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Roll-hexagon transition in an active optical system
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We study the formation of hexagonal patterns and the roll-hexagon transition in an active nonlinear optical
system, namely a two-level laser with an injected signal, which displays distinctive and noteworthy features
from the most commonly encountered pattern-forming systems with broken inversion symmetry, such as
convective hydrodynamic systems and passive nonlinear optical systems. With respect to these systems, we
show here that the roll-hexagon transition is accompanied in the Fourier space by a spontaneous breaking of
the inversion symmetryk→2k, which is a signature of the different physical mechanisms involved in the
elementary process of pattern formation.@S1050-2947~98!50104-7#

PACS number~s!: 42.65.Sf, 47.54.1r
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Spontaneous pattern formation in systems driven aw
from equilibrium is a topic of considerable interest in ma
areas of physics@1#. Despite the wide diversity of physica
systems where patterns may spontaneously occur, the b
mechanisms leading to pattern formation and competition
very general and, in boundary-free systems, they solely
flect the intrinsic symmetry of the problem. An importa
example of pattern transition is that between hexagons
rolls in two-dimensional isotropic systems with broken i
version symmetry@1–3#. The Rayleigh-Bernard convectio
with non-Boussinesq fluids@3# has been presented as a pa
digm where this transition occurs. In nonlinear optics, h
agonal patterns and roll-hexagon competition have been
scribed in variouspassivenonlinear systems, such as Ke
media with optical feedback@4#, optical bistable systems@5#,
and counterpropagating beams in a nonlinear medium@6#. In
these systems the nonlinear dynamics is usually describe
a real order parameteru5u(x,t), which, close to the insta
bility for pattern formation, may be taken as a linear sup
position ofN rolls with wave vectorsk l and amplitudesAl ,
where uk l u5kc and kc is the critical wave number fixed b
the system parameters. The formation of hexagonal patt
and the roll-hexagon transition arise from the interaction
N53 rolls whose wave vectorsk1 , k2 , andk3 satisfy the
resonance conditionk11k32k250 ~see Fig. 1!; the corre-
sponding amplitude equations have the canonical form@2,3#,

] tA15mA11sA2A3* 2~ uA1u21guA2u21guA3u2!A1 ,
~1!

where m measures the distance from the instability poi
g.1 is the cross-saturation parameter, ands is zero when
the system has the inversion symmetryu→2u. Similar
equations forA2 andA3 are obtained from Eq.~1! by cyclic
permutation of the indeces. The bifuration scenario origin
ing from Eqs.~1! is well known, and it explains the subcrit
cal onset of hexagons, the transition between rolls and h
gons, and the existence of two kinds of phase locking lead
to either positive or negative hexagons, depending on
sign of s @2#. It is important to point out that the form
571050-2947/98/57~4!/2281~4!/$15.00
y

sic
re
e-

nd

-
-
e-

by

-

ns
f

,

t-

a-
g
e

of Eqs.~1! is determined not only by the symmetries of th
system, but also by the requirement for the order parametu
to be real, so that the elementary patterns are not singletilted
waves~TW’s!, but rolls, i.e., pairs of oppositely oriented
TW’s on the critical circle. The real nature of the order p
rameter is due either to trivial physical constraints or tocon-
servation lawsthat must be satisfied in the elementary pr
cess of pattern formation. The former case occurs,
instance, in hydrodynamic systems, where the order par
eter is directly related to a physical observable~such as the
temperature of the convective fluid!. The latter situation is
commonplace inpassivenonlinear optical systems, wher
the elementary process of pattern formation involves the
multaneous emission of two photons with opposite wa
vectors in the transverse plane due to the conservation o
total photon momentum during four-wave mixing in the no
linear medium@7#. Conversely, it is known that a single TW
may be emitted inactiveoptical systems, such as two-lev
and Raman lasers@8#, photorefractive oscillators@9#, and op-
tical parametric oscillators@10~a!#, with the notable excep-
tion of degenerate optical parametric oscillators@10~b!,~c!#.
However, the equations for these systems are usually inv
ant for inversion, so that the most likely patterns are sin
TW’s or rhomboids@11#.

In this Rapid Communication we investigate a type
roll-hexagon competition that occurs in a model of a hom
geneously broadened, two-level laser with plane mirrors
ternally driven by a coherent plane-wave field@laser with

FIG. 1. Geometry for hexagonal patterns in Fourier space.
R2281 © 1998 The American Physical Society
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injected signal~LIS! @12##. As was recently shown in Ref
@13#, the effect of the external field is to break the inversi
symmetry of the laser equations, permitting the formation
rolls and hexagons. However, as for two-level lasers with
injected signal@8#, it turns out that the elementary patterns
the instability point are TW’s. This fact profoundly differen
tiates the pattern-forming properties of the LIS model fro
other hydrodynamical and optical systems. The case wh
the injected signal breaks the inversion symmetry and
rotational symmetry of the laser equations as well was inv
tigated in Ref.@13#. Here we concentrate on the case whe
the external field breaks only the inversion symmetry of
laser equations, leaving the rotational symmetry around
laser cavity axis. In this case we show that the laser dyn
ics near the onset of instability for pattern formation may
described by a set ofsix amplitude equationsfor six TW’s on
the critical circle, located at the vertices of a regular hexag
~see Fig. 1!, which represent a generalization of the amp
tude equations~1!, to the case where the elementary patte
are single TW’s. The bifurcation scenario for these equati
indicates the formation of regular hexagons and a transi
to rolls when the external parameters are varied. Howe
the patterns selected and the roll-hexagon competition s
unusual features that can be summarized as follows:~i!
stable rolls are asymmetric, i.e., they are composed by
superposition of two oppositely oriented TW’s with differe
amplitudes, symmetric rolls that are always linearly unstab
~ii ! hexagons bifurcatesupercritically from the trivial zero
solution; and~iii ! a transition between two kinds of hexago
occurs before rolls are stably selected. In the far field,
transition corresponds to a breaking of the inversion sym
try k→2k of the hexagonal patterns.

The starting point of the analysis is provided by t
Maxwell-Bloch laser equations for a homogeneously bro
ened, two-level ring laser with an external plane-wave coh
ent field injected into the laser and propagating parallel to
cavity axis@12,13#. Using the same notations as in Ref.@13#,
these equations can be written as

]Te5 ia¹2e1 iVe2se1sp1E,

]Tp52p1~r 2n!e,

]Tn52bn1 1
2 ~e* p1ep* !, ~2!

wheree andp are the scaled envelopes for the electric fie
and polarization of the medium referenced to the atom
transition frequency,n is proportional to the difference of th
atomic inversion from its threshold value for lasing actionr
is the pump parameter,E is the amplitude of the injected
field, whose frequency is assumed to be exactly coincid
with the atomic transition frequency,T is the time variable
scaled to the decay time of polarization,V is the cavity de-
tuning parameter, ands and b are the decay rates of th
electric field and of the population inversion, respective
scaled to the decay rate of polarization. For a positive de
ing parameter~V.0! and assuming a weak injected signal,
turns out that the critical modes close to the instability po
(r .1) for pattern formation are TW’s on the critical circ
of radiuskc5(V/a)1/2, as occurs for the free-running two
level laser@8#. The competition among these modes may
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captured by a weakly nonlinear analysis of the laser Eqs.~2!
close to the instability point; with the proper scaling of th
laser parameters as discussed in Ref.@13#, it turns out that
the electric field at leading order may be written as

e~x,t !5AbS a1(
l 51

N

Al exp~ ik l•x!D , ~3!

where uk l u5kc , a5 iE/AbV is proportional to the ampli-
tude of the injected field,N is the number of TW’s on the
critical circle, andAl are their complex amplitudes that, ne
glecting spatial effects, satisfy the following amplitude equ
tions @13#:

] tAl5mAl2a2As* d~ks1k l !

22a (
m,s51

N

AmAs* d~km2ks2k l !

2a (
m,s51

N

AmAsd~km1ks2k l !

2 (
m,r ,s51

N

AmArAs* d~km1kr2ks2k l !, ~4!

wherem5r 2122a2, t5Ts/(11s), and the phase of the
external field is chosen in such a way thata is real and
positive. The second term on the right-hand side of Eqs.~4!
shows that two oppositely oriented TW’s are always linea
coupled, whereas the quadratic nonlinear terms are not
for triadicskm ,ks ,k l satisfying the resonance conditionskm
6ks2k l50. Therefore, to fully capture the basic dynami
of TW’s on the critical circle,N56 modes located as in Fig
1 on the vertices of a regular hexagon should be conside
The equations for these modes, labeled 1,2,3, . . . ,6, may be
written as

] tAl5mAl2S 2(
j 51

6

uAj u22uAl u2DAl2a2Al 13*

22aAl 11Al 2122aAl 21Al 22* 22aAl 11Al 12* ,

~5!

( l 51,2, . . .,6), with the convention that the indices assum
cyclically the values 1,2, . . . ,5,6,1,2, . . . . Note, that if one
assumesAl 135Al* , Eqs. ~5! reduce to the canonical form
expressed by Eqs.~1!. To investigate the bifurcation proper
ties of the more general amplitude equations~5!, let us first
observe that they have the gradient form,

] tAl52
]U

]Al*
, ~6!

where the potentialU5U(Al ,Al* ) is given by

U52m(
l 51

6

AlAl* 1 (
k,l 51

6

gklAkAk* AlAl*

1 1
2 a2(

l 51

6

~AlAl 131Al* Al 13* !

12a(
l 51

6

~Al* Al 21Al 22* 1AlAl 21* Al 22!, ~7!
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and gkl5(11dkl)/2. Equations ~5! imply dU/dt5
22S l 51

6 u]U/]Al u2, so that the stable solutions of Eqs.~5!
are the minima of the potential@Eq. ~7!#. It should be noted
that, introducing the polar decompositionAl5Rl exp(ifl), it
turns out that the last two sums on the right-hand side of
potential @Eq. ~7!# are phase sensitive and, therefore, th
tend to favor precise phase-locking conditions. In particu
the third term is minimized for the phase lockingf l1f l 13
5p, whereas the last term favors a phase locking of
form f l1f l 222f l 215p, which is exactly the ordinary
phase locking for positive hexagonal patterns@3#. These two
conditions are, however, not compatible with each other
that they compete in the dynamics for pattern formation.
discuss the bifurcation properties of Eqs.~5!, it is worth not-
ing that, after a suitable rescaling of timet and amplitudesAl
in Eqs. ~5!, the driving parametersm and a may enter the
equations solely through the ratioh5m/a2, which we as-
sume, therefore, as the bifurcation parameter of the sys
Note that, from a physical viewpoint, 1/h gives a measure o
the phase-sensitivity degree of the system, the limith5`
corresponding to a complete loss of phase sensitivity~free-
running laser!. Linear stability analysis of the zero solutio
Al50 indicates that the laser emission in the forced mod
stable forh,21, and ath521 an instability arises from the
growth of independentsymmetric rolls corresponding to
Al 1352Al* ; however, it turns out that the single-roll solu
tion corresponding, for instance, toA152A4* 5@(m
1a2)/3#1/2exp(if) and Al50 for lÞ1,4 ~f is an arbitrary
phase term! is always unstable with the growth of the oth
two rolls oriented at an angle 2p/3. The bifurcating solution
involves, therefore, all six TW’s on the critical circle. Th
determination of the steady-state solutions of Eqs.~5!, in-
volving six modes, is a nontrivial matter to deal with analy
cally; however, the bifurcation diagram originating fro
these equations when the driving parameterh is adiabatically
increased can easily be determined by numerical integra
of Eqs. ~5!. The bifurcation diagram for the amplitudesRl
obtained by increasing the driving parameter starting fr
the forced-mode solution (Al50) is shown in Fig. 2~a!. It

FIG. 2. Bifurcation diagrams of the amplitude equations@Eqs.
~5!# obtained~a! when the bifurcation parameterh5m/a2 is adia-
batically increased starting from the trivial solution atm/a2523,
and ~b! when the bifurcation parameter is subsequently decrea
The vertical dashed lines separate regions corresponding to d
ent patterns:Hs , Ha are hexagons,R are asymmetric rolls. In the
region of Hs hexagons, the six modes have the same amplitu
whereas in the region of rolls, only two oppositely oriented mod
survive ~labeled as 3 and 6 in the figure!.
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turns out that hexagonal patterns bifurcate supercritic
from the trivial solution, and for21,h,;6.4 the six TW’s
have the same amplitudes and are phase locked in su
way that f l1f l 222f l 21 is independent of l
( l 51,2, . . . ,6!, although it varies ash is increased~see Fig.
3!. We call these hexagonsHs . The corresponding near-fiel
intensity pattern is shown in Fig. 4~a!; it should be noted
that, although the phase of modes changes whenh is varied,
due to phase locking, the resulting intensity pattern is
influenced by these phase changes. Ath.6.4, a symmetry-
breaking bifurcation takes place, resulting in the emission
TW’s with different intensities. Although the resulting nea
field intensity pattern is very similar to that shown in Fi
2~a!, in the far field this bifurcation breaks the inversio
symmetryk→2k typical of Hs hexagons. We will denote
these hexagons byHa . The phase locking forHa hexagons
is ruled by the conditionf l1f l 222f l 215p ~see Fig. 3!,
which is characteristic of ordinary hexagonal patterns@3#.
However, we stress that in our model this implies asymm
ric emission of TW’s. We can physically understand th
unusual feature on the basis of the energy competition
tween the two phase-sensitive terms in the potential~7!. In
fact, as previously discussed, the phase-locking condi
f l1f l 222f l 215p is energetically favored by the las
term of the potential~cubic in the mode amplitudes!; how-
ever, it also impliesf l1f l 1350, i.e., an increase of the fre
energy due to the other phase-sensitive term, which is q
dratic and involves the amplitudes of two oppositely orien
TW’s. Minimization of this term leads to the spontaneo
emission of TW’s in opposite directions with different am
plitudes, i.e., toHa hexagons. Ath.16.8 a third bifurcation
takes place that results in the transition fromHa hexagons to
asymmetricrolls composed by the superposition of two
the six TW’s with opposite wave vectors and of differe
intensities, phase locked according to the rulef l1f l 135p.

d.
r-

s,
s

FIG. 3. Phase locking among TW’s forHs and Ha hexagons
corresponding to the bifurcation diagram of Fig. 2~a!.

FIG. 4. Near-field intensity patterns obtained for~a! m/a252
~hexagons! and ~b! m/a2517 ~rolls!.
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The amplitudes of the two TW’s can be calculated anal
cally in a closed form and they are given byRl ,l 13

2 5@m
6(m224a4)1/2#/2. The corresponding near-field intensi
pattern is shown in Fig. 4~b!. Further increasingh, the am-
plitude of one of the two TW’s decays toward zero, whi
results in the emission of a single tilted wave. Note that
bifurcating scenario so obtained corresponds to a progres
loss of phase sensitivity of the system induced by the ex
nal signal, and to the prevalence of the phase-insens
character of the free-running laser emission. The bifurca
diagram that results when the amplitude equations@Eqs.~5!#
are integrated by adiabaticallydecreasingh starting from the
asymmetric roll solution is shown in Fig. 2~b!. As can be
seen, the asymmetric rolls are now stable down toh.6.4,
ez

et

G

-

e
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r-
ve
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where a transition toHs hexagons occurs. This indicates b
stability between rolls andHa hexagons.

In conclusion, we have studied the formation of hexag
nal patterns in an active optical system with broken invers
symmetry. Owing to the peculiar mechanism involved in t
elementary process of pattern formation, the onset of he
gons and the roll-hexagon transition in this system are dee
different from those most commonly found in other syste
with broken inversion symmetry and generally described
the canonical model expressed by Eqs.~1!. Although the
results presented here have been obtained in a special
linear optical system, they can be expected to occur in o
pattern-forming systems with broken inversion symme
where the elementary patterns are tilted waves instead
rolls.
ey,
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