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Semiclassical treatment of electron-molecule scattering within the vibron model
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A semiclassical coupled-channels description of electron-molecule scattering is developed within the vibron
model of diatomic molecules. The inclusive quasielastic scattering cross section is calculated for a typical
system. The effect of the rotational coupling is taken into account by evaluating a rotationally inclusive cross
section.@S1050-2947~98!04001-3#
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I. INTRODUCTION

In recent years it has been clearly demonstrated that a
braic methods based on group theory provide a gen
framework to tackle several problems in molecular struct
@1–5#. The success of these methods in the study of rotat
vibration spectra of diatomic, triatomic, and multiatom
molecules was demonstrated by extensive comparison
the experimental data. An important test of any theory of
structure of molecules is provided by scattering observa
in the simplest possible systems: electron-molecule syste

Most of the work that has been done on the electr
molecule scattering within the algebraic model relied on
eikonal approximation@6–9#. The use of the eikonal metho
allows the extension of the algebraic treatment to scatte
problems and allows the evaluation of theS matrix with
group theoretic methods. However, there are obvious lim
tions to the use of the eikonal method, even at the inter
diate energies~2–50 eV! considered in Refs.@6–9#. An ob-
vious improvement is to use the semiclassical method ba
on the WKB approximation@10#. Owing to the fact that the
rotational final state of the molecule is usually not resolv
one has to use a generalized scheme for the scattering p
lem based on coupled channels. The combined use of
semiclassical theory, the coupled-channels formalism,
the vibron model of the structure of diatomic molecules su
as LiF and KL is the thrust of the present work.

II. THE VIBRON MODEL OF DIATOMIC MOLECULES

In 1981 Iachello introduced a boson model to describe
molecular states of a diatomic molecule@1#. Building blocks
of the model are dipole bosonspm

1(m51,0,21) and a scalar
bosons1. These bosons describe the vibration of the m
ecule as a whole. Thus the name vibron model~VM !. The
total number of vibrational quanta~vibrons!, N, is conserved
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by the interactions in the model. In the intrinsic frame, t
vibrational wave functions can be parametrized in terms
three geometric variables, a coordinateb and two Euler
anglesV5(f,u,0):

uN,v,b,V&5R~V!uN,v,b&, ~1!

with the basis statesuN,vb& given by

uN,v,b&5
1

AV! ~N2V!!
~2bs11A12b2p0

1!v

3~A12b2s11bp0
1!N2vu0&, ~2!

whereR(V) is a rotation given by

R~V!5e2 ifLze2 iuLy. ~3!

The parameterb is a variational one, determined by min
mizing the expectation value of the molecular Hamiltoni
in the ground stateuN,v50,b&. The intrinsic ground state is
a condensate of an appropriate linear combination ofs1 and
p1 bosons, which depends onb. The vibrational spectrum is
generated by promotingv bosons from the condensate to th
orthogonal combination.

Within the vibron model, the electron-molecule intera
tion is taken to be

V~r !52
ed0

r 21R0
2 r̂ •D̂[a~r ! r̂ •T̂, ~4!

whereD̂ is the dipole operator in the molecular space

D̂m5~p1s2s1p̃!m
~1! , T̂5d0D̂. ~5!

d0 andR0 are parameters. The operatorsp̃m is given by

p̃m5~2 !12mpm . ~6!

In the next section we develop the coupled-channels sch
for the electron-molecule scattering using Eq.~4! as an in-
976 © 1998 The American Physical Society
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57 977SEMICLASSICAL TREATMENT OF ELECTRON- . . .
teraction. Both rotational and vibrational excitations a
taken into account. The rotational states are not resolved
thus a rotationally inclusive cross section has to be ca
lated. We address this point in the following section.

III. COUPLED-CHANNELS FORMALISM

We take for the Hamiltonian of the electron-molecule s
tem

H5T1Hmol1V~rW !1Vc~r !, ~7!

whereV(rW) is given by Eq.~4! and

HmolunIMI&5enIunIMI&, ~8!

n being the vibrational quantum number andI the associated
rotational angular momentum.

If we neglect spin-orbit interaction, one can forget t
electron spin. Treat the problem as a zero-spin particle s
tering off the molecules. The conserved quantities are

total angular momentumJW and itsZ projectionM . We use as
an ansatz the total wave function~for fixed J andM !

CJM~rW,j!5(
nLI
U nLI

J ~r !FnLI
M ~ r̂ ,j!, ~9!

where j represents the internal variable of the molecu
U nLI

J (r ) are the relative wave functions of the electron a
the molecule for a given total angular momentumI . When
the molecule is in the stateunIMI&, the ‘‘channel’’ wave
function FnLI

M ( r̂ ,j) is defined as

FnLI
M ~ r̂ ,j!5 (

MLMI

^LMLIM I uJM&YLML
~ r̂ !unIMI&.

~10!

We are interested in low-energy electron-molecule scat
ing. We thus shall not use the Glauber~eikonal! approxima-
tion but will start with traditional coupled-channels equ
tions. These are obtained by using the equation

~H2E!CJM50 ~11!

and projecting onto the ‘‘channel’’ wave functions

„FnLI
JM u~H2E!CJM…50. ~12!

In Eq. ~13!, the parentheses indicate that the integra
only over the angular coordinatesr̂ and over the target inter
nal variables. Using the orthogonality of the channel fun
tions

~fnLI
JM uFn8L8I 8

JM
!5E dr̂E djFnLI

JM ~ r̂ ,j!Fn8L8I 8
JM

~ r̂ ,j!

5dnn8dLL8d II 8 , ~13!

Eq. ~13! reduces to the set of coupled~radial! equations
nd
-

-

t-
e

.

r-

s

-

~KL1Vc~r !1enI2E!U nLI
J ~r !

5 (
n8L8I 8

VnLI;n8L8I 8
J

~r !U n8L8I 8
J

~r !. ~14!

We shall consider an even molecule with ground-state s
of zero. Equation~14! then has to be solved subject to th
boundary condition

U nLI
J ~r ! ——→

r→`

eisL~e00!

2i
@ I L~k0r !dn0d I0dLJ

2SnLI;0J0
J OL~knIr !], ~15!

where sL is the Coulomb phase shift,I L and OL are the
ingoing and outgoing Coulomb wave functions, andSnLI;0J0

J

is the scattering matrix element for a transition from t
ground stateuL5J, J50& to the final stateunLIJ& of the
system.

The coupling potentialVnLI;n8L8I 8(r ) is explicitly of the
form

VnLI;n8L8I 8
J

~r !5„FnLI
JM ua~r ! r̂ •TW uFn8L8I 8

JM
…

5a~r !E dr̂E djFnLI
JM* ~ r̂ ,j! r̂ •TW Fn8L8I 8

JM
~ r̂ ,j!,

~16!

where the operatorTW is a dipole operator that acts only o
the internal states of the molecule. Using Racah algebra,
can explicitly express the matrix element as~see Brink and
Satchler!

VnLI;n8L8I 8
J

~r !5a~r !~2 !L81I 82I

3@~2L11!~2I 11!#1/2^L010uIL 80&

3^nIiTin8I 8&W~LIL 8I 8;J1!. ~17!

Because of the dipole approximation, it can be seen that o
states withL85L61 can be excited in the reaction~i.e.,
successive transitions between opposite parity states!. The
reduced matrix element̂nIiTin8I 8& is determined by the
model used to describe the molecule. Before discussing
let us consider two possible approximations.

A. Adiabatic approximation

If we assume that the excitation energies of the target
still small compared to the projectile energy, so that we c
setenI50, then the operator on the left-hand side of Eq.~9!
becomes independent of the target angular momentum. T
we could hope to reduce the system of coupled equations
the right-hand side we have the reduced matrix eleme
^nIiTin8I 8& in the target space. If we can find a transform
tion that will diagonalize this, one would eliminate any d
pendence on the target spins and the coupled equations
describe the scattering of an electron by a deformed field
the molecule.

Strictly, this approximation would be reasonable only f
the lowest vibron states we consider dipole excitations. O
can set up the matrix̂nIi I in8I 8& and diagonalize the poten
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tial in a truncated base, 01, 12, 21, 32,...,I max. This will

determine a transformation operatorÔ such that

(
??I 2

ÔnLI
JK ^nLIJu r̂ •I un8L8I 8J&. ~18!

If we now define new functions

U L
JK~r !5(

nI
ÔnLI

JK U nLI
J ~r !, ~19!

these functions are solutions of the coupled equations

@KL1Vc~r !2E#U nLI
JK ~r !5a~r !(

L8
GLL8

JK U L8
JK

~r !. ~20!

A new quantum numberK now appears as a ‘‘conserved
quantum number.

B. Isocentrifugal approximation

The other approximation is the isocentrifugal approxim
tion ~this may be the easier one to evaluate!. In this, one
makes the centrifugal kinetic energyKL5KJ . Then we have

„KJ1Vc~r !1enI2E…U nLI
J ~r !52( VnLI;n8L8I 8

J U n8L8I 8
J

~1!.

~21!

Since the operator on the left is independent ofL, one can
reduce the dimensionality of the coupled equations. One
show that the new functions

U nI
J ~r !5(

L
^I0J0uL0&U nLI

J ~r ! ~22!

are solutions of coupled equations

@KJ1Vc~r !1eni2E#U nI
J ~r !

52a~r !(
n8I 8

^nI0uT10un8I 80&U n8I 8
J

~r !. ~23!

These are a small number of coupled equations depen
upon the number of states (nI) of the molecule one wishes t
consider. Thevibron modelcan be used in the evaluation o
the dipole coupling matrix elements

^nI0uT10un8I 80&. ~24!

The equations are to be solved subject to the boundary
dition

U nI
J ~r !5@dn0d I0I J~k0r !2SnI;00

J OJ~knIr !#. ~25!

The ‘‘dipole’’ S matrix element will be given by

SnLI;0J0
J 5^I0J0uL0&SnI;00

J ~26!

and the scattering amplitude for transition to the st
unIMI&,
-

an

ng

n-

e

AnIMI ;000~0,f!}(
JL

^LMLIM I uL0&A~2L11!YLML
~0,f!

3@SnLI;0J0
J 2dn0dLJd I0#, ~27!

where the Coulomb phases are introduced at the correc
ergies and orbital angular momenta.

Equation ~23! can be further simplified if one assume
that the rotational states in a given vibration (n) are degen-
erate. In this case the excitation energyenI does not depend
upon the spinI . Then one can further reduce the coupl
equations by diagonalizing the coupling matrix eleme
^nI0uT10un8I 80&,

(
I

GnI
l ^nI0uT10un8I 80&5Gnn8

l Gn8I 8
l . ~28!

Now defining new functions

Wn
Jl~r !5(

I
GnI

l U nI
J ~r !, ~29!

we have the coupled equations

~KJ1en2E!Wn
Jl~r !52a~r !(

n8
Gnn8

l Wn8
Jl

~r !. ~30!

These functions satisfy the boundary conditions

Wn
Jl~r !5@dn0I J~k0r !2Sn0

JlOJ~knr !#, ~31!

where

k0
25

2m~E2e0!

\2 ,
~32!

kn
25

2m~E2en!

\2 .

Equations~30! describe the coupling between vibration
states and the dimension of the coupled equations is equ
that of the number of vibrations one includes in the calcu
tion.

The cross section for the scattering of an electron of ini

momentumkW i into a final momentumkW f off a diatomic mol-
ecule, leaving it in an excited vibrational state, is given b

ds f i~u!

dV
5

2

2l i11 (
mi

(
l f ,mf

uAf i~u!u2, ~33!

where an average over the initial magnetic quantum num
mi and a sum over the final rotional states (l f ,mf) is indi-
cated.

The coupled-channel~CC! formalism presented above a
lows for the calculation ofds f i /dV. This has been partly
done@10#. In what follows we use a simplified version of th
CC that has embedded in it the adiabatic nature of the vib
tional excitation and the ‘‘sudden’’ nature of the rotation
excitation. This CC calculation has been done in using
Glauber-eikonal approximation. Here we use instead
WKB approximation for the partial-wave phase shifts.
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IV. THE SEMICLASSICAL-ALGEBRAIC METHOD

We start by considering the usual@11# near-far decompo-
sition of the semiclassical transition operator, namely,

Â6~u!5
1

A2pk2 sin u
E`

1
2 dll1/2

3expF2i d̂~l!7 i S lu2
p

4 D2
ip

2 G , ~34!

where 6 refers to the near~far! components and use ha
been made of the asymptotic form of the Legendre poly
mials, valid for largel5 l 11/2. The phase operatord̂ re-
sponsible for the vibrational transitions is given by

2d̂~l,E!5
A2m

\
lim

R→`
F E

r 0~V!

R

drS E2
\2l2

2mr 22V̂~r ! D 1/2

2E
r 0~0!

R

drS E2
\2l2

2mr 2D 1/2G , ~35!

whereV̂(r ) is the operator~4! describing the dipole interac
tion between electron and molecule. The scattering am
tude for scattering of an electron from a molecule with init
stateu i & to a final stateu f & is then given by the sum

Af i~u!5Af i
1~u!1Af i

2~u!, ~36!

whereAf i
6(0) can be written as

Af i
6~u!5

1

A2pk2 sin u
E

0

`

dl

3l1/2K fUexpF2i d̂~l!7 i S lu2
p

4 D2
ip

2 GU i L .

~37!

These expectation values cannot be evaluated as they ar
if we assume the dipole interaction between electron
molecule to be sufficiently small we can substitute the pha
shift operatord̂ by its eikonal approximation

d̂.2
1

\ E
2`

`

V̂@r ~ t !#dt ~38!

and use the technique described in Refs.@6,7# to write these
amplitudes as

Af i
6~0!5

1

A2pk2 sin u
E

0

`

dll1/2 expF7 i S lu2
p

4 D2
ip

2 G
-

li-
l

but
d

e-

3^a f ,l f ,mf uexp@ igTz#ua i ,l i ,mi&, ~39!

where the transition matrix elements

3^a f ,l f ,muexp@ igTz#ua i ,l i ,m& ~40!

are calculated using the vibron model for describing the m
lecular excitations. In the case that we are interested in o
the rotational bands are excited and in the limit of lar
numberN we have

^a f ,l f ,muexp@ ig~e!Tz#ua i ,l i ,m&5 i l A2l 11 j l ~e!,
~41!

where

e~l!52
d

\v0
E

2`

`

a~r !dz. ~42!

The cross section is given in terms of the amplitudesAf i
6(u)

by

df f i~u!

dV
52uAf i

1~u!1Af i
2~u!u2, ~43!

where the factor of 2 takes into account the sum over fi
electron spin states. On one hand, in order to make a c
parison with experimental data we have to consider tha
the available sets of data the individual rotational transitio
are not observed. So, we consider the cross section sum
over the finall states given by

ds~u!

dV
52(

l
uAl

1~u!1Al
2~u!u2. ~44!

If we use the expressions for the amplitudes~39! with the
transition matrix elements given by Eq.~41! and expand the
square of the modulus, we can make use of the addi
theorem@12#

(
l

~2l 11! j l @e~l!# j l @e~l8!#5 j 0@e~l!2e~l8!#

~45!

to perform thel sum. By further using the Bessel functio
integral representation

j 0~z!5
1

2 E
0

p

exp~ iz cosj!sin jdj ~46!

we can write
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ds~u!

dV
5

1

2pk2 sin u

1

2 E
0

p

dj sin jU E
0

`

dll1/2 expF i e~l!cosj2 i S lu2
p

4 D G
1E

0

`

dll1/2 expF i e~l!cosj1 i S lu2
p

4 D GU2

. ~47!

This expression can be further reduced if we observe that the two integrals have stationary phase contributions in
domains of the anglej. Thus, if we split the integration into a sum of two integrals, from 0 top/2 and fromp/2 to p, we can
rewrite the above equation asymptotically as

ds~u!

dV
5

1

2pk2 sin u

1

2 E
0

p/2

dj sin jH U E
0

`

dll1/2 expF2 i e~l!cosj2 i S lu2
p

4 D GU2

1U E
0

`

dll1/2 expF i e~l!cosj1 i S lu2
p

4 D GU2J ~48!
d
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ds~u!

dV
5

1

2 E
0

1

dxFdsnear~u,x!

dV
1

ds far~u,x!

dV G . ~49!

The double integration makes this formula inadequate to
the numerical calculation. Actually, it is more practical
calculate each individuall contribution and sum them. Onl
a few terms are necessary in order to have convergenc
we are going to show below. However, the above expr
sions have a nice physical interpretation. The anglej may be
associated with the arbitrary orientation of the molecule d
ing the collision. Thus, in the summed cross section we
making an average over these possible orientations. We
see that the above expression is an incoherent sum o
near and the far sides of the scattering amplitude and
result it will give rise a smooth function of the scatterin
angle even if the individual contributions are oscillatories

The next step in the semiclassical approximation is
evaluate asymptotically the above integrals using the stat
ary phase method. To do this we first write the Bessel fu
tion as

j l ~z!5Ap/2zMl 11/2 cosf l 11/2, ~50!

where the modulus and the phase are given respectively

M l 11/25AJl 11/2
2 1Yl 11/2

2 ~51!

and

f l 11/25arctanS Yl 11/2

Jl 11/2
D . ~52!

Using these relations we can then write the following expr
sions for the two amplitudesAf i

6 :

Al
6~u!5

i lA2l 11

A2k2 sin u
E

0

` dl

2e
l1/2M l 11/2

3expF7 if l 11/2~e!7 i S lu2
p

4 D2
ip

2 G ,
~53!
o
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since we can consistently neglect the branch of the cos
without stationary points. We remark also that the abo
phasee(l) leads to a deflection function that extends, fo
small angular momenta, to angles larger thanp, which is
physically unacceptable. In order to correct this we substitu
in the argument of the phasef l 11/2 the quantitye as

e572d6~l!, ~54!

whered6 are the semiclassical phase shifts given by Eq.~35!
with a real repulsive~attractive! interaction. Making this
identification, the stationary angular momenta are now o
tained as the solutions of the equation

Q l ~l!5Q0~l!
df l 11/2

de
~l!57u, ~55!

where Q0 is the classical elastic deflection function in th
attractive and repulsive dipole interaction andQ l(l) is the
effective deflection function for the inelastic process that e
cites thel rotational state of the molecule. The derivative o
the phasef ~we omit the label! with respect to its argument
is given by

FIG. 1. The classical deflection function fore1LiF at E
55.44 eV~see text for details!.



sult of

57 981SEMICLASSICAL TREATMENT OF ELECTRON- . . .
FIG. 2. ~a! The rotationally exclusive cross sections for the system of Fig. 1~see text for details!. ~b! The inclusive cross section~solid
line! for the system of Fig. 1.~c! Same as~b! at E520 eV. The dashed curves in these last two figures correspond to the eikonal re
Refs.@6,7#.
we
df l 11/2

de
5

2

pM l 11/2
2 e

. ~56!

Denoting byl l the corresponding solutions of Eq.~55! the
near-side amplitude can be written as

Al
1~u!5

i l A2l 11

A2k2 sin u

1

2e
l1/2M l 11/2S 2p

Q l8 ~l l ! D
1/2

3expF2 if l 11/2~l l !2 i S lu2
p

4 D2
ip

2 G .
~57!
For the far-side amplitude that is dominated by a rainbow
have the uniform asymptotic expressions

Al
2~u!5

i l A2l 11

A2k2 sin u

1

2e
2p exp~ iA !@p0Ai ~x!2 iq0Ai 8~x!#,

~58!

where Ai(x) and Ai8(x) are Airy function and its derivative
andA(u),x(u) are given by

A~u!5
f l 11/2~l1!2l1u1f l 11/2~l2!2l2u

2
~59!
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982 57M. S. HUSSEIN AND M. P. PATO
and

x~u!5H 3

4i
@f l 11/2~l1!2l1u2f l 11/2~l2!1l2u#J 2/3

.

~60!

In these equationsl1,2 are the two roots of Eq.~55! corre-
sponding to the angular momenta of the semiclassical tra
tories. Finally,p0 andq0 are given by

p05 1
2 ~G1F181G2F28!, ~61!

q05
1

A2x
~G1F182G2F28!, ~62!

whereF5f l 11/2 andG5l1/2M l 11/2/e and the indices de
note the order of derivative.

The above expressions for the far-side amplitudes
valid in the so-called bright side of the rainbow, i.e., f
angles below the rainbow angle. In the dark side, which c
responds to the classical forbidden region they are ana
cally continued through a parabolic approximation of the
flection function. In the next section we apply our theory
the scattering of electrons from the molecules LiF and K

V. APPLICATIONS AND DISCUSSION

As an application of the above formalism we consider
case of scattering of the 15.7-eV electrons by KI molecu
discussed in Ref.@7#. We show in Fig. 1 the elastic (l 50)
and the effective inelastic deflection functions for seve
values of the rotational angular momentuml . It is seen that
the far side, i.e., the region of negative angles, is domina
by rainbows that becomes shallower asl increases. In the
near-side, positive angles, we have a typical repulsive de
tion function whose maximum angle of deflection beco
smaller for largerl .

The corresponding cross sections are shown in Fig. 2
gether with the summed cross section. It is seen that altho
the cross section for the excitation of a given rotational s
of the molecule is oscillatory, the inclusive cross section i
smooth function of the angle. This result corroborates
discussion following Eq.~49!. In Fig. 2~b! we show a com-
parison between our results~solid line! and those of Refs.@6,
7#. As expected, our cross section is a bit higher than tha
the pure eikonal one. In Fig. 2~c! the results for the sam
system atE55 eV are also shown. Here our results com
very close to the data. Finally, in Figs. 3~a! and 3~b! we show
the calculation for the systeme1KI at E515.7 eV and 6.74
eV. We see here a trend similar to that of the previous c
although the lower-energy case comes out much worse.
may be an indication that the adiabatic approximation is
a very good one for the KI molecule.

The fact that the experimental data show a conspicu
rise and a hint of an oscillation, thus contradicting the cal
lation, may indicate the presence of a quasistationary, r
nant state in the electron-molecule system, as Refs.@6,7#
asserted.

In conclusion, we have presented in this paper an
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proved eikonal treatment of the electron-molecule scatter
The diatomic molecule is treated within the vibron mod
We found that, though more accurate than the theory of R
@6,7#, our treatment still fails to reproduce fully the rotation
inclusive cross section.
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FIG. 3. Same as Figs. 2~b! and 2~c! for the systeme1KI at ~a!
E515.7 eV and~b! 6.74 eV.
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