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Double photoionization of helium from threshold to high energies
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We present accurate calculations for the single and double photoionization of helium from the threshold to
the high-energy limit. At low and intermediate energies, we useathénitio hyperspherical close-coupling
method, which is extended up to 1 keV by introducing an energy-dependent reaction region. At high energies
we employ anaccurateHylleraas initial state and aC3 correlated final-state wave function. ThE€ 3vave
function is shown to be correct to leading ordeiZitk. We find good agreement with recent experiments over
the entire energy range. The two calculations merge akeV to within 5%.[S1050-294{®8)50603-§

PACS numbeps): 32.80.Fb, 31.15.Ja, 31.25¢v

The double ionization of helium by photoabsorption pro-nate space, where the dominant contributions to the dipole
vides a sensitive test for electron-electron correlations. Bematrix element originate, and discuss the likely source of
cause the coupling between the electron and the radiatiofiscrepancies in previous calculations. At about 1 keV the
field (<p-A) is a one-body operator, the simultaneous ejeciwo approaches merge with a relative deviation of about 5%.
tion of two electrons by one photon is mediated through the A detailed description of the HSCC method is given in
electron-electron interaction in the initial statéground-  Refs.[9,16]. Briefly, the HSCC method for two-electron sys-
state correlation) and/or in the final state of two electrons in tems proceeds by dividing the six-dimensiof@D) configu-
the Coulomb continuung“final-state correlation’). A large  ration space into an inner region with hyperradius
number of recent experimentédee, e.g., Refd.1-4]) and R=(r§+r§)l’zs Ry and an outer region where the
theoretical [5—-11] studies have investigated the ratio asymptotic wave functions are expressed as
Ron=0""/c™" of double to single ionization for photon en-
ergies from near threshol@hoton energye,,~80 eV) to oud) . —1 -
high energies {keV). For low phopton energies O =r_ Z ¢i(r<.ro)fi(r>) 6 —gi(r>)K;l, (1)
Epn=300 eV accuratab initio methods, such as the hyper-
spherical close-couplingHSCQ [9], R-matrix [10], and  \hereK is the reactance matrit(g) is the regularirregu-
complex Sturmiar{11] methods have been recently devel-|ar) Coulomb function, andp; is defined as
oped, which have led to improved agreement with most re-
cent measurements. In the high-energy region several ap- P~ .o
proaches have been pursued, including many-body $=Ra(r<)Yim(rero). @
perturbation theoryMBPT) [12,13, the use of the corre-
lated 3C wave function as the final sta#8,14 and, very ics andRy(r.) is a radial function of the hydrogenic He

recgntly, t_he use of.the dipole response funcﬁlfsl]..ln this _jon confined to a box of sizey =Ry V2, i.e.,
regime, discrepancies between different theoretical predic-

tions have remained unresolved and the comparison with ex- _ _

. . . . ; R:i(rpm)=0. 3
periments is complicated by the fact that in some experi-
ments the separation of Compton scattering from
photoionization was not performed. Moreover, at intermedi
ate energies 400 eV) no reliable calculations are avail-
able.

Here, theY |\ is the coupled two-electron spherical harmon-

Eigenfunctions Ry, with eigenenergieser;; <0 represent
bound states and, hence, excitation-ionization channels,
while eigenfunctions withey;;>0 represent the discretized

In this Rapid C icati s hensi double-ionization continuur(see Fig. 1 In the inner region,
n this Rapid Lommunication we preSent@mprenensive -, Schrdinger equation is solved by a close-coupling ex-

calculation from thehreshold to high energleh_w employlng pansion in hyperspherical coordinates
two complementary methods. From low to intermediate en-

ergies, we use the accurate HSCC metf@jdand extend it

to energies up to 1 keV by using a large number of channels ‘DEE;(R:%Q):E FLE)(RWM(R?O"Q)’ (4)
(=175) and an energy-dependent matching hyperradius de- 5

scribing the reaction zone. At high energies, we show that ]

the 3 wave function[17] (i.e., a product of three Coulomb Wherea=arctan(,/r)) is the hyperangle() denotes collec-
functiong is the solution of the three-body Schiinger tively the four anglesr(;,r,), and¢, represents thdiabatic
equation to ordeE/k; (Z, nuclear chargeg,;, momentum of  channel functions. The latter are solutions of the diagonal
the outgoing fast electrgrin the relevant region of coordi- part of the Hamiltonian at a fixed hyperradigsfor each
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1.0 - - - . ary condition in the asymptotic region where the separation

of all the Coulomb interacting particles tends to infirfity3].

0.8 T This property, while of importance from the viewpoint of the
= formal theory of scattering, is of little practical relevance to
5 06 . the photoionization process, since the dominant contributions
L to the photoionization originate from small to intermediate
1_o04 . interparticle distances. We therefore focus on the properties
© of the wave function in theentire coordinate space in the

0.2 . perturbative regime of small Sommerfeld parameters

M‘ Z/k,>1 wherek; is the velocity of the fast electron.
0.0 ' : For a two-electron atomic system, assume that the wave
0.0 01 0.2 ¢/ E 03 0.4 0.5 function for a double continuum state has the form
1

(=) — (=) (=) (=)
FIG. 1. Energy sharing of the two electrons at photon energy Y (rar2) =i, (1), (12)B (Kiz.T12),  (6)

Epn=1keV. Theg; represents the eigenenergies of the discretized

pseudostates confined within a boxRy, = 20. Where¢(kz)(r1) and ¢(k;)(r2) are incoming Coulomb waves
_ _ _ ~ of the two electrons, anB(~)(k,,,ry,) is a function to be

angular-momentum pait {,1,). The nondiagonal interaction getermined. In Eq(6) ¢; is understood to béant)symme-

contributes to the coupling matri,,, of the close-coupling  {rized. With this ansatz, the three-body Sdinger equation

equation[16], for infinite nuclear mass,
2
1 1 Z Z 1
————E)F (R)+>, V,(RF,(R)=0. (5 e R S BT
2 v v
2 /R s ~ T u 2V1 2V2 o r2+r12 W (re,ry)

Integration of Eq.(5) proceeds by decomposing the inner =E¢§_)(r1,r2), 7
region 0<R<R,, into many sectorgtypically a few hun-
dred within each of which the hyperradilin ¢ ,(R; «,() is reduced to
is taken to be constant. The solutions propagated o&®,{0
are then matched to the asymptotic solutipig. (1)]. 1_, 1 .
Extension ofab initio computational methods based on (_ Evr12+ leﬂ_'klﬁZMl_ZM 2)'melz>
discretization of the continuum to higher energies faces the
problem of the rapid growth of the number of open channels. X B (ky2,112) =0, (8)
One strategy to limit the number of open channels is to de- ) ) )
crease the matching radit®, with increasing energy. For Whereky, is the relative momentungvelocity) of the two
smaller box size, however, the energy separation of the pse§lectrons and/; is defined as a ratio of two hypergeometric
dostates becomes larger, i.e., the discrete density of psefinctions of different order,
dostates is reduced. This, in turn, limits the accuracy with A
which the double-ionization continuum can be represented. (k) (Fa[1+ia,2—i(kiri+ki-rp)] g
Figure 1 illustrates the discrete representation of the energy ™' 2 Falignl—i(kiri+Kki-r)] ©
sharing between the two electrons at a photon energy
Epn=1keV. Itis this constraint that limits the present exten-Here »;= —Z/k; with i=1,2. The important observation is
sion of the HSCC method t& ;<1 keV (note that the en- that M; are bounded|M;|=<2, for all r; and all angles
ergy distribution is symmetric about the midpoint g =cosY(k;-r;). Figure 2 displays the radial and angular
€;/E=0.5). At higher energies, perturbation theory as dis-dependence dfl; for typical values ok; representing a fast
cussed below is expected to be more suitable. We used thregectron {=1) and a slow electroni £2) in the double
different matching radiRy =40, 30, and 20 for photon en- continuum atE=2 keV. At high energies, the typical rela-
ergies from 80 to 200 eV, from 200 to 330 eV, and from 330tjve momentum between the fast and the slow electrons sat-
eV to 1 keV, respectively while we kept the number of cou-jsfies
pling channels fixed to 175. For overlapping energy intervals
we have checked that the results for differ&y have con- ki,>Z. (10
verged to within 5%. One important feature of the present
method is the near gauge independence of our calculatebherefore, Eq(8) can be simplified to
ionization cross sections. We used both length and accelera-
tion forms of the dipole transition matrix in the calculation 1, 1 _ B
and they agree to within 3% of each other. N Evf12+ Tu_'klz'vrlz B (k12,11 =0. (1D
Turning now to high energies, we employ perturbation
theory with a 3C wave function to describe the correlatedThe solution of this equation is nothing but the distortion
final state. The 3C wave function was initially introduced to factor to a plane wave due to the electron-electron interac-
study the electron-impact excitation of hydrogelv] and tion,
then ionization processes by electron or positron impE&}t
The 3C wave function has been shown to satisfy the bound- B()(K12,r12) =D (k12,1 12), (12)
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FIG. 3. Comparison of the rati®,, calculated by the present
methods(solid curve$ with experiments.(A) HSCC calculation
FIG. 2. Behavior ofM;(r;,6,) as a function of radiat; and  below Ej;=1keV. Experimental data: circles from Re#]; tri-
angle 6, coordinates aE=2 keV with an asymmetric energy dis- angles from Ref|3]; squares from Ref2]. The arrow indicates the

tribution: fast electrorE, = 1950 eV (upper panéland slow elec- ratio obtained from the 3C method&g,=1 keV (lower pane). (B)

tron E,=50 eV (lower panel. Arrows indicate dominant regions The 3C calculation abovE,,=1 keV. Experimental data: squares
for the dipole matrix element. from Ref. [2]; triangles from Ref[22] with Compton scattering

excluded. Other calculations: chained curve by MBR3]; dash-
where double-dotted curve by the dipole response funcfithl. Previous
calculations employing the 3C functidotted curves Curve a,
D(_)(klz,rlz)=e_7”712’2F(1—i 712) Ref.[6]; curve b, R?f-[l4]f curve c, Ref[8]. The dashgd curve is
the present calculation with only the monopole term included. The
X 1F1[i1712,1,—1(Kqor 19+ Kqo:T12) ], arrow indicates the ratio calculated by the HSCC method at 1 keV
(13 (upper panel

and is obtained by a variation of and ofC,,,,,. The use of
with 71,=1/2;,. Consequentlyyt(r1,r,) in Eq. (6) be-  both integer and half-integer férand the explicit inclusion
comes the 3C wave functidi8]. Taking into account that of r,, terms guarantee high accuracy and fast convergence.
the energy distribution in the double photoionization is ex-We use a total of 34 terms for which the photoionization
tremely asymmetric at high energi@sig. 1), the condition, result is found to converge. The initial-state energy obtained
Eq. (10), is then reduced tdE,,>Z>. The 3C function is s —2.903 72 and the Kato cusp conditioi9] are satisfied
therefore the correct three-body final state in the full coordito high precision. The double-ionization cross section is cal-
nate space, provided that the photon energy is high and thgulated both directly and indirectly through a closure relation
energy sharing is asymmetric. Moreover, the 3C wave funcf6]. The two methods are found to agree to within 1% at the
tion satisfies the cusp conditions in both the electron-nucleusigh energies studied here. Following the suggestion of Dal-
and electron-electron coordinates near the origin. This is crugarno and Sadgehpoub], we employ in evaluation of
cial for the photoionization shake-off process, since it is gov-o-* (n) the acceleration gauge at high energies that places the
erned by the behavior of the wave functions at small interdominant weight on the final-state wave function at small

particlel d.istances. o _ distances from the nucleus.
The initial-state wave function is expanded in a correlated The present approach differs from previous calculations
Hylleraas basis s¢tL9] employing 3C final statef6,8,14. Unlike the calculation of

Hino [14], who used the monopole term only, we include all
contributing multipoles in the expansion of the distortion
factor D(7)(ky,,r1,). Furthermore, we eliminate additional
approximations in the evaluation &™) by the closure re-
X(ry+1) (ry=rp)mrg,, (14 J|ation used by Andersson and Burgtky [6]. Finally, we use

¢i(r1,rz):e—u(rl+r2)/2|2 Cnlmo_n+l+m
n,l,m



RAPID COMMUNICATIONS

R1492 QIU, TANG, BURGDCRFER, AND WANG 57

a more accurate initial-state wave function than that in theonly the monopole term into account leads to results similar

calculation of Teng and Shakesh4]. The ground-state but not identical to Hino's calculationfl4] and also to

correlation is crucial for double photoionization at high en-MBPT [13]. When all contributing partial waves are summed

ergies and becomes dominant in the high-energy limit. ~ up (I<4) we find excellent agreement with experimental
The ratioRy,, calculated in the acceleration form, from data. Included are the measurements of Legtral. [2]

the double'ioni.zation threShO|d to 16 keV is presented in Figaround 2 keV and of Spie'berge[ al. [22] at h|gher ener-

3. At low and intermediate energi¢gig. 3A)] the HSCC  gies In the latter data set, contributions from Compton scat-

result agrees, from the threshol& ~80 eV) to 800 eV, tering and photoionization are resolved and a direct compari-

excellently with the recommended data obtained from sevgqn, \ith calculations is possible. Even more remarkable, the

eral experimental data sets by Sam$dh and, within the present result merges with the HSCC calculafibiy. 3A)]

tgrrorfbars:[r?lso W'th.the t:altado:‘ m‘;rﬁt ai:x;t[:g]l. '[rzqe ?elwa— at 1 keV. The relative deviation of about 5% between the
lon from the experimental data of Leviet a'. at’ow:  yscc Rph=2.48%) and the 3C wave function

energies may be accounted for by an erroneous use of speg- o T S :
tral filters in that experimenf21]. At high energieqFig. ﬁ;’thr; i.seit/(%ilsle;ngg;m the theoretical errors of the two

3(B)] we presentR,, as a function of the inverse photon | h ted t | ;
energyE,;hl. The result of Teng and Shakeshi#t shows a N summary, we have presented two complementary ac-
E)Jrate calculations for the ratio of double- to single-

somewhat similar energy dependence but lies systematically” = . . . .
higher than our 3C resuit. This difference comes most likely/ONization cross sectiondy,,, covering the entire energy
from the initial-state wave function. In the calculation of f@nge for photon energy from the near-double-ionization
Teng and Shakeshaf8] an eight-parameter ground-state threshoIdEphéBO eV to the nonrelat'|V|st|c asympfconc limit.
wave function is used with relative errors in the Kato cusp'hey agree with most recent experimental data in the whole
conditions of about 5% for the confluence of the electron-energy region and with each other at intermediate energies to
nucleus coordinates and 35% for the confluence of thavithin 5%. We estimate the latter to be the measure for ac-
electron-electron coordinates, while in the present calculacuracy of the present theory.

tion they are 0.001% and 9%, respectively. Our calculation

proceeds by expanding the distortion fadidr in terms of
partial waves in the, coordinates. The convergenceRyf,
as a function of partial waves included is examined. Takin
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