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Josephson effect between trapped Bose-Einstein condensates

Ivar Zapata and Fernando Sols
Departamento de Bica Teoica de la Materia Condensada, Universidad Antmna de Madrid, E-28049 Madrid, Spain

Anthony J. Leggett
Department of Physics, University of Illinois at Urbar@hampaign, 1110 West Green Street, Urbana, lllinois 61801
(Received 14 July 1997

We study the Josephson effect between atomic Bose-Einstein condensates. By drawing on an electrostatic
analogy, we derive a semiclassical functional expression for the three-dimensional Josephson coupling energy
in terms of the condensate density. Estimates of the capacitive energy and of the Josephson plasma frequency
are also given. The effect of dissipation due to the incoherent exchange of normal atoms is analyzed. We
conclude that coherent Josephson dynamics may already be observable in current experimental systems.
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Recently[1-3], it has become possible to cool a macro- estimates the energy of a one-radian fluctuation of the phase
scopic number £ 10*— 10f) of magnetically confined, spin- across the condensate near equilibrium in a single spherical
polarized atoms down to temperatures on the order of 108armonic well[see Eq(1)],
nK while maintaining densities sufficiently high

(10*—10%cm®) to permit the onset of Bose-Einstein con- 2 2

densation(BEC). From the ensuing theoretical work, it has  AE= —f dr pedV de|?= ——2:0.7N3’5—,
been concluded that these Bose condensed atomic gases be- 2m 2m 4R 2

have very differently from the ideal noninteracting gases, )

which yields the prospect of potentially displaying a rich
phenomenology that might include vortex states and the Jowhere R=ag(15aN/ag)'® is the cloud radius estimated
sephson effedi4—6). within the Thomas-Fermi approximatiopd], wq is the

In this paper we present a theoretical study of the Joseptharmonic-oscillator  frequency within the well, and
son dynamics between two atomic baths that have undergore = (%/mwy) Y2 is the oscillator length. For the last approxi-
BEC. The Josephson effect results from a collective mode ofnate equality we have used typical parameterb nm and
two weakly connected systems between which a macroay=10"% cm. The characteristic temperaturd B/kg) of
scopic fraction of particles can tunnel with identical prob-such a fluctuation can be as big as/R for the experiment
ability amplitude. Going beyond previously proposed one-of Meweset al. [3]. The estimatg2) suggests that, in the
dimensiona[7] and dissipation-freg7,8] models, we present interstitial region between two wells, whepdr) decreases
here a three-dimensional study of the Josephson effect beppreciably, spatial phase variations are less costly and thus
tween Bose condensates and estimate the effect of dampinggsier to create at low temperatures. Here lies the essence of
We calculate the Josephson coupling energy, the capacitiihe low-energy Josephson dynamics, which we study below.
energy (which accounts for quantum fluctuations of the Let us consider two weakly connected condensates 1 and
phasg, and the frequency of the Josephson plasma oscilla2. We assume that the condensates are confined within
tion. Our main conclusion is that still lower temperaturesspherical harmonic wells of the same frequeagy First we
than those achieved up to date are needed for a clear realizaish to analyze the semiclassical dynamics. It is, of course,
tion of the Josephson effect. well known that the relative numbesN and the relative

The collective dynamics of a Bose condensate at zerphasey of the condensate in the two wells may be treated as
temperature is described by its macroscopic wave functioganonically conjugate variables. Nevertheless, by introduc-
W(r,t). If this is factorized asV = \/p exp(¢), the standard ing a sufficiently coarse-grained averag®f the number in
energy functional can be written as (say well 1 we may treah and y as simultaneously well-

defined, and write for the wave function the ansatz

ﬁ2
H:fdr{%('v@'2“"“‘"2”\’“"”9“ @ T 02 WL () XOVLEN-N), (3

where ¥;(r;n) is the (rea) equilibrium wave function for
the isolated weli containingn bosons. It is straightforward
to show that, to lowest order in the overlap integris, ¥ ,,

(g=2wh?a/m), and the corresponding Hamilton equations
lead to the Gross-Pitaveskii equatiofis,9]. Neglecting
depletion[10], the normalization can be taken pdr p=N,

N being the total number of atoms. the energy functional foi’ takes the form
At sufficiently low temperatures the phase within one well
can be regarded as uniform. This can be easily seen if one H(ON, x)=Eg(SN)+E;(6N)(1—cosy), (4
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whereEg(J6N) is the bulk energy of the two isolated wells

with SN=N/2—n transferred atoms, and,;(SN) is the Jo-
sephson coupling energig(SN) may be expanded as

N
Eg(ON)=Eg(0) +u’

o SN*. (5)

5N2+ iﬂw E
12 2

Within the Thomas-Fermi approximation,~N?° [4], so
that the ratio between the third and second terms in the e
pansion is 0.38N?/N?, which means that the last term can
be neglected in a wide range of situations. To avoid compl
cations stemming from possible resonances between Jose
son oscillationgsee belowand intrawell excitations, we re-
quire w(N/2+ 6N) — w(N/2— 6N) <A wy, Where we use the

result that the first normal mode of a spherical well lies ap-

proximately ath w, above the ground sta{&,6]. This con-
dition is realized whenSN/N<4.6N~2® for typical param-
eters. This may seem an important restriction 6N;
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the line that joins the two minima. Standard variational ar-
guments can be invoked to prove that, for parallel plate
boundary conditions,
JZ
1

-1

dx dy dz

Jdx dyp(x,y,2)

<C[p]=

I

zp(xy, 2t
(8

Xl-'he lower bound is obtained by removing the positive term

(9l 9x)%+ (a9l dy)? from the energy functional6), while
e upper bound is derived by takirgindependent ok,y.

If Ve depends weakly ow,y in the region that controls the
capacitance, we can write(X,y,z)=p(0,0z) and then the
two bounds become approximately equal to

2 -1

)

Clpl=A —dz 9

however, the fraction of transferred atoms can be as big as

10% for the experiment of Andersaet al. [1], but it has to
be <2% for the experiment of Mewest al. [3].

The expression for the coupling enerBy(SN) in terms
of ¥, and¥,, which can be derived from Egé3) and(4),
is rather complicated and difficult to handle. A much simpler
expression can be obtained if one notes that the couplin
energy must come entirely from thée term in Eq. (1),
which in turn can be approximated as

hZ
f dr —p(r,t)[Ve(r,t)|>=E[ ¢], (6)
ext 2m

whereA is an effective area.

In order to proceed further, we need an estimate of
p=|"¥|? in the region of interest. For two identical wells in
equilibrium, the ground-state wave function is symmetric in
z. Neglecting the dependence @y, and within the WKB

@pproximatior{?], we can write
¥ )——B cosr{lrd 'p(z') (10)
(@)= coshz | dzp(z) |

wherep(z) =[2m(Vey(0,02) — ©)]¥2 andB is a constant to
be determined later. Introducing E@LO) into Eq. (9) we

where the integration extends over the region exterior to the

condensate&he results are quite independent of the precise

location of the condensate borderés argued before, the

phase within the condensates can be assumed to be practi-

cally uniform. In the limit of very small phase difference
x<1, the phase term in Eq4) can be approximated as
E;x?/2. The only way for Eq(6) to have such a dependence
on the total phase differengeand not on the details of ¢

is that the conditionsE[ ¢]/d¢(r,t)=0 be satisfied. One
may note that, except for trivial factors, this is the electro-
static equation for the electric displacement ve®etpV ¢

in a medium with a nonuniform dielectric constawr,t).
Boundary conditions fotp(r,t) are given by its value at the

borders of each condensate, which act as conductors in th

analogy. We have a system of two conductors held at a p
tential differencey and a dielectric medium surrounding
them. ThenE[ ¢] is essentially the energy of this capacitor.
Potential theory tells us thd&[ ¢]=(%2/2m)C[ p]x?, which
implies

2

Ey=—Clpl, @)
m

whereCJ p] is the mutual capacitance of the two conductors
in the presence of such a dielectficd].

We take the origin of coordinates in the middle point of
the double-well configuration, taking thedirection along

hA|BJ|?
Jz

So

-

obtain
2tan}‘( (11)

where Sosfip(z)dz/h. For standard(quartio barriers,
So=2ma(Vo— n)lfhwg, WwhereVy is the barrier height along
the line x=y=0, and « is of order unity =8/3w for
w<Vy anda=1/\/2 for Vo— u<Vy).

The coefficientB must be calculated by properly match-
ing Eq.(10) with good approximate solutions near the border
of each well. IfSy= 1, then Eq(10) can be matched with the
solution given in Ref.[7] for the region R>z—R>d,
d=ay(ay/2R) being the distance from the classical radius
R where the Thomas-Fermi approximation begins to fail.

m

%he result iB=ue~ 02(#/8rad®) Y2 with u=0.397[7]. To

estimate the effective areg we note[ 7] that the form of the
order parameter has a universal dependence on the position
near the boundary of the Thomas-Fermi zone, namely
Y (r)=¢[(r—R)/d]/dy8ma, where¢ is a universal func-

tion (in that it does not depend on the confining poteitial
that varies appreciably within a scale of unity. Therefore
p(X,y,z) varies transversally on a scale such that
(VX?*+y?+R?-R)/d~1. These considerations yield an es-
timate of A=22%(ay/R)**7R?, wherev~ 1. The result is

5.950%y e %o ) "0,

tanh(Sy/2)

N
2

15a
3= -

Qo

(12

EK
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We note that, because the prefactor in B®) has the same ciated with the normal component will overdamp the Joseph-
N2 explicit dependence as the critical temperafliggor a  son behavior and hence make it in practice unobservable
system of free confined bosor(svhich is approximately down to temperatures on the orderiab,/kg . In both cases,
equal to the critical temperature of interacting bosgi®),  we find that normal atoms give an Ohmic contribution to the
one could expect a simple relation between the two magnieurrent,

tudes. Knowing thakgT.=NY* w, [12], then Eq.(12) can

be rewritten agfor typical cases Ihv=-Gép, (18)

E;~kgT.e . (13)  whereéu is the chemical potential differen¢tor simplicity,
we assume equilibrium within each wellAs a result, the
Also within the Thomas-Fermi approximation, a simple first Josephson equation is modified to read
expression can be obtained t6g(SN) in Eq. (5), which, up

to quadratic order in 6N, can be written d E,

Eg(8N)—Eg(0)=Ec6N?%/2, where Ec=2u'(N/2) is the giON=—"sinx+1y. (19

capacitive energy. From the result of Ref] for u(N/2), we h

obtain In the high barrier limit ¥g>kgT), the basic order-of-
4/N\ %5/ 154\ ?°# g magnitude ass_u_mption is that any power-law factors occur-

Ec= _<_ (_) - (14) ring are negligible compared to the relevant WKB or
5\ 2 ag 2 Arrhenius-Kramers exponentials. At temperatufes T,
_ o . the normal component in each well will be appreciable and
Collecting terms, the Hamiltoniaf#) can be written will be distributed over an energy rangekgT> % w,, since

[10] kgT./hwo~N¥3>1. We will assume thakgT is, nev-
(15) ertheless, small compared toV;=Vy—pug, Wwith

mo=u(N/2). The situation we have ¥y>KkgT~ uo>% wg.

Under these conditions the typical spacing of the one-particle
giving the well-known equivalence to a penduldr®]. The energy levels at energieskgT is small compared td w,
frequency of small oscillationgthe Josephson plasmgn and we can ignore “level-crossing” effecf&4] and treat the

Ec .»
H:?(‘SN +E;(1—cosy),

wip=E;Ec/f, turns out to be tunneling of uncondensed particles as incoherent. At figh
the total rate of crossing is then given by a standard
5T 2a, )2’15 e~ o2 6 Arrhenius-Kramers formulaP,= (kwo/2mw)exp(V; /KsT),
wip=1. v wo, ~ i
o 15aN @annSy/2) 0 where usually [15] k~1. We have, approximately,

G=P,N,/kgT whereN,, is the number of normal particles.
The degree of damping can be estimated by comparing Eq.
(18) with the Josephson supercurrent in a small oscillation of
amplitudedu, namely,

which is typically a fraction(not necessarily very smalbf
the confining potential. As usually,/27=10—100 Hz, we
conclude thatw ;<10 Hz.

The ratioE;/E is a good measure of the classical char-

acter of the relative phasg. From Eqgs.(12) and (14), we | E,ou 20
find T o
1/15 —
E~0 25,2 2a9 e % Nag (17 From Eq.(16), we estimatean ;p~Ng 2%~ %2 (Ng~N is
Ec e 0 15N tanHSy/2) a the number of condensed partiglegalid for typical param-

eters atT=0. Finite T corrections should not change the

By varying Sy, the system can be driven from the classicalqualitative conclusions. We findls/1,~27N{* X wo/
regime €,>Ec) to the strong quantum limitE;<Ec).  KsT)%expWi/keT—Sy/2), since N,/N~(T/T.)3 We con-
However, in the latter case, quantum fluctuations are onlglude that, in the high-barrier limits/I,,<1; hence the mo-
important if we operate at ultralow temperatutled <E . tion of the equivalent pendulum is overdamped, at least
The Hamiltonian(15) describes the dynamics of a conser- down to temperatures of the order#d,/kg . For tempera-
vative system. In real life, however, we should expect a certures below this our estimate fails for several reasons, not
tain amount of damping. The most obvious source of sucteast because the density of normal component falls expo-
damping is the incoherent exchange of normal atoms, and @entially rather than a$>.
quantitative discussion requires a generalization of our re- The estimate presented above is, however, quite irrelevant
sults to nonzero temperature. Because the spatial scale of tf@r today’s experiments, because the high-barrier condition
normal component is quite different, in a harmonic trap,requires Sy/m>2uq/hwo~6—100 (we take a=1) for
from that of the condensate, this generalization is much lestypical situations. On the other hand, the prefactoEji#
trivial than for the case of a junction linking two homoge- can be estimated as4010° Hz, and thus the critical current
neous superconductors or superfluids, and we shall not aitself would be so small as to be completely unobservable. A
tempt a quantitative discussion here. However, we shall givenore relevant regime is that in which the chemical potential
two qualitative arguments, based on two very differentlies near the top of the barriev, ~#% wo/2, so thatS;~1—5.
physical assumptiong&orresponding essentially to the high In this regime, we can still expect the WKB formula f&g
and low barrier limit$, to the effect that the damping asso- derived above to yield a reasonable approximation. How-
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ever, if kgT>hw/2~V4, the thermal cloud lies mostly dynamics can be further favored by decreasin@nd in-
above the barrier and a radically different approach is needegteasingN. It is important to note, however, that some as-
to study its transport properties. For simplicity, we introducepects of the Josephson behavior can be observed in the over-
the drastic approximation that particles impinging on the bardamped regime, provided that thermal fluctuations are
rier with energyE are transmitted with probability 1 if ynimportant kgT/E;=1) [18], a not very stringent condi-
E>V, and zero ifE<V,. Then, the flow of normal atoms  tjon in the low-barrier limit[see Eq(13)].

due to a fluctuation irdu is only limited by the “contact In summary, a systematic study of the Josephson effect
resistance,” a concept taken from ballistic transport in nanopetween two weakly connected atomic Bose-Einstein baths
structured 16]. Adapting standard arguments to the case Ok55 peen presented. We have derived a three-dimensional

bosons, we may writ&=Ncy/h, whereNg, is an effective ¢ ncfional expression for the Josephson coupling energy in
number of available transmissive channels. Within a CONjarms of the condensate density. The capacitive energy and
fhe frequency of the Josephson plasma oscillation have also
been calculated within the WKB approximation. The effect
of damping due to the incoherent exchange of normal atoms
has been estimated in the limits of high and low potential
barrier. Within the low-barrier regime, we findee Eq(21)]
that weakly damped Josephson dynamics may already be
ls/1y~ 27N (hwo /kgT)?e™ %02, (21)  observed in current experimental setups, and that coherence
between atomic Bose condensates can be further enhanced
which, interestingly, is formally equivalent to the high- by lowering the temperature and the potential barrier, as well
barrier result (since there Sy/2~maVi/hwe>V,/kgT).  as by increasing the number of condensate particles.
Taking kg T= 104wy, we find I14/1,~0.38 for N~10* and
3.3 forN~10F, if S;~5. The equivalent numbers f&~ 1 This work has been supported by DGICyT Grant No.
are 2.8 and 24. We tentatively conclude that effects of co{PB93-1248 and by NSF Grant No. DMR 96-14133. One of
herent Josephson dynamics can be observed in todayts (A.J.L.) wishes to thank the BBV Foundation for addi-
atomic Bose condensates if the barrier is low. Underdampetional support at the Universidad Automa de Madrid.

channels with a minimum energy betwegp and pq+kgT
are populated, we find (taking  Su<kgT)
Nn=mAKgT/27%2, whereA, is a mean transverse contact
area seen by normal particldd7]. Approximating [10]
A~ 27kgT/mw3, we find Ngy~ (kg T/A wo)?, and hence
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