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Quantum adiabatic particle transport in optical lattices
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Quantized adiabatic particle transp@@APT) is considered and verified in a one-dimensional system using
numerical simulation. More importantly, suggestions are given for ways to observe QAPT phenomena in atoms
manipulated by laser beams. Although QAPT was originally considered for electrons in periodic substrate
potentials, the optical systems provide a cleaner and experimentally feasible way to physically realize QAPT.
The results in this paper serve as a model for the design of these experif8a@50-294®8)51004-9

PACS numbefs): 32.80.Pj, 42.50.Vk

I. INTRODUCTION Il. QAPT THEORY

It has been shown theoretically by Thouless that quan- We begin by summarizing the proof of the one-
tized currents can be observed in an electronic system suldimensional independent-particle QAPT]. Assume a spa-
jected to a potential adiabatically and periodically varying intially and temporally periodic potential with periods and
time [1]. This phenomenon of quantized currents, known asl, Where the potential also varies adiabatically in time. As-
the quantum adiabatic particle transpé@APT), requires Sume also that the Fermi energy lies in a gap of the energy
that the Fermi energy of the system lie in a gap of the in-SPectrum .that remains open_throughout the time evolution
stantaneous Hamiltonian and that this gap not close duringhis gap is termed the Fermi gaprhen, we represent the

the time variation of the Hamiltonian. Although initially Particle wave function, using an expansion on the set of in-

proven in a specialized one-dimensional case assuming indgt@ntaneous eigenfunctions, known as Bloch waves. Upon

pendent electrons, QAPT was later shown to be quite robudptegration of the current, the number of particles transported

in more general settings. QAPT has been shown to be pref’lCrOSS a section during is calculated to be

served in systems with disorder and many-body interactions T oL
[2], and has also been proven to be in accord with relativistic J J mee dt dk{<‘9¢>\k 5¢xk> _ < 3%«‘ 3%«”
quantum field theory3]. oJo 2w at | ok ok | ot ]

With recent advances in atom optics, where laser beams 1)
are used to confine and manipulate trapped atoms, the possi-
bility of actual observation of the QAPT has been greatewherek and\ are, respectively, the wave number and band
than ever before. For sure, this is not the first use of opticaindex of the Bloch wavey, . The integral is proportional to
setups to allow observations of paralleling solid-state effectsthe wave function’s phase change as it is adiabatically varied
Bloch oscillations and Wannier-Stark ladders have also beein a closed loop traversingT(2#/L) in (t,k) space. The
observed in similar arrangemenid]. Although originally — phase is restricted to integral multiples of 2and thus gives
considered in a solid-state electronic system setting, thegése to a quantized current.
optical setups provide an equivalent but experimentally fea- Slight modifications of the QAPT theory are needed for
sible way of demonstrating the QAPT. Atoms placed in thethe optical systems of interest. Thouless’s prediction of
optical potential of a laser experience a one-dimensional pejuantized currents is not immediately applicable, since the
riodic potential due to the dipole ford&]. In addition, the optical Bloch bands are far from full due to the dilute con-
confined atoms are sufficiently dilute in concentration to becentration of laser confined atoms. Instead, similar calcula-
considered as independent particles, allowing detailed analyions predict that the average velocity over tiffieand over
ses of the system. the band will be integer multiples of the moving potential’s

The aim of the present paper is then to explore througtvelocity. Note that the preparation of particles in a band with
numerical simulations the possibilities of physically realizing uniform distribution is already experimentally possip&.
QAPT experiments in optical systems. A simple system is The exact adiabatic condition required for QAPT con-
studied, where the existence of QAPT is confirmed, and acerns Landau-ZendtZ) tunneling[7], a process where par-
interestingly counterintuitive QAPT is demonstrated. Theticles undergo interband transitions. In LZ tunneling, a par-
system is then modified to make it experimentally feasibleficle in a certain band tunnels to a neighboring band with a
with considerations of adiabaticity and initial-state preparaprobability per Bloch period of exp{mA%a), where A is
tion. half the gap size and is the slope of the band inE(t)

In Sec. Il, the QAPT theory is summarized, and specificspace. The conditiomA?/a<1 will then minimize LZ tun-
details concerning the optical system are also discussed. Imeling and maintain the adiabaticity required of QAPT.
Sec. lll, the QAPT for a simple system is actually calculated Finally, we mention an important and useful topological
and results from numerical tests reviewed. Section 1V therdeature of QAPT theory. If the form of a potential is changed
discusses suggestions for actual implementation of theontinuously such that the Fermi gap remains open, the
QAPT in the optical systems. QAPT of the bands below summed together should be in-
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importance of the adiabatic condition was also demonstrated
by another trial where the velocity was increased to 0.005.

In this case, the calculated average velocity was no longer
quantized.

IV. DESIGN FOR ACTUAL EXPERIMENT

m The experimental counterpart for the system specified
above is created using counterpropagating laser beams. The
stationary component corresponds to two opposing beams at
T the same frequency, giving rise to a potential cos(,x),
whereV;=[%102/8(w_— wg)], w, being the transition fre-
quency of the two-level atomy, , k_ the laser frequency
and wave numbers, arfd the Rabi frequency, which is pro-
. . . portional to the square root of the laser intensity. For the
0 ! 2 8 4 © 6 moving component, two opposite beams directed at 60° off
the main axis with a relative frequency difference then leads
FIG. 1. Band structure given by Eq) with V;=0.4 andV, to a moving potential ofV, cosk x—k vt), where V,
=0.2; i.e.,V(x) =0.4 cosk)+0.2 co$(x—¢)/2]. =[#(Q")?/8(w| — wo)]. Interference between the two pairs
of beams can be neglected if their frequency differences are
variant[8]. This provides a powerful method of calculating |arge enough. In comparison to the dimensionless potential
QAPT, by taking a system whose QAPT is unknown, andin Eq. (2), the variables, V;, andV, in Eq. (2) should then
changing the potential to a system whose QAPT is calcupe scaled by &k, /m, [m/(2%k)?]-[%Q2/8(w. — wo)],
lable. and[m/(27ik,)2][ (") %8(w] — wo) ], respectively.
Unfortunately, the relatively low velocity required to sat-
IIl. NUMERICAL DEMONSTRATION OF QAPT isfy the adiabatic condition in the simple potential specified
above is experimentally difficult. However, it might be pos-
sible to observe QAPT in optical systems, by finding a po-
tential that remains adiabatic even when moving at higher
V(X)=V; cogx)+V, cog(x—vt)/2], (2)  Velocities. To design such a system, we utilized the form of
the original potential in Eq(2) but made the amplitude co-
wherev is the velocity of the moving component. We will be efficients time dependent, which would be experimentally
using a unit system in which the spatial period is,2he  achieved by making the laser intensity time dependent:
particle mass is 1, and Planck’s constént 1. The evolu-
tion of the energy bands with respectd¢e=vt is plotted for V(x) =V (p)cogx)+V,(d)cos (x— ¢)/2]. 3
the valuesv,;=0.4 andV,=0.2 in Fig. 1. This is calculated
by applying standard numerical eigenvalue routines to the The similarity of this potential to the original potential of
instantaneous Hamiltonians dsis varied. Eq. (2) allows the theoretically predicted QAPT values to be
From physical intuition, the average velocity of a particle carried over to our system. Regardless of the exact time de-
in the ground band o¥(x) must bev, the velocity of the pendence chosen f&f;(¢) andV,(¢), as long as the gap
moving potential. The particle is trapped deep in the potenbetween the ground band and first excited band remains
tial and thus is simply dragged along at the same speed. Th#pen, the QAPT'’s of these two bands will be the same as if
average velocity of a particle in the first excited band canVv,, V, were fixed constants; i.a;,and—v. To decrease the
then be calculated using the above topological method.  amount of LZ tunneling between these two bands, the time
If V, is continuously diminished from 0.4 to 0, so that dependence o¥(¢) andV,(¢) can then be chosen so that
only V, cosk) remains, the ground and first excited bandsthese two bands are “flattened out,” thus decreasing the
merge into one band, since the spatial periodicity is halvedslopedE/d¢. Since the probability for LZ tunneling depends
This band ofV'(x) =V, cosk) has zero QAPT, since¥’(x) exponentially ona= dE/dt=(JE/ d)* (d ¢l 3t), this allows
has no time dependence. This then implies that the first exhe velocity v=d¢/dt of the moving potential to be in-
cited band of Eq(2) must have a QAPT velocity of-v, creased while still satisfying the adiabatic condition.
since the ground and first excited bands of &).were split So, how exactly should the functions be choserMg¢)
from the ground band 0¥’ (x) with zero QAPT. and V,(¢)? Bloch theory predicts that increasing will
To verify these QAPT predictions numerically, we inte- increase the gap between the ground and first excited bands,
grated the time-dependent Schiimger equation with the po- and vice versa for decreasing,. Similarly, adjustingV;
tential in Eq.(2) using a fourth-order Runge-Kutta routine. will affect the size of the gap between the first and second
To satisfy the adiabatic conditionfA%/a<1, we usedv excited band$9]. Thus, we can contrd¥; andV, to widen
=d¢l/dt=0.0001, whereA~0.012 anddE/d$=0.13 was or narrow the gaps at the approprigi¢o achieve the desired
assumed. As predicted by the theory, the average velocity faffect of “flattening out” the bands.
the ground band particle was calculated to be 0.0001. The Using this idea, we designed various potentials that re-
same procedure was then repeated for the first excited banahain adiabatic up to potential velocity ranges achievable to-
and again, the predicted velocity-0.0001) was found. The day. For example, the following time dependence:

0.5+ ]

We begin our numerical work by analyzing the system
specified by the two-part potential:
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desired higher band. Then, the initial potential can be
switched off and joined continuously by a second potential
where LZ tunneling is insignificant, thus trapping the particle
in the desired band.

Consider then the following two-part potential where

V(x)=V; cogx)+V, co§(x—¢)/2], ¢<3m

V(X)=Vi(¢)codx)+Vy(d)cod (x— ¢)/2], ¢>3m

(5
Vi(¢) andV,(¢) being the same specified in E4). Thus,
05| . if we setv=0.03, the initial potential will ensure that the

particles tunnel into the first excited band. But then,¢at

=3, the potential is continuously joined into the second

1 : : : ' : : form, which then keeps the particles in the first excited band,
¢ and QAPT for the first excited band can be observed.

FIG. 2. Band structure of Eq4) where the bands are “flatter”
and hence adiabatic enough for actual experiments. This allows a
potential velocity ofv =0.03.

V. CONCLUSION

We started by numerically verifying the phenomenon of
] QAPT in a simple system and demonstrated an interesting
V1(¢)=0.4[1-0.85 co(¢/2) +0.15 sirf(¢)], case where the forward moving potential actually causes the
) particle to move backwards with a negative velocity. We
V,(¢)=0.2[1+0.85 cod($/2)—0.15 sif(¢)]  (4)  then designed more complex systems that make QAPT fea-
sible experimentally with techniques currently available.
Ways to maintain adiabaticity at high moving potential ve-
locities were described, which center around reducing LZ
tunneling in these systems. Yet, LZ tunneling is at the same
‘time used to prepare atoms in the desired initial states. Hope-

age velocity of 0.03:0.003. full uantum adiabatic particle transport in an optical sys-
Other than satisfying the adiabatic condition, one Otherterrz/’v:/qill be realized in thg near future.p P y

experimental concern is the preparation of the confined at-
oms in the desired bands. These atoms are usually prepared
in the ground band, perfect for observing the QAPT of the
ground band. Yet, to observe the QAPT’s of higher bands; Alan Chiang would like to thank Georgios Georgakis,
e.g., the negative quantized velocity of the first excited bandsanesh Sundaram, and Ertugrul Demircan for useful discus-
in the systemV(x)=V(¢)cosk)+Vs(d)cog(x—¢)/2], a  sions, suggestions, and support in general. Alan Chiang
technique is then needed to raise the particles from thevould also like to express gratitude to Jeffrey Holmes, Dev-
ground state into the higher bands. jani Saha, and David Villa for invaluable assistance with the

For this, we suggest theseof LZ tunneling to bring the preparation of figures. Qian Niu would like to thank Mark
atoms initially prepared in the ground band up into the ex-Raizen for suggesting the experimental design of the two-
cited band of interest. A system where significant LZ tunnel-part potential. This work was supported by the R. A. Welch
ing occurs can be used initially to tunnel the atoms to the=oundation and by the NSF.

(band structure plotted in Fig) 2llowed the potential veloc-
ity to be increased up to 0.03 while still maintaining adiaba-
ticity, which we defined as maintaining quantization of the
average velocity within 10%, i.e., observing a particle aver
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