 1 (

contribution is about 40% of the total value. It follows thata  '° 10 11 12 13 14 15 16 17
scaling procedure based on the DHF value alght, such z

as used in nonrelativistic calculatiofis1,12, would under-
estimate the size of the relativistic corrections.

Combined with the experimental valuB=2.724(30)
MHz from Ref.[40], we obtain for?*Na a nuclear quadru-
pole momenQ=101.4(11) mb. The error in the value Qf
is experimental. The theoretical error is 1% or less, based o
the comparisons between theoretical and experimental valués Table XIV. The Breit correction, as discussed in Hdf,
for removal energies, dipole matrix elements, and magnetics significantly reduced by correlation contributions. The
dipole hyperfine constants. The “atomic” value of nuclear Dirac-Hartree-Fock valuB®HF=2.63x107° a.u. is reduced
quadrupole moment obtained in this way is in agreemento 0.797<10 5 a.u. by the one-body correlatio®?), and
with the valueQ=100.6(20) mb obtained in muonic experi- further to 0.56<10° a.u. by the two-body correlatiors?).
ments [45], and resolves the long-standing disagreemeniMoreover, the resulting SD value is about two times smaller
[12,46 between “atomic” and “muonic” values of the than that given by third-order MBPT, 1.¥810 ° a.u. Thus,
nuclear quadrupole moment &#Na. The values of th&/Q higher-order diagrams contribute substantially to the Breit

for 3d states given in Table XIIl may aid in the experimental Correction. To illustrate this point further, we plot DHF,
determination ofA for these states. MBPT, and SD calculations of thes3Breit energy shift

along the isoelectronic sequence in Fig. 6. It can be seen that
the MBPT and SD results approach each other as the ionic
charge increases. Values of the Breit energy shift calculated
We give a breakdown of various contributions to the ex-in the DHF, MBPT, and SD approximations are given for the
pectation value of the Breit operator for the,3 state of Na  six states studied here in the range 11-16 in Table XV.

FIG. 6. Comparison of energy contributions due to Breit inter-
action for 3,,, states along the sodium isoelectronic sequence. The
DHF values are the first-order Dirac-Hartree-Fock contributions.
The MBPT values are determined using the method given in Ref.
%1]. The SD values are results of present work.

C. Breit corrections in the SD approximation

TABLE XV. Expectation values of the Breit operator for sodiumlike ions.

3s112 3P 3Pap 4syp 3ds, 3ds),
Nal
DHF 2.63 -5] 1.27-5] 8.79 - 6] 6.33 —6] 0.59 -7] 0.34-7]
MBPT 1.14-5] 0.81—-5] 2.84 6] 2.53 -6] —-2.30 8] —2.60 —-8]
SD 0.56 —5] 0.6 —5] 0.5 - 6] 1.5 -6] —-2.69-7] —2.73-7]
Mg i
DHF 8.43 —5] 6.91 —-5] 4.77—-5] 2.3 -5] 2.04 —6] 1.14 - 6]
MBPT 4.0 —5] 4.64 -5] 1.80 - 5] 1.09 - 5] —-0.29 - 6] —-0.93-6]
SD 3.16—-5] 4.09 -5] 1.23 -5] 0.91 -5] —2.04 -6] —2.69-6]
Al i
DHF 1.7Q 4] 1.77 - 4] 1.1 4] 5.1 —-5] 1.29 -5] 7.09 -6]
MBPT 0.90 — 4] 1.17-4] 0.57—4] 2.66—5] 0.0 - 5] —4.19-6]
SD 0.79—-4] 1.09 —-4] 0.4 —4] 2.4 -5] —-0.34 —5] —-8.39 —-6]
Siv
DHF 2.87—-4] 3.24-4] 2.23 -4] 9.13 -5] 417 -5] 2.2 -5]
MBPT 1.64 4] 2.21-4] 1.07-4] 5.11 -5] 0.7 —5] —-0.91-5]
SD 1.51—-4] 2.19 -4] 0.94 —4] 4.8 —5] 0.03 —5] —-1.60 —5]
Pv
DHF 4.3 - 4] 5.3 4] 3.671—4] 1.44 - 4] 9.34 —5] 5.09 -5]
MBPT 2.69-4] 3.8 4] 1.90 —-4] 0.8 —4] 2.4 —-5] -1.3§ -5]
SD 2.51-4] 3.6 —4] 1.74 - 4] 0.8 —4] 1.59 —-5] —2.24 -5]
Svi
DHF 6.27—4] 8.01-4] 5.5 —4] 2.17 4] 1.79-4] 9.53 -5]
MBPT 3.99 -4] 5.89 —4] 3.06 —4] 1.33 4] 0.59 —4] —-1.41-5]

SD 3.83-4] 574-4] 293-4] 1.29-4] 049-4]  —2.44-5]
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V. SUMMARY TABLE XVI. Extrapolation of the partial-wave sequence for the

L . L (3) . 3p,, state of Alui.
The relativistic SD method including,’,,,, gives re-

moval energies of § 3p, 3d, and 4 states in Na accurate | S5Esp EQ Diff.

to better than 2 cm' and, for ions withZ=12-16, gives = Purz

energies that agree with experiment at the level 1-20'¢m © 0.000430 0.000472  —0.000041
assuming Lamb-shift corrections are included fer<3ates. 1 —0.000769 —0.000587 —0.000182
We find thatE(®),,, increases withiz for Z<20, and ac- 2 —0.008137  —0.007445  —0.000692
counts for a substantial fraction of the correlation energy i —0.009181 —0.008506 —0.000674
this range. It is about 85% of the total third-order energy for4 —0.009479 —0.008834 —0.000644
Z=20-35. The fourth- and higher-order correlation correc-5 —0.009570 —0.008947 —0.000623
tions decrease witd beyondZ= 15, and become negligible 6 —0.009607 —0.008995 —0.000611
(less the 1% of the correlation enejdgr Z=20. Therefore, (4-5-6 —0.009657 —0.000594
for 2> 20, accurate third-order calculations are sufficient toTotal —0.009657 —0.009661

obtain high-precision results. The Breit correction is deter

mined by evaluating the expectation value of the Breit OP-gylts using the scheme described in Hal. Briefly, we fit

erator using SD wave functions. Such a consistent calculgy, partial-wave contributions, = 5E, (1) — 6E,(I—1) to a
tion is important, considering the relatively large size Ofpolynomial ! v ’

correlation corrections for this operator.

Magnetic-dipole hyperfine structure constaAtselectric- a; a, ag
guadrupole hyperfine constariBs and E1 matrix elements —+—=
were evaluated using SD wave functions for sodiumlike ions

with Z=11-16. For each ion considerel,hyperfine con- 544 found the remainder of the sequence by summjryer
stants were evaluated fors33pyy, 3ps, 4S, 3ds,, and the range =7 to = using the fit in Eq(AL). In the second
3ds; states, and electric-dipole matrix elements were evalumethod, we made use of the fact that the second-order terms
ated for the seven possiblel transitions between these gominate the energy. We subtracted the second-order contri-
states. Furthermord hyperfine constants were determined p, ,ionsE(2)(1) [calculated with the basis set used to evaluate
for the 3pg,, 3dgp,, and Is, states of neutral sodium. OUr sz (1)) from the all-order resultsE, (1), and extrapolated
comparison ofE1 transition amplitudes and hyperfine con- 1o jifferences using EqA1). This extrapolated tail was

stants with available experimental data suggests that an agsen added to a precise second-order energy calculated sepa-
curacy of better than.0.3% was obtained fqr all of theserately using a much larger basis set.

matrix elements. We infer from our calculations of tBe In Table XVI, we illustrate these two methods for the case
coefficient (;f3 Na that the_ value of electr|c-quadrupqle MO~ the 3n,,, state in Alil (Z=13), where the precise second-
ment of the™Na nucleus is 101(41) mb, somewhat higher (%rder energy i€? =—0.009 067 a.u. In the first column,
than all previous atomic calculations, and in good agreement Pas2 . . :

with the value of 100.@20) mb obtained in muonic atom W€ list the number of partial waves included in the calcula-
measurements. To improve the accuracy of the present cdfo™: in the second column, we give the partial wave se-
culations of energies and matrix elements, it will be necesdueénce foréEs, - in the third, we give the partial-wave

sary to include triple excitations in the SD equations. sequence forEgzp)llz; and in the final column, we list the

differences between the data in the second and third col-
ACKNOWLEDGMENTS umns. In the row labele¢4-5-6), we give the extrapolated
. . limit of the previous rows using the three-parameter fit to the
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advice on the manuscript. uncertainty to be the difference between the results of these

two extrapolation schemes; in this case we fiBf"=
—0.009 661(4) a.u. The uncertainty in this case is about 1
cm L. It should be emphasized that this is the numerical

We used two methods to extrapolate the partial-wave sedncertainty only, and does not reflect missing physical ef-
guences forsE, . In the first, we extrapolated all-order re- fects.
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