RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 57, NUMBER 5 MAY 1998

Structure and stability of bosonic clouds: Alkali-metal atoms with negative scattering length
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We investigate the form and stability of a cloud of atoms confined in a harmonic trap when the scattering
length is negative. We find that, besides the known low-density metastable solution, a different branch of Bose
condensate appears at higher density when nonlocality effects in the attractive part are taken into account. The
transition between the two classes of solutions as a function of the nushbEatoms can be either sharp or
smooth according to the strength and range of the attractive interaction. Use of tight traps is favorable for
investigating the evolution of the system, as the strength of the effective interaction increaseN. with
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PACS numbes): 03.75.Fi, 05.30.Jp, 32.80.Pj

Few alkali-metal isotopes are characterized by a negative It is rather easy to convince the reader that nonlocality in
scattering lengtla; at low energy in the triplet channgl].  the interatomic effective potential can modify the stability
This is believed to have important consequences for the exzondition of the Bose condensate. The GP functighgil’ ]
istence and the structure of the Bose-Einstein condensadith nonlocal interaction .(r) reads:

(BEC) state for trapped clouds of atoms when the isotope

follows Bose statistics. The most celebrated caséLisfor 72

which there is experimental evidence in favor of a BEC state £[W]= | d’r—|V¥|2+ f A3rUq(r) | W (r)|?
if the number of atoms does not exceed a thresf@]dThis 2m

behavior was in fact predicted theoretically. When the inter-

. . . 1
action between atoms is represented by an effective local +_f d3rj A3/ [P (r)|2 ver(r—r') |¥(r)|%
potentialv o«(r) = (47h2/m)ar83(r), a uniform gas phase is 2
unstable against the formation of a collapsed state of high (1)
density. The situation changes in presence of an external trap
[3]. Within the Gross-PitaevskiiGP) equation for the con-
densate wave functid@], the kinetic energy due to the con-
finement in the trap opposes the collapse as long as the nu
ber N of atoms does not exceed a critical nhumib&r that

where ¥(r) is the wave function of the condensate and

U(r) is the potential of the trap. In this paper we consider
2y symmetric harmonic trap) o (r)=3 2mwor . In the local

depends on the parameters of the systisatope massn limit, one recovers the standgrd form of the GP functi_onal.
'’ The ground-state wave function of a cloud Nfatoms is

scattering lengthar, shape of the trap, ejc[5]. Even for
N<N,, we must recall that a dilute cloud represents a metadetermmed by minimizing: [*'] with the constraint that

stable state that can be experimentally observed only if its

lifetime is Io.ng_enough.' N . f d3r|W(r)|? =N. )
The possibility of having positive as well as negative scat-

tering lengths in different atomic systems arises because the

potential between a pair of atoms generally supports bounth the ground stat& (r) is positive definite and spherically

states, leading to the formation of a dimer with several vi-symmetric.

brational levels. Under this conditiofa;| can be very large As a first step, we discuss an approximate, variational

but at the same time the energy-dependent scattering croapproach to this problem that already shows the main fea-

sectiono(E) starts to deviate from its zero energy limit tures of the exact solution. As a trial wave function we

UT(0)=477a$ already at an energy that can be extremelychoose a Gaussian form:

small[6]. The calculations by Qe et al. [7] for ’Li show

that o(E) is reduced to 50% obt(0) at energies of the z2 | ¥ \2r2

order of 3x10~° a.u. This value is small enough thatvave W(r)=N2 (—2) eXp( - —2> , 3

scattering is dominant over higher-angular-momentum may 2ay

states, meaning that the scattering process between two at-

oms can still be represented by an effective two-body interwith a single variational parametarthat defines the size of

actionv . However, in general, we cannot neglect the mo-the cloud in units of the harmonic-oscillator lengty

mentum dependence of«(k) for the colliding atoms. This =[%/(mw)]*2 By substitutingr’ =r +sin Eq. (1) and de-

amounts to saying that the effective interaction is nonlocalveloping ¥ (r+s) in powers ofs, we perform a gradient

In this Rapid Communication we investigate the effects ofexpansion of the energy functiona[ W]. To lowest order in

nonlocality on the stability of the cloud. the gradient of the wave function, the energy reads:
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where the two parameterg and r depend on the choice of i
the effective interaction, providing a dimensionless estimate s | | . -

of the strengthy and ranger of v«(r): AR R R B 0
I3k - g
y=\2/7N ar a;*, = ®)
1 i
r=—[3f drrveu(r) Zaﬁf drrveu(r) (5) 1 [
3| 12
According to these definitionss is basically minus the i q 4
square of the range of the effective interaction and is there- El 6
fore a negative quantity. For a local interactien; 0 and we i ]
recover Baym and Pethick’s resyi]. In this limit and for P AP W S, ST B
negative scattering length;<<0 and&(\) goes to— for 1 2 3 4 1 2 3 4
\A—o, leading to a collapsed ground state. Howe&#i ) 1080 N ogio N
has a local minimum for a finite value of when |y| FIG. 1. Average radius of the cloud [panels(a), (c), and(e)]
<4/5°" i.e., wherN<N,~0.67 ay |as| *. This represents and central densitypanels(b), (d), and ()] as a function of the
the metastable state mentioned above. number of atom#\ for the trap sizes,=3, 1, and 0.3um, respec-

It is clear from Eq.(4) that nonlocality changes the sta- tively. Full dots represent the numerical solution of the GP equation
bility condition, because, for negative scattering length, thewith the nonlocal Yukawa potential. Open dots correspond to the
productyr is positive. Depending on the value of the param-local approximation. The solid line is the variational result and the
eters,&(\) can have one or two minima and the collapse isdashed line is the asymptotic limiting radius fdr—oc. Parameters
prevented in any case. However, this result is only suggediave been chosen to mimidi.
tive because the gradient expansion breaks down as soon as
nonlocality becomes important and a more appropriate for-

(&) _
malism is needed. We have then studied the variational equa- EN)=—N{EN2+EN 24+ ypA3— 7\
tion obtained with the same choice of a Gaussian wave func- 2
tion (3) but without invoking gradient expansion. This + mperfo YA~ Hexp(x*A )}, )

problem requires the explicit definition of the effective inter-

action. We assume that the attractive potential has a finitashere

ranger. and in addition we allow for the presence of a re-

pulsive contribution that is modeled adagal positive term 2 ag 2 ar—ag

defined by a “high-energy” scattering lengtz>0. With yve=NV—— m=Ny\/—ay

this choice,v¢(k) changes sign from negative at sméll

(i.e., low energy to positive at largek, thereby mimicking

the microscopic computations of the 0 phase shift, that _ @ _

show a change in sign from positive to negative when X= Jar, 727 37

e

increaseq 6]. At still higher momenta, scattering in other

channels withl #0 becomes important, but we assume thatand erfck) =1— erf(x) is the complementary error function.

the range of density is such that this regime is never reachedhe extrema of(\) are obtained as solutions of an alge-
In the model we study, the effective interaction is thenbraic equation. This equation has either one or three positive

written in the following form: roots, depending on the parameters and on the nuiitmr
atoms in the cluster. When three solutions are present, the
47h2 intermediate one represents an unstable diate a local
ver(K)= [agt(at—ag) f(kry)]. (6) maximum of the energy while the other two respectively

describe a low-density metastable solution and a minimum
that represents the stable solution within the GP approxima-
We have considered two choices for the shape fundtfa: tion.
a Lorenzian f(x)=(1+x?"! and a Gaussianf(x) The variational results for three typical trap sizes are
=exp(—x?). The results do not depend on the specific choiceshown in Fig. 1, where the average radius and the density at
of f(x) and so we will discuss only the Lorenzian case. Wethe center of the cloud are plotted as a functioNofin the
use interaction parameters appropriate for. ar=—27ag same figure, the variational data are also compared with the
[8], ro=10%ag [7], andar=6.6a5 [9] (Whereag is the Bohr  exact solution of the GP equation, obtained by numerical
radiug. The energy functional for the Lorenzian potential integration of the corresponding self-consistent Sdimger
can be analytically expressed in terms of elementary funcequation. In fact, the exact minimization of the GP functional
tions and reads: (1) gives rise to a nonlinear eigenvalue problem for the
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ground-state wave function. The ground state is spherically ré¢/a,
symmetric and can be written 85(r) = ¢(r)/r, whereg(r) 0 O\ ———— ? e fs
satisfies AN ]
AN —— (a) .
-1 T _ -
72 d? mwg ) . - --~
— o AN T rp(r) T W(r) o(r) = €p(r). s ol 3
2mdr 2 & - 1
8 - r ]
® -3 .
Here € is the chemical potential and F 3
_4 1 1 1 1 1 1
W(r)=fd3r’ | p(r ) Poen(r—r')/r'? ©) E ! T ! ]
33 _ -
B (b) ]
is the self-consistent interaction. For effective potentials & 2.5 =
written as sums of Yukawa functions, this integro- o - ]
differential equation can be reduced to a boundary value § *f 7 (  T~~_____ B
problem for a set of ordinary differential equations. In par- = s b E
ticular, in the case of interest, the fori®) gives rise to three T e ]
ordinary differential equations that have been integrated by | L . N T S
the standard Runge-Kutta method. 1 2 3 4
Figure 1 shows the good performance of the variational log,, N

approach, which is always very close to the exact solution. . .
For largeN the size of the cloud is remarkably independent_ FIG. 2. (8) Condensate wave functiof (r) for a trap sizea,

=0.3 um and nonlocal interaction. The noninteracting result

of the trap size, demonstrating that the atoms are in a Self('Gaussian wave functigrwould be a straight line in this plot.

bound configuration. The size of the cloud is governed by the) . lineN=68 (low density; dotted line,N=159 (near the

effective range: For large values of (r¢>[ar|) andN not  ayimum of the low-density branghsolid line, N= 166 (higher-

too large, the reduced densityas|* is small. This indicates  gensity branch (b) Equilibrium curves for parameters appropriate
that the self-bound state that we find represents a differenpy |ithium atoms in a trap o, =1 um and three choices of the
regime of the cloud, intermediate between the very-low-ffective range of the Lorenzian attractive potential. Variational re-
density state already predicted within the approximation ofkults: dotted liner,=5008a5 ; solid line,r,=1000g ; dashed line,
local interaction and the collapsed high-density state that de-,=2000; .

pends on the detailed shape of the true interatomic potential

[10]. effects start to set up even at the lowest temperature. It

The asymptotic larg& behavior of the exact solution can should be noticed that the presence of a repulsive short-range
be obtained analytically from our equation: The radius of theinteraction in our model potential does not play a crucial
cloud reaches a finite limit that coincides with the result ofrole. The higher-density branch as well as the existence of
the Thomas-Fermi approximation to the GP equafibh.  two regimes depending on the size of the trap are present
On the other hand, the low-density branch is virtually indis-even if we putagr=0. The only difference is that, in this
tinguishable from the exact solution of a local attractive po-case, the radius of the cloud slowly decreaseblas» and
tential, also shown in the figure. The effects of nonlocalitydoes not reach a finite limit as in Fig. 1. In any case, it should
become important just when the radius of the cloud rapidlybe kept in mind that in the larg-limit our results are only
drops. This “transition” is discontinuous for large traps, qualitative because the GP equation itself breaks down and
where the reentrant behavior of the curve shows the presendasteraction effects are expected to produce a depletion of the
of an unstable branch. By reducing the trap size, howevecondensate whep|a|® is not very small. However, we be-
this discontinuity is strongly reduced and, below @3, the  lieve that the trend shown by this equation is significant,
unstable branch disappears and there is a smooth evoluti@ven if quantitative results must wait for a more accurate
from a very dilute cloud to a less dilute state with an increasdetermination of the interatomic potential and a better treat-
ing density asN grows. ment of the many-body problem.

The predictions of the standard treatment of clouds of Another interesting problem that can be addressed by this
alkali-metal atoms in terms of a local pseudopotential havdormalism is the shape of the condensate wave function. This
to be modified in two respects when the scattering length ignformation may be useful for the quantitative determination
negative. In the case of shallow traps, the stability thresholaf the number of atoms in the condensate from experimental
N, is only an upper bound. There is a lower threshglgdfor =~ data. The GP ground-state wave function, normalized to
the higher density state and in the intermediate redign  unity at the origin, is shown for different numbers of atoms
<N<N, the low-density branch is metastable towards then the cloud in Fig. 2a). We see that some deviation from a
higher-density solution. For instance, in au8 trap N,  Gaussian form develops as density grows. In particular, a
=1300 and\.,= 160. Which state is reached experimentally sharp peak at the cloud center grows at lakgeAlong the
depends on how the cloud is formed. In the case of a tightery-low-density branch we verified that the wave function
trap a threshold does not exist altogether. This feature allowis not affected by the nonlocality of the interaction and is
one to explore experimentally how the state of the systenvery close to the numerical result in the local approximation.
evolves as the interaction strength increases and depletidtiowever, significant deviations appear as soon as we ap-
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proach the edge of the low-density branch. in order to modify the effective interaction in these systems
As a next step we can investigate the dependence of tHd 2].
shape of the equilibrium curve when the range of the attrac- In conclusion, the analysis of the Bose-Einstein con-
tive interaction is varied. In fact, we expect that the largerdensed ground state of lithium atoms in a harmonic trap has
this length scale, the stronger the effect of nonlocality in theshown that atomic clouds may exist in a different state, in-
stability diagram of the cloud. More importantly, the value of termediate in density between the very dilute regime that has
the effective range, is rather uncertain, even in lithium, and Peen studied up to now and the collapsed high-density state
it is useful to test the sensitivity of our results to variations ofthat is determined by the short-range behavior of the true
the shape of the effective interaction. In FigbRwe show interatomic potential. _Also this mterm_edlate state is self-
the equilibrium curves of a cloud of lithium atoms in a har- PouUnd. because the size of the cloud is essentially indepen-
monic trap ofay=1 um when the effective range, is ar- dgnt_ of the size of the trap. The importance Qf. Fhe StUdY of
tificially halved or doubled with respect to the referencethls intermediate regime arises from the possibility of tuning

value r,=10%ag previously adopted. The results clearly the strength of the interaction by changiNg In this way it

show a smoothing of the transition between the two branchevsvIII be possible to study how the depletion of the condensate

induced by the enhancement of nonlocality. By increasin ffects the structure and the physical properties of the state.

the effective range, the maximum number of atoms in the o this end, it is important to confine the system in suffi-

low-density branchN, slightly increases and the two ciently small traps in order to avoid the discontinuous jump

branches of solutions tend to merge into a unique phasBetween the two phases. Interestingly, such microtraps are

smaothy comecting the k- and the igherdensiy e\ 0% JeVelopmernd Noncelty o e efeove ere
gimes. A quantitative analysis of the variational solution cattering lenath isgne ative Lor? “range oter?tials favor the
shows that the occurrence of the single-branch regime i ng feng 9 - -ong-range p

rmation of big clouds that still maintain a rather low den-

mainly determined by the ratio between the trap radius an Sity. Therefore, it is quite interesting to select elements and
the effective range, independently of the scattering length, Y- 1S q >tng .

: isotopes characterized by negative scattering length together
ay<5r,. Conversely, the number of atoms in the cloud at . L .

. . . . 1 with long-range effective interactions. We stress that our re-
the inflection point can be estimated Bs~4.5r, |as| *, | | he dil . here GP : |
independently of the trap radius. These results show that the- ts apply to the dilute regimes where equation correctly
effective range plays a crucial r(;Ie in determining the Stab”_represents the behavior of the ground state. At higher den-
. ge play : . nning . ' sity, collisions between atoms deplete the condensate. In ad-
ity of the bosonic cloud at intermediate density. The previous

. - . dition, three-body scattering starts to play a role and spin-flip
estimates will become particularly valuable when an accurate . :
rocesses lead to rapid destruction of the cloud.

determination of the interaction parameters becomes avail’
able also for other alkali-metal isotopes with negative scat- We acknowledge financial support from the “BEC” ad-
tering length. Interestingly, new techniques are being devisedanced research project of INFM.
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