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Collective excitations of Bose-Einstein-condensed gases at finite temperatures
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We have applied the Popov version of the Hartree-Fock-Bogoliubov~HFB! approximation to calculate the
finite-temperature excitation spectrum of a Bose-Einstein condensate~BEC! of 87Rb atoms. For lower values
of the temperature, we find excellent agreement with recently published experimental data for the JILA
time-averaged orbiting potential trap. In contrast to recent comparison of the results of HFB-Popov theory with
experimental condensate fractions and specific heats, there is disagreement of the theoretical and recent ex-
perimental results near the BEC phase transition temperature.@S1050-2947~98!50701-9#

PACS number~s!: 03.75.Fi, 67.40.Db, 67.90.1z
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Laboratory realizations of gaseous Bose-Einstein cond
sates~BECs! @1–3# have prompted vigorous experimental@4#
investigations of the temperature-dependent properties
these mesoscopic quantum systems. The current theore
interest in such condensates derives, in part, from the
that experimental tests of many-body theories that
thought to apply to BEC — a phenomenon occurring i
many areas of physics — can now be performed. An ac
rate theory of such systems is therefore of fundamental
terest, and will also have practical applications. In this Ra
Communication, we explore the limits of validity of the sim
plest temperature-dependent mean-field theory — a simpli-
fied version of the Hartree-Fock-Bogoliubov~HFB! approxi-
mation originally introduced by Popov@5# — by presenting a
comparison with experiment of this theory’s predictions
condensate excitation spectra atT.0.

Condensate properties predicted by such theories inc
condensate and thermal-atom spatial density profiles, c
densate fractions, specific heats, and excitation frequen
Of these properties, excitation spectra provide the most
sitive test of the applicability of competing theories, sin
the other quantities listed depend on sums over states an
thus insensitive to small errors in the excitation spectru
One example of this can be found in the approach of ze
temperature excitation frequencies to the Thomas-Fe
limit ~i.e., the limitN0→`, whereN0 is the number of con-
densate atoms! as N0 increases. For87Rb condensates con
fined in the JILA time-averaged orbiting potential~JILA
TOP! trap whereN0.4000 atoms, the Thomas-Fermi pr
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dictions for spatial density profiles are extremely accur
while low-order excitation frequencies can differ by as mu
as 10%.

There is gooda priori reason to expect that the HFB
Popov theory should provide good predictions of experim
tal T-dependent collective excitation frequencies. Measu
ments of zero-temperature frequencies@6# exhibited
excellent agreement with the predictions of zer
temperature, mean-field theory@7#. Furthermore, semiclassi
cal variants of the HFB-Popov theory have exhibited exc
lent agreement with experiment forT-dependent condensat
fractions and specific heats for temperatures up to neaTc
@9#. The HFB-Popov theory is a finite-temperature extens
of mean-field theory that provides self-consistent treatm
of the condensed and thermal components of the gas and
should describe the linear response of the condensat
small-amplitude mechanical disturbances@10#.

Although the HFB-Popov equations have been deriv
elsewhere@10,11#, we shall briefly state the physics behin
the basic equations here. The confined Bose gas is portr
as a thermodynamic equilibrium system under the gra
canonical ensemble whose thermodynamic variables areN,
the total number of trapped atoms,T, the absolute tempera
ture, and eitherN0 or m, the chemical potential. The syste
Hamiltonian has the form

K[H2mN5E dr ĉ†~r !~H02m!ĉ~r !

1
U0

2 E dr ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !, ~1!

where ĉ(r ) is the Bose field operator that annhililates
atom at positionr and H05 (2\2/2M ) ¹21Vtrap(r ) is the
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bare trap Hamiltonian. For the system treated here, the
potential Vtrap(r )5M (vr

2r21vz
2z2)/2, where M is the

atomic mass, andvr and vz are the radial and axial tra
frequencies, respectively. The quantityU054p\2a/M is a
measure of the interaction strength between atoms, wita
being the scattering length for zero-energy binary atom
collisions, taken to be 109a0 for 87Rb @12#, wherea0 is the
Bohr radius.

The Bose field operator is decomposed into ac-number
condensate wave function plus an operator describing

noncondensate part,ĉ(r )5N0
1/2f(r )1c̃(r ), and inserted

into Eq. ~1!. When terms cubic and quartic inc̃(r ) are
treated within the mean–field approximation the gran
canonical Hamiltonian reduces to a sum of four term
K5K01K11K1

†1K2 . The first termK0 is a c number, the

second and third terms are linear inc̃(r ) andc̃ †(r ) and the
last term is quadratic in these quantities. It is easy to sh
that the linear terms vanish identically iff(r ) satisfies the
generalized Gross-Pitaevskii~GP! equation

$H01U0@N0uf~r !u212 ñ~r !#%f~r !5mf~r !, ~2!

whereñ(r ) is the density of noncondensate atoms. Note t
the condensate wave function is normalized to unity.

The termK2 has the form

K25E dr c̃ †~r !Lc̃~r !1
N0U0

2 E dr @f~r !#2c̃ †~r !c̃ †~r !

1
N0U0

2 E dr @f* ~r !#2c̃~r !c̃~r !. ~3!

whereL[H012U0n(r )2m andn(r )5N0uf(r )u21 ñ(r ) is
the total trapped-atom density. The termK2 can be diagonal-
ized by the Bogoliubov transformation,

c̃~r !5(
j

@uj~r !a j1v j* ~r !a j
†#, ~4!

if the quasiparticle amplitudesuj (r ) and v j (r ) satisfy the
coupled HFB-Popov equations:

Luj~r !1N0U0uf~r !u2v j~r !5Ejuj~r !,
~5!

Lv j~r !1N0U0uf~r !u2uj~r !52Ejv j~r !.

The a j and a j
† are quasiparticle annihilation and creatio

operators that satisfy the usual Bose commutation relatio
The density of the thermal component of the gas

ñ(r )[^c̃ †c̃&, and thus can be written in terms of the qu
siparticle amplitudes as

ñ~r !5(
j

$@ uuj~r !u21uv j~r !u2#Nj1uv j~r !u2%, ~6!

where Nj5(ebEj21)21 is the Bose-Einstein factor, an
b5(kBT)21 with kB the Boltzmann constant. The total num
ber of trapped atoms,N, is given by

N5E drn~r !5N01E dr ñ~r !. ~7!
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Our version of Eq.~5! differs from that of Ref.@13# via a
sign change in the definition ofv j (r ).

Equations~2!, ~5!, ~6!, and ~7! form a closed system o
equations that we have referred to as the ‘‘HFB-Popo
equations. We have numerically solved these equations
der conditions appropriate to87Rb atoms confined in the
JILA TOP trap @14#. We choose our state variables to b
$T,m,N%, fix T andm, and then determineN by solving the
HFB-Popov equations. This is equivalent to the alternat
triple of state variables$T,N0 ,N%, since there is a one-to-on
relationship betweenN0 andm.

We have solved the HFB-Popov equations by an itera
procedure, each cycle of the iteration consisting of two ste
In the first step of each cycle, we solve Eq.~2! for new
values off(r ) andN0 with a basis-set approach as describ
previously@15# using ñ(r ) obtained in the previous cycle. In
the second step, we solve Eqs.~5! using ñ(r ) from the pre-
vious cycle, and the newly generated values off(r ) andN0 .
With the quasiparticle amplitudes expanded in the trap ba
Eqs. ~5! yield a generalized matrix eigenvalue problem f
the basis-set coefficients. We recast the generalized m
eigenvalue problem by using a decoupling transformat
consisting of taking the sum and difference of Eqs.~5!. This
transformation is equivalent to that of Hutchinsonet al. @13#,
except that it is expressed in terms of basis set expan
coefficients. Completion of this step yields th
$uj (r ),v j (r )%, and Ej which are used in Eq.~6! to update
ñ(r ). Equation~7! then updates the total number of trapp
atoms N. Convergence is reached when the change inN
from one cycle to the next is smaller than a specified to
ance. To obtain converged results at high temperatures
add a correction to the total number of atomsN at each
iteration cycle. High-energy quasiparticle eigenfunctio
have negligible overlap with the condensate wave functi
so their presence in the thermal sum of Eq.~6! does not
significantly modify the low-lying excitation frequencies, b
does contribute to the value ofN.

We have checked the accuracy of our numerical work
writing two independent codes, which produce identical a
swers. The ideal-gas result is recovered when we seta50,
and we have reproduced the results reported in Ref.@13#. We
now discuss the comparison of this approach with exp
ment.

Figure 1 compares the experimental@14# excitation spec-
trum of 87Rb in the JILA TOP trap vs our HFB-Popov re
sults for them50 and m52 modes. The abscissa is th
scaled temperatureT85T/T0(N,v̄), where T0(N,v)
[\v/kB@N/z(3)#1/3 is the theoretical transition temperatu
for an ideal, trapped Bose gas andv̄5(vr

2vz)
1/3 @8#. The

ordinate is the excitation frequency expressed in units ofvr .
Our results were obtained using the experimental value oT,
and a value ofm that yielded the experimentally determine
value of N. Thus, as for our previous treatment of zer
temperature excitation spectra@7#, this calculation contains
no adjustable parameters. The agreement between theo
and experiment is very good~on the order of 5%) for low
and intermediate temperatures (T8<0.65). It should be
noted that, as depicted in Fig. 2, the high end of this te
perature range corresponds to a non-condensate fractio
about 50%. However, as the temperature increases, the H



n-
s,

rly
1

ex-
m

e
f

ro-

nd
a
n a

y
,
nd
in
c-
as,
of

he

-

s
re-
tic
e-
ii

ity
-

m-

RAPID COMMUNICATIONS

R34 57DODD, EDWARDS, CLARK, AND BURNETT
Popov excitation frequencies diverge from the experiment
data. This feature of the comparison holds true for bot
m50 andm52 modes.

The behavior of the calculated excitation frequencies ca
be understood in a simple way. The HFB-Popov equation
determine the equation of state for the state variable
$N,N0 ,T%, so that, given the values ofN andT, a uniqueN0
is determined. For fixedN, this relationship generates the
condensate fractionN0 /N as a function ofT, which is shown
in Fig. 2 for the JILA TOP trap withN52000. One can
easily predict the temperature-dependent mode frequenc
for theN52000 system by finding the number of condensat
atoms, N0 , from Fig. 2, and then determining thezero-
temperatureexcitation frequency of a condensate withN0
atoms, which is a much simpler calculation.

FIG. 1. The experimental, temperature-dependent excitatio
spectrum in the JILA TOP trap~filled circles! versus the HFB-
Popov predictions for them50 mode~top, labeled by1) and the
m52 mode~bottom, labeled by3). The solid curves are excitation
frequencies for azero-temperaturecondensate having the same
number of condensate atoms as the experimental condensate in
finite-T cloud.

FIG. 2. A plot of the condensate fraction as a function ofT8
~solid curve! for the JILA TOP trap in whichN is fixed at 2000
atoms. The same quantity is shown for the ideal gas in the therm
dynamic limit ~dotted curve! and for 2000 atoms~dashed curve! for
comparison.
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Figure 3 shows a comparison of the three lowest freque
cies numerically determined from the HFB-Popov equation
and by the equivalentT50 method just described. The
agreement of these two approaches is very good over nea
the entire temperature range. The two solid curves in Fig.
are the frequencies determined by the same procedure,
cept that the number of condensate atoms was taken fro
experiment. In short, the principal effect of finite temperatur
on the HFB-Popov excitation spectra is largely an effect o
condensate depletion: the dynamics of the finite-temperature
condensate are essentially the same as those of a ze
temperature condensate with the same value ofN0 . This is
consistent with earlier calculations@16,17# of the speed of
sound in a homogeneous Bose-condensed gas, which fou
that its temperature dependence was effectively
condensate-density dependence. We discuss this result i
broader context in a separate paper@18#, in which we show
that HFB-Popov results can be reproduced quantititatively b
a much simpler ‘‘two-gas’’ model: the condensate gas
which is described by the zero-temperature GP equation; a
the thermal cloud, which is described as an ideal Bose gas
an effective potential created by the condensate. This effe
tive potential repels the thermal gas from the condensate g
which results in the essential independence of temperature
all condensate properties exceptN0 . Application of simple
quantum-statistical mechanics to this model can generate t
full phase diagram of Fig. 2 directly.

As Fig. 1 clearly shows, the HFB-Popov solutions repro
duce the experimental results quite well whenT<0.65T0 ,
but fail at higher temperatures. The HFB-Popov formalism i
biased toward a description of the condensate, as it rep
sents the condensate excitations as taking place in a sta
thermal cloud. Indeed, the HFB-Popov equations can be d
rived from a generalized time-dependent Gross-Pitaevsk
equation that contains a time-independent thermal-dens
term. This results in at least one minor failure of the ap
proach, which is weakly visible in Fig. 3 as a deviation of the
m51 mode frequency from unity nearT0 , in violation of the

n

the

o-

FIG. 3. HFB-Popov excitation frequencies~filled circles! for the
m50 ~top!, m52 ~middle!, and them51 modes~bottom! for a
cold-atom cloud havingN52000 atoms. Overlaid~solid lines! are
the frequencies for a zero-temperature system with the same nu
ber N0 of condensate atoms as in the finite-temperature system.
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generalized Kohn theorem for parabolic confinem
@13,19#. This mode should correspond to a rigid oscillati
of the completeN-atom system, and the deviation of its fr
quency from unity results from the HFB-Popov approxim
tion holding the thermal component fixed and allowing on
the condensate to oscillate. In experiments of the type
cussed here, however, the thermal component and con
sate must both be driven by the modulation of their comm
confining potential. For other, nonrigid oscillations we m
thus also expect thermal and condensate modes to be co
in general. Thus, HFB-Popov frequencies will only corr
spond to the experimental values if the condensate resp
to mechanical disturbance does not induce modulation
the thermal density, so that there is no back action of
thermal cloud on the condensate motion. A more gen
theory that accounts for such condensate-cloud interact
has recently been outlined@20#, but remains to be imple
mented. The self-consistent inclusion of pair terms, wh
are neglected in the Popov approximation, may also be
portant for capturing multiple-collision effects in the theo
et
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of trapped BECs@21#. The effect of such terms can be ve
marked close to the transition temperature@22#.

In conclusion, we have delineated the region of validity
the Popov version of finite-temperature HFB theory by co
paring it directly with the results of recent experimen
Good agreement is obtained for condensate fractions f
unity down to about 0.5, so the HFB-Popov is apparen
correctly describing finite-temperature phenomena in a n
trivial regime. This comparison confirms the critical role
evaporatively cooled gases in establishing proper fin
temperature field theories of Bose-Einstein condensat
and shows that there is still work needed to establish sa
factory agreement between theory and experiment for ca
of small condensate fraction.
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and the U. K. Engineering and Physical Sciences Rese
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