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Necessary and sufficient detector-efficiency conditions
for the Greenberger-Horne-Zeilinger paradox
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In this paper detector efficiency conditions are derived for the Greenberger-Horne-Zeilinger~GHZ! paradox.
The conditions will be necessary and sufficient, i.e., the GHZ paradox is explicable in terms of a local-variable
model if the efficiency is below the bounds, and the GHZ prerequisites are inconsistent at higher efficiencies.
The derivation does not make use of any of the symmetry assumptions usually made in the literature, most
notably the assumption of independent errors. The errors in local-hidden-variable models are governed by the
‘‘hidden variable’’ and, therefore, one cannot in general assume that the errors are independent. It will be
shown that this assumption is not necessary. Moreover, bounds are presented that do not need the emission rate
of particle triples to be known. An example of such a bound is the ratio of the triple coincidence rate and the
double coincidence rate at two detectors, which needs to be higher than 75% to yield a contradiction.
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I. INTRODUCTION

The Greenberger-Horne-Zeilinger~GHZ! paradox@1–3#
is often presented as the final argument against local v
ables, as it implies that any attempt to construct a loc
variable model describing the GHZ setup inevitably resu
in a contradiction, i.e., the prerequisites~described below!
are inconsistent. There is, however, one thing that obsc
the issue somewhat—detector inefficiency. It is well kno
@4,5# that the Bell inequality@6# changes when detector ine
ficiency is present. The effect on the GHZ paradox has b
studied @3#, the bound on the detector efficiency bein
90.8%, but this bound would need the emission rate of p
ticle triples to be known. In this paper this bound will b
lowered somewhat, three bounds will be presented tha
not need the emission rate to be known, and, moreover,
bounds presented will not depend upon independence o
errors. No other symmetry is assumed, such as constan
ficiency or ‘‘fair sampling’’ @3,7#.
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The formalism used will follow Ref.@5# closely, and the
spin terminology is chosen, although the path terminology
Ref. @3# may equally well be used. The sample spaceL is the
mathematical analogue to the state space used in phy
and a samplel is a point in that space corresponding to
certain value of the ‘‘hidden variable.’’ The measureme
results are described by random variables~RV’s! X(l) that
take their values in the value spaceV, instead of the quantum
measurement operators. To be a probabilistic model a p
ability measureP on the spaceL is also needed.

Detector inefficiency is included in the model by statin
that the RVX might only be defined on asubsetLX of the
hidden-variable probability spaceL. The probability notation

PX~E!5P~EuLX! ~1!

will also be used to describe the conditional probability
the eventE, given that the measurementX has given a result.
‘‘Deterministic local variables’’ will be used, but the gene
alization to the ‘‘stochastic’’ case is straightforward.

There are in the GHZ setup three particles with three
sociated measurements, so there are three different RV’s
R3145 © 1998 The American Physical Society
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are denoted as follows. The RV’s describe measuremen
sults from the first detector if it is unprimed (A), from the
second when primed (B8), and from the third when it has
two primes (C9). The detector orientations will be denote
a, b, andc.

The assumptions made on the model can be written a
(i) Realism. Measurement results can be described

probability theory, using~three families of! RV’s:

A~a,b,c!:LA~a,b,c!→V

l°A~a,b,c,l!

B8~a,b,c!:LB8~a,b,c!→V

l°B8~a,b,c,l!

C9~a,b,c!:LC9~a,b,c!→V

l°C9~a,b,c,l!

; a,b,c.

(ii) Locality. A measurement result should be independ
of the detector orientation at the other particles:

A~a,l!5
def

A~a,b,c,l! on LA~a!5
def

LA~a,b,c!

independently ofb and c.

B8~b,l!5
def

B8~a,b,c,l! on LB8~b!5
def

LB8~a,b,c!

independently ofa and c.

C9~c,l!5
def

C9~a,b,c,l! on LC9~c!5
def

LC9~a,b,c!

independently ofa and b.

(iii) Measurement result restriction.Only the results61
should be possible:

V5$21,11%.

In the GHZ paradox only thex andy directions are used, an
by the notationX5A(x,l), Y5A(y,l), X85B8(x,l), and
so on, the following will be shortened considerably. The
are then only six different random variables to be used:

X, X8, X9, Y, Y8, and Y9, defined on
~2!

LX , LX8 , LX9 , LY , LY8 , and LY9 , respectively.

The fourth and last assumption is a specification of the
quired measurement results.

(iv) GHZ requirement.The following measurement re
sults should be obtained:

XY8Y951 on LXY8Y9 ,

YX8Y951 on LYX8Y9 ,

YY8X951 on LYY8X9 ,

and

XX8X9521 on LXX8X9 .
e-

:
y

t

-

The set LXY8Y9 equals quite naturally the se
LXùLY8ùLY9 , the set where all three RV’s are define
and this shorthand notation will be used throughout the
per. These four prerequisites will be assumed to hold exc
on a set of zero probability~a null set!.

It is easy to construct a three-particle quantu
mechanical state for which~iv! is satisfied,

1

&

(u111&2u222&)ZZ8Z9 . ~3!

The inconsistency inherent in these four prerequisites is
if perfect detectors are assumed, thenLX5LX85LX95LY
5LY85LY95L, and by using in order from left to right
~iv!, ~iii !, ~ii !, and~iv!,

215XX8X95XX8X9•Y2
•Y82

•Y92

5XY8Y9•YX8Y9•YY8X951, ~4!

with probability 1, so evidently assuming perfect detecto
and ~i!–~iv! except on a null set yields a contradiction.

II. DETECTOR EFFICIENCY

To be able to formulate the main result of the paper
formal specification of the term efficiency is needed. The
are many possible estimates of which four will be presen
here for reasons that will become obvious. First, is the nu
ber that is instinctively associated with detector efficien
the ‘‘single-particle efficiency’’

h15min
A,i

P~LA~ i !!. ~5!

The minimum is taken over all orientations of the detec
(A) and all detectors (i ), i.e., X, X8, X9, Y, Y8, and Y9.
Note that neitherP(LX)5P(LX8) nor any other symmetry
is assumed, as it is desirable to use as few assumption
possible; e.g., the ‘‘fair sampling’’ assumption@3,7# is not
used.h1 is then the lowest probability of the six possib
sets.

A problem with the single-particle efficiency is that th
triple emission rate is needed to estimate it. It would
desirable to have an estimate that is directly available in
raw coincidence data. Therefore, of all the remaining e
mates, only the three that have this property will be p
sented. There is, however, a tradeoff as the simplification
extracting them from experiment makes them slightly mo
intricate to use formally. The ‘‘two-particle efficiency’’ is

h2,15 min
A,B,iÞ j

PA~ i !~LB~ j !!, ~6!

where again the minima are taken over all orientations
two of the detectors. Note that two different ones are u
( iÞ j ); e.g.,PX(LY9) is a valid combination butPX(LY) is
not. The requirement of different particles will make it po
sible to extract information onh2,1 from experiment by di-
viding the coincidence rate of two detectors in the expe
mental setup with the single detection rate of one of them
this case there are 24 combinations~six possibleA( i )’s and
for each of these, four possibleB( j )’s!, andh2,1 would be the
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lowest value obtained from these. A more formal note is t
h1 needs to be strictly positive forh2,1 to be well-defined,
but all these efficiency estimates will quite naturally be
sumed to be strictly positive in the following. Finally the
are two ‘‘three-particle efficiencies,’’

h3,25 min
A,B,C,

iÞ j ÞkÞ i

PA~ i !B~ j !~LC~k!! ~7!

being one of them. Again the inequality should be valid
all possible orientations of the detectors corresponding
different particles; e.g.,PXY9(LX8) is a valid combination.
This would be estimated by dividing the triple coinciden
rate with the double coincidence rate at two detectors,
here there are also 24 combinations~six possibleA( i )’s, four
possibleB( j )’s, and two possibleC(k)’s give 48 combina-
tions, but the ordering ofA( i ) and B( j ) is unimportant; the
result is 24 combinations!. The other three-particle efficienc
is

h3,15 min
A,B,C,

iÞ j ÞkÞ i

PA~ i !~LB~ j !C~k!!, ~8!

which would correspond to dividing the triple coinciden
rate with the detection rate at one detector~24 combina-
tions!.

III. THE GHZ PARADOX WITH DETECTOR
INEFFICIENCY

To see what detector inefficiency would do to the GH
paradox, a rather abstract theorem is necessary. Note tha
proof is quite simple.

Theorem 1.Assuming~i!–~iv!, except on a null set, yield
a contradiction if and only if

P~LXX8X9YY8Y9!.0. ~9!

Proof. The proof is simply an observation in Eq.~4! that
all of the RV’sX, X8, X9, Y, Y8, andY9 must be defined for
the equality to be valid. But the set at which this is true
LXX8X9YY8Y9 .

If this is a null set,~iv! need not be satisfied on this se
Then Eq.~4! is no longer valid at any point of the probabilit
spaceL and there is no contradiction. Indeed, it is easy
construct a model satisfying~iv! on LXX8X9YY8Y9

C , the
complement ofLXX8X9YY8Y9 ~see, e.g., below!. If the set has
positive probability the contradiction remains.j

This abstract theorem is mainly motivated by its use in
proof of the theorem below, but there is another motivat
as well. In Ref.@5#, the concept of change of ensemble w
introduced, and was seen to be an important part of a lo
variable model that was going to be used to approach
quantum-mechanical behavior in the Bell and Claus
Horne-Shimony-Holt~CHSH! inequalities. The above theo
rem states that the same concept is equally important in
GHZ setting, and more sharply so, because the stateme
that, since the GHZ yields a full contradiction, the ensem
must change completely when changing the three dete
orientations. The size of the ‘‘unchanged ensemb
PXX8X9(LYY8Y9) must be zero, which is a substantial im
t
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provement compared to the Bell and CHSH inequalit
treated in Ref.@5#, where it was allowed to be nonzero.

In the same way as in the Bell and CHSH settings,
change of ensemble is difficult to estimate from experimen
and a more direct comparison to experimental efficiency
necessary. Having specified the term ‘‘efficiency’’ above,
have the following theorem.

Theorem 2. Assuming~i!–~iv!, except on a null set, yields
a contradiction if at least one of the following is satisfied

h1. 5
6 '83.33%, ~10a!

h2,1.
4
5 580%, ~10b!

h3,2.
3
4 575%, ~10c!

h3,1.
3
5 560%. ~10d!

Furthermore, if none of~10a!–~10d! is satisfied, there exists
a local-variable model satisfying~i!–~iv! that yields the
quantum-mechanical statistics of the GHZ state in
u &X( i ) and u &Y( i ) bases except for detector inefficiency.

Proof. The proof begins with the first statement.
~a! Using h1 , a simple derivation yields

P~LXX8X9YY8Y9!512P~LX
CøLX8

C
øLX9

C
øLY

CøLY8
C

øLY9
C

!

>12P~LX
C!2P~LX8

C
!2P~LX9

C
!2P~LY

C!

2P~LY8
C

!2P~LY9
C

!

5P~LX!1P~LX8!1P~LX9!1P~LY!

1P~LY8!1P~LY9!25

>6h125. ~11!

~b! Using h2,1 the same approach as above
PX(LX8X9YY8Y9) is quite useless, sinceh2,1 does not yield
any estimate on probabilities where the same particle oc
twice, e.g.,PX(LY). A slightly more sophisticated approac
must be used to avoid probabilities with two occurrences
the same particle:

PXX8~LY!5
PX8~LXY!

PX8~LX!

5
PX8~LX!1PX8~LY!2PX8~LXøLY!

PX8~LX!

>11
h2,121

PX8~LX!
>11

h2,121

h2,1
522

1

h2,1
.

~12!

If the set in the parentheses on the left-hand side isLX9 or
LY9 , the same inequality holds. It also holds if the set isLY8
~exchangeX with X8 throughout the equation!. Now the ap-
proach in Eq.~11! yields

PXX8~LX9YY8Y9!>4S 22
1

h2,1
D23552

4

h2,1
, ~13!

and then,
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P~LXX8X9YY8Y9!5PXX8~LX9YY8Y9!PX~LX8!P~LX!

>PXX8~LX9YY8Y9!h2,1h1>~5h2,124!h1 .

~14!

~c! Using h3,2 and the same approach as in~b!,

P~LXX8X9YY8Y9!

5PXX8X9~LYY8Y9!PXX8~LX9!PX~LX8!P~LX!

>PXX8X9~LYY8Y9!h3,2h2,1h1>~4h3,223!h2,1h1 . ~15!

~d! Using h3,1 the result is

P~LXX8X9YY8Y9!5PXX8X9~LYY8Y9!PX~LX8X9!P~LX!

>PXX8X9~LYY8Y9!h3,1h1>~5h3,123!
h1

2
.

~16!

From the inequalities~11!, ~14!, ~15!, and ~16! we have
P(LXX8X9YY8Y9).0, if at least one of~10a!–~10d! is satis-
fied ~and bothh2,1 andh1 are strictly positive!. Using Theo-
rem 1, the first statement follows.

The second statement will be proved by construction;
model will of course be contradiction free. LetL ~the prob-
ability space! be a point set with 48 different points, and l

the points have equal probability (1
48 ). At the first 16 points

the RV’s are assigned signs~remember thatV5$21,11%!
from the following two tables, where'” denotes that the cor
responding RV is undefined at this point.

LY
C5LXX8X9Y8Y9 LX

C5LX8X9YY8Y9
X X8 X9 Y Y8 Y9 X X8 X9 Y Y8 Y9

2 2 2 '” 1 2 '” 2 2 1 2 2

2 2 2 '” 2 1 '” 2 2 2 1 1

2 1 1 '” 1 2 '” 1 1 1 1 1

2 1 1 '” 2 1 '” 1 1 2 2 2

1 2 1 '” 1 1 '” 2 1 1 1 2

1 2 1 '” 2 2 '” 2 1 2 2 1

1 1 2 '” 1 1 '” 1 2 1 2 1

1 1 2 '” 2 2 '” 1 2 2 1 2

The values at the remaining 32 points are obtained
interchange of the first and second particles~X�X8,
Y�Y8! and by interchange of the first and third particl
(X�X9, Y�Y9). Interchange of the second and third pa
ticles (X8�X9, Y8�Y9) corresponds to a reordering of th
rows in the table. By construction the model is then symm
ric with respect to interchange of the particles in the se
that the probabilities are the same.L then consists of six
disjunct sets of eight points each, at which one of the RV’
undefined.

This yieldsP(LA( i ))5 5
6 for all RV’s, i.e.,h15 5

6 , and the
others are obtained by rather simple checks:h2,15

4
5 , h3,2

5 3
4 , andh3,15

3
5 ; e.g.,
e

y

-

t-
e

s

P~LYY8Y9!5P~LX
C!1P~LX8

C
!1P~LX9

C
!5 3

6 ,

P~LY8Y9!5P~LYY8Y9!1P~LY
C!5 4

6

⇒

PY8Y9~LY!5 3
4 . ~17!

By inspectionXY8Y95152XX8X9 in LY
C , andYX8Y9

515YY8X9 in LX
C , and by using the symmetry,~iv! fol-

lows. Indeed, all the statistics in theu &X( i ) and u &Y( i ) bases,
obtained from the quantum-mechanical state in Eq.~3!, are
possible to derive more or less by inspection, except
course for detector inefficiency~note that this is not a com
plete model of the quantum-mechanical state as only theX( i )

andY( i ) measurement results are specified!. This completes
the proof. j

IV. CONCLUSIONS

The result is that an experiment refuting local variab
using the GHZ paradox does so if and only if the efficien
is higher than the bounds in Theorem 2 derived above:

h1. 5
6 '83.33%, ~10a!

h2,1.
4
5 580%, ~10b!

h3,2.
3
4 575%, ~10c!

h3,1.
3
5 560%. ~10d!

An experiment at lower efficiencies would not be conclusiv
as it is possible to construct a local-variable theory desc
ing it.

As to the lowest bound,h3,1.60% seems to be lowes
but this estimate of the efficiency corresponds to adding
detectors to the measurement setup, so it is only natural
this bound would be low. One would naı¨vely expecth3,1
5h3,2h2,1, but this need not be generally true given only t
definitions of the efficiency estimates@~6!–~8!#, since no ad-
ditional symmetries are imposed. The bounds, however,
seem to follow this rule as 60% is 75% of 80%, and t
model given in the latter part of the proof of Theorem 2 do
indeed possess the symmetries necessary for this to hol

Another important note is that the bound derived does
need independent errors. The errors are decided by the
variable and could in principle be dependent on each ot
but in Theorem 2 this is not a problem, as it is valid anywa
If one were to assume independent errors with the efficie
h, the result is thath15h2,15h3,25h, and h3,15h2. The
bound would then beh5h3,2.75%.

Thus, the most important bound would be when add
the last detector to the measurement setup:h3,2.75%.
This bound is valid quite generally, since no symmetries
assumed in the proof.
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