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Semiclassical treatment of electron-molecule scattering within the vibron model

M. S. Husseifi
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
and Institute for Theoretical Atomic and Molecular Physics at the Harvard-Smithsonian Center for Astrophysics,
60 Garden Street, Cambridge, Massachusetts 02138

M. P. Patd
Division de Physique Theorique, Institute de Physique Nucleaire, Univétaiis—Sud, G.P.O. No. 1-91496, Orsay CEDEX, France
(Received 23 June 1997

A semiclassical coupled-channels description of electron-molecule scattering is developed within the vibron
model of diatomic molecules. The inclusive quasielastic scattering cross section is calculated for a typical
system. The effect of the rotational coupling is taken into account by evaluating a rotationally inclusive cross
section.[S1050-294{@8)04001-3
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I. INTRODUCTION by the interactions in the model. In the intrinsic frame, the
vibrational wave functions can be parametrized in terms of
In recent years it has been clearly demonstrated that algéhree geometric variables, a coordingéeand two Euler
braic methods based on group theory provide a generalnglesQl=(¢,6,0):
framework to tackle several problems in molecular structure
[1-5]. The success of these methods in the study of rotation- IN,v,8,Q)=R(Q)[|N,v,8), Y
vibration spectra of diatomic, triatomic, and multiatomic
molecules was demonstrated by extensive comparison wi
the experimental data. An important test of any theory of the
structure of molecules is provided by scattering observables — 1
. . . _ IN,v.8) (
in the simplest possible systems: electron-molecule systems. VVI(N=V)!
Most of the work that has been done on the electron-
molecule scattering within the algebraic model relied on the X (\1-B%s* +Bpg)N|0), 2
eikonal approximatiofi6—9]. The use of the eikonal method ) ) _
allows the extension of the algebraic treatment to scatterinyN€reéR(Q) is a rotation given by
problems and allows the evaluation of tisematrix with R(Q)= e i4ligmifly 3
group theoretic methods. However, there are obvious limita- ’

tions to the use of the eikonal method, even at the intermero paramete is a variational one, determined by mini-
diate energies2—-50 eV considered in Ref46-9]. An ob- izing the expectation value of the molecular Hamiltonian
vious improvement is to use the semiclassical method basqra the ground statéN,v=0,8). The intrinsic ground state is
on the WK.B approximatiof 10 me_g to the fact that the a condensate of an appropriate linear combinatiosi'ofind
rotational final state of the molecule is usually not resolved, + p o0\ hich depends ¢h The vibrational spectrum is

lone Eas tg use a geln?jrahhzed the?he for thg_scgttermg fprto enerated by promoting bosons from the condensate to the
em based on coupled channels. The combined use o thogonal combination.

semiplassical theory, the coupled—channe_ls formalism, an Within the vibron model, the electron-molecule interac-
the vibron model of the structure of diatomic molecules sucf‘hon is taken to be '
as LiF and KL is the thrust of the present work.

tWith the basis stateldN,v8) given by

—Bs"+V1-B%pg)"

ed

WF-E)EC((T)?-%, (4)
0

Il. THE VIBRON MODEL OF DIATOMIC MOLECULES Vin=-

In 1981 lachello introduced a boson model to describe the hereD is the diool tor in th lecul
molecular states of a diatomic moleciild. Building blocks whereb s the dipole operator in the molecular space
of the model are dipole bosonp:%(,uz 1,0,—-1) and a scalar N =1 A4 A

. . . D,= S—S , T=dyD. 5
bosons*. These bosons describe the vibration of the mol- w=(P P) 0 ®)

ecule as a wholg. Thus the name vibron mp(déN/I). The d, andR, are parameters. The operatﬁr,§ is given by
total number of vibrational quantaibrons, N, is conserved

Pu=(—)""p,- (6)
*Present address: Instituto desiea, Universidade de 8a&Paulo,  In the next section we develop the coupled-channels scheme
Caixa Postal 66318, 05389-970c5Raulo, Sa Paulo, Brazil. for the electron-molecule scattering using E4). as an in-
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teraction. Both rotational and vibrational excitations are (KL+Vc(r)+6n|_E)UﬂL|(r)
taken into account. The rotational states are not resolved and
thus a rotationally inclusive cross section has to be calcu-

_ J J
lated. We address this point in the following section. _n,%;l, Vawinrn (DU (1) (14
Ill. COUPLED-CHANNELS FORMALISM We shall consider an even molecule with ground-state spin

of zero. Equation(14) then has to be solved subject to the
We take for the Hamiltonian of the electron-molecule sys-boundary condition

tem .
: )—>—emL(€OO)[| (Kol ) 8108108
- U (r - r
H=T+Hport V(1) +Ve(r), v LT 2 PR oot
whereV(r) is given by Eq.(4) and ~Sh11:0200L(KniM)], (15

where o is the Coulomb phase shift; and O, are the
ingoing and outgoing Coulomb wave functions, ﬂg,mo

is the scattering matrix element for a transition from the
ground statdL=J, J=0) to the final statgnLIJ) of the
system.

The coupling potentiaV,, ... +/(r) is explicitly of the

m

Hmol|n|MI>:€nl|n|Ml>! )

n being the vibrational quantum number anthe associated
rotational angular momentum.

If we neglect spin-orbit interaction, one can forget the
electron spin. Treat the problem as a zero-spin particle scaf-

. r or
tering off the molecules. The conserved quantities are the
total angular momenturd and itsZ projectionM. We use as VﬂLI'n’L’I’(r): (DM a(r)i- ﬂ@ﬂ/Mu. )
an ansatz the total wave functidfor fixed J andM) '

=a(r>f d‘rf de@IM* (F,oF - TOM , (7,8),

Wom(r€)= 2 Un, (NP (F.E), (9)
nLl (16)
where ¢ represents the internal variable of the moleculewhere the operatof' is a dipole operator that acts only on
U, (r) are the relative wave functions of the electron andthe internal states of the molecule. Using Racah algebra, one
the molecule for a given total angular momentumwhen  can explicitly express the matrix element @ee Brink and
the molecule is in the statgIM,), the “channel” wave Satchley
function ®M (F,£) is defined as
J ' r_
Vi (D =a(r)(—) !

OM\(F.6)= > (LMLIM|[IM)Yy, (F)nIM)). X[(2L+1)(21+1)]"4L01dIL0)
MM,
(10) (I Tfn/ 17 YW(LIL"17;31). 17

We are interested in low-energy electron-molecule scatterB&cause of the dipole approximation, it can be seen that only

ing. We thus shall not use the Glautieikona) approxima-  States withL’=L =1 can be excited in the reactidie.,
tion but will start with traditional coupled-channels equa- SUCCESSive transitions between opposite parity Stald®

tions. These are obtained by using the equation reduced matrix elementnl|T|n’l") is determined by the
model used to describe the molecule. Before discussing this,
(H—E)W,y=0 (11) let us consider two possible approximations.
and projecting onto the “channel” wave functions A. Adiabatic approximation
If we assume that the excitation energies of the target are
(@M|(H—E)W,,)=0. (12)  still small compared to the projectile energy, so that we can

sete, =0, then the operator on the left-hand side of E).

In Eq. (13), the parentheses indicate that the integral isbecomes independent of the target angular momentum. Thus,
only over the angular coordinatesand over the target inter- we could hope to reduce the system of coupled equations. On
nal variables. Using the orthogonality of the channel func-the right-hand side we have the reduced matrix elements
tions (nl||TIn"1"} in the target space. If we can find a transforma-

tion that will diagonalize this, one would eliminate any de-

IM L IM - IM M a pendence on the target spins and the coupled equations will
(¢nLI|q)n’L’I’):f drf déDy /() Py (1,6) describe the scattering of an electron by a deformed field of
the molecule.
= Snn OLL Oy (13 Strictly, this approximation would be reasonable only for

the lowest vibron states we consider dipole excitations. One
Eq. (13) reduces to the set of couplédhdial equations can set up the matriénl||I||n’1") and diagonalize the poten-
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tial in a truncated base,'Q 17, 2%, 37,... | pax. This will
determine a transformation operatorsuch that

Aaim, ;00 0.6)% 24 (LMLIM[LO) V(2L +1)Y 1y, (0,69

[S]LI 1030~ n0SL3810]s (27)

where the Coulomb phases are introduced at the correct en-
ergies and orbital angular momenta.

Equation(23) can be further simplified if one assumes
that the rotational states in a given vibratiam) (are degen-
Z/{“L‘K(r)=2 oy Ul (), (190 erate. In this case the excitation enekgy does not depend

nl upon the spinl. Then one can further reduce the coupled

. . . equations by diagonalizing the coupling matrix elements
these functions are solutions of the coupled equations (r?IO|T In’l ,y0> g g ping
10 ’

E O (nLIJ|F-1|n'L'1"J). (18
nLlI
222

If we now define new functions

[KL+VC(r)—E]Uﬂ'fl(r)=a(r)§ I ul(r. (20 > Gh(nl0[Tyn"1'0)=T7, G, 29

nn/ n’|’-

A new quantum numbeK now appears as a “‘conserved” Now defining new functions
guantum number.

WA(ry=2, Ghul(r), 29

B. Isocentrifugal approximation n (1) 2| nm(r) 29

The other approximation is the isocentrifugal approxima- :

tion (this may be the easier one to evalyat@ this, one we have the coupled equations

makes the centrifugal kinetic eneréfy =K;. Then we have N N
(Ky+ e E)WpNN) =—a(r) X Th Wy (r).  (30)
n/

(Ky+ V() +en—EXp (1) =—2, V}]]Ll;n’L’I/ui’L’l'(l)'
1) These functions satisfy the boundary conditions

JN _ A
Since the operator on the left is independent.pfone can Wi (1) =[8nol s(kor) = SoOa(knr ) 1, (32)
reduce the dimensionality of the coupled equations. One can,
ere
show that the new functions
k2: ZM(E_ 60)
U (ry= E (1030|LOYU} (1) (22 0 PCEE
(32
. . 2u(E—
are solutions of coupled equations kﬁ:%_

[Ka+ Ve(r) +eni— BN (1) Equations(30) describe the coupling between vibrational

; states and the dimension of the coupled equations is equal to
= —a(r)ZI, (nI0|Tyn"1"0)U;,, ./ (r). (23)  that of the number of vibrations one includes in the calcula-
n tion.
These are a small number of coupled equations depending The cross section for the scattering of an electron of initial
upon the number of statea k) of the molecule one wishes to momenturrk; into a final momentuntk; off a diatomic mol-
consider. Thevibron modelcan be used in the evaluation of €cule, leaving it in an excited vibrational state, is given by
the dipole coupling matrix elements

dO’fi(g) 2 2
(n10|T1g/n’1"0). (24) dQ  2+1 ; .;nf A, (33
The equations are to be solved subject to the boundary convhere an average over the initial magnetic quantum number
dition m; and a sum over the final rotional statds,(n;) is indi-
cated.
Un (1) =[8n0810l 3(Kol) = Sp:06Qa(knil) 1. (25) The coupled-channéCC) formalism presented above al-
lows for the calculation oflay;/d€). This has been partly
The “dipole” S matrix element will be given by done[10]. In what follows we use a simplified version of the
CC that has embedded in it the adiabatic nature of the vibra-
S]M;OJO:(I0\]0|L0>S,]1,;OO (26)  tional excitation and the “sudden” nature of the rotational

excitation. This CC calculation has been done in using the
and the scattering amplitude for transition to the stateGlauber-eikonal approximation. Here we use instead the
[nIM,), WKB approximation for the partial-wave phase shifts.
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IV. THE SEMICLASSICAL-ALGEBRAIC METHOD X{ay,lp,melexdig Tl e ./ ,m), (39)
We start by considering the usydll] near-far decompo- h h . i el
sition of the semiclassical transition operator, namely, where the transition matrix elements
e 1 Py 12 : ,
A_(G):m §d7\)\ 3<af,/f,m|exp:|gTZ]|ai,/i,m> (40)

are calculated using the vibron model for describing the mo-
lecular excitations. In the case that we are interested in only

(34 the rotational bands are excited and in the limit of large
numberN we have

where = refers to the neaftfar) components and use has

been made of the asymptotic form of the Legendre polyno-

A __( 77) i
Xexpg 2i6(N)Fi AG—Z T

mials, valid for largex=1+1/2. The phase operatat re- (a¢, /¢, mlexdig(e)T e,/ ,my=i"\2/+1j (),
sponsible for the vibrational transitions is given by (41)
where
R P R A2 . 112
2500,E)= 2 im f dr(E——z—V(r))
f Roos| Jrg(V) 2,LLF d .
e(N)=—-— f a(r)dz (42
R 72)\2\ 12 hvg J -
—f dl’(E—ﬁ> }, (39 +
ro(0) ur The cross section is given in terms of the amplitudes 6)
by
whereV(r) is the operatof4) describing the dipole interac-
tion between electron and molecule. The scattering ampli-
tude for scattering of an electron from a molecule with initial dosi(0) N S
state|i) to a final statdf) is then given by the sum dQ =2[An(0)+Aq(0)]% (43
A (0)=Af(0)+A;(6), (36)  Where the factor of 2 takes into account the sum over final
electron spin states. On one hand, in order to make a com-
whereA;; (0) can be written as parison with experimental data we have to consider that in

the available sets of data the individual rotational transitions
are not observed. So, we consider the cross section summed

. 1 o over the final/” states given by
Af ()= ——— f dN
V27kZsin g Jo
do(6) 3
. i =2 |AT(0)+A(0)% (44)
><)\1’2<f exr{Zi&(A)Ii(hﬁ—%)—;} i> o 22 A/ (O

37) If we use the expressions for the amplitud89) with the
transition matrix elements given by E@1) and expand the
square of the modulus, we can make use of the addition

These expectation values cannot be evaluated as they are, gorem[12]

if we assume the dipole interaction between electron and
molecule to be sufficiently small we can substitute the phase-
shift operators by its eikonal approximation Z (2/+1)j L)1 LeN) =] o[ e(\)—e(\")]

1 (45
o= h f_xV[r(t)]dt (38) to perform the/ sum. By further using the Bessel function
integral representation

and use the technique described in Rfs7] to write these

amplitudes as

jo(z):% fow exp(iz cos &)sin £dé (46)
A5 (0)=

e g 5
_— exd Fi| N0— —
2mk?sin 6 Jo N 4 2 we can write
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do-(a) = ! L i - 1/2 ; . ™
dQ  27KZsin6 2 fo dé sin ¢ fo dAAYZ expie(M)cosE—i| Ao~ o
@ 2
+ fo danL2 ex;{ie()\)cosgﬂ NO— %) (47)

This expression can be further reduced if we observe that the two integrals have stationary phase contributions in different
domains of the anglé. Thus, if we split the integration into a sum of two integrals, from @& and from/2 to 7, we can
rewrite the above equation asymptotically as

d0'(6)_ 1 1 w2 ] % U . - -
dQ _2wkzsin0§fo dg sin & fo dAN T exg —ie(N)cosé—i{ N o—

ol

2

+

f daaY2 exp{ie()\)cosgﬂ
0

2
] (48)

or since we can consistently neglect the branch of the cosine

nea far without stationary points. We remark also that the above
do(6) _ } Jldx da"(0,x) " do™(6,x) (49) phasee(\) leads to a deflection function that extends, for
dQ 2 Jo dQ dQ small angular momenta, to angles larger thanwhich is
physically unacceptable. In order to correct this we substitute

The double integration makes this formula inadequate to d¢n the argument of the phasg, , 1, the quantitye as

the numerical calculation. Actually, it is more practical to

calculate each individual contribution and sum them. Only e=F2567(\), (59

a few terms are necessary in order to have convergence as . ) ) ) )

we are going to show below. However, the above expreswheres™ are the semiclassical phase shifts given by(B8)

sions have a nice physical interpretation. The aggieay be ywth a regl repulswe(_attracnve interaction. Making this

associated with the arbitrary orientation of the molecule duridentification, the stationary angular momenta are now ob-

ing the collision. Thus, in the summed cross section we aréined as the solutions of the equation

making an average over these possible orientations. We can

see that the above expression is an incoherent sum of the 0,(\)=0,(\) A/ +1 (=76, (55)
near and the far sides of the scattering amplitude and as a de

result it will give rise a smooth function of the scattering here ©. is the classical elastic deflection function in th
angle even if the individual contributions are oscillatories. where ®o IS the classical elastic detiection function in the
attractive and repulsive dipole interaction a@g(\) is the

The next step in the semiclassical approximation is to ffective deflection function for the inelasti that
evaluate asymptotically the above integrals using the statiorfz, 'ccuve detiection function for the inelastic process that ex-

ary phase method. To do this we first write the Bessel funCQ_ites thel rotational state of the molecule. The derivative of

tion as the phasep (we omit the labelwith respect to its argument
is given by

JA(2)=\7I2ZM 1/ COS b, 1 113, (50

where the modulus and the phase are given respectively b

M 1= NI 1t Yo i1 (51

80

and

Y v

(52

@, (degrees)

by 10= arctarE 3 .
/+1/2

Using these relations we can then write the following expres
sions for the two amplitudeA;; :

i'V2/+1 [=d\
V2kZsing Jo 2e

Xexp{iid)/+l,2(e)ii()\0— %)—'ﬂ

AT ()= N2M 4

FIG. 1. The classical deflection function far+LiF at E
(53 =5.44 eV(see text for details
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FIG. 2. (a) The rotationally exclusive cross sections for the system of Figet text for details (b) The inclusive cross sectidaisolid
line) for the system of Fig. 1(c) Same agb) at E=20 eV. The dashed curves in these last two figures correspond to the eikonal result of

Refs.[6,7].

Denoting by\ , the corresponding solutions of E(5) the

dé, 12 2

de

= 5 )
MY | 106

near-side amplitude can be written as

AS(8)= i"V2/+1 1 Ny ( 27 )1’2
ST 2kZsing2e M@0

XeX[{—i¢/+1/2()\/)_i()‘9_ g) 2

i

(56)

(57)

For the far-side amplitude that is dominated by a rainbow we
have the uniform asymptotic expressions

i“V2/+1 1

= 2 exp(iA)[ poAi(X) —iqoAi’ (X)],

J2kZ sin 9 2¢€
(58

A (0)=

where Ai(x) and Ai'(x) are Airy function and its derivative
andA(6),x(6) are given by

b/ 12dN) = N0+ D 1o(N) — N0

A(0)= 5

(59
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and o . : —
3 2/3 E ]
X(6)= I[¢/+1/2()\1)_7\19_¢/+1/2()\2)+7\20] - 13| ]
' (S Kl E
(60) . g :
In these equations, , are the two roots of Eq55) corre- L 14| |
spondi ’ iclassical trajec- S © F E=15.7eV 3
ponding to the angular momenta of the semiclassical trajec L 2 E
tories. Finally,py, andqg are given by :_5; o
8 10" L .
(%24 E 3
1 ’ ’ N F ]
Po=2(G1F1+GyFy), (61 é Py i ®eeqes 0% 1
e F
1 é ]
QO=\/?X (G1F1—=G2F>), (62 €07 L . N _
whereF=¢,_ 1, andG=\Y?M ,_ ;,/ € and the indices de- el ]
note the order of derivative. O TS50 B0 ®o
The above expressions for the far-side amplitudes are , es (d )
valid in the so-called bright side of the rainbow, i.e., for @ scattering angles  (degrees
angles below the rainbow angle. In the dark side, which cor- WE —— -
responds to the classical forbidden region they are analyti- 0 E
cally continued through a parabolic approximation of the de- C ]
flection function. In the next section we apply our theory to 2L K| .
the scattering of electrons from the molecules LiF and KI. E 3
% C,
V. APPLICATIONS AND DISCUSSION E oot
As an application of the above formalism we consider the 5 i
case of scattering of the 15.7-eV electrons by Kl molecules 3 oL
discussed in Ref.7]. We show in Fig. 1 the elasti/{=0) o
and the effective inelastic deflection functions for several 8 r
values of the rotational angular momentumn It is seen that oL
the far side, i.e., the region of negative angles, is dominated %
by rainbows that becomes shallower Asncreases. In the 2 r
near-side, positive angles, we have a typical repulsive deflec- & oL
tion function whose maximum angle of deflection become
smaller for larger/. i
The corresponding cross sections are shown in Fig. 2 to- oVl
gether with the summed cross section. It is seen that although 0 3 6 90 120 150 180
the cross section for the excitation of a given rotational state (b) scattering angle (degrees)

of the molecule is oscillatory, the inclusive cross section is a

smooth function of the angle. This result corroborates the FG. 3. same as Figs(® and 2c) for the systeme+Ki at (a)
discussion following Eq(49). In Fig. 2b) we show a com- g 157 ev andb) 6.74 eV.

parison between our resultsolid line) and those of Refg6,

7]. As expected, our cross section is a bit higher than that of . .
the pure eikonal one. In Fig.(® the results for the same proved eikonal treatment of the electron-molecule scattering.

system atE=5 eV are also shown. Here our results ComeThe diatomic molecule is treated within the vibron model.

very close to the data. Finally, in Figsaand 3b) we show We found that, though more accurate than the theory of Refs.

the calculation for the systemr Kl at E=15.7 eV and 6.74 [6,7], our treatment still fails to reproduce fully the rotational

e : inclusive cross section.
eV. We see here a trend similar to that of the previous case,

although the lower-energy case comes out much worse. This
may be an indication that the adiabatic approximation is not ACKNOWLEDGMENTS
a very good one for the KI molecule.

The fact that the experimental data show a conspicuous One of us(M.P.P) appreciates the kind hospitality of the
rise and a hint of an oscillation, thus contradicting the calcuECT where part of this work was done. M.S.H. was sup-
lation, may indicate the presence of a quasistationary, resgorted by FAPESRBrazil), by funds provided by the U.S.
nant state in the electron-molecule system, as R&9d) Department of EnergyDOE) under Grant No. DE-IC02-
asserted. 94ER40818, and by the National Science FoundatiMBP).

In conclusion, we have presented in this paper an imM.P.P. was supported in part by FAPE&Btazil).
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