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In the first part~Secs. I and II! of this paper, starting from the Pauli current, we obtain the decomposition of
the nonrelativistic field velocity into two orthogonal parts:~i! the ‘‘classical’’ part, that is, the velocityw
5p/m in the center of mass~c.m.!, and~ii ! the ‘‘quantum’’ part, that is, the velocityV of the motion of the
c.m. frame~namely, the internal ‘‘spin motion’’ orZitterbewegung!. By inserting such a complete, composite
expression of the velocity into the kinetic-energy term of the nonrelativistic classical~i.e., Newtonian! La-
grangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is known,
with the Madelung fluid. This result provides further evidence of the possibility that the quantum behavior of
microsystems is a direct consequence of the fundamental existence of spin. In the second part~Secs. III and
IV !, we fix our attention on the total velocityv5w1V, now necessarily considering relativistic~classical!
physics. We show that the proper time entering the definition of the four-velocityvm for spinning particles has
to be the proper timet of the c.m. frame. Inserting the correct Lorentz factor into the definition ofvm leads to
completely different kinematical properties forv2. The important constraintpmvm5m, identically true for
scalar particles but just assumeda priori in all previous spinning-particle theories, is herein derived in a
self-consistent way.@S1050-2947~98!03701-9#

PACS number~s!: 03.65.2w, 03.70.1k, 11.10.Qr, 14.60.Cd
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I. MADELUNG FLUID: A VARIATIONAL APPROACH

The Lagrangian for a nonrelativistic scalar particle m
be assumed to be

L5
i\

2
@c* ] tc2~] tc* !c#2

\2

2m
“c* •“c2Uc* c,

~1!

whereU is the external potential energy and the other sy
bols have the usual meaning. It is known that, by taking
variations ofL with respect toc,c* , one can get the Schro¨-
dinger equations forc* andc, respectively.

In contrast, since a generic scalar wave functioncPC can
be written as

c5Ar exp@ iw/\#, ~2!

with r,wPR, we take the variations of

L52F] tw1
1

2m
~“w!21

\2

8m S “r

r D 2

1UGr ~3!

with respect tor andw. We then obtain@1–3# the two equa-
tions for the so-calledMadelung fluid@4# ~which, taken to-
gether, are equivalent to the Schro¨dinger equation!:
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] tw1
1

2m
~“w!21

\2

4m F1

2 S “r

r D 2

2
Dr

r G1U50 ~4!

and

] tr1“•~r“w/m!50, ~5!

which are the Hamilton-Jacobi and the continuity equatio
for the ‘‘quantum fluid,’’ respectively, where

\2

4m F1

2 S “r

r D 2

2
Dr

r G[2
\2

2m

Ducu
ucu

~6!

is often called the quantum potential. Such a potential
rives from the penultimate term on the right-hand side~rhs!
of Eq. ~3!, that is to say, from the~single! ‘‘nonclassical
term’’

\2

8m S “r

r D 2

~7!

entering our LagrangianL.
Notice that we got the presenthydrodynamical reformu-

lation of the Schro¨dinger theory directly from a variationa
approach@3#. This procedure, as we are going to see, off
us a physical interpretation of the nonclassical terms app
ing in Eqs.~3! and~4!. On the contrary, Eqs.~4! and~5! are
ordinarily obtained by inserting relation~2! into the Schro¨-
dinger equation and then separating the real and the im
98 © 1998 The American Physical Society
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57 99KINEMATICS AND HYDRODYNAMICS OF SPINNING . . .
nary parts: a rather formal procedure, which does not s
light on the underlying physics.

Let us recall that an early physical interpretation of t
so-called quantum potential, that is to say, of term~6! was
forwarded by de Broglie’s pilot-wave theory@5#; in the
1950s Bohm@6# revisited and completed de Broglie’s a
proach in a systematic way@and sometimes Bohm’s theore
ical formalism is referred to as the ‘‘Bohm formulation o
quantum mechanics,’’ alternative and complementary
Heisenberg’s~matrices and Hilbert spaces!, Schroedinger’s
~wave functions!, and Feynman’s~path integrals! theory#.
From Bohm’s time up to the present, several conjectu
about the origin of that mysterious potential have been m
by postulating ‘‘subquantal’’ forces, the presence of an eth
and so on. Well known are also the derivations of the Ma
lung fluid within the stochastic mechanics framework@7,2#:
In those theories, the origin of the nonclassical term~6! ap-
pears as substantiallykinematical. In the non-Markovian ap-
proaches,@2# for instance, after having assumed the existe
of the so-calledZitterbewegung, a spinning particle appear
as an extendedlike object, while the quantum potentia
tentatively related to an internal motion.

But we do not need to follow any stochastic approa
even if our philosophical starting point is therecognitionof
the existence@8–12# of a Zitterbewegung, diffusive, orinter-
nal motion @i.e., of a motion observedin the center-of-mass
~c.m.! frame, which is the one wherep50 by definition#, in
addition to the~external, drift, translational, or convective!
motion of the c.m. In fact, the existence of such an intern
motion is denounced not only by the mere presence of s
but by the remarkable fact that in the standard Dirac the
the particle impulsep is not in general parallel to the veloc
ity: vÞp/m; moreover, while@ p̂,Ĥ#50 so thatp is a con-
served quantity, the quantityv is not a constant of motion:
@ v̂,Ĥ#Þ0 ~v̂[a[g0g being the usual vector matrix of Dira
theory!. Let us explicitly note, moreover, that in dealing wi
theZitterbewegungit is highly convenient@10,12# to split the
motion variables as~the dot meaning derivation with respe
to time!

x5j1X, ẋ[v5w1V, ~8!

where j and w[ j̇ describe the motion of the c.m. in th
chosen reference frame, whileX andV[Ẋ describe the in-
ternal motion with reference to the c.m. frame~c.m.f.!. ~No-
tice that what is called the diffusion velocityvdif in the sto-
chastic approaches is nothing but ourV.! From a dynamical
point of view, the conserved electric current is associa
with the helical trajectories@8–10# of the electric charge
~i.e., with x andv[ ẋ!, while the center of the particle Cou
lombian field is associated with the geometrical center
such trajectories~i.e., with j andw[ j̇5p/m!.

Returning to the Lagrangian~3!, it is now possible to
attempt an interpretation@3# of the nonclassical term
(\2/8m)(“r/r)2 appearing therein. So the first term on t
rhs of Eq.~3! represents, apart from the sign, the total ene

] tw52E, ~9!

whereas the second term is recognized to be the kinetic
ergy p2/2m of the c.m. if one assumes that
d
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p52“w. ~10!

The third term, which originates the quantum potential, w
be shown below to be interpretable as the kinetic energy
the c.m.f., that is, the internal energy due to theZitter-
bewegungmotion. It will soon be realized, therefore, that
the Lagrangian~3! the sum of the two kinetic-energy term
p2/2m and 1

2 mV2 is nothing buta mere application of the
König theorem. We are not going to exploit, as is often don
the arrival point, i.e., the Schro¨dinger equation; in contrast
we are going to exploit a nonrelativistic~NR! analog of the
Gordon decomposition@13# of the Dirac current, namely, a
suitable decomposition of thePauli current@14#. In so doing,
we shall find an interesting relation betweenZitterbewegung
and spin.

II. THE QUANTUM POTENTIAL AS A CONSEQUENCE
OF SPIN AND ZITTERBEWEGUNG

Over the past 30 years Hestenes@15# systematically em-
ployed the Clifford algebra language in the description of
geometrical, kinematical, and hydrodynamical~i.e., field!
properties of spinning particles, both in relativistic and N
physics, i.e., both for Dirac theory and for Schro¨dinger-Pauli
theory. In the small-velocity limit of the Dirac equation o
directly from the Pauli equation, Hestenes obtained the
composition of the particle velocity

v5
p2eA

m
1

“3rs

mr
, ~11!

where the speed of lightc is assumed to be equal to 1, th
quantity e is the electric charge,A is the external electro-
magnetic vector potential,s is thespin vectors[r21c†ŝc,
and ŝ is the spin operator, usually represented in terms
Pauli matrices as

ŝ[
\

2
~sx ;sy ;sz!. ~12!

@Hereafter, every quantity is alocal or field quantity: v
[v(x;t), p[p(x;t), s[s(x;t), etc.# As a consequence, th
internal ~Zitterbewegung! velocity reads

V[
“3rs

mr
. ~13!

Let us repeat the previous derivation, now by making
course to the ordinary tensor language,from the familiar ex-
pression of the Pauli current@14# ~i.e., from the Gordon de-
composition of the Dirac current in the NR limit!:

j5
i\

2m
@~“c†!c2c†

“c#2
eA

m
c†c1

1

m
“3~c†ŝc!.

~14!

A spinning NR particle can be simply factorized into

c[ArF, ~15!

F being a Pauli two-component spinor, which has to ob
the normalization constraint
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F†F51

if we want to haveucu25r.
By definition rs[c†ŝc[rF†ŝF; therefore, introducing

the factorizationc[ArF into the above expression~14! for
the Pauli current, one obtains@3#

j[rv5r
p2eA

m
1

“3rs

m
, ~16!

which is nothing but Hestenes’s decomposition~11! of v.
The Schro¨dinger subcase@i.e., the case in which the vec

tor spin field s5s(x,t) is constant in time and uniform in
space# corresponds tospin eigenstates, so we now need a
wave function factorizable into the product of a ‘‘nonspin
part Areiw ~scalar! and aspin partx ~Pauli spinor!:

c[Areiw/\x, ~17!

x beingconstant in time and space. Therefore, whens has no
precession~and no external field is present:A50!, we have
s[x†ŝx5const and

V5
“r3s

mr
Þ0 ~Schrödinger case!. ~18!

One can notice that,even in the Schro¨dinger theoretical
framework, the Zitterbewegung does not vanish, except for
plane waves, i.e., for the nonphysical case ofp eigenfunc-
tions, when not onlys but alsor is constant and uniform, so
that “r50. @Notice also that the continuity equation~6!,
] tr1“•(rp/m)50, can be still rewritten in the ord
inary way ] tr1“•(rv)50. In fact, the quantity“•V
[“•(¹3rs) is identically zero, being the divergence of
rotor, so that“•(p/m)5“•v.#

But let us go on. We may now write

V25S “r3s

mr D 2

5
~“r!2s22~“r•s!2

~mr!2 ~19!

since in general it holds that

~a3b!25a2b22~a•b!2. ~20!

Let us observe that, from the smallness of the negat
energy component~the so-called small component! of the
Dirac bispinor follows the smallness also of“r•s.0. This
was already known from the Clifford algebra approach
Dirac theory, which yielded@15# ~b being the Takabayas
angle@16#! “•rs52mr sinb, which in the NR limit cor-
responds tob50 ~‘‘pure electron’’! or b5p ~‘‘pure posi-
tron’’ !, so that one gets“•rs50 and in the Schro¨dinger
case~s5const and“•s50!

“r•s50. ~21!

By putting such a condition into Eq.~19!, it assumes the
important form

V25s2S “r

mr D 2

, ~22!
e-

which finally allows us to attribute to the so-called noncla
sical term~7! of our Lagrangian~3! the simple meaning of
kinetic energy of the internal~Zitterbewegung! motion @i.e.,
of kinetic energy associated with the internal~Zitter-
bewegung! velocity V#, provided

\52s. ~23!

In agreement with the previously mentioned Ko¨nig theorem,
such an internal kinetic energy does appear, in the Lagra
ian ~3!, as correctly added to the~external! kinetic energy
p2/2m of the c.m.@in addition to the total energy~9! and the
external potential energyU#.

In contrast, if we assume~within a Zitterbewegungphi-
losophy! that V @Eq. ~22!# is the velocity attached to the
kinetic-energy term~7!, then we can deduceEq. ~23!, i.e., we
deduce that actually

usu5 1
2 \.

Let us mention, by the way, that in the stochastic approac
the ~non-classical! stochastic, diffusion velocity isV[vdif
5n(“r/r), the quantityn being the diffusion coefficient of
the quantum medium. In those approaches, however, one
to postulatethatn[\/2m. In our approach, on the contrary
if we just adopt for the moment the stochastic language, b
comparison of Eqs.~7!, ~22!, and ~23! we would immedi-
ately deducethat n5\/2m and therefore the interesting re
lation

n5
usu
m

. ~24!

Let us explicitly remark that, because of Eq.~22!, in the
Madelung fluid equation~and therefore in the Schro¨dinger
equation! the quantity\ is naturally replaced by 2usu, the
presence itself of the former quantity no longer bei
needed. In a way, we might say that it is more appropriate
write \52usu rather thanusu5\/2.

Let us add, as a last observation, a corollary of our n
relativistic decomposition of velocityv into a classical part
~depending onw! plus a part~depending onr and! originat-
ing the quantum potential. If one requires the latter part~i.e.,
theZitterbewegungpart! of v to be small“r/r.0, then one
gets immediately the Bohr-Sommerfeld-WKB condition f
the Schro¨dinger equation solutions to be semiclassic
“ldB.0.

Let us conclude the first part of the present contribut
by stressing the following. We first achieved a nonrelativ
tic, Gordon-like decomposition of the field velocity withi
the ordinary tensorial language. Second, we derived
quantum potential~without the postulates and assumptions
stochastic quantum mechanics! by simply relating the non-
classical energy term toZitterbewegungand spin. Such re-
sults provide further evidence that the quantum behavio
microsystems may be a direct consequence of the exist
of spin. In fact, whens50, the quantum potential vanishes
the Hamilton-Jacobi equation, which then becomes a tot
classical and Newtonian equation. We have also seen t
the quantity\ itself enters the Schro¨dinger equation owing to
the presence of spin. We are easily induced to conjecture
no scalarquantumparticles exist that are really elementar
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57 101KINEMATICS AND HYDRODYNAMICS OF SPINNING . . .
but that scalar particles are always constituted by spinn
objects endowed withZitterbewegung.

III. THE KINEMATICS OF SPINNING PARTICLES

In the first part of this paper, we addressed ourselve
spin,Zitterbewegung, and Madelung fluid in~nonrelativistic!
physics. The previous analysis led us to fix our attention
particular on the internal velocityV of the spinning particle,
as well as on its external velocityw5p/m. In the second par
of this article, we want to fix our attention on thetotal ve-
locity v5w1V. It is now essential to alloww to assume any
value and therefore to considerrelativistic physics. In what
follows our considerations will be essentially classical, wh
the quantum side of these last two sections will be stud
elsewhere@17#.

Before going on, let us make a brief digression by rec
ing that, since the works of Compton@8#, Uhlenbeck and
Goudsmit@18#, Frenkel@18#, and Schro¨dinger @9# up to the
present, many classical theories, often quite different am
themselves from a physical and formal point of view, ha
been advanced for spinning particles~for simplicity, we of-
ten write ‘‘spinning particle’’ or just ‘‘electron’’ instead of
the more pertinent expression ‘‘spin-1

2 particle’’!. Following
Bunge @19#, they can be divided into three classes:~I!
strictly pointlike particle models,~II ! actual extended-type
particle models~spheres, tops, gyroscopes, etc.!, and ~III !
mixed models for extendedlike particles, in which the po
tion of the pointlike chargeQ ends up being spatially distinc
from the particle c.m.

Notice that in the theoretical approaches of type
which, being between classes I and II, could answer a
lemma posed by Barut~‘‘If a spinning particle is not quite a
point particle, nor a solid three-dimensional top, what ca
be?’’!, the motion ofQ does not coincide with the motion o
the particle c.m. This peculiar feature was found to be
actual characteristic@20–22,15,11,10# ~called, as we know,
the Zitterbewegungmotion! of spinning particle kinematics
The type-III models, therefore, area priori convenient for
describingZitterbewegung, spin, and intrinsic magnetic mo
ment of the electron, while these properties are hardly p
dicted by making recourse to the pointlike-particle theor
of class I. The theories of type III, moreover, are consist
@8–12# with the ordinary quantum theory of the electron~see
below!. The extendedlike electron models of class III are
present in fashion also because of their possible genera
tions to include supersymmetry and superstrings@10~b!#. Fi-
nally, the mixed models help bypassing the obvious non
cality problems involved by a relativistic covariant pictu
for extended-type~in particular rigid! objects of class II.
Quite differently, the extendedlike~class III! electron is non-
rigid and consequently variable in its shape and in its ch
acteristic size, depending on the considered dynamical s
ation. This isa priori consistent with the appearance in t
literature of many different radii of the electron~for instance,
in his book@23#, McGregor lists on p. 5 seven typical ele
tron radii, from the Compton to the classical and to the m
netic radius!. For all these reasons, therefore, the spinn
particle we shall have in mind in Sec. IV is to be describ
by class III theories.

Here we have to rephrase some of the previous consi
g
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ations in terms of Minkowski~four-dimensional! vectors.
For instance, let us recall again that in the ordinary Dir
theory the particle four-impulsepm is in generalnot parallel
to the four-velocity: vmÞpm/m. Let us repeat that in orde
to describe theZitterbewegung, in all type-III theories it is
very convenient@10–12# to split the motion variables as~the
dot now meaning derivation with respect to theproper time
t!

xm[jm1Xm, ẋm[vm5wm1Vm, ~25!

wherejm and wm[j̇m describe as before the external m
tion, i.e., the motion of the c.m., whileXm andVm[Ẋm de-
scribe the internal motion. From an electrodynamical po
of view, as we know, the conserved electric current is as
ciated with the trajectories ofQ ~i.e., with xm!, while the
center of the particle Coulomb field, obtained@22#, e.g.,
through a time average over the field generated by
quickly oscillating charge, is associated with the c.m.~i.e.,
with wm, and then, for free particles, with the geometr
center of the internal motion!. In such a way, it isQ which
follows the ~total! motion, while the c.m. follows themean
motion only. It is worthwhile also to notice that the classic
extendedlike electron of type III is totally consistent with th
standard Dirac theory; in fact, the above decomposition
the total motion is the classical analog of two well-know
quantum-mechanical procedures, i.e., of theGordon decom-
positionof the Dirac current, and the~operatorial! decompo-
sition of the Dirac position operatorproposed by Schro¨-
dinger in his pioneering works@9#. We shall return to these
points below.

The well-known Gordon decomposition of the Dirac cu
rent reads@13# ~hereafter we shall choose units such th
numericallyc51!

c̄gmc5
1

2m
@c̄ p̂mc2~ p̂mc̄!c#2

i

m
p̂n~ c̄Smnc!, ~26!

c̄ being the ‘‘adjoint’’ spinor ofc, the quantityp̂m[ i ]m the
four-dimensional impulse operator, andSmn[( i /4)(gmgn

2gngm) the spin-tensor operator. The ordinary interpre
tion of Eq. ~26! is in total analogy with the decompositio
given in Eq.~25!. The first term on the rhs ends up bein
associated with the translational motion of the c.m.~the sca-
lar part of the current, corresponding to the traditional Kle
Gordon current!. The second term on the rhs is instead
rectly connected to the existence of spin and describes
Zitterbewegungmotion.

In the above-mentioned papers, Schro¨dinger started from
the Heisenberg equation for the time evolution of the acc
eration operator in Dirac theory@v[a#

a[
dv

dt
5

i

\
@H,v#5

2i

\
~Hv2p!, ~27!

whereH is equal as usual tov•p1bm. Integratingv this
operator equation once over time, after some algebra one
obtain

v5H21p2
i

2
\H21a; ~28!
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102 57ERASMO RECAMI AND GIOVANNI SALESI
integrating it a second time, one obtains@14# the spatial part
of the decomposition

x[j1X, ~29!

where~still in the operator formalism!

j5r1H21pt ~30!

is related to the motion of the c.m., and

X5
i

2
\h H21 ~h [v2H21p! ~31!

is related to theZitterbewegungmotion.

IV. KINEMATICAL PROPERTIES
OF THE EXTENDEDLIKE PARTICLES

We now want to analyze the formal and conceptual pr
erties of a differed definition for the four-velocity of ou
extendedlike electron. Such a definition was initia
adopted, but without any emphasis, in the papers by B
and co-workers dealing with a successful model for the re
tivistic classical electron~@10~a!,12#!. Let us consider the fol-
lowing. At variance with the procedures followed in the l
erature from Schro¨dinger’s time up to the present, we have
make recourse not to the proper time of the chargeQ, but
rather to the proper time of the center of mass, i.e., to the
time of the c.m.f.1 As a consequence, the quantityt in the
denominator of the four-velocity definitionvm[dxm/dt has
to be thelatter proper time. Up to now, with the exception o
the above-mentioned papers by Barut and co-workers, in
theoretical frameworks the Lorentz factor has been assu
to be equal toA12v2. On the contrary, in the Lorentz facto
it has to enterw2 instead ofv2, the quantityw[p/p0 being
the three-velocity of the c.m. with respect to the chos
frame~p0[E is the energy!. By adopting the correct Lorent
factor, all the formulas containing it are to be rewritten, a
get a new physical meaning. In particular, we shall sh
below that the new definition does actuallyimply2 the impor-
tant constraint, which, holding identically for scalar particle
is often justassumedfor spinning particles:

pmvm5m,

1Let us recall once more that the c.m.f. is the frame in which
kinetic impulse vanishes identically,p50. For spinning particles,
in general, it isnot the rest frame since the velocityv is not neces-
sarily zero in the c.m.f.

2For all plane-wave solutionsc of the Dirac equation, we have
~labeling by^ & the correspondinglocal mean valueor field density!
pm^v̂m&[pmc†v̂mc[pmc†g0gmc[pmc̄gmc5m.
-

ut
-

ll
ed

n

,

wherem is the physical rest mass of the particle~and not an
ad hocmasslike quantityM !.3

Our choice of the proper timet may be supported by the
following considerations.

~i! The lightlike Zitterbewegung, when the speed ofQ is
constant and equal to the speed of light in vacuum, is c
tainly the preferred one~among all thea priori possible in-
ternal motions! in the literature and to many authors it a
pears to be the most adequate for a meaningful class
picture of the electron. In some special theoretical a
proaches, the speed of light is even regarded as the quan
mechanical typical speed for theZitterbewegung. In fact, the
Heisenberg principle in the relativistic domain@14# implies
~not controllable! particle-antiparticle pair creations whe
the ~c.m.f.! observation involves space distances of the or
of a Compton wavelength. Thus\/m is assumed to be the
characteristic orbital radius and 2m/\2 the ~c.m.f.! angular
frequency of theZitterbewegung, as first noticed by Schro¨-
dinger, and the orbital motion ofQ is expected to be light-
like. Now, if the chargeQ travels at the speed of light,the
proper time ofQ does not exist, while the proper time of the
c.m. ~which travels at subluminal speeds! does exist. Adopt-
ing as the time the proper time ofQ, as is often done in the
past literature, automaticallyexcludes a lightlike Zitter-
bewegung. In our approach, by contrast, suchZitter-
bewegungmotions are not excluded. Analogous consid
ations may hold forsuperluminal Zitterbewegungspeeds,
without too much trouble, since the c.m.~which carries the
energy impulse and the ‘‘signal’’! is always endowed with a
subluminal motion.

~ii ! The independence between the center-of-charge
the center-of-mass motion becomes evident by our de
tion. As a consequence, the nonrelativistic limit can be f
mulated by us in a correct and univocal way. Namely,
assuming the correct Lorentz factor, one can immediately
that theZitterbewegungcan go on being a relativistic~in
particular light-like! motion even in the nonrelativistic ap
proximation, i.e., whenp→0 ~this is perhaps connected wit
the nonvanishing of spin in the nonrelativistic limit!. In fact,
in the nonrelativistic limit, we have to take

w2!1

and not necessarily

v2!1,

as was usually assumed in the past literature.

e

3As an example, recall that Pavˇsič @10~b!# derived, from a La-
grangian containing anextrinsic curvature, the classical equation o
the motion for a rigidn-dimensional world sheet in a curved bac
ground space-time. Classical world sheets describe membrane
n>3, strings forn52, and point particles forn51. For the special
casen51, he found nothing but the traditional Papapetrou equat
for a classical spinning particle; also, by quantization of the cla
cal theory, he actually derived the Dirac equation. In Ref.@10~b!#,
however,M is not the observed electron massm, and the relation
between the two masses readsm5M1mH2, the quantitym being
the so-called string rigidity, whileH is the second covariant deriva
tive on the world sheet.
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~iii ! The definition for the four-velocity that we are goin
to propose@see Eq.~33!# does agree with the natural classic
limit of the Dirac current. Actually, it was used in thos
models that~like Barut and co-workers! define velocity even
at the classical level as the bilinear combinationc̄gmc, via a
direct introduction of classical spinorsc. By the present defi-
nition, we shall be able to write the translational term
pm/m, with the physical mass in the denominator, exactly
in the Gordon decomposition~26!. Quite differently, in all
the theories adopting as the time the proper time ofQ, in the
denominator appears anad hocvariable massM , which de-
pends on the internalZitterbewegungspeedV ~see below!.

~iv! The choice of the c.m. proper time constitutes a na
ral extension of the ordinary procedure for relativistic sca
particles. In fact, for spinless particles in relativity the fou
velocity is known to be univocally defined as the derivati
of four-position with respect to the c.m.f. proper time~which
is the only one available in that case!.

The most valuable reason in support of our definiti
turns out to be the circumstance that the previous definit

vstd
m 5~1/A12v2;v/A12v2!, ~32!

where std denotes standard, seems to entail a mass va
with the internalZitterbewegungspeed. But let us make ex
plicit our definition forvm. The symbols that we are going t
use possess the ordinary meaning; the difference@24# is that
now the Lorentz factor dt dt will not be equal toA12v2,
but instead toA12w2. Thus we shall have

vm[dxm/dt[~dt/dt;dx/dt![S dt

dt
;

dx

dt

dt

dt D
5~1/A12w2;v/A12w2! ~v[dx/dt!. ~33!

For wm we can write

wm[djm/dt[~dt/dt;dj /dt![S dt

dt
;

dj

dt

dt

dt D
5~1/A12w2;w/A12w2! ~w[dj /dt! ~34!

and for the four-impulse

pm[mwm5m~1/A12w2;w/A12w2!. ~35!

@In the presence of an external field such relations rem
valid provided one makes the minimal prescriptionp→p
2eA ~in the c.m.f. we shall havep2eA50 and conse-
quentlyw50, as above!.#

Let us now examine the resulting impulse-velocity sca
productpmvm, which has to be a Lorentz invariant, both wi
our v and with the previousvstd. With the quantity p
[(p0;p) being the four-impulse andM1 , M2 two relativistic
invariants, we may write

pmvm[M1[
p02p•v

A12w2
~36!

or, alternatively,
l

s
s

-
r

n

ing

in

r

pmvstd
m [M2[

p02p•v

A12v2
. ~37!

If we refer ourselves to the c.m.f. we shall havepc.m.f.
5wc.m.f.50 ~but vc.m.f.[Vc.m.f.Þ0! and then

M15pc.m.f.
0 ~38!

in the first case and

pc.m.f.5M2A12Vc.m.f.
2 ~39!

in the second case. So we see that the invariantM1 is actu-
ally a constant, which, being nothing but the center-of-m
energypc.m.f

0 can be identified, as we are going to prove, w
the physical massm of the particle. On the contrary, in th
second case~the standard one!, the center-of-mass energy
variable with the internal motion.

Now, from Eq.~35! we have

pmvm[mwmvm

and, because of Eqs.~33! and ~34!,

pmvm[m~12w–v!/~12w2!. ~40!

Sincew is a vector component of the total three-velocityv
@due to Eqs.~25!# and, moreover, is the orthogonal proje
tion of v along thep direction, we can write

w•v5w2,

which, introduced into Eq.~40!, yields @24# the important
relation

m5pmvm. ~41!

Quite differently, by use of the wrong Lorentz factor, w
would have obtained

vm5~1/A12v2;v/A12v2!

and consequently

pmvm[m~12wv!/A~12w2!~12v2!5mA12w2/A12v2

Þm.

By recourse to the correct Lorentz factor, therefore,
succeeded in showing that the noticeable constraintm
5pmvm, trivially valid for scalar particles, holds for spinnin
particles too. Such a relation~41! would be very useful also
for a Hamiltonian formulation of the electron theory@12#.

Finally, we want to show that the ordinary kinematic
properties of the Lorentz invariantv2[vmvm donothold any
longer in the case of spinning particles, endowed withZitter-
bewegung. In fact, it is easy to prove that the ordinary co
straint for scalar relativistic particles~the quantityv2 con-
stant in time and equal to 1! does not hold for spinning
particles endowed withZitterbewegung. Namely, if we
choose as reference frame the c.m.f. in whichw50, we have
@cf. definition ~33!#

vc.m.f.
m [~1;Vc.m.f.!, ~42!
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wherefrom, with

vc.m.f.
2 [12Vc.m.f.

2 , ~43!

one can deduce@24# the constraints

0,Vc.m.f
2 ~t!,1⇔0,vc.m.f.

2 ~t!,1 ~ timelike!,

Vc.m.f.
2 ~t!51⇔vc.m.f.

2 ~t!50 ~ lightlike!,

Vc.m.f.
2 ~t!.1⇔vc.m.f.

2 ~t!,0 ~spacelike!.

~44!

Since the square of the total four-velocity is invariant and
particular it is vc.m.f

2 5v2, these constraints forv2 will be
valid in any frame:

0,v2~t!,1 ~ timelike!,

v2~t!50 ~ lightlike!,

v2~t!,0 ~spacelike!.

~45!

Note explicitly that the correct application of special relat
ity to a spinning particle led us, under our hypotheses
obtain thatv250 in the lightlike case, butv2Þ1 in the time-
like case andv2Þ21 in the spacelike case.

Let us now examine the manifestation and consequen
of such constraints in a specific example, namely, the alre
mentioned theoretical model by Barut and Zanghi@10~a!#,
which did implicitly adopt as the time the proper time of th
c.m.f. In this case, we get that it is in generalv2Þ1. In fact,
one obtains@12# the remarkable relation
-

v.
a,

ys
o

es
dy

v2512
v̈mvm

4m2 . ~46!

In particular@22#, in the lightlike case it isv̈mvm54m2 and
thereforev250.

Returning to Eq.~43!, note that now the quantityv2 is no
longer related to the external speeduwu of the c.m. but, on
the contrary, to the internalZitterbewegungspeeduVc.m.fu.
Note at last that, in general, and at variance with the sc
case, the value ofv2 is not constant in time any longer, bu
varies witht ~except whenVc.m.f.

2 itself is constant in time!.
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