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Structure and stability of bosonic clouds: Alkali-metal atoms with negative scattering length
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We investigate the form and stability of a cloud of atoms confined in a harmonic trap when the scattering
length is negative. We find that, besides the known low-density metastable solution, a different branch of Bose
condensate appears at higher density when nonlocality effects in the attractive part are taken into account. The
transition between the two classes of solutions as a function of the numberN of atoms can be either sharp or
smooth according to the strength and range of the attractive interaction. Use of tight traps is favorable for
investigating the evolution of the system, as the strength of the effective interaction increases withN.
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Few alkali-metal isotopes are characterized by a nega
scattering lengthaT at low energy in the triplet channel@1#.
This is believed to have important consequences for the
istence and the structure of the Bose-Einstein conden
~BEC! state for trapped clouds of atoms when the isoto
follows Bose statistics. The most celebrated case is7Li, for
which there is experimental evidence in favor of a BEC st
if the number of atoms does not exceed a threshold@2#. This
behavior was in fact predicted theoretically. When the int
action between atoms is represented by an effective l
potentialveff(r )5(4p\2/m)aTd3(r ), a uniform gas phase i
unstable against the formation of a collapsed state of h
density. The situation changes in presence of an external
@3#. Within the Gross-Pitaevskii~GP! equation for the con-
densate wave function@4#, the kinetic energy due to the con
finement in the trap opposes the collapse as long as the n
ber N of atoms does not exceed a critical numberNc that
depends on the parameters of the system~isotope massm,
scattering lengthaT , shape of the trap, etc.! @5#. Even for
N,Nc , we must recall that a dilute cloud represents a me
stable state that can be experimentally observed only i
lifetime is long enough.

The possibility of having positive as well as negative sc
tering lengths in different atomic systems arises because
potential between a pair of atoms generally supports bo
states, leading to the formation of a dimer with several
brational levels. Under this condition,uaTu can be very large
but at the same time the energy-dependent scattering c
sectionsT(E) starts to deviate from its zero energy lim
sT(0)54paT

2 already at an energy that can be extrem
small @6#. The calculations by Coˆté et al. @7# for 7Li show
that sT(E) is reduced to 50% ofsT(0) at energies of the
order of 331029 a.u. This value is small enough thats-wave
scattering is dominant over higher-angular-moment
states, meaning that the scattering process between tw
oms can still be represented by an effective two-body in
actionveff . However, in general, we cannot neglect the m
mentum dependence ofveff(k) for the colliding atoms. This
amounts to saying that the effective interaction is nonloc
In this Rapid Communication we investigate the effects
nonlocality on the stability of the cloud.
571050-2947/98/57~5!/3180~4!/$15.00
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It is rather easy to convince the reader that nonlocality
the interatomic effective potential can modify the stabil
condition of the Bose condensate. The GP functionalE @C#
with nonlocal interactionveff(r ) reads:

E @C#5E d3r
\2

2m
u¹Cu21E d3rUext~r ! uC~r !u2

1
1

2E d3rE d3r 8uC~r 8!u2 veff~r2r 8! uC~r !u2,

~1!

where C(r ) is the wave function of the condensate a
Uext(r ) is the potential of the trap. In this paper we consid
a symmetric harmonic trapUext(r )5 1

2 mv0
2r 2. In the local

limit, one recovers the standard form of the GP function
The ground-state wave function of a cloud ofN atoms is
determined by minimizingE @C# with the constraint that

E d3r uC~r !u2 5N. ~2!

In the ground stateC(r ) is positive definite and sphericall
symmetric.

As a first step, we discuss an approximate, variatio
approach to this problem that already shows the main
tures of the exact solution. As a trial wave function w
choose a Gaussian form:

C~r !5N1/2 S l2

paH
2 D 3/4

expS 2
l2r 2

2aH
2 D , ~3!

with a single variational parameterl that defines the size o
the cloud in units of the harmonic-oscillator lengthaH
5@\/(mv0)#1/2. By substitutingr 85r1s in Eq. ~1! and de-
veloping C(r1s) in powers of s, we perform a gradient
expansion of the energy functionalE @C#. To lowest order in
the gradient of the wave function, the energy reads:
R3180 © 1998 The American Physical Society



f
a

r

-
th
m
i
e
n

fo
qu
n

is
r-
ni
e-

r
a

he
en

ic

ia
n

.
e-
itive

the

um
ma-

re
y at

the
cal

al
he

tion
the
the

RAPID COMMUNICATIONS

57 R3181STRUCTURE AND STABILITY OF BOSONIC CLOUDS: . . .
E~l!5
\v0

2
N~ 3

2 l21 3
2 l221gl31g tl5!, ~4!

where the two parametersg andt depend on the choice o
the effective interaction, providing a dimensionless estim
of the strengthg and ranget of veff(r ):

g5A2/pN aT aH
21,

t52F3E drr 4veff~r !G F2aH
2 E drr 2veff~r !G21

. ~5!

According to these definitions,t is basically minus the
square of the range of the effective interaction and is the
fore a negative quantity. For a local interaction,t50 and we
recover Baym and Pethick’s result@5#. In this limit and for
negative scattering length,g,0 andE(l) goes to2` for
l→`, leading to a collapsed ground state. However,E(l)
has a local minimum for a finite value ofl when ugu
,4/55/4, i.e., whenN,Nc;0.67 aH uaTu21. This represents
the metastable state mentioned above.

It is clear from Eq.~4! that nonlocality changes the sta
bility condition, because, for negative scattering length,
productgt is positive. Depending on the value of the para
eters,E(l) can have one or two minima and the collapse
prevented in any case. However, this result is only sugg
tive because the gradient expansion breaks down as soo
nonlocality becomes important and a more appropriate
malism is needed. We have then studied the variational e
tion obtained with the same choice of a Gaussian wave fu
tion ~3! but without invoking gradient expansion. Th
problem requires the explicit definition of the effective inte
action. We assume that the attractive potential has a fi
ranger e and in addition we allow for the presence of a r
pulsive contribution that is modeled as alocal positive term
defined by a ‘‘high-energy’’ scattering lengthaR.0. With
this choice,veff(k) changes sign from negative at smallk
~i.e., low energy! to positive at largerk, thereby mimicking
the microscopic computations of thel 50 phase shiftdk that
show a change in sign from positive to negative whenk
increases@6#. At still higher momenta, scattering in othe
channels withlÞ0 becomes important, but we assume th
the range of density is such that this regime is never reac

In the model we study, the effective interaction is th
written in the following form:

veff~k!5
4p\2

m
@aR1~aT2aR! f ~kre!#. ~6!

We have considered two choices for the shape functionf (x):
a Lorenzian f (x)5(11x2)21 and a Gaussian f (x)
5exp(2x2). The results do not depend on the specific cho
of f (x) and so we will discuss only the Lorenzian case. W
use interaction parameters appropriate for7Li: aT5227aB
@8#, r e5103aB @7#, andaR56.6aB @9# ~whereaB is the Bohr
radius!. The energy functional for the Lorenzian potent
can be analytically expressed in terms of elementary fu
tions and reads:
te
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E~l!5
\v0

2
N$ 3

2 l21 3
2 l221gRl32t1l

1t2erfc~xl21!exp~x2l22!%, ~7!

where

gR5NA2

p

aR

aH

, t15NA2

p
aH

aT2aR

r e
2

,

x5
aH

A2r e

, t25NaH
2 aT2aR

r e
3

,

and erfc(x)512erf(x) is the complementary error function
The extrema ofE(l) are obtained as solutions of an alg
braic equation. This equation has either one or three pos
roots, depending on the parameters and on the numberN of
atoms in the cluster. When three solutions are present,
intermediate one represents an unstable state~i.e., a local
maximum of the energy!, while the other two respectively
describe a low-density metastable solution and a minim
that represents the stable solution within the GP approxi
tion.

The variational results for three typical trap sizes a
shown in Fig. 1, where the average radius and the densit
the center of the cloud are plotted as a function ofN. In the
same figure, the variational data are also compared with
exact solution of the GP equation, obtained by numeri
integration of the corresponding self-consistent Schro¨dinger
equation. In fact, the exact minimization of the GP function
~1! gives rise to a nonlinear eigenvalue problem for t

FIG. 1. Average radius of the cloudR @panels~a!, ~c!, and~e!#
and central density@panels~b!, ~d!, and ~f!# as a function of the
number of atomsN for the trap sizesaH53, 1, and 0.3mm, respec-
tively. Full dots represent the numerical solution of the GP equa
with the nonlocal Yukawa potential. Open dots correspond to
local approximation. The solid line is the variational result and
dashed line is the asymptotic limiting radius forN→`. Parameters
have been chosen to mimic7Li.
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ground-state wave function. The ground state is spheric
symmetric and can be written asC(r )5f(r )/r , wheref(r )
satisfies

2
\2

2m

d2

dr2
f~r !1

mv0
2

2
r 2f~r !1W~r !f~r !5ef~r !.

~8!

Heree is the chemical potential and

W~r !5E d3r 8 uf~r 8!u2veff~r2r 8!/r 82 ~9!

is the self-consistent interaction. For effective potenti
written as sums of Yukawa functions, this integr
differential equation can be reduced to a boundary va
problem for a set of ordinary differential equations. In pa
ticular, in the case of interest, the form~6! gives rise to three
ordinary differential equations that have been integrated
the standard Runge-Kutta method.

Figure 1 shows the good performance of the variatio
approach, which is always very close to the exact solut
For largeN the size of the cloud is remarkably independe
of the trap size, demonstrating that the atoms are in a s
bound configuration. The size of the cloud is governed by
effective range: For large values ofr e (r e@uaTu) andN not
too large, the reduced densityruaTu3 is small. This indicates
that the self-bound state that we find represents a diffe
regime of the cloud, intermediate between the very-lo
density state already predicted within the approximation
local interaction and the collapsed high-density state that
pends on the detailed shape of the true interatomic pote
@10#.

The asymptotic large-N behavior of the exact solution ca
be obtained analytically from our equation: The radius of
cloud reaches a finite limit that coincides with the result
the Thomas-Fermi approximation to the GP equation@11#.
On the other hand, the low-density branch is virtually ind
tinguishable from the exact solution of a local attractive p
tential, also shown in the figure. The effects of nonloca
become important just when the radius of the cloud rapi
drops. This ‘‘transition’’ is discontinuous for large trap
where the reentrant behavior of the curve shows the pres
of an unstable branch. By reducing the trap size, howe
this discontinuity is strongly reduced and, below 0.3mm, the
unstable branch disappears and there is a smooth evol
from a very dilute cloud to a less dilute state with an incre
ing density asN grows.

The predictions of the standard treatment of clouds
alkali-metal atoms in terms of a local pseudopotential h
to be modified in two respects when the scattering lengt
negative. In the case of shallow traps, the stability thresh
Nc is only an upper bound. There is a lower thresholdNcl for
the higher density state and in the intermediate regionNcl
,N,Nc the low-density branch is metastable towards
higher-density solution. For instance, in a 3-mm trap Nc
51300 andNcl5160. Which state is reached experimenta
depends on how the cloud is formed. In the case of a t
trap a threshold does not exist altogether. This feature all
one to explore experimentally how the state of the sys
evolves as the interaction strength increases and deple
ly
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effects start to set up even at the lowest temperature
should be noticed that the presence of a repulsive short-ra
interaction in our model potential does not play a cruc
role. The higher-density branch as well as the existence
two regimes depending on the size of the trap are pre
even if we putaR50. The only difference is that, in this
case, the radius of the cloud slowly decreases asN→` and
does not reach a finite limit as in Fig. 1. In any case, it sho
be kept in mind that in the large-N limit our results are only
qualitative because the GP equation itself breaks down
interaction effects are expected to produce a depletion of
condensate whenruaTu3 is not very small. However, we be
lieve that the trend shown by this equation is significa
even if quantitative results must wait for a more accur
determination of the interatomic potential and a better tre
ment of the many-body problem.

Another interesting problem that can be addressed by
formalism is the shape of the condensate wave function. T
information may be useful for the quantitative determinati
of the number of atoms in the condensate from experime
data. The GP ground-state wave function, normalized
unity at the origin, is shown for different numbers of atom
in the cloud in Fig. 2~a!. We see that some deviation from
Gaussian form develops as density grows. In particula
sharp peak at the cloud center grows at largeN. Along the
very-low-density branch we verified that the wave functi
is not affected by the nonlocality of the interaction and
very close to the numerical result in the local approximatio
However, significant deviations appear as soon as we

FIG. 2. ~a! Condensate wave functionC(r ) for a trap sizeaH

50.3 mm and nonlocal interaction. The noninteracting res
~Gaussian wave function! would be a straight line in this plot
Dashed line,N568 ~low density!; dotted line,N5159 ~near the
maximum of the low-density branch!; solid line, N5166 ~higher-
density branch!. ~b! Equilibrium curves for parameters appropria
for lithium atoms in a trap ofaH51 mm and three choices of the
effective range of the Lorenzian attractive potential. Variational
sults: dotted line,r e5500aB ; solid line, r e51000aB ; dashed line,
r e52000aB .
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proach the edge of the low-density branch.
As a next step we can investigate the dependence of

shape of the equilibrium curve when the range of the attr
tive interaction is varied. In fact, we expect that the larg
this length scale, the stronger the effect of nonlocality in
stability diagram of the cloud. More importantly, the value
the effective ranger e is rather uncertain, even in lithium, an
it is useful to test the sensitivity of our results to variations
the shape of the effective interaction. In Fig. 2~b! we show
the equilibrium curves of a cloud of lithium atoms in a ha
monic trap ofaH51 mm when the effective ranger e is ar-
tificially halved or doubled with respect to the referen
value r e5103aB previously adopted. The results clear
show a smoothing of the transition between the two branc
induced by the enhancement of nonlocality. By increas
the effective range, the maximum number of atoms in
low-density branchNc slightly increases and the tw
branches of solutions tend to merge into a unique ph
smoothly connecting the low- and the higher-density
gimes. A quantitative analysis of the variational soluti
shows that the occurrence of the single-branch regim
mainly determined by the ratio between the trap radius
the effective range, independently of the scattering len
aH,5 r e . Conversely, the number of atoms in the cloud
the inflection point can be estimated asNc;4.5 r e uaTu21,
independently of the trap radius. These results show tha
effective range plays a crucial role in determining the sta
ity of the bosonic cloud at intermediate density. The previo
estimates will become particularly valuable when an accu
determination of the interaction parameters becomes a
able also for other alkali-metal isotopes with negative sc
tering length. Interestingly, new techniques are being dev
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in order to modify the effective interaction in these syste
@12#.

In conclusion, the analysis of the Bose-Einstein co
densed ground state of lithium atoms in a harmonic trap
shown that atomic clouds may exist in a different state,
termediate in density between the very dilute regime that
been studied up to now and the collapsed high-density s
that is determined by the short-range behavior of the t
interatomic potential. Also this intermediate state is se
bound, because the size of the cloud is essentially indep
dent of the size of the trap. The importance of the study
this intermediate regime arises from the possibility of tuni
the strength of the interaction by changingN: In this way it
will be possible to study how the depletion of the condens
affects the structure and the physical properties of the st
To this end, it is important to confine the system in suf
ciently small traps in order to avoid the discontinuous jum
between the two phases. Interestingly, such microtraps
under development@13#. Nonlocality in the effective interac-
tion is a crucial ingredient that prevents collapse when
scattering length is negative. Long-range potentials favor
formation of big clouds that still maintain a rather low de
sity. Therefore, it is quite interesting to select elements a
isotopes characterized by negative scattering length toge
with long-range effective interactions. We stress that our
sults apply to the dilute regimes where GP equation corre
represents the behavior of the ground state. At higher d
sity, collisions between atoms deplete the condensate. In
dition, three-body scattering starts to play a role and spin-
processes lead to rapid destruction of the cloud.
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