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An uncoupled correlated variational method~i.e., explicitly using the interelectronic coordinates! for calcu-
lations involving several electrons is introduced. All the overlap and Hamiltonian matrix elements, including
those involving the electron-electron interaction, are simple products of one-dimensional integrations. Al-
though simple to implement, the method yields the best available energy for the ground state of the He
zeroth-order HamiltonianH05H11H211/r 12. Preliminary nonoptimized and nonextrapolated calculations
yield E522.903 724 377 034 119 593 8(50) a.u.@S1050-2947~98!50402-7#

PACS number~s!: 31.25.2v, 31.10.1z, 31.15.Pf
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I. INTRODUCTION

Correlated basis sets offer the most accurate results
calculations involving two or three electrons. The pioneer
work of Pekeris and collaborators was for a long time
landmark for these types of calculations. In the original wo
of Pekeris@1#, perimetric coordinates were used, these be
linear combinations of the electron coordinatesr 1 andr 2 and
the interelectron coordinater 12. In terms of these coordi
nates the integrals uncoupled into three infinite o
dimensional integrations that could easily be handled by
computer systems then available, using orthogonal Lagu
~orthogonal combinations of Slater-type! basis functions to
analytically calculate matrix elements. Since this exceptio
work appeared, new accuracy demands have been pro
sively placed on these energy calculations by improved
perimental precision as well as accurate calculations of r
tivistic and quantum electrodynamics effects. As a resul
number of different correlated methods were introduc
Pekeris’s group abandoned perimetric coordinates in favo
nonorthogonal Hylleraas basis sets in order to improve ac
racy. Since then correlated methods have made direct us
the Hylleraas@2# coordinatesr 1 , r 2 , andr 12 within different
strategies. The common factor among these calculation
the presence of multidimensional integrations, given the c
pling of the limits of integration due to the coordina
ur 12r 2u<r 12<r 11r 2 . The presence of these coupled int
grations precludes orthogonal or band-diagonal overlap
trices for Slater-type basis functions; as a consequence,
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accuracy is limited by the onset of numerical linear dep
dence. For Slater-based calculations the convergence ca
improved and numerical dependence can be mitigated by
use of multiple exponential parameters, as shown for Sl
relativistic Dirac-Hartree-Fock calculations in many-electr
systems@3#. When applied to correlated calculations, t
multiexponential approach has yielded the most accu
numbers to date@4,5#.

In this paper we shall show that the accuracy of the
calculations can beexceededby a very simple computationa
method. We start with a short review of correlated var
tional methods.

II. CORRELATED CALCULATIONS

Correlated calculations derive their power from the fa
that the interelectronic potential is not expanded in an infin
series, such as, for example, the infinite spherical expan
commonly used in configuration-interaction~CI! calcula-
tions. This is accomplished by a change in the coordin
system used and the corresponding volume element use
the integrations. A typical integral in CI or Hartree-Foc
calculations is of the standard spherical type

I 5E
0

`

r 1
2dr1E

0

`

r 2
2dr2E

0

p

sinu1du1E
0

p

sinu2du2

3E
0

2p

dw1E
0

2p

dw2f ~r1 ,r2 ,r 12!. ~1!
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This integral can only be handled by a spherical~infinite!
expansion ofr 12. This makes the inclusion in the basis set
functions that depend explicitly onr 12 difficult to implement.

In correlated methods the explicit use ofr 12 is facilitated
by changing the integration volume element so that now
integrals are of the form@5#

I 5E
0

`

r 1dr1E
0

`

r 2dr2E
ur 12r 2u

r 11r 2
r 12dr12

3E
0

p

sinu1du1E
0

2p

dw1E
0

2p

dx f ~r1 ,r 2 ,r 12,x!, ~2!

wherex is the angle of rotation aroundr̂1 of the plane de-
fined byr̂1 andr̂2 . All the angular integrals involvingu2 and
w2 ~now dependent variables! can be expressed in terms
cosu12, whereu12 is the interelectronic angle, given in term
of the independent variables by

cosu125 r̂1• r̂25
r 1

21r 2
22r 12

2

2r 1r 2
. ~3!

We deal in this paper with the solutions to the tw
electron nonrelativistic Hamiltonian with an infinite nucle
mass, which we callH0 . This is a Hamiltonian that has bee
the subject of extensive work in the literature and on wh
substantial emphasis has been placed in order to obtain
accurate solutions. The finite mass corrections can be
counted for by an overall scaling of the energy by the ratio
the electron and reduced masses and by the inclusion of m
polarization effects done perturbatively. The HamiltonianH0
provides an excellent~standard! test of the accuracy that dif
ferent basis sets are able to achieve.

In terms of the spherical coordinates of each electron,
Hamiltonian H0 , in a.u. ~a.u. will be used throughout thi
paper!, is given by the expression

H052
1

2
¹ r1

2 2
1

2
¹ r2

2 2
Z

r 1
2

Z

r 2
1

1

r 12
. ~4!

For two-electronS states, in terms of the coordinates d
fined for the integration~2!, H0 becomes

H052
1

2r 1

]2

]r 1
2 r 12

1

2r 2

]2

]r 2
2 r 22

1

r 12

]2

]r 12
2 r 12

1
r 2cosu122r 1

r 12

]2

]r 1]12
1

r 1cosu122r 2

r 12

]2

]r 2]12
2

Z

r 1

2
Z

r 2
1

1

r 12
, ~5!

where cosu12 is given by the expression of Eq.~3!. The gen-
eral form ofH0 for states withL.0 can be found in Ref.@5#.

Typical correlated basis sets in the literature for calcu
tions involving the Hamiltonian~5! are of the following
forms: we start with the basis set using perimetric coor
nates introduced by the ground breaking work of Pekeris
co-workers@1#

w i~r 1 ,r 2 ,r 12!5e2l~2a1b1g!L1~a!L2~b!L3~g!, ~6!

wherea, b, andg are the perimetric coordinates
f

e

h
ry
c-
f
ss

e

-

-

i-
d

a5r 11r 22r 12,

b5r 12r 21r 12, ~7!

g52r 11r 21r 12.

This basis set took advantage of the fact that with these
ear combinations of the radial variables the radial integr
uncouple into three independent integrations from 0 to`.
Using generalized Laguerre polynomials for the functio
Li , the basis functions can also be made orthogonal.
these features point to great stability and speed of calc
tion. The basis set is, however, limited to a single nonlin
parameter~l!, limiting its ability to produce results of grea
accuracy. The same group later opted to relinquish the
thogonality and uncoupled properties in favor of a bet
convergence by introducing in the basis set features poin
out by the Fock expansion of the helium wave function. T
involves including logarithmic and noninteger powers in t
basis set@6–9#. This type of basis set has been the subjec
intensive research until recently and is of the general for

w i~r 1 ,r 2 ,r 12!5e2ls~ lns!k~s21t2!n/2P1~s!P2~ t !P3~u!,
~8!

wherek andn are integers, thePi are usually integer power
of the arguments, and

s5r 11r 2 , t5r 22r 1 , u5r 12. ~9!

Another type of correlated radial basis set is of the form

w i~r 1 ,r 2 ,r 12!5e2j i r 12h i r 2R1~r 1!R2~r 2!R3~r 12!, ~10!

where theRi are usually positive integer powers of the arg
ments. This approach derives its convergence power by
ing multiple sets of the nonlinear parametersj andh, in this
way also minimizing the numerical dependence proble
typical of the Slater-type functions~10! @4#.

The methods~8! and~10! have been the most widely use
in recent years with the aim of obtaining the best possi
accuracy. Common to these methods is the fact that the
culation of the matrix elements involvescoupled integra-
tions.

III. UNCOUPLED CORRELATED CALCULATIONS

The aim of this paper is to present a different approa
that simplifies the calculations and yields high stability a
accuracy. The inspiration for this method comes from
modified configuration-interaction~MCI! @10# and radially
uncoupled configuration-interaction~RUCI! @11# approaches
to configuration-interaction calculations, particularly th
RUCI uncoupling of the radial integrals. The radial portio
of the integral~2! can be rewritten in the following way:

J5E
0

`

r 1dr1E
0

`

r 2dr2E
ur 12r 2u

r 11r 2
r 12dr12g~r 1 ,r 2 ,r 12!

5E
0

`

r .dr.E
0

r .

r ,dr,E
r .2r ,

r .1r ,

r 12dr12g~r . ,r , ,r 12!

1E
0

`

r .dr.E
0

r .

r ,dr,E
r .2r ,

r .1r ,

r 12dr12g~r , ,r . ,r 12!,

~11!
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TABLE I. Variational energy values in a.u. obtained in the present work.Nu ,Nv ,Nw are the number of
one-dimensional basis functions of each type used.Nuvw is the largest value of the sum of the orders ofUi ,
Vi , andWi , while Nvw is the largest value of the sum of the orders ofVi andWi . N is the total number of
vectors in the basis set.

Nu Nv Nw Nuvw Nvw N E ~a.u.!

36 18 10 48 16 1943 22.903 724 377 034 078
40 20 11 48 18 2676 22.903 724 377 034 115 8
42 20 12 50 19 3468 22.903 724 377 034 118 35
48 20 12 50 20 3792 22.903 724 377 034 119 249
51 20 12 58 20 4262 22.903 724 377 034 119 414
56 20 12 64 20 4652 22.903 724 377 034 119 507 9
63 23 14 74 23 6636 22.903 724 377 034 119 569 7
71 23 14 83 23 7328 22.903 724 377 034 119 586 99
76 23 14 88 23 7738 22.903 724 377 034 119 591 63
80 23 14 92 23 8066 22.903 724 377 034 119 593 82
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r .5max$r 1 ,r 2% and r ,5min$r 1 ,r 2%. ~12!

In other words, all the calculations require the integration

I 5E
0

`

r .dr.E
0

r .

r ,dr,E
r .2r ,

r .1r ,

r 12dr12g~r . ,r , ,r 12!.

~13!

In the RUCI method, the first two limits of integration a
uncoupled by the change of variables

u5r . , v5r , /r . , ~14!

which also has the advantage of explicitly introducing in t
basis functions the ratior , /r . appearing in the spherica
expansion of 1/r 12. The uncoupling in the correlated case
completed by the new variable

w5
r 122r .

r ,
. ~15!

With the new variables~14!, ~15!, the integral~13! is rewrit-
ten as

I 5E
0

`

u5duE
0

1

vdvE
21

1

~11vw!dw f~u,v,w!. ~16!

If the function f in the integrand is of the form

f ~u,v,w!5U~u!V~v !W~w!, ~17!

then the integral~16! fully uncouples into products of thre
one-dimensional integrations:

I 5E
0

`

U~u!u5duH E
0

1

V~v !vdvE
21

1

W~w!dw

1E
0

1

V~v !v2dvE
21

1

W~w!wdwJ . ~18!

Full advantage of this decoupling is achieved by choos
a radial basis set of the form

w i5Ui~u!Vi~v !Wi~w!. ~19!

With this basis set all the overlap and Hamiltonian mat
elements are written as products of one-dimensional inte
tions of the form~18!. Notice that thechoice of the one-
g

a-

dimensional basis functions is arbitrary; one could, for e
ample, useB splines, for which the one-dimensional natu
of the calculations is particularly well suited. The simple
basis functions to choose would be Slater functions for
Ui and simple powers for theVi and theWi . Notice that,
unlike the case of perimetric coordinates, there is no lim
tion on the number of nonlinear parameters one can in
duce for any of the one-dimensional basis functions.

The Hamiltonian itself is easily rewritten in terms of th
new coordinates using

r 15u~Q1vQ̄!,

r 25u~Q̄1vQ!, ~20!

r 125u~11vw!,

whereQ is the Heaviside step function

Q5Q~r 12r 2!5H 1 if r 1>r 2,

0 if r 1,r 2,

and

Q̄512Q.

Use of the new variablesu, v, and w introduces in the
basis set an improvement in representing the cusp in
wave function atr 15r 2 in two ways: by usingr 12 explicitly
as well as by using the variablesr . andr , . The latter, upon
substitution in the Laplacian operators, introduces in
Hamiltonian operator Dirac delta functionsd(r 12r 2).

There is, however, a drawback with this kind of represe
tation. Notice that a basis set of the form~19! can represent
an exponential asymptotic decay only through the functio
Ui by including functions of the forme2auup. In other
words, only the correct asymptotic behavior ofr . can be
rigorously included in the basis set. Any single radial ba
function cannot be written as a product of two radial hyd
genic functions given thatebr ,5eauv cannot be written as
product of the form f (u)g(v). The Taylor expansion of
eauv, however, is a linear combination of product
f i(u)gi(v), so that the correct asymptotic~hydrogenic! limit
can be represented by a linear combination of the basis fu
tions ~19!. It is crucial then to check the radial convergen
in the radial hydrogenic limit. This has been done in R
@11# with excellent results, yielding the most accurate~by
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several orders of magnitude! CI radial limit in the literature.
There is a price to pay, which is an increase in the size of
basis set.

In the present work the basis sets used are based o
thogonal polynomials suited to the domains of integration
the each of the integrals. For theUi we use

Ui~u!5Nie
2a i uLki

5 ~2a iU !, ~21!

whereL j
i is a generalized Laguerre polynomial,Ni is a nor-

malization constant, and thea i are arbitrary~variational! pa-
rameters. By choosing a set with a single parametera, the
basis setUi is orthonormal. The overall overlap matrix
then made up of a set of block-diagonal arrays, one for e
order of the Laguerre polynomials. As a result, the over
matrix is easily and quickly diagonalized. For the on
dimensional basis functionsVi andWi , Jacobi polynomials
were used, making the overlap matrices for theVi and theWi
narrowly band diagonal.

The Hamiltonian matrix elements are quickly calculate
as only values within the small one-dimensional basis s
need to be calculated. The Hamiltonian matrix is then c
structed by taking products of these. In the present work,
size of the basis sets used is constrained, for specific size
the one-dimensional basis sets, by limiting the maxim
value of the sum of the orders ofVi andWi , as well as of
Ui , Vi , andWi . An enormous advantage of using orthog
nal polynomials for the basis functions is the very high n
merical stability of the calculations, which show no sign
numerical dependence even for very large basis sets.
stability allows one to accelerate the Hamiltonian diagon
ization when more than a 13-digit accuracy is required a
quadruple precision calculations are necessary. The Ha
tonian can be first diagonalized in double precision and
resulting eigenvector can be used as a~close! starting point
for a quadruple precision search of the eigenvalue. Ag
this can be only done, given that, with this basis set, a dia
nalization in double precision, even with huge basis s
does not fail.

In Table I we present results obtained with different bas
set sizes. These are preliminary values and no attempt
been made to optimize the basis set used. The result in
last row is our best nonextrapolated value for the grou
state of He. The large number of vectors points to the sta
ity of the method, as a double precision calculation will s
succeed for these large dimensions, even though only
s
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digits will then be obtained. The calculations are easy a
quick; the results to full double precision accuracy can
easily obtained on a notebook PC. There are several rea
for the large number of basis functions.~i! A fundamental
reason is related to the fact that the asymptotic hydroge
limit is not incorporated in the basis set.~ii ! Only one non-
linear parameter has been used in the basis set, namely
exponential parameter of the functionsUi ; the choice of a
single parameter was made in favor of keeping theUi or-
thogonal. Notice that nonlinear parameters can be introdu
in the other one-dimensional basis functions too; for e
ample, as weights of the orthogonal Jacobi polynomials.~iii !
No attempt has been made~yet! to optimize the basis set. I
is, however, remarkable that an extreme degree of accu
is attainable by a method that is intrinsically very simp
Work is currently in progress on the optimization of the d
mensionality. A drastic reduction in the size of the ba
functions appears possible, as well as the rigorous inco
ration of the asymptotic~hydrogenic! behavior in the basis
set. The results of this ongoing work are to appear in a co
prehensive paper. Future work will concentrate on the ap
cation of the method to three-electron systems~for which the
extension is immediate! and QED calculations in two- and
three-electron atoms for which the speed, ease, high num
cal stability, and accuracy of the method are perfectly suit

In Table II we present a comparison of the present w
with previous non-extrapolated results in the literature.
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TABLE II. Comparison of the ground-state energy obtained
the present work with nonextrapolated previous results in the lite
ture. E denotes the energy in a.u.N denotes the number of bas
functions used.

N E ~a.u.!

Frankowski and
Pekeris@6#

246 22.903 724 377 032 6

Freundet al. @8# 230 22.903 724 377 034 0
Thakkar and Koga@9# 308 22.903 724 377 034 114 4
Drake and Yan@4# 1262 22.903 724 377 034 119 479
This work 8066 22.903 724 377 034 119 593 8(50
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