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Josephson effect between trapped Bose-Einstein condensates
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We study the Josephson effect between atomic Bose-Einstein condensates. By drawing on an electrostatic
analogy, we derive a semiclassical functional expression for the three-dimensional Josephson coupling energy
in terms of the condensate density. Estimates of the capacitive energy and of the Josephson plasma frequency
are also given. The effect of dissipation due to the incoherent exchange of normal atoms is analyzed. We
conclude that coherent Josephson dynamics may already be observable in current experimental systems.
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PACS number~s!: 03.75.Fi, 74.50.1r, 05.30.Jp, 32.80.Pj
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Recently@1–3#, it has become possible to cool a macr
scopic number (;1042106) of magnetically confined, spin
polarized atoms down to temperatures on the order of
nK while maintaining densities sufficiently hig
(101121015cm-3) to permit the onset of Bose-Einstein co
densation~BEC!. From the ensuing theoretical work, it ha
been concluded that these Bose condensed atomic gase
have very differently from the ideal noninteracting gas
which yields the prospect of potentially displaying a ri
phenomenology that might include vortex states and the
sephson effect@4–6#.

In this paper we present a theoretical study of the Jose
son dynamics between two atomic baths that have underg
BEC. The Josephson effect results from a collective mod
two weakly connected systems between which a ma
scopic fraction of particles can tunnel with identical pro
ability amplitude. Going beyond previously proposed on
dimensional@7# and dissipation-free@7,8# models, we presen
here a three-dimensional study of the Josephson effect
tween Bose condensates and estimate the effect of dam
We calculate the Josephson coupling energy, the capac
energy ~which accounts for quantum fluctuations of th
phase!, and the frequency of the Josephson plasma osc
tion. Our main conclusion is that still lower temperatur
than those achieved up to date are needed for a clear rea
tion of the Josephson effect.

The collective dynamics of a Bose condensate at z
temperature is described by its macroscopic wave func
C(r ,t). If this is factorized asC5Ar exp(iw), the standard
energy functional can be written as

H5E drF \2

2m
~ u¹Aru21ru¹wu2!1Vextr1gr2G ~1!

(g52p\2a/m), and the corresponding Hamilton equatio
lead to the Gross-Pitaveskii equations@5,9#. Neglecting
depletion@10#, the normalization can be taken as*dr r5N,
N being the total number of atoms.

At sufficiently low temperatures the phase within one w
can be regarded as uniform. This can be easily seen if
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estimates the energy of a one-radian fluctuation of the ph
across the condensate near equilibrium in a single sphe
harmonic well@see Eq.~1!#,

DE5
\2

2m
E dr requ¹dwu2.

\2

2m

N

4R2
.0.7N3/5

\v0

2
,

~2!

where R5a0(15aN/a0)1/5 is the cloud radius estimate
within the Thomas-Fermi approximation@4#, v0 is the
harmonic-oscillator frequency within the well, an
a05(\/mv0)1/2 is the oscillator length. For the last approx
mate equality we have used typical parametersa55 nm and
a051024 cm. The characteristic temperature (DE/kB) of
such a fluctuation can be as big as 10mK for the experiment
of Mewes et al. @3#. The estimate~2! suggests that, in the
interstitial region between two wells, wherer(r ) decreases
appreciably, spatial phase variations are less costly and
easier to create at low temperatures. Here lies the essen
the low-energy Josephson dynamics, which we study bel

Let us consider two weakly connected condensates 1
2. We assume that the condensates are confined w
spherical harmonic wells of the same frequencyv0. First we
wish to analyze the semiclassical dynamics. It is, of cour
well known that the relative numberdN and the relative
phasex of the condensate in the two wells may be treated
canonically conjugate variables. Nevertheless, by introd
ing a sufficiently coarse-grained averagen of the number in
~say! well 1 we may treatn and x as simultaneously well-
defined, and write for the wave function the ansatz

C̃~r ,t !}C1„r ;n~ t !…1eix~ t !C2„r ;N2n~ t !…, ~3!

where C i(r ;n) is the ~real! equilibrium wave function for
the isolated welli containingn bosons. It is straightforward
to show that, to lowest order in the overlap integrals*C1C2,
the energy functional forC̃ takes the form

H~dN,x!.EB~dN!1EJ~dN!~12cosx!, ~4!
R28 © 1998 The American Physical Society
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whereEB(dN) is the bulk energy of the two isolated wel
with dN[N/22n transferred atoms, andEJ(dN) is the Jo-
sephson coupling energy.EB(dN) may be expanded as

EB~dN!.EB~0!1m8S N

2 D dN21
1

12
m-S N

2 D dN4. ~5!

Within the Thomas-Fermi approximation,m;N2/5 @4#, so
that the ratio between the third and second terms in the
pansion is 0.32dN2/N2, which means that the last term ca
be neglected in a wide range of situations. To avoid com
cations stemming from possible resonances between Jos
son oscillations~see below! and intrawell excitations, we re
quire m(N/21dN)2m(N/22dN)!\v0, where we use the
result that the first normal mode of a spherical well lies a
proximately at\v0 above the ground state@5,6#. This con-
dition is realized whendN/N!4.6N22/5 for typical param-
eters. This may seem an important restriction ondN;
however, the fraction of transferred atoms can be as big
10% for the experiment of Andersonet al. @1#, but it has to
be ,2% for the experiment of Meweset al. @3#.

The expression for the coupling energyEJ(dN) in terms
of C1 andC2 , which can be derived from Eqs.~3! and~4!,
is rather complicated and difficult to handle. A much simp
expression can be obtained if one notes that the coup
energy must come entirely from the¹w term in Eq. ~1!,
which in turn can be approximated as

E
ext

dr
\2

2m
r~r ,t !u¹w~r ,t !u2[E@w#, ~6!

where the integration extends over the region exterior to
condensates~the results are quite independent of the prec
location of the condensate borders!. As argued before, the
phase within the condensates can be assumed to be p
cally uniform. In the limit of very small phase differenc
x!1, the phase term in Eq.~4! can be approximated a
EJx

2/2. The only way for Eq.~6! to have such a dependenc
on the total phase differencex and not on the details of¹w
is that the conditiondE@w#/dw(r ,t)50 be satisfied. One
may note that, except for trivial factors, this is the elect
static equation for the electric displacement vectorD[r“w
in a medium with a nonuniform dielectric constantr(r ,t).
Boundary conditions forw(r ,t) are given by its value at the
borders of each condensate, which act as conductors in
analogy. We have a system of two conductors held at a
tential differencex and a dielectric medium surroundin
them. ThenE@w# is essentially the energy of this capacito
Potential theory tells us thatE@w#.(\2/2m)C@r#x2, which
implies

EJ5
\2

m
C@r#, ~7!

whereC@r# is the mutual capacitance of the two conducto
in the presence of such a dielectric@11#.

We take the origin of coordinates in the middle point
the double-well configuration, taking thez direction along
x-
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the line that joins the two minima. Standard variational
guments can be invoked to prove that, for parallel pl
boundary conditions,

E dx dy

E
1

2

dz r~x,y,z!21

<C@r#<F E
1

2 dz

*dx dyr~x,y,z!G21

.

~8!

The lower bound is obtained by removing the positive te
(]w/]x)21(]w/]y)2 from the energy functional~6!, while
the upper bound is derived by takingw independent ofx,y.
If Vext depends weakly onx,y in the region that controls the
capacitance, we can writer(x,y,z).r(0,0,z) and then the
two bounds become approximately equal to

C@r#.AF E
1

2 dz

r~0,0,z!G21

, ~9!

whereA is an effective area.
In order to proceed further, we need an estimate

r5uCu2 in the region of interest. For two identical wells i
equilibrium, the ground-state wave function is symmetric
z. Neglecting the dependence onx,y, and within the WKB
approximation@7#, we can write

C~z!5
B

Ap~z!
coshF 1

\E0

z

dz8p~z8!G , ~10!

wherep(z)5@2m(Vext(0,0,z)2m)#1/2 andB is a constant to
be determined later. Introducing Eq.~10! into Eq. ~9! we
obtain

EJ.
\AuBu2

m
F2tanhS S0

2
D G21

, ~11!

where S0[*1
2p(z)dz/\. For standard~quartic! barriers,

S0.2pa(V02m)/\v0, whereV0 is the barrier height along
the line x5y50, and a is of order unity (a58/3p for
m!V0 anda51/A2 for V02m!V0).

The coefficientB must be calculated by properly match
ing Eq.~10! with good approximate solutions near the bord
of each well. IfS0*1, then Eq.~10! can be matched with the
solution given in Ref. @7# for the region R@z2R@d,
d5a0(a0/2R)1/3 being the distance from the classical radi
R where the Thomas-Fermi approximation begins to fa
The result isB.ue2S0/2(\/8pad3)1/2, with u.0.397@7#. To
estimate the effective areaA, we note@7# that the form of the
order parameter has a universal dependence on the pos
near the boundary of the Thomas-Fermi zone, nam
C(r ).f@(r 2R)/d#/dA8pa, wheref is a universal func-
tion ~in that it does not depend on the confining potenti!
that varies appreciably within a scale of unity. Therefo
r(x,y,z) varies transversally on a scale such th
(Ax21y21R22R)/d;1. These considerations yield an e
timate ofA522/3v(a0 /R)4/3pR2, wherev;1. The result is

EJ.
5.95u2ve2S0

tanh~S0/2!
S N

2 D 1/3S 15a

a0
D 22/3

\v0

2
. ~12!
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We note that, because the prefactor in Eq.~12! has the same
N1/3 explicit dependence as the critical temperatureTc for a
system of free confined bosons~which is approximately
equal to the critical temperature of interacting bosons@12#!,
one could expect a simple relation between the two ma
tudes. Knowing thatkBTc.N1/3\v0 @12#, then Eq.~12! can
be rewritten as~for typical cases!

EJ;kBTce
2S0. ~13!

Also within the Thomas-Fermi approximation, a simp
expression can be obtained forEB(dN) in Eq. ~5!, which, up
to quadratic order in dN, can be written
EB(dN)2EB(0)5ECdN2/2, where EC52m8(N/2) is the
capacitive energy. From the result of Ref.@4# for m(N/2), we
obtain

EC.
4

5S N

2 D 23/5S 15a

a0
D 2/5

\v0

2
. ~14!

Collecting terms, the Hamiltonian~4! can be written

H.
EC

2
dN21EJ~12cosx!, ~15!

giving the well-known equivalence to a pendulum@13#. The
frequency of small oscillations~the Josephson plasmon!,
vJP5AEJEC/\, turns out to be

vJP.1.54uAvS 2a0

15aN
D 2/15

e2S0/2

Atanh~S0/2!
v0 , ~16!

which is typically a fraction~not necessarily very small! of
the confining potential. As usuallyv0/2p.102100 Hz, we
conclude thatvJP&10 Hz.

The ratioEJ /EC is a good measure of the classical ch
acter of the relative phasex. From Eqs.~12! and ~14!, we
find

EJ

EC

.0.25u2vS 2a0

15aN
D 1/15

e2S0

tanh~S0/2!

Na0

a
. ~17!

By varying S0, the system can be driven from the classic
regime (EJ@EC) to the strong quantum limit (EJ!EC).
However, in the latter case, quantum fluctuations are o
important if we operate at ultralow temperatureskBT&EC .

The Hamiltonian~15! describes the dynamics of a conse
vative system. In real life, however, we should expect a c
tain amount of damping. The most obvious source of s
damping is the incoherent exchange of normal atoms, an
quantitative discussion requires a generalization of our
sults to nonzero temperature. Because the spatial scale o
normal component is quite different, in a harmonic tra
from that of the condensate, this generalization is much
trivial than for the case of a junction linking two homog
neous superconductors or superfluids, and we shall no
tempt a quantitative discussion here. However, we shall g
two qualitative arguments, based on two very differe
physical assumptions~corresponding essentially to the hig
and low barrier limits!, to the effect that the damping ass
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ciated with the normal component will overdamp the Jose
son behavior and hence make it in practice unobserva
down to temperatures on the order of\v0 /kB . In both cases,
we find that normal atoms give an Ohmic contribution to t
current,

I n52Gdm, ~18!

wheredm is the chemical potential difference~for simplicity,
we assume equilibrium within each well!. As a result, the
first Josephson equation is modified to read

d

dt
dN5

EJ

\
sinx1I n . ~19!

In the high barrier limit (V0@kBT), the basic order-of-
magnitude assumption is that any power-law factors occ
ring are negligible compared to the relevant WKB
Arrhenius-Kramers exponentials. At temperaturesT&Tc ,
the normal component in each well will be appreciable a
will be distributed over an energy range;kBT@\v0, since
@10# kBTc /\v0;N1/3@1. We will assume thatkBT is, nev-
ertheless, small compared toV1[V02m0, with
m0[m(N/2). The situation we have isV0@kBT;m0@\v0.
Under these conditions the typical spacing of the one-part
energy levels at energies;kBT is small compared to\v0,
and we can ignore ‘‘level-crossing’’ effects@14# and treat the
tunneling of uncondensed particles as incoherent. At highT,
the total rate of crossing is then given by a stand
Arrhenius-Kramers formula,Pn5(kv0/2p)exp(2V1 /kBT),
where usually @15# k;1. We have, approximately
G.PnNn /kBT whereNn is the number of normal particles
The degree of damping can be estimated by comparing
~18! with the Josephson supercurrent in a small oscillation
amplitudedm, namely,

I s;
EJdm

\2vJP

. ~20!

From Eq.~16!, we estimatevJP;N0
22/15e2S0/2v0 (N0;N is

the number of condensed particles!, valid for typical param-
eters atT50. Finite T corrections should not change th
qualitative conclusions. We findI s /I n;2pN0

7/15(\v0 /
kBT)2exp(V1 /kBT2S0/2), since Nn /N;(T/Tc)

3. We con-
clude that, in the high-barrier limit,I s /I n!1; hence the mo-
tion of the equivalent pendulum is overdamped, at le
down to temperatures of the order of\v0 /kB . For tempera-
tures below this our estimate fails for several reasons,
least because the density of normal component falls ex
nentially rather than asT3.

The estimate presented above is, however, quite irrele
for today’s experiments, because the high-barrier condit
requires S0 /p@2m0 /\v0;62100 ~we take a.1) for
typical situations. On the other hand, the prefactor inEJ /\
can be estimated as 1042105 Hz, and thus the critical curren
itself would be so small as to be completely unobservable
more relevant regime is that in which the chemical poten
lies near the top of the barrier,V1;\v0/2, so thatS0;125.
In this regime, we can still expect the WKB formula forEJ
derived above to yield a reasonable approximation. Ho
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ever, if kBT@\v0/2;V1, the thermal cloud lies mostly
above the barrier and a radically different approach is nee
to study its transport properties. For simplicity, we introdu
the drastic approximation that particles impinging on the b
rier with energy E are transmitted with probability 1 i
E.V0 and zero ifE,V0. Then, the flow of normal atom
due to a fluctuation indm is only limited by the ‘‘contact
resistance,’’ a concept taken from ballistic transport in na
structures@16#. Adapting standard arguments to the case
bosons, we may writeG[Nch/h, whereNch is an effective
number of available transmissive channels. Within a c
tinuum approximation, and assuming that only transve
channels with a minimum energy betweenm0 andm01kBT
are populated, we find ~taking dm!kBT)
Nch5mAnkBT/2p\2, whereAn is a mean transverse conta
area seen by normal particles@17#. Approximating @10#
An;2pkBT/mv0

2, we findNch;(kBT/\v0)2, and hence

I s /I n;2pN0
7/15~\v0 /kBT!2e2S0/2, ~21!

which, interestingly, is formally equivalent to the high
barrier result ~since there S0/2;paV1 /\v0@V1 /kBT).
Taking kBT510\v0, we find I s /I n;0.38 for N;104, and
3.3 for N;106, if S0;5. The equivalent numbers forS0;1
are 2.8 and 24. We tentatively conclude that effects of
herent Josephson dynamics can be observed in tod
atomic Bose condensates if the barrier is low. Underdam
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dynamics can be further favored by decreasingT and in-
creasingN. It is important to note, however, that some a
pects of the Josephson behavior can be observed in the o
damped regime, provided that thermal fluctuations
unimportant (kBT/EJ&1) @18#, a not very stringent condi-
tion in the low-barrier limit@see Eq.~13!#.

In summary, a systematic study of the Josephson ef
between two weakly connected atomic Bose-Einstein ba
has been presented. We have derived a three-dimens
functional expression for the Josephson coupling energ
terms of the condensate density. The capacitive energy
the frequency of the Josephson plasma oscillation have
been calculated within the WKB approximation. The effe
of damping due to the incoherent exchange of normal ato
has been estimated in the limits of high and low poten
barrier. Within the low-barrier regime, we find@see Eq.~21!#
that weakly damped Josephson dynamics may already
observed in current experimental setups, and that coher
between atomic Bose condensates can be further enha
by lowering the temperature and the potential barrier, as w
as by increasing the number of condensate particles.
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