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Limitations to the performance of a quantum computer arising from direct interaction between qubits are
considered, and the basic scaling laws~with the computation time and the number of qubits! are established for
the specific example of the quantum Fourier transform algorithm. These results should be relevant for several
of the currently proposed quantum computer systems, where the dominant interaction is of the magnetic
dipole-dipole type, in the limit of many qubits and long computation times.@S1050-2947~98!50601-4#

PACS number~s!: 89.70.1c, 03.65.Bz, 89.80.1h
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It is now quite likely that there will be quantum compu
ers with perhaps as many as ten ‘‘quantum bits,’’ or ‘‘q
bits,’’ in operation in the very near future~see recent reviews
in @1,2#!. To be able to scale them up beyond this point w
require, among other things, a careful study of all the p
sible sources of error and of how these scale up as well.
purpose of this Rapid Communication is to draw attention
one such source, namely, the direct interaction between
bits, and to exhibit how its influence scales with both the s
of the computer and the computation time; this is illustra
for the specific task of calculating the quantum version of
fast-Fourier transform, or ‘‘quantum Fourier transform
~QFT!.

Interaction between qubits is different from other sourc
of ‘‘coherent’’ error in a quantum computer in that it is not
single-qubit effect; rather, in the most general case, it le
to phase factors that are configuration dependent; tha
they depend on the state of all the qubits. This might mak
particularly difficult to undo the error~even though the pro
cess is deterministic and thus, in principle, reversible!. In
fact, one should expect this particular error toworsenwhen
conventional ~single-qubit! error correction measures a
implemented, since these require an increase in both
number of qubits and the computation time.

As a simple illustration, consider just two qubits wi
states u0& and u1&, and configuration energiesEi j ( i , j
50,1). An initially factorizable state such as12 (u0&
1u1&)(u0&1u1&) evolves into 1

2 (e2 iE00t/\u00&
571050-2947/98/57~1!/1~4!/$15.00
l
-

he
o
u-
e
d
e

s

s
is,
it

he

1e2 iE01t/\u01&1e2 iE10t/\u10&1e2 iE11t/\u11&). The purity of
the state of the first qubit decreases as Tr(r1

2)5 3
4

1 1
4 cos@(E001E112E102E01)t/\#. The argument of the co

sine is zero in the absence of interaction, or if the config
ration energies are otherwise additive as inEi j 5Ei1Ej .
Otherwise, the state will almost certainly become entang
The rate at which purity is destroyed is, for short time
quadratic int and in a difference of configuration energies
shall show below that these features seem to be quite
eral.

In the ion-trap quantum computers originally proposed
Cirac and Zoller@3#, and studied elsewhere@4,5#, the qubit
basis states would have nonvanishing quadrupole mom
and the first term in the interaction between qubits that d
tinguishes between their internal states in a nonadditive w
would be the quadrupole-quadrupole term, which decrea
as r i j

25. These systems, however, do not appear to be
most promising candidates for quantum computers beca
of their relatively short radiative lives. Other schemes ha
been proposed using the hyperfine split of the ground stat
trapped ions~as in the quantum logic gate demonstrated
@6#!, or simply Zeeman sublevels of the ground state. F
these systems there would be a magnetic dipole-dipole in
action between neighboring qubits, as the electron’s s
state is different in each of the two statesu0& and u1&. A
magnetic dipole-dipole interaction would also occur na
rally in the recently proposed NMR systems@7# ~in fact, the
NMR systems rely on the spin-spin interaction for their o
R1 © 1998 The American Physical Society
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eration and, therefore, have ways around some of the p
lems discussed here; see below for further comments!. This
interaction decreases asr i j

23 and is governed by the Hamil
tonian

Hi j 5
m0

4p S g
e

2m D 2 1

r i j
3 @S1zS2z1S1yS2y22S1xS2x# ~1!

~assuming that the qubits lie along thex axis, perpendicular
to the quantizationz axis! whereg andm are the appropriate
g factors and masses (m5me for the ion case,mp for the
NMR case! andS is the spin operator of either the electro
or the nucleus, respectively. For an order of magnitude,
find interaction energiesEi ,i 11 /\;0.1/d3 rad/s for the ion
trap, whered is the distance between ions in micromete
and Ei ,i 11 /\;105/d3 rad/s for the NMR case, withd in
angstroms.

For two qubits, the difference between configuration e
ergies are of the same order of magnitude as the ene
themselves, but forL qubits they will typically scale asL1/2,
as the following very simplified model shows. Consider on
nearest-neighbor interactions so thatH5S i 51

L21Hi ,i 11 . For L
qubits with statesu0& and u1&, each basis state can be label
by a sequence of zeros and ones, or, alternatively, by
integern between 0 and 2L21 of which such a sequence
the binary representation. In the spirit of perturbation theo
we take En5^nuHun& @9#. Then we defined so that
^nuHi ,i 11un&5\d/2 if the contiguous spinsi andi 11 are in
the same state~0 or 1! and52\d/2 if they are in different
states. If the energyE0 of the stateu0&5u0 . . . 0& is set to 0
for reference, then the energyEn of an arbitrary configura-
tion un&5u011 . . . 010& is equal to2\d times the number of
‘‘steps’’ ~from 0 down to 1 or from 1 up to 0! in the binary
representation ofn with L ‘‘digits.’’ It is straightforward to
see that the energies thus obtained are binomially distribu
with mean 2 1

2 \d(L21) and standard deviation12 \d(L
21)1/2.

From the foregoing, one expects that the interaction
tween qubits will degrade the performance of the quant
computer whenever the product ofdtAL;1 ~where\d is the
two-qubit interaction energy andt is the total computation
time!. The following model explores this in detail for th
case of a quantum computer performing a discrete Fou
transform to determine the period of a certain function~the
last step in Shor’s quantum factorization algorithm!.

To calculate a discrete Fourier transform with a quant
computer one begins by preparing the computer in a su
position of basis states whose coefficients are the value
the function at the discrete points$n%, so that the initial state

is uc&5Sn50
2L21f (n)un&. Then a sequence of unitary transfo

mations are applied touc&. These are of two kinds:L one-bit
operationsAj andL(L21)/2 two-bit operationsBi j . At the
end ~after bit reversal, a relatively trivial complication!,

one has a stateuc̃&5Sm50
2L21 f̃ (m)um& in which the coeffi-

cients are the discrete Fourier transform off : f̃ (m)

522L/2Sn50
2L21 exp(2pimn/2L) f (n) @10#.

To simulate the impact of qubit-qubit interaction on th
quantum Fourier transform~QFT! algorithm, I have used the
following prescription. After every unitary operation, of e
ther theA or theB type, simply multiply each basis stateun&
b-
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by exp(2iEnt/\), with En calculated as in the model abov
This is intended to take into account the fact that each u
tary operation takes a certain time~t in this model! during
which the system evolves more or less freely~except, of
course, for the one or two qubits that are being acted up
but this is a complication that should not alter the resu
substantially in the limit of many qubitsL). The overall
result is still a unitary transformation: a basis vector such
un& is transformed into the superposition

un&→
1

A2L (
m50

2L21

eiu~n,m!e2p imn/2L
um&. ~2!

The coefficient in Eq.~2! should be a pure sinusoidal func
tion ~Fourier transform of ad function!. The interaction be-
tween qubits introduces the additional phase factor rep
sented by the functionu(n,m). For the very simple mode
used here, it should be possible to calculateu(n,m) explic-
itly for given values ofn and m by just going through the
steps of the QFT algorithm; I have not, however, been a
to derive a compact general expression for it, but one
markable result of the numerical simulations is that, for s
ficiently large L, it seems to be a good approximation
assume thatu(n,m) is given by the sum of two functions

u~n,m!.u8~n!1u9~m!. ~3!

This means that an arbitrary functionf (n) is transformed
according to

f̃ ~m!.
1

2L/2 eiu9~m! (
n50

2L21

e2p imn/2L
e1u8~n! f ~n!. ~4!

If, as is the case for Shor’s factorization algorithm, one
only interested in the magnitude off̃ (m), theu9(m) part can
be ignored. The result is the Fourier transform of the prod
of the original function and a phase factoreiu8(n). Within the
framework of the approximation~3!, the functionu8(n) can
be calculated asu8(n).u(n,0)2u9(0) by going through the
QFT algorithm step by step and figuring out the phase f
tors picked by theu0& component of each basis vectorun&.
The result is, up to an unimportant constant, given by
recursion

u8~0!50,

u8~1!5dt„

1
2 L~L11!21…,

u8~2 j1k!5u8~k!1dt„~L2 j !~L2 j 11!22…,

0<k,2 j 21,

5u8~k!, 2j 21<k,2 j , ~5!

where 1< j ,L. These phases are clearly not random, but
sufficiently largeL they are found to fall on an approxi
mately Gaussian distribution~Fig. 1!. It is not very hard to
calculate explicitly that the average of the phases~5! is
dtL(L21)(L14)/12; it can also be shown that the varian
is
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s0
25~dt!2@ 1

80L52 1
48L31 1

8 L21 23
60L2 1

2 #.
~dt!2

80
L5.

~6!

In Shor’s factorization algorithm, the QFT is used to fin
the periodr of a function f (n) which is zero everywhere
except whenn5 l 1kr, wherek is an integer andl ,r is a
random offset. Ifkmax equals the largest integer not grea
than (2L212 l )/r , a properly normalized form off (n) is

f ~n!5
1

Akmax11
(
k50

kmax

dn,l 1kr . ~7!

Further, it is expected that the periodr will be much smaller
than the number of basis vectors 2L; indeed, one expects tha
r ,2L/2 by construction. This means that, for largeL, kmax is
a very large number; the ‘‘comb’’ ofd functions f (n) will
sample the phasesu8(n) in Eq. ~4! at many pointsn and
presumably generate a pseudorandom sequence of pha
the process.

In Ref. @11#, Barencoet al. introduced the concept of
‘‘ Q factor’’ to quantify how well one could reconstruct th
period of a function from a noisy QFT. This factor wou
equal the total probability of obtaining a value ofm as close
as possible to a multiple of 2L/r , when the final state of the
system is measured in the$un&% basis. That is,Q equals a
sum of termsz^muc̃& z25u f̃ (m)u2, where them’s in the sum
are the integers closest to whole multiples of 2L/r .

When the function~7! is used in Eq.~4!, one obtains

u f̃ ~m!u25
1

2L 1
1

2L~kmax11! (
kÞk850

kmax

3e2p im~k2k8!r /2L
eiu8~ l 1kr !2 iu8~ l 1k8r !. ~8!

Now, in Eq. ~8! it turns out to be a good approximation
replace the last phase factor, involving the phasesu8, by its
average over a Gaussian distribution with variances2 @treat-
ing also u8( l 1kr) and u8( l 1k8r ) as essentially indepen
dent random variables#. This is because there are many term

FIG. 1. Distribution of the phasesu8(k) @Eq. ~5!# for L519.
The dashed line is a Gaussian distribution with the same mean
standard deviations @Eq. ~6!#. The size of the bins iss/20.
r

s in

s

in the sum for which the first phase factor will have the sa
value ~all those with the same value ofk2k8), and these
appear to be enough to sample a representative set of va
for u8 in every case. The average is exp(2s2), so we have,
resuming the geometric series,

u f̃ ~m!u2.
1

2L ~12e2s2
!

1
e2s2

2L~kmax11!

sin2@pm~kmax11!r /2L#

sin2@pmr/2L#
. ~9!

When calculatingQ, one must sum Eq.~9! over all the val-
ues ofm that are closest to an integer multiple of 2L/r . This
means thatm above is a number of the formm5l2L/r
1x, wherel is an integer andx a number between2 1

2 and
1
2 @12#. Substituting in Eq. ~9! and recalling thatr /2L

.1kmax!1, we find that the last factor become
kmax

2 sin2@px#/(px)2. Summing overm has the effect of aver-
aging this term over the range2 1

2 ,x, 1
2 , as well as adding

an overall factorr to the whole expression, since there arer
integer multiples of 2L/r between 0 and 2L. The end result is

Q.
1

kmax
~12e2s2

!10.774e2s2
, ~10!

where the first term will typically be negligible, except fo
very larges.

Figure 2 shows the results of the numerical calculation
the QFT with the above model for several functionsf (n)
chosen at random and how they compare with the predict
of Eq. ~10! ~last term only! with the appropriate variance. I
is found that functions whose periods are multiples of 4
less affected in this model than functions whose periods
multiples of 2 but not 4, and likewise for 8, 16, . . . . This
because of the obvious patterns in the phases~5! involving
powers of 2. If one samples the function~5! at intervals that

nd

FIG. 2. How theQ factor degrades with increasing interactio
energy ~d! or computation time~t! for L519. Each point is the
result of a calculation for a periodic function of the form~7! with
period and offset chosen randomly, except that the periods are m
to be multiples of 16~diamonds!, 8 but not 16~triangles!, 4 but not
8 ~squares!, and 2 but not 4~circles!. The straight lines are plots o
the last term of Eq.~10! with the appropriate variances given by E
~11!.
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are multiples of 4, 8, 16,. . . , one finds progressively
smaller variances among the phases. Ifs j

2(L) is the variance
obtained when the phases~5! are sampled at intervals of 2j ,
I find that

s1
2~L !5~dt!2@ 1

80L51 11
48L32 5

8 L21 2
15L2 1

2 #.
~dt!2

80
L5,

s j
2~L !5s1

2~L2 j 11!.~dt!2F L5

80
2

L4~ j 21!

16 G , j >2.

~11!

Thuss1 ~for functions wherer is even but not a multiple o
4! is not very different froms0 @Eq. ~6!#, but the other vari-
ances can be substantially smaller for not-too-largeL.

Since, in this model, the total computation timet
.tL2/2 andd2L.4(DE/\)2 ~whereDE, the standard de
viation of the configuration energies, scales asL1/2, as ar-
gued above!, one can writes1

2.(DEt/\)2/5. It then follows
from Eqs.~10! and ~11! that the interaction between qubi
degrades the quantum computer performance in a way th
an exponential of the square of the computation time and
DE. Numerical calculations with somewhat more sophis
cated models~e.g., ‘‘freezing’’ the time evolution of the qu
bit~s! on which the quantum gate acts! lead to the same gen
eral scaling laws for sufficiently largeL, only with slightly
different numerical coefficients.

Assuming that a scaling of this form holds for the ent
factorization algorithm, one can immediately see that this
in general, not a negligible effect. For instance, forL Ba1
A

.

nt

s
-

t is
of
-

,

ions separated a distanced51.76 mm ~as assumed, for ex
ample, in@5#!, one hasDE/\51.531022AL rad/s. From the
estimates of Plenio and Knight@8~b!#, factorization of a ten-
bit number~without error correction! would require 52 qu-
bits and take a timet513 s in this system, which yields
DEt/\51.4, already an appreciable number. With error c
rection, at least five times more qubits are required an
time at least five times longer, leading toDEt/\;15. This
would be enough to completely ruin the quantum compute
performance. Needless to say, the magnitude of the ef
can be reduced by increasing the distance between the
but there are reasons to want to have them as close as
sible @5#; in any event, this shows that this effect must
taken into account as a design consideration, at least
these kinds of systems.

The NMR schemes@7# rely on a procedure called ‘‘refo
cusing’’ or ‘‘decoupling’’ to remove spin interaction effects
although it is not clear to me whether, in principle, all inte
action terms can be completely eliminated in all systems
any case, since the couplings are so strong in the NMR
tems, one needs to address the question of how thorou
the unwanted phase factors can be erased. If the size o
residual phases can be estimated for a particular system
results in this paper may be used to estimate their impac
overall performance.
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