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In the first part(Secs. | and )l of this paper, starting from the Pauli current, we obtain the decomposition of
the nonrelativistic field velocity into two orthogonal parts} the “classical” part, that is, the velocityv
=p/m in the center of mas&.m), and(ii) the “quantum” part, that is, the velocity of the motion of the
c.m. frame(namely, the internal “spin motion” oZitterbewegung By inserting such a complete, composite
expression of the velocity into the kinetic-energy term of the nonrelativistic clagsieal Newtonian La-
grangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is known,
with the Madelung fluid. This result provides further evidence of the possibility that the quantum behavior of
microsystems is a direct consequence of the fundamental existence of spin. In the secd8dqsarl and
IV), we fix our attention on the total velocity=w+V, now necessarily considering relativisticlassical
physics. We show that the proper time entering the definition of the four-veletifgr spinning particles has
to be the proper time of the c.m. frame. Inserting the correct Lorentz factor into the definitios“dieads to
completely different kinematical properties fof. The important constrainp ,v*=m, identically true for
scalar particles but just assumadpriori in all previous spinning-particle theories, is herein derived in a

self-consistent way.S1050-294®8)03701-9

PACS numbg(s): 03.65—w, 03.70:+k, 11.10.Qr, 14.60.Cd

I. MADELUNG FLUID: A VARIATIONAL APPROACH

The Lagrangian for a nonrelativistic scalar particle may

be assumed to be
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which are the Hamilton-Jacobi and the continuity equations

whereU is the external potential energy and the other symfor the “quantum fluid,” respectively, where
bols have the usual meaning. It is known that, by taking the

variations of£ with respect tag, ¢*, one can get the Schro

dinger equations for/* and i, respectively.
In contrast, since a generic scalar wave functionC can
be written as

y="lp exdielh], )]
with p,¢ € R, we take the variations of
2

L= L veet !
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with respect tgp and ¢. We then obtairj1-3] the two equa-
tions for the so-calledMadelung fluid[4] (which, taken to-
gether, are equivalent to the ScHimger equation

*Electronic address:
Recami@turing.unicamp.br
"Electronic address: Giovanni.Salesi@ct.infn.it

Erasmo.Recami@mi.infn.it

1050-2947/98/51)/98(8)/$15.00 57

2 Ap

p

R2[1(V h2 A

am |2\ p

2

is often called the quantum potential. Such a potential de-
rives from the penultimate term on the right-hand dides)
of Eg. (3), that is to say, from thdsingle “nonclassical
term”
h% (Vp\? 7
8m | p @

entering our Lagrangiag.

Notice that we got the presehydrodynamical reformu-
lation of the Schrdinger theory directly from a variational
approacH 3]. This procedure, as we are going to see, offers
us a physical interpretation of the nonclassical terms appear-

anding in Egs.(3) and(4). On the contrary, Eqg4) and(5) are

ordinarily obtained by inserting relatiof2) into the Schre
dinger equation and then separating the real and the imagi-
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nary parts: a rather formal procedure, which does not shed p=-Ve. (10)
light on the underlying physics.

Let us recall that an early physical interpretation of theThe third term, which originates the quantum potential, will
so-called quantum potential, that is to say, of teBhwas be shown below to be interpretable as the kinetic energy in
forwarded by de Broglie’s pilot-wave theoryg]; in the the c.m.f,, that is, the internal energy due to thiter-
1950s Bohm[6] revisited and completed de Broglie’'s ap- bewegungnotion. It will soon be realized, therefore, that in
proach in a systematic wdpnd sometimes Bohm'’s theoret- the Lagrangiar(3) the sum of the two kinetic-energy terms
ical formalism is referred to as the “Bohm formulation of p%2m and $mV? is nothing buta mere application of the
guantum mechanics,” alternative and complementary td<onig theoremWe are not going to exploit, as is often done,
Heisenberg'simatrices and Hilbert spadesSchroedinger's the arrival point, i.e., the Schdinger equation; in contrast,
(wave functiony and Feynman’'dpath integrals theory].  we are going to exploit a nonrelativistitNR) analog of the
From Bohm's time up to the present, several conjecture§ordon decompositiofil3] of the Dirac current, namely, a
about the origin of that mysterious potential have been madsuitable decomposition of tHeauli current[14]. In so doing,
by postulating “subguantal” forces, the presence of an etherywe shall find an interesting relation betwegitterbewegung
and so on. Well known are also the derivations of the Madeand spin.
lung fluid within the stochastic mechanics framew@rk2]:

In those theories, the origin of the nonclassical té&nap- Il. THE QUANTUM POTENTIAL AS A CONSEQUENCE

pears as substantialkinematical In the non-Markovian ap- OF SPIN AND ZITTERBEWEGUNG

proaches| 2] for instance, after having assumed the existence _

of the so-calledZitterbewegunga spinning particle appears ~ Over the past 30 years Hesterj@$] systematically em-
as an extendedlike object, while the quantum potential igloyed the Clifford algebra language in the description of the
tentatively related to an internal motion. geometrical, kinematical, and hydrodynamidak., field)

But we do not need to follow any stochastic approachproperties of spinning partlcles, both in relgtlylsUc and NR
even if our philosophical starting point is thecognitionof ~ Physics, i.e., both for Dirac theory and for Sctirger-Pauli
the existencg8—12] of a Zitterbewegungdiffusive, orinter-  theory. In the small-velocity limit of the Dirac equation or
nal motion [i.e., of a motion observeih the center-of-mass directly from the Pauli equation, Hestenes obtained the de-
(c.m) frame, which is the one whegg=0 by definitior], in  composition of the particle velocity
addition to the(external, drift, translational, or convective
motion of the c.m. In fact, the existence of such an internal v= p—eA + VXPS’ (12)
motion is denounced not only by the mere presence of spin m mp
but by the remarkable fact that in the standard Dirac theory o
the particle impulse is notin general parallel to the veloc- whertta_tthe 'spt(;ed ?f “tg'm '?1 asse‘i\medtﬁo betequa}I t? 1{ the
o . DA O— : _quantity e is the electric chargeA is the external electro-
gyé.rv\g; p/m; moreover, while{p,H]=0 so thatp is a con . magnetic vector potentiaf is the spin vectors=p ~14'sy,

ved quantity, the quantity is not a constant of motion: . : .
[0,H]# 0 (V== "y being the usual vector matrix of Dirac and s is the spin operator, usually represented in terms of

theory). Let us explicitly note, moreover, that in dealing with Pauli matrices as

the Zitterbewegungt is highly convenienf10,12 to split the

motion variables aghe dot meaning derivation with respect s= > (0x:0y;0,). (12
to time)

[Hereafter, every quantity is #cal or field quantity: v
=v(x;t), p=p(x;t), s=9(x;t), etc] As a consequence, the
internal (Zitterbewegungvelocity reads

X=&+X, X=v=w+V, (8)

where § and w= ¢ describe the motion of the c.m. in the
chosen reference frame, whie andV=X describe the in- V X ps
ternal motion with reference to the c.m. frarfeem.f). (No- V=
tice that what is called the diffusion velocity; in the sto-

chastic approaches is nothing but &y From a dynamical

mp (13

Let us repeat the previous derivation, now by making re-
Lourse to the ordinary tensor languaffem the familiar ex-
pression of the Pauli currefit4] (i.e., from the Gordon de-
fcomposition of the Dirac current in the NR linit

with the helical trajectorieg8-1Q of the electric charge
(i.e., with x andv=x), while the center of the particle Cou-
lombian field is associated with the geometrical center o

such trajectoriesi.e., with £ andw=&=p/m). A ‘ " eA . 1 ta
Returning to the LagrangiafB), it is now possible to 1= 5 L(V¢ )= ¢ Vyl——— gig+ — VX (YIsh).
attempt an interpretatior{3] of the nonclassical term (14)

(#218m)(V p/p)? appearing therein. So the first term on the
rhs of Eq.(3) represents, apart from the sign, the total energyA spinning NR particle can be simply factorized into

dp=—E, 9 Yy=p®, (15)

whereas the second term is recognized to be the kinetic el being a Pauli two-component spinor, which has to obey
ergy p%/2m of the c.m. if one assumes that the normalization constraint
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if we want to have ¢|2=p.

By definition ps= y/'sy=p®Tsd; therefore, introducing
the factorizationy= \/p® into the above expressiqa4) for
the Pauli current, one obtaif3]

p—eA VXps

I=p Pm m

(16)

which is nothing but Hestenes’s decompositidd) of v.

The Schrainger subcasfi.e., the case in which the vec-
tor spin field s=s(x,t) is constant in time and uniform in
spacé corresponds tepin eigenstatesso we now need a
wave function factorizable into the product of a “nonspin”
part \/pe'¢ (scalan and aspin part y (Pauli spinoy:

y=1pe' ¥y, (17)

x beingconstant in time and spac&herefore, whers has no
precessior(and no external field is presemt=0), we have
s=x'$y=const and

VpXs
mp

V= #0 (Schralinger casg (18

One can notice thateven in the Schuinger theoretical
framework, the Zitterbewegung does not vaniskcept for
plane waves, i.e., for the nonphysical casepodigenfunc-
tions, when not onlys but alsop is constant and uniform, so
that Vp=0. [Notice also that the continuity equatids),
dp+V-(pp/m)=0, can be still rewritten in the ord-
inary way d;p+V-(pv)=0. In fact, the quantityV-V
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which finally allows us to attribute to the so-called nonclas-
sical term(7) of our Lagrangian3) the simple meaning of
kinetic energy of the interndEitterbewegungmotion[i.e.,
of kinetic energy associated with the internéZitter-
bewegunygvelocity V], provided
h=2s. (23
In agreement with the previously mentionedri{g theorem,
such an internal kinetic energy does appear, in the Lagrang-
ian (3), as correctly added to th@xternal kinetic energy
p?/2m of the c.m.[in addition to the total energ§®) and the
external potential energy].

In contrast, if we assume@within a Zitterbewegungphi-
losophy that V [Eq. (22)] is the velocity attached to the
kinetic-energy ternt7), then we can dedudeg. (23), i.e., we
deduce that actually

h.

N[

s =

Let us mention, by the way, that in the stochastic approaches
the (non-classical stochastic, diffusion velocity i&/=vg;
=v(Vplp), the quantityr being the diffusion coefficient of

the quantum medium. In those approaches, however, one has
to postulatethat v=%/2m. In our approach, on the contrary,

if we just adopt for the moment the stochastic language, by a
comparison of Egs(7), (22), and (23) we would immedi-
ately deducethat v=#/2m and therefore the interesting re-
lation

(29)

Let us explicitly remark that, because of E&2), in the

=V - (VXps) is identically zero, being the divergence of a Madelung fluid equatiorfand therefore in the Schdinger

rotor, so thatV - (p/m)=V-v.]
But let us go on. We may now write

Vpxs|2 (Vp)2$—(Vp-9)?
o[ VP _(Vp) (2 p-S) (19
mp (mp)
since in general it holds that
(axb)?=a?b?—(a-b)?. (20)

equation the quantity# is naturally replaced by|g, the
presence itself of the former quantity no longer being
needed. In a way, we might say that it is more appropriate to
write i = 2|9 rather thang =#/2.

Let us add, as a last observation, a corollary of our non-
relativistic decomposition of velocity into a classical part
(depending orp) plus a part(depending orp and originat-
ing the quantum potential. If one requires the latter (aat,
the Zitterbewegungar of v to be smallV p/p=0, then one
gets immediately the Bohr-Sommerfeld-WKB condition for

Let us observe that, from the smallness of the negativethe Schrdinger equation solutions to be semiclassical:

energy componenfthe so-called small componenof the
Dirac bispinor follows the smallness also ¥fp-s=0. This

V)\dBZO.
Let us conclude the first part of the present contribution

was already known from the Clifford algebra approach toby stressing the following. We first achieved a nonrelativis-

Dirac theory, which yielded15] (8 being the Takabayasi
angle[16]) V- ps=—mp sin B, which in the NR limit cor-
responds tg3=0 (“pure electron”) or 8= (“pure posi-
tron”), so that one get¥ - ps=0 and in the Schuinger
case(s=const andV - s=0)

Vp-s=0. (21
By putting such a condition into Eq19), it assumes the
important form

2
V2=SZ(E) , (22

mp

tic, Gordon-like decomposition of the field velocity within
the ordinary tensorial language. Second, we derived the
guantum potentialwithout the postulates and assumptions of
stochastic quantum mechanidsy simply relating the non-
classical energy term tditterbewegungand spin. Such re-
sults provide further evidence that the quantum behavior of
microsystems may be a direct consequence of the existence
of spin. In fact, whers=0, the quantum potential vanishes in
the Hamilton-Jacobi equation, which then becomes a totally
classicaland Newtonian equation. We have also seen that
the quantity? itself enters the Schdinger equation owing to

the presence of spin. We are easily induced to conjecture that
no scalarquantumparticles exist that are really elementary,
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but that scalar particles are always constituted by spinningtions in terms of Minkowski(four-dimensiongl vectors.
objects endowed witZitterbewegung For instance, let us recall again that in the ordinary Dirac
theory the particle four-impulsp* is in generalnot parallel
to the four-velocity: v## p“/m. Let us repeat that in order
lll. THE KINEMATICS OF SPINNING PARTICLES to describe thezitterbewegungin all type-Ill theories it is

In the first part of this paper, we addressed ourselves €'Y convenient10—13 to split the motion variables athe

spin, Zitterbewegungand Madelung fluid inonrelativistig ot now meaning derivation with respect to ikper time
physics. The previous analysis led us to fix our attention in”
particular on the internal velocity of the spinning particle,
as well as on its external velocity=p/m. In the second part
of this article, we want to fix our attention on thetal ve-
locity v=w+ V. It is now essential to allow to assume any | | . .
value and therefore to consideslativistic physics. In what 0N i-€., the motion of the c.m., whilg* andV#=X* de-
follows our considerations will be essentially classical, whilescr'pe the internal motion. From an eIectrpdynamlcgl point
the quantum side of these last two sections will be studie(fi)_f VIew, as we knoyv, the_ conseryed el_ectrlc curre_nt IS asso-
elsewherd 17]. ciated with the trajectories op (|.g., with x".), while the
Before going on, let us make a brief digression by recall-Center of the particle Coulomb field, obtain¢a2], e.g.,
ing that, since the works of Comptdi8], Uhlenbeck and through a time average over the field generated by the
Goudsmit[18], Frenkel[18], and Schidinger[9] up to the ~ AUicKly oscillating charge, is associated with the c(ire.,
present, many classical theories, often quite different amontyith W*, and then, for free particles, with the geometric
themselves from a physical and formal point of view, havecenter of the internal motionin such a way, it isQ which

been advanced for Spinning particléer SImp'ICIW, we of- follows the (total) motion, while the c.m. follows thenean
ten write “spinning particle” or just “electron” instead of motion only. It is worthwhile also to notice that the classical

the more pertinent expression “spinparticle”). Following extendedlike electron of type lll is totally consistent with the
Bunge [19], they can be divided into three classest) standard Dirac theory; in fact, the above decomposition for
strictly pointlike particle models,(Il) actual extended-type (e total motion is the classical analog of two well-known
particle models(spheres, tops, gyroscopes, gtand (Ill) qua_n'tum-mecha_nlcal procedures, i.e., of Gm_rdon decom-
mixed models for extendedlike particles, in which the posi-POSitionof the Dirac current, and th@peratorial decompo-

tion of the pointlike charg® ends up being spatially distinct Sition of the Dirac position operatoproposed by Schiro
from the particle c.m. dinger in his pioneering workf9]. We shall return to these

Notice that in the theoretical approaches of type Iil,POINts below. L _
which, being between classes | and II, could answer a di- The well-known Gordon decomposition of the Dirac cur-

lemma posed by BarutIf a spinning particle is not quite a rent reads[13] (hereafter we shall choose units such that

point particle, nor a solid three-dimensional top, what can if?umericallyc=1)
be?”), the motion ofQ does not coincide with the motion of 1 i
the particle c.m. This peculiar feature was found to be an ey — = [ 4P h— (D ) o] — — D ( BSHY
actual characteristif20—22,15,11,1p(called, as we know, Pyip= o [P Y= (P ) ] — — P(YS"Y), (26)
the Zitterbewegungnotion) of spinning particle kinematics. — o . e
The type-Ill models, therefore, am priori convenient for % being the “adjoint” spinor ofy, the quantityp”=id* the
describingZitterbewegungspin, and intrinsic magnetic mo- four-dimensional impulse operator, arft’=(i/4)(y*y"
ment of the electron, while these properties are hardly pre= ¥"*) the spin-tensor operator. The ordinary interpreta-
dicted by making recourse to the pointlike-particle theoriesion of Eq.(26) is in total analogy with the decomposition
of class . The theories of type Ill, moreover, are consisten@iven in Eq.(25). The first term on the rhs ends up being
[8—12] with the ordinary quantum theory of the electr@ee ~ associated with the translational motion of the c_(_the sca-
below). The extendedlike electron models of class Il are at@r part of the current, corresponding to the traditional Klein-
present in fashion also because of their possible generaliz&0rdon current The second term on the rhs is instead di-
tions to include supersymmetry and superstrifig¥b)]. Fi- re_ctly connected t(_) the existence of spin and describes the
nally, the mixed models help bypassing the obvious nonloZitterbewegungnotion. .
cality problems involved by a relativistic covariant picture In the above-mentioned papers, Salinger started from
for extended-type(in particular rigid) objects of class II. the Helsenberg equation for the time evolution of the accel-
Quite differently, the extendedlikelass 1) electron is non-  €ration operator in Dirac theofy= a]
rigid and consequently variable in its shape and in its char- ) .
acteristic size, depending on the considered dynamical situ- _ ﬂ: r _ a _

. e e : . . = [H,v] (Hv=p), (27)
ation. This isa priori consistent with the appearance in the dt 7 h
literature of many different radii of the electrgfor instance,
in his book[23], McGregor lists on p. 5 seven typical elec- whereH is equal as usual tw-p+gm. Integratingv this
tron radii, from the Compton to the classical and to the magoperator equation once over time, after some algebra one can
netic radiug. For all these reasons, therefore, the spinningPbtain
particle we shall have in mind in Sec. IV is to be described i
by class Il theories. TR L R

Here we have to rephrase some of the previous consider- v=H"p 2 AH (28)

XE=gr XK, XH=pl=wH+VH, (25

where & and W“E?‘ describe as before the external mo-
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integrating it a second time, one obta|igl] the spatial part wherem is the physical rest mass of the parti¢énd not an
of the decomposition ad hocmasslike quantityv).
Our choice of the proper time may be supported by the
following considerations.

X=&+X, (29 (i) Thelightlike Zitterbewegungwhen the speed of is
constant and equal to the speed of light in vacuum, is cer-
tainly the preferred onéamong all thea priori possible in-

where(still in the operator formalisin ternal motion} in the literature and to many authors it ap-
pears to be the most adequate for a meaningful classical
picture of the electron. In some special theoretical ap-
E=r+H Ipt (30 proaches, the speed of light is even regarded as the quantum-
mechanical typical speed for tizétterbewegungin fact, the
Heisenberg principle in the relativistic domdib4] implies
(not controllable particle-antiparticle pair creations when
the (c.m.f) observation involves space distances of the order
) of a Compton wavelength. Thus'm is assumed to be the
X = ! AigH™t (p=v—H lp) (31) characteristic orb[tal radius and’riZﬁ.2 the (q.m.f.) angular
2 frequency of thezitterbewegungas first noticed by Schro
dinger, and the orbital motion a is expected to be light-
like. Now, if the chargeQ travels at the speed of lighthe
proper time ofQ does not existwhile the proper time of the
c.m. (which travels at subluminal spegdioes exist. Adopt-
IV. KINEMATICAL PROPERTIES ing as the time the proper time @, as is often done in the
OF THE EXTENDEDLIKE PARTICLES past literature, automaticallgxcludesa lightlike Zitter-
bewegung In our approach, by contrast, suchitter-

We now want to analyze the formal and conceptual propyeyegungmotions are not excluded. Analogous consider-
erties of a differed definition for the four-velocity of our 4iiqns may hold forsuperluminal Zitterbewegungpeeds,
extendedlike electron. Such a definition was initially \yithout too much trouble, since the c.itwhich carries the
adopted, but without any emphasis, in the papers by Bar nergy impulse and the “signal'is always endowed with a
and co-workers dealing with a successful model for the relagpiuminal motion.
tivistic classical electro{10(a),12]). Let us consider the fol- (i) The independence between the center-of-charge and
lowing. At variance with the procedures followed in the lit- \he center-of-mass motion becomes evident by our defini-
erature from Schiginger’s time up to the present, we have t0 i, ‘A5 a consequence, the nonrelativistic limit can be for-
make recourse not to the proper time of the cha@yeébut o, jated by us in a correct and univocal way. Namely, by

rather to the proper time of the center of mase., t0 the 555 ming the correct Lorentz factor, one can immediately see

time of the cmf As a consequence, the q_uan:i;tyn the  that the Zitterbewegungcan go on being a relativistin
denominator of the four-velocity definitiosr*=dx“/d7 has  aricular light-like motion even in the nonrelativistic ap-

to be thelatter proper time. Up to now, with the exception of roximation, i.e., whep— O (this is perhaps connected with

the above-mentioned papers by Barut and co-workers, in athe nonvanishing of spin in the nonrelativistic limitn fact,
theoretical frameworks the Lorentz factor has been assumqq the nonrelativistic limit. we have to take

to be equal to/1— V2. On the contrary, in the Lorentz factor

it has to entew? instead ofv?, the quantityw=p/p° being wl<1
the three-velocity of the c.m. with respect to the chosen

frame(p°=¢£ is the energy. By adopting the correct Lorentz and not necessarily

factor, all the formulas containing it are to be rewritten, and )
get a new physical meaning. In particular, we shall show vi<l,
below that the new definition does actuaitiyply? the impor-
tant constraint, which, holding identically for scalar particles,
is often justassumedor spinning particles:

is related to the motion of the c.m., and

is related to theZitterbewegungnotion.

as was usually assumed in the past literature.

SAs an example, recall that Psig [10(b)] derived, from a La-
grangian containing aextrinsic curvaturethe classical equation of
p#v"Z m, the motion for a rigich-dimensional world sheet in a curved back-
ground space-time. Classical world sheets describe membranes for
n=3, strings forn=2, and point particles fon=1. For the special
YL et us recall once more that the c.m.f. is the frame in which thecasen=1, he found nothing but the traditional Papapetrou equation
kinetic impulse vanishes identicallp=0. For spinning particles, for a classical spinning particle; also, by quantization of the classi-
in general, it isnot the rest frame since the velocityis not neces-  cal theory, he actually derived the Dirac equation. In R&(b)],
sarily zero in the c.m.f. however,M is not the observed electron mass and the relation
2For all plane-wave solutiong of the Dirac equation, we have between the two masses reads M + xH?, the quantityu being
(labeling by( ) the correspondintpcal mean valuer field density the so-called string rigidity, whilél is the second covariant deriva-
POy =p Y 0" y=p, " Yy y=p Py p=m. tive on the world sheet.
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(iii) The definition for the four-velocity that we are going
to proposdsee Eq(33)] does agree with the natural classical P UEEMo=
limit of the Dirac current. Actually, it was used in those 1-v
models tha{like Barut and co-workejsdefine velocity even
at the classical level as the bilinear combinatilp* ¢, via a
direct introduction of classical spinogs By the present defi-
nition, we shall be able to write the translational term as M,=p2,. (39)
p#/m, with the physical mass in the denominator, exactly as o
in the Gordon decompositiof26). Quite differently, in all  in the first case and
the theories adopting as the time the proper tim&@pin the
denominator appears au hocvariable mas#, which de- Pemi=M, 1—V§_m_f_ (39

pends on the internditterbewegungpeedV (see below. ) ) )
(iv) The choice of the c.m. proper time constitutes a natuin the second case. So we see that the invafiépis actu-
ral extension of the ordinary procedure for relativistic scalar@lly & constant, which, being nothing but the center-of-mass
particles. In fact, for spinless particles in relativity the four- €Nergyp ,,;can be identified, as we are going to prove, with
velocity is known to be univocally defined as the derivativethe physical mass of the particle. On the contrary, in the
of four-position with respect to the c.m.f. proper titfvehich ~ second caséhe standard onethe center-of-mass energy is
is the only one available in that case variable with the internal motion.
The most valuable reason in support of our definition Now, from Eq.(35) we have
turns out to be the circumstance that the previous definition

. (37

If we refer ourselves to the c.m.f. we shall hapg
=W m=0 (butve ni=Vem:#0) and then

p of=mw,u#

Vg™ (LNVI=VEVIVI=VE), (32 and, because of Eq&33) and (34),
where std denotes standard, seems to entail a mass varying p#U”Em(l—W-V)/(l—WZ). (40

with the internalzitterbewegungpeed. But let us make ex-
plicit our definition forv#. The symbols that we are going to Sincew is a vector component of the total three-veloaity
use possess the ordinary meaning; the differé@dgis that ~ [due to Eqs(25)] and, moreover, is the orthogonal projec-
now the Lorentz factor @dt will not be equal toy1—v?,  tion of v along thep direction, we can write

but instead toy1—w?. Thus we shall have

W-v=w?,
dt dx dt ich. i ' ' -
vh=dxt/dr=(dt/drdx/dr)=| —: — — which, introduced into Eq(40), yields [24] the important
dr’ dtdr relation
=(1N1-w?viJ1-w?) (v=dx/dt). (33 m=p,v*. (41)
For w4 we can write Quite differently, by use of the wrong Lorentz factor, we

would have obtained
vH=(1N1—V?%vi\1—V?)

and consequently

dt dé& dt)

W”Ed&“/drz(dt/dr;dgldr)s(d_r; oo

=(1N1-w?w/{1-w?) (w=dé&/dt) (34)

_ puA=m(1-wv)/{(1-w?)(1-v)=my1-w?1-v?
and for the four-impulse
Fm.

pr=mw*=m(1/\1—ww/\1-w?). (35
By recourse to the correct Lorentz factor, therefore, we
[In the presence of an external field such relations remaigucceeded in showing that the noticeable constramt

valid provided one makes the minimal prescriptipp-p =p,v*, trivially valid for scalar particles, holds for spinning
—eA (in the c.m.f. we shall havep—eA=0 and conse- particles too. Such a relatig@1) would be very useful also
quentlyw=0, as abovi] for a Hamiltonian formulation of the electron thedi2].

Let us now examine the resulting impulse-velocity scalar Final_ly, we want to show Fhat the o;dinaw kinematical
productp 0, which has to be a Lorentz invariant, both with ProPerties of the Lorentz invarianf=v ,v* donothold any
our v anMd with the previoussgq. With the quantityp longer in the case of spinning particles, endowed \¥itter-

=(p%p) being the four-impulse ankll;, M , two relativistic bewegungln fact, it is easy to prove that the ordinary con-

invariants, we may write straint for scalar relativistic particle&he quantityv? con-

' stant in time and equal to)ldoesnot hold for spinning

0 particles endowed withZitterbewegung Namely, if we

p =M= p—pv (36) choose as reference frame the c.m.f. in which0, we have
a 1-w? [cf. definition (33)]

or, alternatively, vemi=(1Vems), (42)
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wherefrom, with v oM
, , vi=1- 4”m2 : (46)
UVemi™= 1- Vc.m.f.’ (43
one can deducf24] the constraints In particular[22], in the lightlike case it i) ,v*=4m? and
2 2 o thereforev?=0.

0<Vemd7)<1e0<vep(n)<1  (timelike), Returning to Eq(43), note that now the quantity? is no
Vimi(n=1levi (=0  (lightike), (44) longer related to the external spepd of the c.m. but, on

V2, (1)>1e0v2 (7)<0 (spacelike. the contrary, to the internaitterbewegungspeed|V 1.

Note at last that, in general, and at variance with the scalar
case, the value af? is not constant in time any longer, but

Since the square of the total four-velocity is invariant and i ories with (except when\/gm_f. itself is constant in time

particular it isv2,, ~=v?, these constraints fos? will be
valid in any frame:
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