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An uncoupled correlated variational methee., explicitly using the interelectronic coordinatésr calcu-
lations involving several electrons is introduced. All the overlap and Hamiltonian matrix elements, including
those involving the electron-electron interaction, are simple products of one-dimensional integrations. Al-
though simple to implement, the method yields the best available energy for the ground state of the He
zeroth-order Hamiltoniaid,=H,+H,+1/r1,. Preliminary nonoptimized and nonextrapolated calculations
yield E=—2.903 724 377 034 119 593 8(50) a[81050-294{@8)50402-1

PACS numbdps): 31.25-v, 31.10:+z, 31.15.Pf

[. INTRODUCTION accuracy is limited by the onset of numerical linear depen-
dence. For Slater-based calculations the convergence can be
Correlated basis sets offer the most accurate results famproved and numerical dependence can be mitigated by the
calculations involving two or three electrons. The pioneeringuse of multiple exponential parameters, as shown for Slater
work of Pekeris and collaborators was for a long time therelativistic Dirac-Hartree-Fock calculations in many-electron
landmark for these types of calculations. In the original worksystems[3]. When applied to correlated calculations, the
of Pekerig 1], perimetric coordinates were used, these beingnultiexponential approach has yielded the most accurate
linear combinations of the electron coordinateandr, and  numbers to daté4,5].
the interelectron coordinate;,. In terms of these coordi- In this paper we shall show that the accuracy of these
nates the integrals uncoupled into three infinite one<alculations can bexceededby a very simple computational
dimensional integrations that could easily be handled by thenethod. We start with a short review of correlated varia-
computer systems then available, using orthogonal Lagueriigonal methods.
(orthogonal combinations of Slater-typbasis functions to
analytically calculate matrix elements. Since this exceptional Il. CORRELATED CALCULATIONS
work appeared, new accuracy demands have been progres- ) ) )
sively placed on these energy calculations by improved ex- Correlated calculations derive their power from the fact
perimental precision as well as accurate calculations of relahat the interelectronic potential is not expanded in an infinite
tivistic and quantum electrodynamics effects. As a result, £€fies, such as, for example, the infinite spherical expansion
number of different correlated methods were introducedcommonly used in configuration-interactiai€l) calcula-
Pekeris’s group abandoned perimetric coordinates in favor dfons. This is accomplished by a change in the coordinate
nonorthogonal Hylleraas basis sets in order to improve accigystem used and the corresponding volume element used in
racy. Since then correlated methods have made direct use Hi€ integrations. A typical integral in Cl or Hartree-Fock
the Hylleraag2] coordinates, , r,, andr, within different ~ calculations is of the standard spherical type
strategies. The common factor among these calculations is . . - -
th_e presence qf multldlmensmn_al integrations, given th_e cou- |:f fidflf r%drzf Sin@ldﬁlf sing,dé,
pling of the limits of integration due to the coordinate 0 0 0 0
[ri—ry|<rip=<r;+r,. The presence of these coupled inte- o o
grations precludes orthogonal or ba.nd-dlagonal overlap ma- Xf d%f deof(ry,ra.r10). 1)
trices for Slater-type basis functions; as a consequence, their 0 0
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This integral can only be handled by a spheri@afinite) a=r1+r,—Tq,,
expansion of ;,. This makes the inclusion in the basis set of
functions that depend explicitly an, difficult to implement. B=T1=TaH T, @)
In correlated methods the explicit userqgf, is facilitated y=—r1+ry+rq5.
by changing the integration volume element so that now the
integrals are of the forrm5] This basis set took advantage of the fact that with these lin-
© © fy ear combinations of the radial variables the radial integrals
|:f rldrlf fzdfzf rdr, uncouple into three independent integrations from G»to
0 Iry=r2l Using generalized Laguerre polynomials for the functions

. o o L;, the basis functions can also be made orthogonal. All
xf Sin@ldﬁlf de; dxf(ry,ro.rimx), (2 these features point to great stability and speed of calcula-
0 0 0 tion. The basis set is, however, limited to a single nonlinear
R parametei\), limiting its ability to produce results of great
where y is the angle of rotation around of the plane de- accuracy. The same group later opted to relinquish the or-
fined byr, andr,. All the angular integrals involving, and  thogonality and uncoupled properties in favor of a better
©, (now dependent variablesan be expressed in terms of convergence by introducing in the basis set features pointed
€05, Whereel2 is the interelectronic ang|e, gi\/en in terms out by the Fock expansion of the helium wave function. This
of the independent variables by involves including logarithmic and noninteger powers in the
2 o o basis sef6—9|. This type of basis set has been the subject of
- _MitrTrn 3) intensive research until recently and is of the general form

003912: Fl' o=
2141, @i(r1,r2,r1) =€ 5(Ins)K(s?+t%)"2P 1 (s) P,(t) P5(u),

We deal in this paper with the solutions to the two- ®

electron nonrelativistic Hamiltonian with an infinite nuclear wherek andn are integers, th®; are usually integer powers
mass, which we caliy. This is a Hamiltonian that has been of the arguments, and

the subject of extensive work in the literature and on which
substantial emphasis has been placed in order to obtain very
accurate solutions. The finite mass corrections can be a
counted for by an overall scaling of the energy by the ratio o RPN
the electron and reduced masses and by the inclusion of mass ~ ¢i(f1.72.r12)=@ G T2Ry (1) Ry(r2)Re(r10), (10)
polarization effects done perturbatively. The Hamiltorkén
provides an excelleristandard test of the accuracy that dif-

S=r1+l’2, t=r2—r1, U:rlz. (9)

nother type of correlated radial basis set is of the form

where theR; are usually positive integer powers of the argu-
ferent basis sets are able to achieve ments. This approach derives its convergence power by us-

In terms of the spherical coordinates of each electron, thé9 multiple _se_ts_o_f the nonlinear _parameterand 7, In this
HamiltonianHg, in a.u. (a.u. will be used throughout this way also minimizing the numerical dependence problems

o : typical of the Slater-type functiond0) [4].
papey, is given by the expression The method$8) and(10) have been the most widely used
Moo EVZ 3 EVZ _Z E+ 1 @ in recent years with the aim of obtaining the best possible
07 2" 272 1y 1y rp, accuracy. Common to these methods is the fact that the cal-
culation of the matrix elements involvesupled integra-
For two-electrorsS states, in terms of the coordinates de-tions.

fined for the integratiori2), H, becomes

1 42 1 g2 1 92 I1l. UNCOUPLED CORRELATED CALCULATIONS
Ho=— 55— =l —5— ==~ — —r . . . .
0 2ry &_rf Yo2r, a_rg 2 1, i, 12 The aim of this paper is to present a different approach

that simplifies the calculations and yields high stability and

2 2
4 roCo001p—ry d riCos¥yp—ry d Z accuracy. The inspiration for this method comes from the

Mo 1912 rio rads Iy modified configuration-interactioGMCI) [10] and radially
uncoupled configuration-interactidRUCI) [11] approaches
_ E+ i (5) to configuration-interaction calculations, particularly the
2 T RUCI uncoupling of the radial integrals. The radial portion

of the integral(2) can be rewritten in the following way:
where co$,, is given by the expression of E(). The gen-

eral for_m ofH for states vyitH_>0_ can be_ found in Ref5]. J:f rldrlf rzdrzfrﬁrz r0r0(ry,ro,r o)
Typical correlated basis sets in the literature for calcula- 0 0 \
tions involving the Hamiltonian(5) are of the following " . g
forms: we start with the basis set using perimetric coordi- :j r>dr>f r<dr<f Fdrg(r=,r-,rio)
nates introduced by the ground breaking work of Pekeris and 0 0 r
co-workers[1] " . fotre
@i(r1,12,r1) = Y2 BTV (a)Ly(B)Ls(y),  (6) +f r>dr>fo r<dr<fr F12dr9(r<,r-.ri,

0 >"T<

wherea, B, andy are the perimetric coordinates 11

r1=rp

>"T<
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TABLE |. Variational energy values in a.u. obtained in the present wdkN,, ,N,, are the number of
one-dimensional basis functions of each type ubggl,, is the largest value of the sum of the orderdJef,
V;, andW,;, while N,,, is the largest value of the sum of the orders/fandW, . N is the total number of
vectors in the basis set.

NU Nv NW NuuW NUW N E (a.U)
36 18 10 48 16 1943 —2.903724 377 034 078
40 20 11 48 18 2676 —2.903724 377034 115 8
42 20 12 50 19 3468 —2.903 724 377 034 118 35
48 20 12 50 20 3792 —2.903 724 377 034 119 249
51 20 12 58 20 4262 —2.903724 377034 119 414
56 20 12 64 20 4652 —2.903 724 377 034 119507 9
63 23 14 74 23 6636 —2.903 724 377 034 119569 7
71 23 14 83 23 7328 —2.903 724 377 034 119 586 99
76 23 14 88 23 7738 —2.903 724 377 034 119 591 63
80 23 14 92 23 8066 —2.903 724 377 034 119 593 82
where dimensional basis functions is arbitrary; one could, for ex-
r-=maxr;,r,} and r_=min{ry,r,}. (120  ample, useB splines, for which the one-dimensional nature

of the calculations is particularly well suited. The simplest
In other words, all the calculations require the integration basis functions to choose would be Slater functions for the

w0 r Pt U; and simple powers for th¥; and theW,. Notice that,
I=f r>dr>f r<dr<f rdr0(rs ,ro,ro). unlike the case of perimetric coordinates, there is no limita-
r>-r< tion on the number of nonlinear parameters one can intro-

13 duce for any of the one-dimensional basis functions.
The Hamiltonian itself is easily rewritten in terms of the

In the RUCI method, the first two limits of integration are ) .
new coordinates using

uncoupled by the change of variables

u=r-, v=r-/r-, (14) ri=u(®+v0),
which also has the advantage of explicitly introducing in the r2=u(0+v0), (20
basis functions the ratio_ /r- appearing in the spherical ri,=u(l+ovw),
expansion of ¥/;,. The uncoupling in the correlated case is ) o )
completed by the new variable where® is the Heaviside step function
Mo T~ O=0(r —1,)= 1 if ry=ry,
T @39 ORI i <y,
With the new variable$14), (15), the integra(13) is rewrit-  and
ten as 0=1-0.
o0 1 1
I= fo u5duf0 vdo fﬁl(lJrUW)de(UvU:W)- (16) Use of the new variables, v, andw introduces in the
basis set an improvement in representing the cusp in the
If the functionf in the integrand is of the form wave function at;=r, in two ways: by using y, explicitly

as well as by using the variables andr . The latter, upon
substitution in the Laplacian operators, introduces in the
Hamiltonian operator Dirac delta functiodr,—r>,).

There is, however, a drawback with this kind of represen-
_ L L tation. Notic<=T that a basi; set of the fokB) can represen_t
|:J' U(u)u5du{f V(v)vdvf W(w)dw an equnentlal asymp_totlc decay only th_rough the functions

0 0 -1 U; by including functions of the forme™““uP. In other

words, only the correct asymptotic behavior ref can be

+ f1V(v)v2dvfl W(W)WdW]. (18) rigorously included in the basis set. Any single radial basis
0 -1

f(u,v,w)=U(u)V(v)W(w), (17)

then the integra(16) fully uncouples into products of three
one-dimensional integrations:

function cannot be written as a product of two radial hydro-
genic functions given that’'<=e3" cannot be written as
Full advantage of this decoupling is achieved by choosingroduct of the formf(u)g(v). The Taylor expansion of
a radial basis set of the form e however, is a linear combination of products
ei=U;(u)V;(v)W;(w). (190  fi(u)gi(v), so that the correct asymptotiaydrogenig limit
can be represented by a linear combination of the basis func-
With this basis set all the overlap and Hamiltonian matrixtions (19). It is crucial then to check the radial convergence
elements are written as products of one-dimensional integran the radial hydrogenic limit. This has been done in Ref.
tions of the form(18). Notice that thechoice of the one- [11] with excellent results, yielding the most accurdlby
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several orders of magnitud€l radial limit in the literature. TABLE II. Comparison of the ground-state energy obtained in
There is a price to pay, which is an increase in the size of théhe present work with nonextrapolated previous results in the litera-
basis set. ture. E denotes the energy in a.ll denotes the number of basis

In the present work the basis sets used are based on dHnctions used.
thogonal polynomials suited to the domains of integration of

the each of the integrals. For thi we use N E (@u)
Uj(u)=N;e %YL} (2a;V), (21)  Frankowski and 246 —2.9037243770326
: Pekeris[6]
Freundet al.[8] 230 —2.9037243770340

Whe.re".} is a generalized Laguerre polynomibl, is a nor- 00 © Kogd9] 308 —2.9037243770341144
malization constant, and the are arbitrary(variationa) pa- .6 and Yarj4] 1262 —2.903 724 377 034 119 479
rameters. By choosing a set with a single parametethe  This work 8066 —2.903 724 377 034 119 593 8(50)
basis setU; is orthonormal. The overall overlap matrix is
then made up of a set of block-diagonal arrays, one for each_ ) ) )

matrix is easily and quickly diagonalized. For the one-quick; the results to full double precision accuracy can be
dimensional basis functiong, andW; , Jacobi polynomials easily obtained on a notebook PC. There are several reasons
1 1

were used, making the overlap matrices forthend thew, for the large number of basis functions) A fundamental
narrowly band diagonal ' ' reason is related to the fact that the asymptotic hydrogenic

The Hamiltonian matrix elements are quickly calculated,l!mlt is not incorporated in the basis séi.) Only one non-

as only values within the small one-dimensional basis Setgnear parameter has been used in the basis set, namely, the

need to be calculated. The Hamiltonian matrix is then Con_e_xponentlal parameter of the_functlobs; the c_h0|ce of a
ingle parameter was made in favor of keeping theor-

structed by taking products of these. In the present work, th | oo th i be introduced
size of the basis sets used is constrained, for specific sizes Bfogonal- Notice that nonlinear parameters can be introduce
n the other one-dimensional basis functions too; for ex-

the one-dimensional basis sets, by limiting the maximu , !
value of the sum of the orders &f andW. . as well as of ample, as weights of the orthogonal Jacobi polynomidls.
\ " No attempt has been madyget) to optimize the basis set. It

U;, V;, andW,. An enormous advantage of using orthogo-. h kable that " q :
nal polynomials for the basis functions is the very high nu-'S: NOWEVEr, remarkablé that an exireme degree of accuracy
is attainable by a method that is intrinsically very simple.

merical stability of the calculations, which show no sign of . . T ;
y 9 ork is currently in progress on the optimization of the di-

numerical dependence even for very large basis sets. Th ionality. A drasti duction in the si f the basi
stability allows one to accelerate the Hamiltonian diagonal-mens'on""I Y- rastic reduction in the size ot the basis

ization when more than a 13-digit accuracy is required anéunctions appears possible, as well as the rigorous incorpo-

qguadruple precision calculations are necessary. The Hamir—ation of the asymptoti¢hydrogeni¢ behavior in the basis

tonian can be first diagonalized in double precision and th&et: The.results of this ongoing wprk are to appear in a com-
resulting eigenvector can be used aclase starting point prehensive paper. Future work will concentrate on the appli-

for a quadruple precision search of the eigenvalue. Again(fation of the method to three-electron systefos which the

this can be only done, given that, with this basis set, a diago@XtenS'on is immediajeand QED calculations in two- and

nalization in double precision, even with huge basis Setsthree-electron atoms for which the speed, ease, high numeri-

does not fail ¢al stability, and accuracy of the method are perfectly suited.

In Table | we present results obtained with different basis- . In Tab]e Il we present a comparison of the_ present work
set sizes. These are preliminary values and no attempt hddth previous non-extrapolated results in the literature.
been made to optimize the basis set used. The result in the
last row is our best nonextrapolated value for the ground
state of He. The large number of vectors points to the stabil- Research support from the Natural Sciences and Engi-
ity of the method, as a double precision calculation will still neering Research Council of Canada is gratefully acknowl-
succeed for these large dimensions, even though only 1&dged.
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