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Limitations to the performance of a quantum computer arising from direct interaction between qubits are
considered, and the basic scaling lawgth the computation time and the number of qubétee established for
the specific example of the quantum Fourier transform algorithm. These results should be relevant for several
of the currently proposed quantum computer systems, where the dominant interaction is of the magnetic
dipole-dipole type, in the limit of many qubits and long computation tinh§4050-294{@8)50601-4

PACS numbsg(s): 89.70:+c, 03.65.Bz, 89.86:h

It is now quite likely that there will be quantum comput- + e~ 'Eo#|01) + e~ 'E10/%| 10) + e~ 'F11%| 11)). The purity of
ers with perhaps as many as ten “quantum bits,” or “qu-the state of the first qubit decreases as p’b(z?1
bits,” in operation in the very near futulgee recent reviews + % cog(Eyy+ E11— E1o— Eop)t/%]. The argument of the co-
in [1,2]). To be able to scale them up beyond this point will sine is zero in the absence of interaction, or if the configu-
require, among other things, a careful study of all the posration energies are otherwise additive asBp=E;+E;.
sible sources of error and of how these scale up as well. Thetherwise, the state will almost certainly become entangled.
purpose of this Rapid Communication is to draw attention toThe rate at which purity is destroyed is, for short times,
one such source, namely, the direct interaction between q@uadratic int and in a difference of configuration energies. |
bits, and to exhibit how its influence scales with both the siz&shall show below that these features seem to be quite gen-
of the computer and the computation time; this is illustratedera].
for the specific task of calculating the quantum version of the |n the ion-trap quantum computers originally proposed by
fast-Fourier transform, or “quantum Fourier transform” Cirac and Zollef{3], and studied elsewhefd,5], the qubit
(QFM. basis states would have nonvanishing quadrupole moments

Interaction between qubits is different from other sourcesand the first term in the interaction between qubits that dis-
of “coherent” error in a quantum computer in that it is not a tinguishes between their internal states in a nonadditive way
single-qubit effect; rather, in the most general case, it leadwould be the quadrupole-quadrupole term, which decreases
to phase factors that are configuration dependent; that isa,sri]s. These systems, however, do not appear to be the
they depend on the state of all the qubits. This might make imost promising candidates for quantum computers because
particularly difficult to undo the errofeven though the pro- of their relatively short radiative lives. Other schemes have
cess is deterministic and thus, in principle, revergible  been proposed using the hyperfine split of the ground state of
fact, one should expect this particular errontorsenwhen  trapped iongas in the quantum logic gate demonstrated in
conventional (single-qubii error correction measures are [6]), or simply Zeeman sublevels of the ground state. For
implemented, since these require an increase in both thiese systems there would be a magnetic dipole-dipole inter-
number of qubits and the computation time. action between neighboring qubits, as the electron’s spin

As a simple illustration, consider just two qubits with state is different in each of the two stat@ and |1). A
states [0) and |1), and configuration energiek;; (i, magnetic dipole-dipole interaction would also occur natu-
=0,1). An initially factorizable state such ag(|0) rally in the recently proposed NMR systefd (in fact, the
+11))(|0)+]1)) evolves  into (e 'Fed"|00)  NMR systems rely on the spin-spin interaction for their op-
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eration and, therefore, have ways around some of the prolhy exp(iE,#/#), with E, calculated as in the model above.

lems discussed here; see below for further commeifitss  This is intended to take into account the fact that each uni-

interaction decreases a§3 and is governed by the Hamil- tary operation takes a certain tinje in this mode)] during

tonian which the system evolves more or less freédxcept, of

o 121 Eourshe_, f_or the onel_or two qhubitshthaltdare beling ar(]:ted uplon,

ut this is a complication that should not alter the results

Zm) r [S12520% S1y 50y = 2508 (D substantially in thpe limit of many qubits). The overall
result is still a unitary transformation: a basis vector such as

(assuming that the qubits lie along theaxis, perpendicular In) is transformed into the superposition

to the quantizatioz axis) whereg andm are the appropriate

g factors and massesn=m, for the ion casem, for the 1 2t-1 _ o

NMR case and S is the spin operator of either the electron Iny——= X enmeZmmnZ|m), @)

or the nucleus, respectively. For an order of magnitude, we V2t m=o

find interaction energieEi,iH/ﬁ~0.1/d3 rad/s for the ion

trap, whered is the distance between ions in micrometers, | "€ coefficient in Eq(2) should be a pure sinusoidal func-
and E; ;,,/h~10°/d® rad/s for the NMR case, witld in tion (Fourier transform of & function). The interaction be-
1,1 y

angstroms. tween qubits introduces the additional phase factor repre-

For two qubits, the difference between configuration en-S€nted by the functio@(n,m). For the very simple model
ergies are of the same order of magnitude as the energi&$€d here, it should be possible to calcula{a,m) explic-
themselves, but fot qubits they will typically scale a2, itly for given values ofn and m by just going through the

as the following very simplified model shows. Consider onlys’tegS of the QFT algorithm; : have not, h(;we\_/ert,) been able
nearest-neighbor interactions so tht S~ 1H: .. ForL 0 derive a compact general expression for it, but one re-

qubits with state$0) and|1), each basis state can be Iabeledr.n"?“kable result O.f the numerical simulations is that, f_or suf-
by a sequence of zeros and ones, or, alternatively, by thfémently large L, it seems to be a good approximation to
integern between 0 and'2- 1 of which such a sequence is aSSume thad(n,m) is given by the sum of two functions
the binary representation. In the spirit of perturbation theory, — "
we take E,=(n[|H|n) [9]. Then we defines so that f(n,m)=6"(n) + &(m). ®
(n[Hj i+ 1|n)=76/2 if the contiguous spinsandi +1 arein  This means that an arbitrary functiifn) is transformed
the same stat€) or 1) and = —#4/2 if they are in different  5ccording to
states. If the energ, of the statg0)=10...0) is set to O
for reference, then the enerdgy, of an arbitrary configura- _ 1 . 2b-1 -
tion [n)=|011...010 is equal to—%4 times the num_ber of f(m)= Stz gt (m ' g2mimn2-gl6 (N () (4
“steps” (from 0 down to 1 or from 1 up to)din the binary n=0
representation ofi with L “digits.” It is straightforward to . , o . .
see that the energies thus obtained are binomially distributedf; @S iS the case for Shor's factorization algorithm, one is
with mean —1#5(L—1) and standard deviatioB# S(L only interested in the magmtude b(m), the #”(m) part can
—1)¥2 be ignored. The result is the Fourier transform of the product
From the foregoing, one expects that the interaction beeof the original function and a phase facef’ (M. Within the
tween qubits will degrade the performance of the quantunframework of the approximatio(8), the functioné’(n) can
computer whenever the product &f\L ~1 (where#dis the  be calculated a8’ (n)=6(n,0)— 6"(0) by going through the
two-qubit interaction energy andis the total computation QFT algorithm step by step and figuring out the phase fac-
time). The following model explores this in detail for the tors picked by thg0) component of each basis vectar).
case of a quantum computer performing a discrete FourieFhe result is, up to an unimportant constant, given by the
transform to determine the period of a certain functithe  recursion
last step in Shor’s quantum factorization algorijhm
To calculate a discrete Fourier transform with a quantum 6'(0)=0,
computer one begins by preparing the computer in a super-
position of basis states whose coefficients are the values of 0'(1)=86r(3L(L+1)—1),
the function at the discrete poinfs}, so that the initial state .
is |¢)=321(n)|n). Then a sequence of unitary transfor- 0'(2'+k)=6"(k)+r((L=j)(L—j+1)~2),
mations are applied t@). These are of two kindd: one-bit -
operationsA; andL (L —1)/2 two-bit operations;; . At the O<k<2"%
end (after bit re’\-/ersal, a A[elatively trivial complicatipn , 1 j
one has a statép)=32 " (m)|m) in which the coeffi- =0(k), 2 <k<2, ®
clents are the discrete Fourier transform of f(m)  \where <j<L. These phases are clearly not random, but for
=2712527 1 exp(2rimn/2-)f(n) [10]. sufficiently largeL they are found to fall on an approxi-
To simulate the impact of qubit-qubit interaction on this mately Gaussian distributioffig. 1). It is not very hard to
guantum Fourier transforf@FT) algorithm, | have used the calculate explicitly that the average of the phagbks is
following prescription. After every unitary operation, of ei- §7L(L—1)(L+4)/12; it can also be shown that the variance
ther theA or theB type, simply multiply each basis stdte) is

Mo

i =4

ij
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FIG. 2. How theQ factor degrades with increasing interaction
FIG. 1. Distribution of the phase8’(k) [Eqg. (5)] for L=19. energy(8) or computation time(r) for L=19. Each point is the
The dashed line is a Gaussian distribution with the same mean anésult of a calculation for a periodic function of the for[@) with

standard deviatiowr [Eq. (6)]. The size of the bins ig/20. period and offset chosen randomly, except that the periods are made
to be multiples of 18diamonds, 8 but not 16(triangles, 4 but not
(57)2 8 (squarey and 2 but not 4circles. The straight lines are plots of
oo= (67 &L - L3+ 2+ 2L 1= LS. the last term of Eq(10) with the appropriate variances given by Eq.
80 PCEY

In Shor's factorization algorithm, the QFT is used to find in the sum for which the first phase factor will have the same
the periodr of a function f(n) which is zero everywhere Value (all those with the same value &f-k’), and these
except whem=1+kr, wherek is an integer and<r is a  appear to be enough to sample a representative set of values
random offset. Ifk., equals the largest integer not greaterfor ¢ in every case. The average is expf’), so we have,
than (2—1-1)/r, a properly normalized form of(n) is resuming the geometric series,

1 [f(m)f2= o (1—e)
f(N)=—=2 Sniskr- (7) 2-
VKmaxt 1 k=0 )
e’ SIrP[ mM(Kmaxt 1)r/24]

Further, it is expected that the periodvill be much smaller k1) e — C)
than the number of basis vectors; 2ndeed, one expects that mex
r <22 by construction. This means that, for lafge KmaxiS  When calculating, one must sum Eq9) over all the val-
a very large number; the “comb” ob functionsf(n) will  ues ofm that are closest to an integer multiple df/2. This
sample the phaseg’(n) in Eqg. (4) at many pointsn and  means thatn above is a number of the forrm=\2"/r
presumably generate a pseudorandom sequence of phasesHR, where is an integer anck a number betweer- $ and
the process. 1 [12]. Substituting in Eq.(9) and recalling thatr/2-
In Ref. [11], Barencoet al. introduced the concept of a ~1k, . <1, we find that the last factor becomes
* Q factor” to quantify how well one could reconstruct the k2 . SIF{ mx]/(7x). Summing ovem has the effect of aver-
period of a function from a noisy QFT. This factor would gging this term over the rangei<x<1, as well as adding
equal the total probability of obtaining a valuerafas close  an gverall factor to the whole expression, since there are

as possible to a multiple of 2r, when the final state of the integer multiples of /r between 0 and'2 The end result is
system is measured in tH¢n)} basis. That isQ equals a

sum of termg(m|)|2=[f(m)|2, where them’s in the sum B
are the integers closest to whole multiples 6fr2 Q=
When the function(7) is used in Eq(4), one obtains

1 2 2
(1—e ")+0.774 7, (10)

kmax

. where the first term will typically be negligible, except for
1 e very largeo.
28 (Kt 1) ) > Figure 2 shows the results of the numerical calculation of
the QFT with the above model for several functioi()
x @2mim(k—K')r/2-gi 6’ (1+kn) =6’ (1+k'r) (8)  chosen at random and how they compare with the predictions
of Eq. (10) (last term only with the appropriate variance. It
Now, in Eq.(8) it turns out to be a good approximation to is found that functions whose periods are multiples of 4 are
replace the last phase factor, involving the phagedy its  less affected in this model than functions whose periods are
average over a Gaussian distribution with varianédtreat-  multiples of 2 but not 4, and likewise for 8, 16, ... . Thisis
ing also @’ (I+kr) and ¢'(I+k’'r) as essentially indepen- because of the obvious patterns in the phaSgsnvolving
dent random variablgsThis is because there are many termspowers of 2. If one samples the functi¢) at intervals that

~ 1
|f(m)|2=?4r
#k'=0
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are multiples of 4, 8, 16,..., one finds progressively
smaller variances among the phasesrjle‘L) is the variance
obtained when the phasés) are sampled at intervals of 2
| find that

(672

UL =(8n) 2 Lo+ HL2 = SL2+ FL—3)= 55~ L°,

, L° LY-1 ]
O-JZ(L):O'i(L_j'i‘l):((sT)z[ %_T . j=2.
(12)

Thus o, (for functions where is even but not a multiple of
4) is not very different fromoy [Eq. (6)], but the other vari-
ances can be substantially smaller for not-too-ldrge
Since, in this model, the total computation tinte
=7L2/2 and 6°L=4(AE/#)? (where AE, the standard de-
viation of the configuration energies, scalesla&, as ar-
gued abovg one can writeﬁ:(A Et/%)?/5. It then follows
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ions separated a distande=1.76 um (as assumed, for ex-
ample, in[5]), one has\E/# =1.5x 10" 2\/L rad/s. From the
estimates of Plenio and Knigh8(b)], factorization of a ten-
bit number(without error correctionwould require 52 qu-
bits and take a time=13 s in this system, which yields
AEt/fi=1.4, already an appreciable number. With error cor-
rection, at least five times more qubits are required and a
time at least five times longer, leading A&=t/%~15. This
would be enough to completely ruin the quantum computer’s
performance. Needless to say, the magnitude of the effect
can be reduced by increasing the distance between the ions,
but there are reasons to want to have them as close as pos-
sible [5]; in any event, this shows that this effect must be
taken into account as a design consideration, at least for
these kinds of systems.

The NMR scheme§7] rely on a procedure called “refo-
cusing” or “decoupling” to remove spin interaction effects,
although it is not clear to me whether, in principle, all inter-

from Egs.(10) and (11) that the interaction between qubits action terms can be completely eliminated in all systems. In
degrades the quantum computer performance in a way that &y case, since the couplings are so strong in the NMR sys-
an exponential of the square of the computation time and ofems, one needs to address the question of how thoroughly
AE. Numerical calculations with somewhat more sophisti-the unwanted phase factors can be erased. If the size of the
cated modelge.g., “freezing” the time evolution of the qu- residual phases can be estimated for a particular system, the
bit(s) on which the quantum gate agptead to the same gen- results in this paper may be used to estimate their impact on
eral scaling laws for sufficiently large, only with slightly  overall performance.

different numerical coefficients. . .
Assuming that a scaling of this form holds for the entire Helpful conversations with R. Gupta and W. G. Harter are

factorization algorithm, one can immediately see that this isdratefully acknowledged. This research was supported in
in general, not a negligible effect. For instance, forBa"  Part by the NSF and the National Security Agency.
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