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Multiply connected Bose-Einstein-condensed alkali-metal gases: Current-carrying states
and their decay
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The ability to support metastable current-carrying states in multiply connected settings is one of the prime
signatures of superfluidity. Such states are investigated theoretically for the case of trapped Bose condensed
alkali-metal gases, particularly with regard to the rate at which they decay via thermal fluctuations. The
lifetimes of metastable currents can be either longer or shorter than experimental time scales. A scheme for the
experimental detection of metastable states is sketched.@S1050-2947~98!50303-4#
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Multiply connected superfluid and superconducting s
tems can support states in which a persistent macrosc
particle current flows. While not truly eternal, these sta
can have extraordinarily long lifetimes, their decay requiri
the occurrence of certain relatively infrequent but nevert
less topologically accessible~quantum or thermal! collective
fluctuations @1–4#. With the many considerable success
and rapid progress in the experimental exploration of Bo
Einstein-condensed~BEC! alkali-metal gas systems@5#, it
seems reasonable to anticipate that multiply connected
tings for BEC will soon become available, thus allowin
superfluid properties such as persistent currents to be so
The purpose of the present paper is to address, theoretic
the ability of BEC alkali-metal gas systems in multiply co
nected settings to support metastable current-carrying st
and to address the stability and decay of such states via
mal fluctuations. Complementary work by Rokhsar@6# ad-
dresses related questions regarding the creation of t
states and their stability.

We adopt a phenomenological description in which
characterize the state of the BEC system by a macrosc
wave functionC(r ), in terms of which the condensate de
sity n and current densityj are given by

n~r !5uC~r !u2, ~1a!

j ~r !5
\

2im
~C* ¹C2C¹C* !. ~1b!

The free energyF of the state is given by the Gross
Pitaevskii form

F5E d3r H \2

2m
u¹Cu21@V~r !2m#uCu21

g

2
uCu4J , ~2!

wherem is the mass of an individual atom,V(r ) is an effec-
tive external potential describing the magnetic and opt
confinement of the atoms, andg ([4p\2a/m) represents
the interatomic interaction, witha being an effective scatter
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ing length. For the sake of simplicity we neglect any possi
effects due to spin. This description is appropriate for a
lyzing the behavior of a BEC system at chemical potentiam
and temperatureT @7#. In order that the condensate be able
undergo the free-energy~and angular-momentum! changing
fluctuation necessary for current dissipation, the conden
must not be isolated. Therefore we restrict the system to b
temperatures not far below the critical temperatureTc , in
which case the noncondensed atoms serve to provide an
ergy and angular-momentum reservoir.

As our aim is to address multiply connected systems,
consider trap potentialsV(r ) that confine the gas to a cylin
drically symmetric toroidal region~Fig. 1!. Hence,V de-
pends only onr andz, where$r ,f,z% are the usual cylindri-
cal polar coordinates. Moreover, we restrict our attention
systems in which the circumference of the torusL (52p r̄ )
is considerably greater than the condensate healing le
j @'(\2/mg n̄)1/2, wheren̄ is related to the maximum par
ticle density#, and the thickness of the torusR is comparable
to or smaller thanj @8#. This corresponds to a regime of low
condensate density; hence, the Thomas-Fermi approxima
@9# is not applicable. Traps having these gross featu
should be achievable by the use of magnetic and opt
forces@10#. There are two main reasons for considering t
setting:~i! there would be no locally stable current-carryin
states ifL were comparable to or smaller thanj; ~ii ! for

FIG. 1. Envisaged geometry of a trap supporting metasta
current-carrying BEC states. The condensate healing lengthj is
regarded as being small, compared with the circumference of

torusL (52p r̄ ), but larger than its thicknessR.
R1505 © 1998 The American Physical Society
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thicker samples~i.e., R.j!, the relevant dissipative pro
cesses by which the persistent current decays become si
cantly more complicated~ultimately involving the nucleation
of vortex rings! @11#.

We shall be concerned with events in which the syst
decays from some metastable current-carrying stateCm
~which is a local minimum ofF ! to a lower-energy~and
typically more stable! state via a thermal fluctuation@12#.
The current decays through a dissipative process du
which the condensate density shrinks in magnitude ove
region whose length is comparable toj. Dynamically, one
can envisage this process as occurring via the passage
vortex across the sample: a free-energy barrier must be o
come for this event to occur. The height of this barrierdF is
given by the difference between the free energy of~the meta-
stable state! Cm and that of the transition stateC t , i.e., the
lowest possible free-energy high point en route through c
figuration space between the initial and final metasta
states. This thermally activated process should occur at a
v0e2dF/kT, where, as we shall discuss later, the attempt
quencyv0 does not contribute significantly to the temper
ture dependence of the rate.

In order to calculate the barrier heights, we first ident
the collection of metastable current-carrying states$Cm% and
the relevant states$C t% for transitions between them. Bot
families of states are stationary points ofF, and therefore
satisfy the time-independent Gross-Pitaevskii equation

dF
dC*

52
\2

2m
¹2C1@V~r !2m#C1guCu2C50, ~3!

subject to periodic boundary conditions in the coordinatef.
To address Eq.~3! we introduce a complete orthonorm

set of ‘‘transverse’’ eigenfunctionsHn(r ,z) and the associ-
ated energy eigenvaluesln , labeled by the ‘‘channel’’ index
n, which solve the eigenproblem

2
\2

2m
~r 21] r r ] r1]z

2!Hn1V~r ,z!Hn5lnHn . ~4!

We then expandC in terms of these eigenfunctions:

C~r ,f,z!5(
n

Fn~f!Hn~r ,z!. ~5!

By inserting this expansion into Eq.~3! and making use of
the orthogonality conditions forHn , we arrive at the follow-
ing set of nonlinear coupled ordinary differential equatio
for the ‘‘longitudinal’’ wave functionsFn(f):

Fn91anFn2b (
n1n2n3

Gn2n3

nn1 Fn1
* Fn2

Fn3
5Cn , ~6!

where primes denote derivatives with respect tof, and the
coefficients are defined by

an[2m r̄ 2~m2ln!/\2, ~7a!

b[2m r̄ 2g/\2, ~7b!
ifi-

g
a

f a
er-

-
le
te
-

-

s

Gn2n3

nn1 [E dzE rdrH nHn1
Hn2

Hn3
. ~7c!

The termsCn , given in footnote@13#, are functions of the
$Fn% and are negligible when the transverse extent of
condensateR is small compared with the circumference
the torusL, scaling as (R/L)2.

The physical condition imposed above, viz., thatj be
much larger than the torus thicknessR, enforces the condi-
tion l0,m,lnÞ0 . Hence, except forn50, we havean,0.
In practice, an is expected to be quite large, scaling
(L/R)2.

In the low-density limit then50 channel should domi-
nate, all other channels being occupied weakly. We incor
rate this notion by introducing a book-keeping parameteL
into Eq. ~6!: for nÞ0 we make the replacementb→Lb. It
can be verified that the nonleading terms inL may be ne-
glected for the present purposes.~Incorporating their effects
is straightforward, if tedious.! Similarly, one can also incor-
porate the effects of theCn@F#. Hence, we find that the
relevant states$Cm% and$C t% can adequately be described
terms ofF0 .

Within the approximation scheme just outlined, the u
form current-carrying states have the formCm5 f meiSmH0 ,
with

f m
2 5Nm/2p5~a2nm

2 !/bG, ~8a!

Sm5nmf, ~8b!

for integralnm. For the sake of brevity, we now writea and
G in place ofa0 andG00

00. At the stated level of approxima
tion, Nm is the number of condensed particles in the me
stable state andG21 is R2L, i.e., the volume occupied by th
condensate. By considering the second variation ofF it can
be readily shown that these states are local minima~and
hence metastable!, provided nz<1, where
zm[(4p/bGNm)1/2'2pj/L is the dimensionless coherenc
length.~This limit on the maximum stable value ofnm is the
same as one would find using Landau’s criterion for the cr
cal velocity.!

The transition statesC t5 f te
iStH0 are given by

f t
25~Nt/2p!@12D2 sech2~Df/z t!#, ~9a!

f t
2]fSt5~Nt/2p!nt . ~9b!

Far from a region of lengthj, the amplitudef t is constant
( f t

2;Nt/2p) and the phaseSt winds uniformly (St;ntf).
The coefficients in Eq.~9! appear simplest when express
in terms of the dimensionless coherence len
z t[(4p/bGNt)

1/2:

Nt/2p5~a2nt
2!/bG, ~10a!

nt5n2p21 cos21~ntz t!, ~10b!

D2512~ntz t!
2. ~10c!

As Nm andNt differ only by quantities of orderj/L, either of
them may be used to characterize the number of conde
particles. The transition states must have the property
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they are saddle points ofF with only one direction of nega
tive curvature.~This unstable direction is the relevant rea
tion coordinate.! It can readily be shown that the states in E
~9! satisfy this condition as long asj.R, or equivalently
m,lnÞ0 . Thus, our approximation scheme for a BEC in
three-dimensional trap reduces the problem precisely to
one-dimensional problem addressed by Little@1#, Langer and
Ambegaokar@2#, and McCumber and Halperin@3#. A useful
by-product of the present approach is that it provides
scheme for determining the intrinsic resistance of superc
ducting wires clad by normal-state materials~and thus hav-
ing proximity-induced superconductivity!.

Having found the relevant states, we now calculate
free-energy barrier for dissipative fluctuations. It can
shown that statesC satisfying Eq.~3! have a free energy

F52
g

2 (
n0 n1 n2 n3

Gn2n3

n0n1E dfFn0
* Fn1

* Fn2
Fn3

. ~11!

Using this expression, along with Eqs.~8! and ~9!, we find
that

dF5
1

2
dF0@D„21~ntz t!

2
…23ntz t cos21~ntz t!#, ~12!

wheredF0 is the long wavelength~i.e., nt→0! value ofdF ;
i.e.,

dF05
\2

m S 32Nt
3a

9R2L3D 1/2

. ~13!

We now develop order-of-magnitude estimates for
decay rates of metastable states via thermal fluctuations
us consider87Rb, for which the scattering lengtha is 5.8
nm. We take a harmonic trapping potentialV(r )
5(1/2)mv2@(r 2 r̄ )21z2#, whose ground-state width
A\/mv can be identified with the width of the condensa
R. To estimateTc we considerN noninteracting atoms in the
potentialV(r ). By virtue of the geometry~i.e.,R!L! we can
ignore the curvature of the torus, giving us a density of sta
r(E)5(4/3)(1/\v)2(mL2/2p2\2)1/2E3/2. Integrating this
with the Bose occupation factor reveals thatTc
'1.28(\2/m)(N/R4L)2/5. For example, if we assume tha
N'106, Nt'2.53104, R'1 mm, andL'100 mm, then we
find dF0 /kB53.2 mK, andTc50.28mK. The barrier height
is sensitive to changes inNt , and can therefore be manipu
lated by heating or cooling the sample.

The Arrhenius formula for the decay rate in terms
the barrier height isG'v0e2dF/kT. The attempt frequency
an
.

e

a
n-

e
e

e
et

s

f

v0 can be estimated by using the value of the microsco
relaxation timet, together with the assumption that ea
coherence volume in the sample fluctuates independently@1#.
A realistic estimate fort is the classical collision time
for a dilute gas@i.e., t21;snv;a2(N/V)(kBT/m)1/2;5
3104 Hz#, giving lifetimes for the metastable states on t
order of seconds. Even beyond the limits of validity of o
calculation, one expectsdF to be a monotonically increasin
function of the density. Hence, the barriers can be extrem
large at low temperatures, allowing a continuous tuning
the metastable state lifetime from microseconds to tim
longer than the lifetime of the condensate.

We now discuss two of the issues necessary for the
perimental testing of the predictions presented in this pa
We have been considering the decay of metastable states
have not yet addressed the issue of how to create them. V
ous approaches to creating a metastable current-carr
state that rely on the superfluid properties of the conden
have been discussed in detail by Rokhsar@6#. Another tech-
nique, which does not rely on the superfluid nature of
condensate, takes advantage of the spatial separation o
condensed and noncondensed atoms. One imagines sta
the whole system rotating~for instance, by using a rotating
nonaxisymmetric field! then applying a localized perturba
tion ~such as from a sharply focused laser! that stops the
thermal atoms but leaves the condensate rotating.

The second experimental matter to be addressed is
detection of metastable current-carrying states. Perhaps
least difficult scheme would make use of present phon
imaging techniques@14#. The experimental configuration
could be as follows: A pulse of laser light generates a lo
rarefaction of the condensate, which then travels as
waves, one moving clockwise, the other counterclockwi
By nondestructive imaging techniques one might then
serve where the two waves meet, which gives the velocity
the metastable supercurrent. This is only feasible if the sp
of soundc is comparable to the velocityv with which the
condensate moves around the annulus. Linearizing Eq.~6!
gives c5(gGNm/2pm)1/2'1.2 mm/s, which is only 30

times greater thanv5\/m r̄ '46 mm/s.

We thank Gordon Baym and Tony Leggett for helpf
discussions. We gratefully acknowledge support from
Natural Sciences and Engineering Research Council
Canada~E.J.M.!, and from the National Science Foundatio
through Grant Nos. DMR94-24511~P.M.G.! and DMR91-
57018~Y.L.G.!.
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