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Collective excitations of Bose-Einstein-condensed gases at finite temperatures
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We have applied the Popov version of the Hartree-Fock-Bogoligbi#B) approximation to calculate the
finite-temperature excitation spectrum of a Bose-Einstein conde(BE®) of 8’Rb atoms. For lower values
of the temperature, we find excellent agreement with recently published experimental data for the JILA
time-averaged orbiting potential trap. In contrast to recent comparison of the results of HFB-Popov theory with
experimental condensate fractions and specific heats, there is disagreement of the theoretical and recent ex-
perimental results near the BEC phase transition temperd®t650-294®8)50701-9

PACS numbes): 03.75.Fi, 67.40.Db, 67.96z

Laboratory realizations of gaseous Bose-Einstein conderdictions for spatial density profiles are extremely accurate
sateg BEC9 [1-3] have prompted vigorous experimeritd]  while low-order excitation frequencies can differ by as much
investigations of the temperature-dependent properties dfs 10%.
these mesoscopic quantum systems. The current theoretical There is gooda priori reason to expect that the HFB-
interest in such condensates derives, in part, from the fadtopov theory should provide good predictions of experimen-
that experimental tests of many-body theories that ardéal T-dependent collective excitation frequencies. Measure-
thought to app]y to BE — a phenomenon occurring in ments of ZerO'temperatUre frequenCiqﬁ] exhibited
many areas of physics — can nhow be performed_ An accuexce"ent agreement with the predictions of zero-
rate theory of such systems is therefore of fundamental intemperature, mean-field theofy]. Furthermore, semiclassi-
terest, and will also have practical applications. In this Rapidral variants of the HFB-Popov theory have exhibited excel-
Communication, we explore the limits of validity of the sim- lent agreement with experiment frdependent condensate
plest temperature-dependent mean-field theer a simpli-  fractions and specific heats for temperatures up to figar
fied version of the Hartree-Fock-Bogoliub¢dFB) approxi-  [9]. The HFB-Popov theory is a finite-temperature extension
mation originally introduced by Popd%] — by presenting a 0f mean-field theory that provides self-consistent treatment
comparison with experiment of this theory’s predictions forof the condensed and thermal components of the gas and that
condensate excitation spectraTat 0. should describe the linear response of the condensate to

Condensate properties predicted by such theories includgmall-amplitude mechanical disturban¢as].
condensate and thermal-atom spatial density profiles, con- Although the HFB-Popov equations have been derived
densate fractions, specific heats, and excitation frequencieglsewherg 10,11}, we shall briefly state the physics behind
Of these properties, excitation spectra provide the most sefibe basic equations here. The confined Bose gas is portrayed
sitive test of the applicability of competing theories, since@s a thermodynamic equilibrium system under the grand-
the other quantities listed depend on sums over states and g@nonical ensemble whose thermodynamic variablesNare
thus insensitive to small errors in the excitation spectrumthe total number of trapped atons, the absolute tempera-
One example of this can be found in the approach of zeroture, and eitheN, or «, the chemical potential. The system
temperature excitation frequencies to the Thomas-Ferniilamiltonian has the form
limit (i.e., the limitNy— o, whereN, is the number of con-
densate atomsas N, increases. Fof’'Rb condensates con-
fined in the JILA time-averaged orbiting potenti@llLA
TOP) trap whereNy>4000 atoms, the Thomas-Fermi pre-

KEH—,U«N=f dr y"(r)(Ho— ) (1)

U ~ N " N
+7°f dr GOF A, )

*Also at Physics Laboratory, National Institute of Standards and .
Technology, Technology Administration, U.S. Department of Com-where (r) is the Bose field operator that annhililates an
merce, Gaithersburg, MD 20899. atom at positionr andHo= (—#%/2M) V2+V,,{r) is the
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bare trap Hamiltonian. For the system treated here, the traPur version of Eq.5) differs from that of Ref[13] via a
potential Viar)=M(w’p?+w5z%)/2, where M is the  sign change in the definition afi(r).
atomic mass, an@, and w, are the radial and axial trap Equations(2), (5), (6), and(7) form a closed system of
frequencies, respectively. The quantity=4=%%a/M is a  equations that we have referred to as the “HFB-Popov”
measure of the interaction strength between atoms, aith equations. We have numerically solved these equations un-
being the scattering length for zero-energy binary atomigler conditions appropriate t§’Rb atoms confined in the
collisions, taken to be 1@ for 8’Rb[12], wherea, is the ~ JILA TOP trap[14]. We choose our state variables to be
Bohr radius. {T,u,N}, fix T andu, and then determin® by solving the
The Bose field operator is decomposed into-aumber HFB-Popov equations. This is equivalent to the alternative
condensate wave function plus an operator describing th&iple of state variable§T,Ny,N}, since there is a one-to-one

noncondensate part(r)=NY24(r)+%(r), and inserted 'elationship betweeN, and .. . N
o B0, (0 Whp T;//( ) ob<_75( ) d¢( ) M We have solved the HFB-Popov equations by an iterative
Ln Ot c(J:I e t;’” erms :‘:'uldlc an q_uartl_c "ﬁg]) are g procedure, each cycle of the iteration consisting of two steps.
reated within the mean—fieid approximation the grandyn he first step of each cycle, we solve E®) for new

canonical Han;ntoman reduces to a sum of four termsy 5,65 of(r) andN, with a basis-set approach as described
K=Kg+K;+K;+K,. The first termK, is ac number, the

) . ~ — previously[15] usingn(r) obtained in the previous cycle. In
second and third terms are lineardifr) andy '(r) and the

last term is quadratic in these quantities. It is easy to shov;[/he second step, we solve EGS) usingn(r) from the pre-

that the linear terms vanish identically §f(r) satisfies the vious cycle, and the newly generated valuegof) andNo.

i e ; With the quasiparticle amplitudes expanded in the trap basis,
generalized Gross-PitacvskisP) equation Egs. (5) yield a generalized matrix eigenvalue problem for

2. 0% _ the basis-set coefficients. We recast the generalized matrix
{Ho+UdNol ¢(nI*+2n(N]}b(r) =pe(r), ) eigenvalue problem by using a decoupling transformation

whereﬁ(r) is the density of noncondensate atoms. Note thafons'fstlng ?f ta_kmg the IsuTtantﬂ cilffferl_e':ntceh_of E@T -Iig's
the condensate wave function is normalized to unity. rans (t)rtmhathtn'ls equiva end 0 i ato ;Jg Inset at.[ . .
The termK., has the form except that it is expressed in terms of basis set expansion

coefficients. Completion of this step yields the
-, - NoUo 1~ {uj(r),vj(r)}, andE; which are used in Eq(6) to update
KZ:f dr ¢ (r)ﬁ’/’(rHTJ drfé(r) ] 1(r) ¢ (1) n(r). Equation(7) then updates the total number of trapped
atomsN. Convergence is reached when the changein
NoUg ~ o~ from one cycle to the next is smaller than a specified toler-
2 J dr[.¢* (1) JZy(r) g(r). 3 ance. To o}l;tain converged results at high tengperatures, we
add a correction to the total number of atomsat each
whereL=Hy+2Ugyn(r)—u andn(r)=N0|¢(r)|2+'ﬁ(r) is iteration cycle. High-energy quasiparticle eigenfunctions
the total trapped-atom density. The tekp can be diagonal- have negligible overlap with the condensate wave function,
ized by the Bogoliubov transformation, so their presence in the thermal sum of E6) does not
significantly modify the low-lying excitation frequencies, but
does contribute to the value bof.
We have checked the accuracy of our numerical work by
writing two independent codes, which produce identical an-
if the quasiparticle amplitudes;(r) andv;(r) satisfy the swers. The ideal-gas result is recovered when weased,

+

'J,(r):; [uj(ra;+v(nafl, (4)

coupled HFB-Popov equations: and we have reproduced the results reported in [R&f. We
now discuss the comparison of this approach with experi-
Lu;(r)+NoUo| (r)|v;(r)=Eju;(r), (5 ment.
) Figure 1 compares the experimenital] excitation spec-
Lvj(r)+NoUo| &(r)[“uj(r)= —Ejv;(r). trum of ®Rb in the JILA TOP trap vs our HFB-Popov re-

The a; and ajT are quasiparticle annihilation and creation sults for them=0 andm=2 modes. The abscissa is the

operators that satisfy the usual Bose commutation relationsScaled tempera}/lér_eT’:T/To(N.,w), where To(N,w)
—~ —_—— k =
n(r)=(%"%), and thus can be written in terms of the qua-for an ideal, trapped Bose gas and=(w,0,)"® [8]. The
siparticle amplitudes as ordinate is the excitation frequency expressed in units pof
Our results were obtained using the experimental valug, of
~ 2 2 2 and a value ofu that yielded the experimentally determined
n(r)—; {Luy) P+ o (OFING+ oD% (6 yajue of N. Thus, as for our previous treatment of zero-
temperature excitation spectid], this calculation contains
where N;=(effi—1)"! is the Bose-Einstein factor, and no adjustable parametersThe agreement between theory
B=(kgT) " with kg the Boltzmann constant. The total num- and experiment is very goo@n the order of 5%) for low
ber of trapped atomsy, is given by and intermediate temperature§’&0.65). It should be
noted that, as depicted in Fig. 2, the high end of this tem-
B B ~ perature range corresponds to a non-condensate fraction of
N_j drn(r)—No+f drn(r). @) about 50%. However, as the temperature increases, the HFB-
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FIG. 1. The experimental, temperature-dependent excitation F|G. 3. HFB-Popov excitation frequenciéfled circles for the
spectrum in the JILA TOP traffilled circles versus the HFB- m=0 (top), m=2 (middle), and them=1 modes(botton) for a
Popov predictions for then=0 mode(top, labeled by+) and the  cold-atom cloud havindd=2000 atoms. Overlaigsolid lines are
m=2 mode(bottom, labeled by<). The solid curves are excitation the frequencies for a zero-temperature system with the same num-
frequencies for azero-temperaturecondensate having the same perN, of condensate atoms as in the finite-temperature system.
number of condensate atoms as the experimental condensate in the

finite-T cloud. . .
Figure 3 shows a comparison of the three lowest frequen-

Popov excitation frequencies diverge from the experimenta¢ies numerically determined from the HFB-Popov equations,
data. This feature of the comparison holds true for bothand by the equivalenT=0 method just described. The
m=0 andm=2 modes. agreement of these two approaches is very good over nearly

The behavior of the calculated excitation frequencies catthe entire temperature range. The two solid curves in Fig. 1
be understood in a simple way. The HFB-Popov equationare the frequencies determined by the same procedure, ex-
determine the equation of state for the state variablesept that the number of condensate atoms was taken from
{N,No, T}, so that, given the values df andT, a uniqueN,  experiment. In short, the principal effect of finite temperature
is determined. For fixedN, this relationship generates the on the HFB-Popov excitation spectra is largely an effect of
condensate fractioNy /N as a function off, which is shown  condensate depletiothe dynamics of the finite-temperature
in Fig. 2 for the JILA TOP trap withN=2000. One can condensate are essentially the same as those of a zero-
easily predict the temperature-dependent mode frequenciggmperature condensate with the same valudlgf This is
for theN=2000 system by finding the number of condensateonsistent with earlier calculatiofd6,17 of the speed of
atoms, No, from Fig. 2, and then determining theero-  soyund in a homogeneous Bose-condensed gas, which found
temperatureexcitation frequency of a condensate Wy that jts temperature dependence was effectively a
atoms, which is a much simpler calculation. condensate-density dependence. We discuss this result in a
broader context in a separate papk8], in which we show
that HFB-Popov results can be reproduced quantititatively by
a much simpler “two-gas” model: the condensate gas,
which is described by the zero-temperature GP equation; and
the thermal cloud, which is described as an ideal Bose gas in
an effective potential created by the condensate. This effec-
tive potential repels the thermal gas from the condensate gas,
which results in the essential independence of temperature of
all condensate properties excdyj. Application of simple
guantum-statistical mechanics to this model can generate the
full phase diagram of Fig. 2 directly.

As Fig. 1 clearly shows, the HFB-Popov solutions repro-
duce the experimental results quite well whes0.65T,
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but fail at higher temperatures. The HFB-Popov formalism is

biased toward a description of the condensate, as it repre-
sents the condensate excitations as taking place in a static
thermal cloud. Indeed, the HFB-Popov equations can be de-
FIG. 2. A plot of the condensate fraction as a functionTef ~ fived from a generalized time-dependent Gross-Pitaevskii
(solid curve for the JILA TOP trap in whichN is fixed at 2000 €quation that contains a time-independent thermal-density
atoms. The same quantity is shown for the ideal gas in the thermd€rm. This results in at least one minor failure of the ap-

dynamic limit(dotted curveand for 2000 atomédashed curvefor proach, which is weakly visible in Fig. 3 as a deviation of the
comparison. m=1 mode frequency from unity nedg, in violation of the

Reduced Temperature, T' =T/ Ty
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generalized Kohn theorem for parabolic confinementof trapped BEC$21]. The effect of such terms can be very
[13,19. This mode should correspond to a rigid oscillation marked close to the transition temperat[2&].

of the completeN-atom system, and the deviation of its fre-  In conclusion, we have delineated the region of validity of
quency from unity results from the HFB-Popov approxima-the Popov version of finite-temperature HFB theory by com-
tion holding the thermal component fixed and allowing onlyParing it directly with the results of recent experiments.
the condensate to oscillate. In experiments of the type disG00d agreement is obtained for condensate fractions from
cussed here, however, the thermal component and condeHPity down to about 0.5, so the HFB-Popov is apparently
sate must both be driven by the modulation of their commorfOTectly describing finite-temperature phenomena in a non-
confining potential. For other, nonrigid oscillations we maytnwal regime. This comparison confirms the critical role of

thus also expect thermal and condensate modes to be couplt%e\driggrrg%’fely figlczjofr?eogriaessesoflnBc?sSetfltE)i"rfstllenig E(r)%%(zrnsf::tliger;
In general. Thus, HFB-Popov frequencies will only COITe" 21d shows that there is still work needed to establish satis-

spond to the experimental values if thg condensate respons ctory agreement between theory and experiment for cases
to mechanical disturbance does not induce modulations o f small condensate fraction

the thermal density, so that there is no back action of the

thermal cloud on the condensate motion. A more general We thank the JILA group for providing us access to their
theory that accounts for such condensate-cloud interactiorsxperimental data. This work was supported in part by the
has recently been outlingl®0], but remains to be imple- National Science Foundation under Grant Nos. PHY-
mented. The self-consistent inclusion of pair terms, which9601261 and PHY-9612728, the Office of Naval Research,
are neglected in the Popov approximation, may also be imand the U. K. Engineering and Physical Sciences Research
portant for capturing multiple-collision effects in the theory Council.

[1] M. H. Andersonet al., Science269, 198 (1995. [10] A. Griffin, Phys. Rev. B53, 9341(1996.
[2] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet,[11] A. L. Fetter, Ann. Phys(N.Y.) 70, 1671(1972.

Phys. Rev. Lett75, 1687(1995. [12] D. Heinzen(private communication
[3] K. B. Daviset al, Phys. Rev. Lett75, 3969(1995. [13] D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev.
[4] J. R. Ensheet al, Phys. Rev. Lett78, 764 (1997; D. S. Jin Lett. 78, 1842(1996.

et al, ibid. 77, 420(1996; M.-O. Meweset al, ibid. 77, 988  [14] D. S. Jinet al, Phys. Rev. Lett78, 764 (1997).

(1996. [15] M. Edwardset al, Phys. Rev. A53, R1950(1998; J. Res.
[5] V. N. Popov, Functional Integrals and Collective Modes Natl. Inst. Stand. TechnoL01, 553 (1996.

(Cambridge University Press, New York, 198Thap. 6. [16] P. Sz@falusy and I. Kondor, Ann. Phy$N.Y.) 82, 1 (1974.

[6] D. S. Jinet al, Phys. Rev. Lett77, 420(1996; M.-O. Mewes
et al, ibid. 77, 992(1996.

[7] M. Edwardset al, Phys. Rev. Lett77, 1671(1996; S. Strin-
gari, ibid. 77, 2360(1996.

[8] V. Bagnato, D. E. Pritchard, and D. Kleppner, Phys. Rev. A .
35, 4354(1987). [20] N. P. Proukakis and K. Burnett, J. Res. Natl. Inst. Stand. Tech-

[9] A. Minguzzi, S. Conti, and M. P. Tosi, J. Phys.: Condens. nol. 101, 457 (_1996' )
Matter 9, L33 (1997: S. Giorgini, L. P. Pitaevskii, and S. L2l N.P. Proukakis, K. Burnett, and H. T. C. Stdehpublishedl

[17] S. H. Payne and A. Griffin, Phys. Rev. 2, 7199(1985.

[18] R. J. Dodd, K. Burnett, M. Edwards, and C. W. Clddnpub-
lished.

[19] See, J. F. Dobson, Phys. Rev. L&tB, 2244(1994).



