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Roll-hexagon transition in an active optical system
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We study the formation of hexagonal patterns and the roll-hexagon transition in an active nonlinear optical
system, namely a two-level laser with an injected signal, which displays distinctive and noteworthy features
from the most commonly encountered pattern-forming systems with broken inversion symmetry, such as
convective hydrodynamic systems and passive nonlinear optical systems. With respect to these systems, we
show here that the roll-hexagon transition is accompanied in the Fourier space by a spontaneous breaking of
the inversion symmetrk— —k, which is a signature of the different physical mechanisms involved in the
elementary process of pattern formatip81050-29478)50104-7

PACS numbeps): 42.65.5f, 47.54cr

Spontaneous pattern formation in systems driven awapf Egs.(1) is determined not only by the symmetries of the
from equilibrium is a topic of considerable interest in many system, but also by the requirement for the order paranueter
areas of physic§l]. Despite the wide diversity of physical to be real, so that the elementary patterns are not stitige
systems where patterns may spontaneously occur, the basi@ves(TW's), but rolls, i.e., pairs of oppositely oriented
mechanisms leading to pattern formation and competition ar&W'’s on the critical circle. The real nature of the order pa-
very general and, in boundary-free systems, they solely rerameter is due either to trivial physical constraints ocon-
flect the intrinsic symmetry of the problem. An important servation lawsthat must be satisfied in the elementary pro-
example of pattern transition is that between hexagons ancess of pattern formation. The former case occurs, for
rolls in two-dimensional isotropic systems with broken in- instance, in hydrodynamic systems, where the order param-
version symmetnf1-3]. The Rayleigh-Bernard convection eter is directly related to a physical observatdach as the
with non-Boussinesq fluids3] has been presented as a para-temperature of the convective flgidThe latter situation is
digm where this transition occurs. In nonlinear optics, hex-commonplace inpassivenonlinear optical systems, where
agonal patterns and roll-hexagon competition have been déhe elementary process of pattern formation involves the si-
scribed in variougpassivenonlinear systems, such as Kerr multaneous emission of two photons with opposite wave
media with optical feedbadld], optical bistable systen}$],  vectors in the transverse plane due to the conservation of the
and counterpropagating beams in a nonlinear med#imn  total photon momentum during four-wave mixing in the non-
these systems the nonlinear dynamics is usually described biyear medium 7]. Conversely, it is known that a single TW
areal order parameten=u(x,t), which, close to the insta- may be emitted iractive optical systems, such as two-level
bility for pattern formation, may be taken as a linear super-and Raman lasef8], photorefractive oscillatori®], and op-
position ofN rolls with wave vectork; and amplitudeg\, , tical parametric oscillatorfl0(a)], with the notable excep-
where|k,|=k. andk, is the critical wave number fixed by tion of degenerate optical parametric oscillatfit&(b),(c)].
the system parameters. The formation of hexagonal patterrtidowever, the equations for these systems are usually invari-
and the roll-hexagon transition arise from the interaction ofant for inversion, so that the most likely patterns are single
N=3 rolls whose wave vectors,, k,, andks satisfy the = TW’s or rhomboids 11].
resonance conditiok; +k;—k,=0 (see Fig. ]; the corre- In this Rapid Communication we investigate a type of
sponding amplitude equations have the canonical f@j3l, roll-hexagon competition that occurs in a model of a homo-

geneously broadened, two-level laser with plane mirrors ex-
GAL= AL+ TAAS — (|AL]2+ ¥] AP+ ¥ AglHAL, ternally driven by a coherent plane-wave fidldser with
(o

kﬂk

where u measures the distance from the instability point, 1
y>1 is the cross-saturation parameter, anis zero when

the system has the inversion symmetry—u. Similar ¥ :

equations forA, andA; are obtained from EqJ1) by cyclic _
permutation of the indeces. The bifuration scenario originat- k
ing from Egs.(1) is well known, and it explains the subcriti- 5 3

cal onset of hexagons, the transition between rolls and hexa-
gons, and the existence of two kinds of phase locking leading "
to either positive or negative hexagons, depending on the

sign of o [2]. It is important to point out that the form FIG. 1. Geometry for hexagonal patterns in Fourier space.
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injected signal(LIS) [12]]. As was recently shown in Ref. captured by a weakly nonlinear analysis of the laser E2)s.
[13], the effect of the external field is to break the inversionclose to the instability point; with the proper scaling of the
symmetry of the laser equations, permitting the formation oflaser parameters as discussed in R&8], it turns out that
rolls and hexagons. However, as for two-level lasers withouthe electric field at leading order may be written as
injected signal 8], it turns out that the elementary patterns at N

t_he instability point are TW's. Thisf fact profoundly differen- e(x,t)=+b a+2 A, exp(ik-x) |, 3)
tiates the pattern-forming properties of the LIS model from =1

other hydrodynamical and optical systems. The case where , i , i
the injected signal breaks the inversion symmetry and thavhere|k | =k, a=iE/ybQ is proportional to the ampli-

rotational symmetry of the laser equations as well was invesiude of the injected fieldN is the number of TW's on the

tigated in Ref[13]. Here we concentrate on the case WhereCritical circle, andA, are their complex amplitudes that, ne-

the external field breaks only the inversion symmetry of theg_lecting s.patial effects, satisfy the following amplitude equa-
laser equations, leaving the rotational symmetry around thgons [13]

q ' g Y y
laser cavity axis. In this case we show that the laser dynam- A = uhA — aZAg S(KstK))
ics near the onset of instability for pattern formation may be
described by a set gix amplitude equationf®r six TW’'s on
the critical circle, located at the vertices of a regular hexagon
(see Fig. 1, which represent a generalization of the ampli-
tude equation$l), to the case where the elementary patterns

N
—2a X, ApArS(Kn—ks—k))

m,s=1

N

are single TW’s. The bifurcation scenario for these equations —a X ApAS(kpt+ks—k)

indicates the formation of regular hexagons and a transition me=t

to rolls when the external parameters are varied. However, N

the patterns selected and the roll-hexagon competition show - 2 AnAAL Skt k—ks—k)), (4)

unusual features that can be summarized as follofiys: m.r,s=1

stable rolls are asymmetric, i.e., they are composed by thgherep=r—1-2a2, t=To/(1+0), and the phase of the
superposition of two oppositely oriented TW's with different external field is chosen in such a way thatis real and
amplitudes, symmetric rolls that are always linearly unstablepositive. The second term on the right-hand side of E4)s.
(i) hexagons bifurcatsupercritically from the trivial zero  shows that two oppositely oriented TW's are always linearly
solution; and(ii ) a transition between two kinds of hexagons coupled, whereas the quadratic nonlinear terms are not zero
occurs before rolls are stably selected. In the far field, thigor triadicsk,,ks,k; satisfying the resonance conditiokg
transition corresponds to a breaking of the inversion symme= k,—k,=0. Therefore, to fully capture the basic dynamics
try k——k of the hexagonal patterns. of TW’s on the critical circleN=6 modes located as in Fig.
The starting point of the analysis is provided by thel on the vertices of a regular hexagon should be considered.
Maxwell-Bloch laser equations for a homogeneously broadThe equations for these modes, labeled 1,2,3,6, may be
ened, two-level ring laser with an external plane-wave coherWritten as
ent field injected into the laser and propagating parallel to the
cavity axis[12,13. Using the same notations as in Ref3], IA = uA —
these equations can be written as

6

22, |AP=IAI? |A - Al 5

—2aA 1A 1= 20A AT~ 2aA AT,
)

(1=1,2,...,6), with the convention that the indices assume
cyclically the values 1,2 ..,5,6,1,2... . Note, that if one
assumed ,3=A", Egs.(5) reduce to the canonical form

. expressed by Eq$l). To investigate the bifurcation proper-
wheree andp are the scaled envelopes for the electric fieldiies of the more general amplitude equati@k let us first
and polarization of the medium referenced to the atomigpserve that they have the gradient form,

transition frequencyn is proportional to the difference of the

atomic inversion from its threshold value for lasing action, A= — ﬂ 6)
is the pump parameteE is the amplitude of the injected b A’

field, whose frequency is assumed to be exactly coincident ] o

with the atomic transition frequency, is the time variable Where the potential =U (A, ,Af") is given by

dre=iaV?e+iQe—oe+op+E,
drp=—p+(r—nje,

grn=—bn+3(e*p+ep*), 2

scaled to the decay time of polarizatidn,is the cavity de- 6 6
tuning parameter, and and b are the decay rates of the U=—un AAT+ D yiAALAAF
electric field and of the population inversion, respectively, =1 k=1

scaled to the decay rate of polarization. For a positive detun-

6
ing paramete()>0) _a_nd assuming a weak |nj_ected §!gnal,_|t + %azz (AA s 3+AFA*, )
turns out that the critical modes close to the instability point =1
(r=1) for pattern formation are TW's on the critical circle 6

of radiusk.=(Q/a)*? as occurs for the free-running two-

* * *
level laser{8]. The competition among these modes may be +2a|21 (AT A A2 TAAT A -2), ™
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FIG. 3. Phase locking among TW's fdéts and H, hexagons

. ) . ) . corresponding to the bifurcation diagram of Figaj2
FIG. 2. Bifurcation diagrams of the amplitude equatid&s|s.

(5)] obtained(a) when the bifurcation parameter= u/a? is adia-

batically increased starting from the trivial solutionata?=—3,  turns out that hexagonal patterns bifurcate supercritically
and (b) when the bifurcation parameter is subsequently decreasedrom the trivial solution, and for-1<7<~6.4 the six TW’s

The vertical dashed lines separate regions corresponding to diffehave the same amplitudes and are phase locked in such a
ent patternsHg, H, are hexagonsR are asymmetric rolls. In the way that ¢ +¢,_>,—¢ -1 is Iindependent of |

region of Hg hexagons, the six modes have the same amplitudeg| =1,2, . . . ,6, although it varies ag is increasedsee Fig.
whereas in the region of rolls, only two oppositely oriented modes3). We call these hexagort$,. The corresponding near-field
survive (labeled as 3 and 6 in the figyre intensity pattern is shown in Fig.(&; it should be noted
that, although the phase of modes changes whi&nvaried,
and yy=(1+8y)/2. Equations (5) imply dU/dt=  due to phase locking, the resulting intensity pattern is not
—ZELI&U/&A 2| 50 that the stable solutions of EdS) influenced by these phase changes.7At6.4, a symmetry-

are the minima of the potentifEq. (7)]. It should be noted breaking bifurcation takes place, resulting in the emission of
that, introducing the polar decompositidn=R, exp(d), it 'I.'W's. with Qifferent int(_ansities. Although the resulting near-
turns out that the last two sums on the right-hand side of thd€ld intensity pattern is very similar to that shown in Fig.
potential [Eq. (7)] are phase sensitive and, therefore, theyz(a)’ in the far fleld_th|s bifurcation breaks the_ inversion
tend to favor precise phase-locking conditions. In particularSYMmetryk——k typical of Hs hexagons. We will denote
the third term is minimized for the phase lockigg+¢,.,  h€S€ hexagons by, . The phase locking foH, hexagons
=, whereas the last term favors a phase locking of thdS ruled by the conditionp,+ ¢~ ¢ = (see Fig. 3,
form &+ ¢ _,— b=, which is exactly the ordinary which is characteristic of ordinary hexa}gqnal_patteia}s
phase locking for positive hexagonal pattef These two However, we stress that in our model_ this implies asymmet-
conditions are, however, not compatible with each other, sbi¢ €mission of TW's. We can physically understand this
that they compete in the dynamics for pattern formation. TgHnusual feature on the basis of the energy competition be-
discuss the bifurcation properties of E@), it is worth not- ~ (Ween the two phase-sensitive terms in the poteri#ialin
ing that, after a suitable rescaling of timand amplitudes, ~ fact, as previously discussed, the phase-locking condition
in Egs. (5), the driving parameters and @ may enter the #1+¢1-2— ¢ 1= is energetically favored by the last
equations solely through the ratip= u/«?, which we as- term (_)f the _pote_ntla[cub|c in thg mode. amplitudgshow-
sume, therefore, as the bifurcation parameter of the systerffVe': it also impliesh,+ 4,,3=0, i.e., an increase of the free
Note that, from a physical viewpoint, 2/gives a measure of €N€ry due to the other phase-sensitive term, which is qua-
the phase-sensitivity degree of the system, the limitoc dratic and involves the amplitudes of two oppositely oriented
corresponding to a complete loss of phase ’sensit(\m;e- TW’s. Minimization of this term leads to the spontaneous
running laser. Linear stability analysis of the zero solution €Mission of TW's in opposite directions with different am-
A,=0 indicates that the laser emission in the forced mode §litudes, i.e., tH, hexagons. Aty=16.8 a third bifurcation
stable fory<—1, and aty=—1 an instability arises from the takes plaqe that results in the transition fréty .h.exagons to
growth of independensymmetricrolls corresponding to &Symmetricrolls composed by the superposition of two of
Aj.3=—A* : however, it turns out that the single-roll solu- the six TW’s with opposite wave vectors and of different

tion corresponding, for instance, toA;=—A}=[(u Intensities, phase locked according to the ije- ¢, 3= .

+a?)13]Y%exp(¢) and A;=0 for |#1,4 (¢ is an arbitrary

phase termis always unstable with the growth of the other KD LD A
two rolls oriented at an anglen23. The bifurcating solution L Bl o B
involves, therefore, all six TW’s on the critical circle. The 40 40 re
determination of the steady-state solutions of E&$, in- AV AN
volving six modes, is a nontrivial matter to deal with analyti- bd o bdo
cally; however, the bifurcation diagram originating from 4004 0rd
these equations when the driving parametés adiabatically rd O 40
increased can easily be determined by numerical integration @ ®)

of Egs.(5). The bifurcation diagram for the amplitud&s

obtained by increasing the driving parameter starting from FIG. 4. Near-field intensity patterns obtained fay w/a?=2
the forced-mode solutionA(=0) is shown in Fig. 2a). It  (hexagonsand(b) u/a?=17 (rolls).
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The amplitudes of the two TW'’s can be calculated analyti-where a transition téls hexagons occurs. This indicates bi-
cally in a closed form and they are given |®f,,,=[u  stability between rolls an#i, hexagons.

+(u2—4a*Y2)/2. The corresponding near-field intensity N conclusion, we have studied the formation of hexago-
pattern is shown in Fig. ®). Further increasing, the am- nal patterns in an active optical system with broken inversion

plitude of one of the two TW’s decays toward zero, which symmetry. Owing to the peculiar mechanism involved in the
' elementary process of pattern formation, the onset of hexa-

re_zsults in the emission of a_smgle tited wave. Note that th_e ons and the roll-hexagon transition in this system are deeply
bifurcating scenario so obtained corresponds to a progressi fferent from those most commonly found in other systems
loss of phase sensitivity of the system induced by the extergith proken inversion symmetry and generally described by
nal signal, and to the prevalence of the phase-insensitivye canonical model expressed by E¢®). Although the
character of the free-running laser emission. The bifurcationesults presented here have been obtained in a special non-
diagram that results when the amplitude equati@wes.(5)]  linear optical system, they can be expected to occur in other
are integrated by adiabaticalfiecreasingy starting from the  pattern-forming systems with broken inversion symmetry
asymmetric roll solution is shown in Fig.(®. As can be where the elementary patterns are tilted waves instead of
seen, the asymmetric rolls are now stable dowmyte6.4,  rolls.
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