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In this paper detector efficiency conditions are derived for the Greenberger-Horne-Zegi@tdi@r paradox.
The conditions will be necessary and sufficient, i.e., the GHZ paradox is explicable in terms of a local-variable
model if the efficiency is below the bounds, and the GHZ prerequisites are inconsistent at higher efficiencies.
The derivation does not make use of any of the symmetry assumptions usually made in the literature, most
notably the assumption of independent errors. The errors in local-hidden-variable models are governed by the
“hidden variable” and, therefore, one cannot in general assume that the errors are independent. It will be
shown that this assumption is not necessary. Moreover, bounds are presented that do not need the emission rate
of particle triples to be known. An example of such a bound is the ratio of the triple coincidence rate and the
double coincidence rate at two detectors, which needs to be higher than 75% to yield a contradiction.
[S1050-294{@8)50305-9

PACS numbd(s): 03.65.Bz

I. INTRODUCTION The formalism used will follow Ref{5] closely, and the
spin terminology is chosen, although the path terminology in
The Greenberger-Horne-ZeilingéGHZz) paradox[1-3]  Ref.[3] may equally well be used. The sample spAds the
is often presented as the final argument against local varinathematical analogue to the state space used in physics,
ables, as it implies that any attempt to construct a localand a samplex is a point in that space corresponding to a
variable model describing the GHZ setup inevitably resultscertain value of the “hidden variable.” The measurement
in a contradiction, i.e., the prerequisitédescribed beloy ~ results are described by random variablg¥’s) X(\) that
are inconsistent. There is, however, one thing that obscurdgke their values in the value spaéginstead of the quantum
the issue somewhat—detector inefficiency. It is well knownMeasurement operators. To be a probabilistic model a prob-
[4,5] that the Bell inequalitf6] changes when detector inef- 2Pility measureP on the space\ is also needed. _
ficiency is present. The effect on the GHZ paradox has beer}1 Detector meﬁjmency IS mcluded in the model by stating
studied [3], the bound on the detector efficiency beingt at the RVX might onlly. be defined on aL'bS(.aFAX of the
90.8%, but this bound would need the emission rate of parhldden—varlable probability space The probability notation
ticle triples to be known. In this paper this bound will be
lowered somewhat, three bounds will be presented that do Px(E)=P(E|Ax) 1)
not need the emission rate to be known, and, moreover, the
bounds presented will not depend upon independence of theill also be used to describe the conditional probability of
errors. No other symmetry is assumed, such as constant ehe eveng, given that the measuremexithas given a result.
ficiency or “fair sampling” [3,7]. “Deterministic local variables” will be used, but the gener-
alization to the “stochastic” case is straightforward.
There are in the GHZ setup three particles with three as-
*Electronic address: jalar@mai.liu.se sociated measurements, so there are three different RV’s that
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are denoted as follows. The RV’s describe measurement r&he set Ayyy» equals quite naturally the set
sults from the first detector if it is unprimed\}, from the  AyNAy/NAy», the set where all three RV’s are defined,
second when primedB('), and from the third when it has and this shorthand notation will be used throughout the pa-
two primes C”). The detector orientations will be denoted per. These four prerequisites will be assumed to hold except
a, b, andc. on a set of zero probabilitia null se}.
The assumptions made on the model can be written as: It is easy to construct a three-particle quantum-
(i) Realism. Measurement results can be described bymechanical state for whicfiv) is satisfied,
probability theory, usingthree families of RV's:

1
A(a,b,c):Ax(a,b,c)—V E(|+++>_|___>)ZZ/Z"- 3
A—A(a,b,c,\)
B’(a,b,c):Ag/(a,b,c)—V The inconsistency inherent in these four prerequisites is that
, V a,b,c. if perfect detectors are assumed, thep=Ax,=Axr=Ay
A—B'(a,b,c,\) =Ay,=Ay=A, and by using in order from left to right,
C"(a,b,c):Acv(a,b,c)—V (iv), (iii), (i), and(iv),
N—>C”(a,b,c,)\) C1=XX'X"=XX'X".Y2.Y'2.y"2
(ii) Locality. A measurement result should be independent =XY'Y"-YXY"YYX'=1, (4

of the detector orientation at the other particles:
with probability 1, so evidently assuming perfect detectors
def def and (i)—(iv) except on a null set yields a contradiction.
A(a,N\)=A(a,b,c,\) on Ax(a)=Ax(a,b,c)
independently ofb and c. Il. DETECTOR EFFICIENCY

To be able to formulate the main result of the paper, a

def def formal specification of the term efficiency is needed. There
B'(b,\)=B’(a,b,c,\) on Ag/(b)=Ag:(a,b,c) are many possible estimates of which four will be presented
here for reasons that will become obvious. First, is the num-
independently ofa and c. ber that is instinctively associated with detector efficiency,
the “single-particle efficiency”
def def
C"(c,\)=C"(a,b,c,\) on Acr(c)=Acr(a,b,c) 71=min P(A (). 5)
Aji

independently ofa and b. o ] ) )
The minimum is taken over all orientations of the detector

(iii) Measurement result restrictiorOnly the resultst1  (A) and all detectorsif, i.e., X, X", X", Y, Y', andY".
should be possible: Note that neitheP(Ayx)=P(Ax/) nor any other symmetry
is assumed, as it is desirable to use as few assumptions as
V={-1+1}. possible; e.g., the “fair sampling” assumptid8,7] is not
L used. 4 is then the lowest probability of the six possible
In the GHZ paradox only the andy directions are used, and _
by the notationrX=A(x,A), Y=A(y,\), X'=B’(x,)), and A problem with the single-particle efficiency is that the
so on, the following will be shortened considerably. Thereyinie emission rate is needed to estimate it. It would be
are then only six different random variables to be used:  gesjraple to have an estimate that is directly available in the
raw coincidence data. Therefore, of all the remaining esti-
2) mates, only the three that have this property will be pre-
sented. There is, however, a tradeoff as the simplification in
extracting them from experiment makes them slightly more
The fourth and last assumption is a specification of the relntricate to use formally. The “two-particle efficiency” is
quired measurement results.
(iv) GHZ requirement.The following measurement re-
sults should be obtained:

X, X', X', Y, Y, andY”, defined on

Ay, Axr, Axr, Ay, Ay,, and Ay», respectively.

721= Min Pai(Agp), (6)
ABi %]

where again the minima are taken over all orientations of
two of the detectors. Note that two different ones are used
(i#]); e.g.,Px(Ay») is a valid combination buPy(Ay) is
not. The requirement of different particles will make it pos-
sible to extract information omy, ; from experiment by di-
viding the coincidence rate of two detectors in the experi-
and mental setup with the single detection rate of one of them. In
this case there are 24 combinatiofssx possibleA®’s and
XX'X"==1 on Axyxr- for each of these, four possib&)’s), and 7172,1 would be the

XY, Y”: 1 on Axyryn y
YX,Y”:l on AYX/Y//,

YY,X”:l on Ayyrx//,
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lowest value obtained from these. A more formal note is thaprovement compared to the Bell and CHSH inequalities
7, needs to be strictly positive fon,; to be well-defined, treated in Ref[5], where it was allowed to be nonzero.

but all these efficiency estimates will quite naturally be as- In the same way as in the Bell and CHSH settings, the
sumed to be strictly positive in the following. Finally there change of ensemble is difficult to estimate from experiments,

are two “three-particle efficiencies,” and a more direct comparison to experimental efficiency is
necessary. Having specified the term “efficiency” above, we
73,= min Paipi(Ack) (7)  have the following theorem.
ijjji@i Theorem 2Assuming(i)—(iv), except on a null set, yields

a contradiction if at least one of the following is satisfied:
being one of them. Again the inequality should be valid for 5
all possible orientations of the detectors corresponding to 71> 5~83.33%, (109
different particles; e.g.Pxy»(Axs) is a valid combination.

4 _

This would be estimated by dividing the triple coincidence 72,175 =80%, (100

rate with the double coincidence rate at two detectors, and = 3750 10

here there are also 24 combinatigsix possibleA()’s, four 327 4= 1970, (109
ibleB()’ ibleC®'s gi ina-

possibleBY’’s, and two possibleC*’s give 48 combina 73> 2 =60%. (100

tions, but the ordering oA®") and B{) is unimportant; the
result is 24 combinationsThe other three-particle efficiency Fyrthermore, if none of10a—(10d is satisfied, there exists

IS a local-variable model satisfyingi)—(iv) that yields the
) quantum-mechanical statistics of the GHZ state in the
N31= A”;”g Pai(Agiicw), ® 'y and| )y bases except for detector inefficiency.
i#]#KEi Proof. The proof begins with the first statement.

(a) Using #,, a simple derivation yields
which would correspond to dividing the triple coincidence
rate with the detection rate at one detec(@4 combina- P(Axx,x,,YY,Y,,):l—P(AguAg,uAg,,uA$uA$,uA$,,)
tions).
=1-P(AQ) - P(AL)—P(AL) —P(AS)

Ill. THE GHZ PARADOX WITH DETECTOR C C
~P(AS)—P(AS,)

INEFFICIENCY
To see what detector inefficiency would do to the GHZ =P(Ax)+P(Ax)+P(Axr) +P(Ay)
paradpx, a_rath_er abstract theorem is necessary. Note that the +P(Ay)+P(Ay)—5
proof is quite simple.
Theorem 1Assuming(i)—(iv), except on a null set, yields =67,—5. (17

a contradiction if and only if
(b) Using 7,,; the same approach as above on
P(Axxxryyryn)>0. (9 Py(Ax/xryy'yr) is quite useless, sinc@,; does not yield
any estimate on probabilities where the same particle occurs
Proof. The proof is simply an observation in E@) that  twice, e.g.,Px(Ay). A slightly more sophisticated approach
all of the RV'sX, X', X", Y, Y’, andY” must be defined for must be used to avoid probabilities with two occurrences of
the equality to be valid. But the set at which this is true isthe same particle:
Axexrxmyyryr -
If this is a null set,(iv) need not be satisfied on this set. P (A= Px:(Axy)
Then Eq.(4) is no longer valid at any point of the probability xx (Ay)= Py (Ay)
spaceA and there is no contradiction. Indeed, it is easy to

construct a model satisfyindiv) on A%,y the _ Px(A) Py (Ay) =Py (AxUAy)

complement ofA yy/ xryyry (S€€, €.g., below If the set has Py (Ax)
positive probability the contradiction remainsll q 1 1
This abstract theorem is mainly motivated by its use in the =1+ 2.1 =1+ 21" = _ 2
proof of the theorem below, but there is another motivation Px/(Ax) 72,1 72,1
as well. In Ref[5], the concept of change of ensemble was (12)

introduced, and was seen to be an important part of a local-

variable model that was going to be used to approach th# the set in the parentheses on the left-hand sid&,is or
guantum-mechanical behavior in the Bell and ClauserAy», the same inequality holds. It also holds if the sekis
Horne-Shimony-HolCHSH) inequalities. The above theo- (exchangeX with X’ throughout the equatignNow the ap-
rem states that the same concept is equally important in theroach in Eq.(11) yields

GHZ setting, and more sharply so, because the statement is
that, since the GHZ yields a full contradiction, the ensemble
must change completely when changing the three detector
orientations. The size of the “unchanged ensemble”
Pxx'x»(Ayyyr) must be zero, which is a substantial im- and then,

1 4
PXX’(AX”YY’Y")>4(2_ _)_325__, (13)
721 72,1
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P(AXX/XHYY’YH) = PXX/(AX”YY/YH) PX(AX’) P(A.X)
=Py (Axryyryn) 12111=(5721—4) 11

(14
(c) Using 73, and the same approach as(b),
P(AXXIXUYY/YH)
=Pxx xr(Ayyryn) Pxxr (Axr) Px(Axr) P(Ax)
=Pyxixr(Ayyiyn) 132m2171= (413~ 3) 92111 (15)

(d) Using 734 the result is
P(AXXIXHYY/YH) = Pxx/x//(AYY/YH)PX(AX/XII) P(Ax)

7
=Pyxrxr(Ayyryn) 131171= (573 1—3) o

(16)

From the inequalitieg11), (14), (15), and (16) we have
P(Axxxryyyn)>0, if at least one 0f109—(100) is satis-
fied (and bothz, ; and 5, are strictly positive. Using Theo-
rem 1, the first statement follows.

JAN-AKE LARSSON

57
P(Ayyryn)=P(AQ +P(AL)+P(Ag) =1,
P(Ayiyn)=P(Ayyy) +P(AY) =3
-
Pyryr(Ay)=3. (17

By inspectionXY'Y"=1=—XX'X" in AS, andYX'Y"
=1=YY'X" in A, and by using the symmetryiv) fol-
lows. Indeed, all the statistics in thexa and| )va) bases,
obtained from the quantum-mechanical state in @Bg. are
possible to derive more or less by inspection, except of
course for detector inefficiendyote that this is not a com-
plete model of the quantum-mechanical state as onlytHe
and Y measurement results are specifiebhis completes
the proof. W

IV. CONCLUSIONS

The result is that an experiment refuting local variables
using the GHZ paradox does so if and only if the efficiency
is higher than the bounds in Theorem 2 derived above:

The second statement will be proved by construction; the

model will of course be contradiction free. Lat(the prob-
ability space be a point set with 48 different points, and let
the points have equal probabilitys). At the first 16 points
the RV's are assigned sigieemember thav/={—1,+1})
from the following two tables, wher@ denotes that the cor-
responding RV is undefined at this point.

A$:AXX’X”Y’Y” AngX/X”YY’Y”

X X XYy vy Y X X XYy Y Y
- - - 4 + - a4 - - + - -
- - - 4 - + 4 - - - + +
-+ + A + - 4 + + + + +
-+ + A - + A + + - - =
+ - + A + + a - + + + -
+ - + A - - 4 - + - - +
+ + - A + + A + - + - +
+ + - A - - a + - - + -

1> 8 ~83.33%, (109
721> §=80%, (10b)
732> 3=75%, (109
a1> 3 =60%. (10d)

An experiment at lower efficiencies would not be conclusive,
as it is possible to construct a local-variable theory describ-
ing it.

As to the lowest boundy;;>60% seems to be lowest,
but this estimate of the efficiency corresponds to adding two
detectors to the measurement setup, so it is only natural that
this bound would be low. One would wely expects ;
= 132721, but this need not be generally true given only the
definitions of the efficiency estimat§&6)—(8)], since no ad-
ditional symmetries are imposed. The bounds, however, do
seem to follow this rule as 60% is 75% of 80%, and the

The values at the remaining 32 points are obtained bynodel given in the latter part of the proof of Theorem 2 does

interchange of the first and second particles=X',
YSY') and by interchange of the first and third particles

indeed possess the symmetries necessary for this to hold.
Another important note is that the bound derived does not

(X=X", YSSY”). Interchange of the second and third par-need independent errors. The errors are decided by the local
ticles X' X", Y'5Y") corresponds to a reordering of the variable and could in principle be dependent on each other,
rows in the table. By construction the model is then symmetbut in Theorem 2 this is not a problem, as it is valid anyway.
ric with respect to interchange of the particles in the senséf one were to assume independent errors with the efficiency
that the probabilities are the sam&.then consists of six 7, the result is thaty, = 7, 1= 73 ,=», and 73 = 7?. The
disjunct sets of eight points each, at which one of the RV’s ishbound would then bey= 73 ,>75%.

undefined.

This yieldsP(A xi) = 2 for all RV's, i.e., 7;=2, and the
others are obtained by rather simple checks, ;= 2, 73
=%, and7n;,=3; e.g.,

Thus, the most important bound would be when adding
the last detector to the measurement setup;,>75%.
This bound is valid quite generally, since no symmetries are
assumed in the proof.
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