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Reflectionless potentials for the one-dimensional Dirac equation: Pseudoscalar potentials
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~Received 25 August 1997!

For the Dirac equation in one dimension, a method for constructing reflectionless pseudoscalar potentials is
presented. This is a relativistic generalization of Kay and Moses’s classic method@J. Appl. Phys.27, 1503
~1956!# that deals with a similar problem for the Schro¨dinger equation. This can also be viewed as an inverse
scattering problem. For a set of assumed energy levels, the method furnishes a family of potentials, each of
which reproduces the energy levels. These potentials are all reflectionless.@S1050-2947~98!02001-0#

PACS number~s!: 03.65.Ge., 03.40.Kf
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I. INTRODUCTION

In their classic paper of 1956, Kay and Moses gave
method of constructing reflectionless potentials for
Schrödinger equation in one dimension@1#. We are inter-
ested in applying the Kay-Moses~KM ! method to the one-
dimensional Dirac equation. Regarding its behavior un
the Lorentz transformation, there are three types of poten
for the Dirac equation: scalar, vector, and pseudoscalar
the vector type we mean the zeroth component of a Lore
vector ~like the Coulomb potential!. We have examined the
scalar type potential and have shown how an infinite fam
of reflectionless potentials can be constructed@2,3#. We also
have indicated that reflectionless potentials are impossib
they are of the vector type@2#.

The purpose of this paper is to examine the remain
possibility with the pseudoscalar type. We show that the K
method again enables us to construct reflectionless po
tials. The problem can also be viewed as an inverse sca
ing or inverse spectrum problem. For a set of assumed
ergy levels, we can construct a family of potentials, each
which reproduces the energy levels. These potentials turn
to be all reflectionless. The situation is similar to that of t
scalar type, but there are nontrivial differences.

In Sec. II we summarize some general features of
Dirac equation with a pseudoscalar potential. In Sec. III
present a method for constructing a reflectionless poten
Section IV deals with a few examples. Some intriguing
pects of the problem are illustrated. Summary and discus
are given in Sec. V.

II. GENERAL FEATURES OF THE DIRAC EQUATION
WITH A PSEUDOSCALAR POTENTIAL

The Dirac equation that we consider is

HDc~x!5Ec~x!, HD5a@p2 ib f ~x!#1bm, ~1!

wherec5\51, p52 id/dx, andm is the mass of the par
ticle. The wave functionc has two components. For th
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Dirac matricesa and b, we use the 232 Pauli matrices
a5sy and b5sz . The potential inHD is called the pseu-
doscalar potential becausec†abc is a pseudoscalar. Re
cently, there has been a surge of interest in the ‘‘Dirac os
lator’’ that is obtained with the special choice off (x)5mvx
@4,5#. In this paper we are interested in the transmiss
problem. Therefore, we assume thatf (x) remains finite as
x→6`. Our goal is to findf (x) such that all waves inciden
from negative infinity, irrespective of their wave numbe
go to positive infinity without any reflection. In achievin
this goal, the following features of the Dirac equation will b
useful.

Let the upper~lower! component ofc be c1 (c2). Then
Eq. ~1! becomes

2c281 f c25~E2m!c1 , ~2!

c181 f c15~E1m!c2 , ~3!

where c185dc1 /dx. These two equations can be manip
lated into the supersymmetry~SUSY! pair of Schro¨dinger
equations

Hic i5S p2

2m
1Ui Dc i5ec i , e5

E22m2

2m
, ~4!

Ui~x!5
1

2m
~ f 27 f 8!, ~5!

wherei 51 or 2 and the double sign in Eq.~5! is 2 (1) for
i 51 ~2!. In the SUSY terminology,f is the superpotential
Although U1 andU2 are different, all eigenvalues, with th
possible exception of the smallest one, are shared byH1 and
H2. For SUSY see, e.g., Refs.@6,7#. It is known thate is
non-negative. It is also known that the SUSY pairU1 andU2
are phase equivalent, that is, the resulting transmission
reflection coefficients are the same betweenU1 and U2.
Therefore, ifU1 is a reflection potential, so isU2. If U1 and
U2 are both reflectionless, the underlying pseudoscalar
tential is clearly reflectionless.

Let us consider Eq.~4! for i 51 with e50. For this spe-
cial choice ofe, we designate the wave function withf1,
:
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2
1

2m
f191U1f150. ~6!

The f1 and f are related by

f ~x!52
f18

f1
, f1~x!5expS 2Ex

f ~x!dxD . ~7!

Since e50 is the minimum possible value ofe, we can
choosef1 such that it has no node. Thenf is free from
singularity. The state thatf1 represents may or may not be
bound state, depending on the asymptotic behavior off . If f
is such that

f ~`!.0, f ~2`!,0, ~8!

then thef1 is normalizable and it represents a bound sta
Otherwisef1 is not normalizable. Conversely, iff1 is nor-
malizable,f has to conform to Eq.~8!. Let us add that if we
take Eq.~4! of i 52 ~instead ofi 51), we obtain formulas
similar to Eqs.~6!–~8! except thatf is replaced by2 f . The
H2 has a bound state with eigenvaluee50 if and only if f is
such that

f ~`!,0, f ~2`!.0. ~9!

There is a sort of symmetry between positive- a
negative-energy solutions of Eq.~1! in the following sense.
If we go to the Foldy-Wouthuysen representation@8,4,5#, HD
is transformed to

HFW5bAm21p21 f 22b f 8. ~10!

With b51 (21) we obtain positive-~negative-! energy
states. It is clear that the eigenvalues ofH1 (H2) are related
to positive- ~negative-! energy eigenvalues ofHD . The H1
andH2 share the same eigenvalues, possibly except the
est one, and they are phase equivalent. If we find a reflec
potential for positive energies, it is also reflectionless
negative energies. We focus on positive-energy states in
paper.

III. HOW TO CONSTRUCT REFLECTIONLESS
POTENTIALS

Assume a sequence ofN energy eigenvalues ofHD ,
E1,E2,•••,EN . The Ei ’s can take any positive value
not smaller thanm. Although we use the same indexi for
Hi , etc., and forEi , the distinction between thei ’s should
be clear from the context. On the basis of the KM meth
@1#, we can findf (x) such that the Dirac equation has th
assumed sequence of energy eigenvalues. It turns out tha
pseudoscalar potential with thef (x) so determined is a re
flectionless potential. Suchf (x) is not unique. We will see
that there is a (N12)-parameter family of such potentials

Before working out the above scenario, let us summa
the gist of the KM method for the nonrelativistic Schro¨dinger
equation@1,9#. Consider the Schro¨dinger equation

F p2

2m
1VKM~x!Gc~x!52

k2

2m
c~x!. ~11!
.

w-
n

r
is

d

the

e

Let k i ( i 51,2,•••,N) be N positive constants that are arb
trary but nondegenerate. Let us order them such
k1.k2.•••.kN . Also let Ai ( i 51,2, . . . ,N) be N con-
stants that can be chosen arbitrarily except that they are
positive. The KM potential is defined by

VKM~x!52
1

m

d2

dx2
ln$det@ I 1Â~x!#%, ~12!

where I stands for theN3N unit matrix andÂ(x) is the
N3N matrix with matrix elements

Âi j ~x!5AAiAj

e~k i1k j !x

k i1k j
. ~13!

The Schro¨dinger equation~11! with VKM hasN bound states
with eigenvalues2k i

2/2m ( i 51,2, . . . ,N). Also VKM is a
reflectionless potential. For an arbitrary choice ofAi ’s, VKM
has no symmetry in general. If we chooseAi ’s as

Ai

2k i
5)

j Þ i

k i1k j

uk i2k j u
, ~14!

thenVKM becomes symmetric, i.e.,VKM(x)5VKM(2x).
Equation ~11! with VKM of Eq. ~12! has the scattering

state solution

x1~k,x!5F11(
i 51

N AAigi~x!ek i x

ik1k i
Geikx, ~15!

wheregi(x)’s are defined by theN linear algebraic equation
@10#

(
j 51

N

@d i j 1Âi j ~x!#gj~x!1AAie
k i x50. ~16!

The x1(k,x) of Eq. ~15! is such thate2 ikxx(k,x)→1 as
x→2`, which means that a wave of unit amplitude is inc
dent from negative infinity. There is no reflected wav
HenceVKM is a reflectionless potential. This ends the su
mary of the KM method.

Returning to the relativistic case, we assume that

U1~x!5
l2k1

2

2m
1VKM~x!, l>1. ~17!

Then Eq.~4! for c1 hasN bound states withN eigenvalues

e i5
Ei

22m2

2m
5

l2k1
22k i

2

2m
. ~18!

There are no other bound states. For theN assumed eigen
values ofHD , i.e.,Ei ’s, thek i ’s andl (>1) can be chosen
arbitrarily as long as they are related to theEi ’s through Eq.
~18!. Equations~11! and ~4! with U1 of Eq. ~17! share the
same wave function. SinceVKM is reflectionless, so isU1.
Apart from a constant factor,f1 can be taken as

f1~x!5x1~ ilk1 ,x!. ~19!
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Now that thef1 is known, the potential functionf can be
determined by Eq.~7!. Then we can go on to determine th
SUSY partnerU2, which is also reflectionless.

About the symmetry ofU1 and U2, let us chooseAi ’s
according to Eq.~14! so thatU1 is symmetric. The symmetry
of the associatedU2 depends on the choice ofl. If l51, f1
of Eq. ~19! obtains definite parity. Note that thisf1 is the
wave function of a bound state. It then follows thatf (x) is an
odd function ofx andU2 an even function ofx.

If l.1, the situation can be complicated. Thef1 of Eq.
~19! does not represent a bound state. It does not have
nite parity, nor thef (x) andU2 that ensue. Actually, a mor
general choice off1 is possible in this case, that is,

f1~x!5x1~ ilk1 ,x!1gx1~ ilk1 ,2x!, ~20!

whereg is a constant. We can chooseg arbitrarily as long as
f1 has no node. A similar situation was found in the case
the scalar type potential: see Eq.~3.9! of Ref. @3#. If we take
g51, f1 becomes an even function ofx and so doesU2.

Let us sort out how many parameters are involved. T
potential contains 2(N11) parametersAi , k i , l, andg. If
we specifyN energies in terms ofEi ’s, then the potential is
left with N12 arbitrary parameters. If we require thatU1 be
symmetric, allAi ’s are determined by Eq.~14!. If we require
thatU2 also be symmetric, we have to takeg51. If E15m,
thenl51 and the value ofg becomes irrelevant.

IV. EXAMPLES

Let us examine a few examples.
Example I. Assume just one positive-energy levelE1 for

HD . Thek15k andl are related toE1 by

E1
22m25~l221!k2. ~21!

Otherwisel andk can be chosen arbitrarily. We assume th
A1/2k51 so thatU1 becomes symmetric. Then we obtain

x1~k,x!5
ik2ktanhkx

ik1k
eikx. ~22!

Let us start with the simplest case ofE15m. Thenl51,
but k is still arbitrary. Let us setg50. Apart from an unim-
portant constant factor,f1 is given by

f1~x!5
1

coshkx
. ~23!

Then we find

f ~x!5ktanhkx, ~24!

U1~x!5
k2

2mS 12
2

cosh2kx
D , ~25!

U2~x!5
k2

2m
. ~26!

The HamiltonianH1 has one bound state withe50, whereas
H2 has no bound state. The two components of the norm
ized Dirac wave function are given by
fi-

f

e

t

l-

c1~x!5Ak

2

1

coshkx
, c2~x!50. ~27!

Next let us consider a more general case ofE1.m. Then
l.1. Let us takeg50. Apart from a constant factor,f1 is
given by

f1~x!5~l1tanhkx!e2lkx. ~28!

Then we are led to

f ~x!5kS tanhkx1
l221

l1tanhkxD , ~29!

U1~x!5
k2

2mS l22
2

cosh2kx
D , ~30!

U2~x!5
k2

2mFl22
2

cosh2k~x1a!
G , ~31!

e2ka5
l11

l21
, l5cothka. ~32!

If l.1, f of Eq. ~29! does not conform to Eq.~8! nor Eq.
~9!. Hence there is no bound state withe50. TheH1 andH2
both have a bound state withe5(l221)(k2/2m). The
eigenfunctions ofH1 andH2 give the two components of th
normalized Dirac wave function, which are

c1~x!5
1

2
Ak~m1ml!

ml

1

coshkx
, ~33!

c2~x!5
k

2
A k~l221!

ml~m1ml!

1

coshk~x1a!
, ~34!

ml5Am21k2~l221!. ~35!

Although the two Schro¨dinger equations~4! are formally de-
coupled,c1 andc2 are coupled through the Dirac equatio
~1!. Hence their ratio is not arbitrary.

TheU1 obtained above is the Po¨schl-Teller potential with
one bound state@11#. In additon to the bound state that w
obtained above, H1 has a half-bound state with
e5(lk)2/2m. Its wave function isx(0,x), which is not nor-
malizable. IfU1 is made infinitesimally more attractive, th
half-bound state becomes a genuine bound state. TheU2 has
the same feature. The existence of such a half-bound sta
characteristic of all reflectionless potentials@12#.

Suppose that we choosel,1. Then the eigenvalue of th
ground state ofH1 becomes negative and it is no long
possible to havef1 without a node. This results in a singu
larity of f . This actually does not matter as far asU1 is
concerned. The singularity off 2 and that off 8 cancel and the
resultingU1 is free from singularity. However,U2 becomes
singular andc2 becomes unnormalizable. This is not acce
able because the Dirac wave function with componentsc1
and c2 becomes unnormalizable. Let us emphasize tha
singular f can be acceptable in the nonrelativistic case,
not in the relativistic case with the Dirac equation.
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Example II. We assume one positive-energy level ofHD
as in example I, but we takeg51. Proceeding in the sam
way as in example I, we obtain

f1~x!5~l1tanhkx!e2lkx1~l2tanhkx!elkx. ~36!

Then we are led to

f ~x!5kS tanhkx1
l221

tanhkx2lcothlkxD . ~37!

TheU1 andc1 that follow are the same as those of Eqs.~30!
and ~33!, whereasU2 andc2 are given by

U2~x!5
k2

2mFl22
2~l221!~l2cosh2kx1sinh2lkx!

~lcoshkxcoshlkx2sinhkxsinhlkx!2G ,

~38!

c2~x!

5
k~l221!

2
A k

ml~m1ml!

tanhlkx

sinhkxtanhlkx2lcoshkx

~39!

There is something intriguing. We started by assum
one positive-energy level forHD and accordingly one boun
state forH1. TheH2, however, obtains two bound states. T
c2 of Eq. ~39! is an odd function ofx and has one node. Thi
c2 therefore represents the first excited state ofH2. Note
that, whenl.1, f of Eq. ~37! conforms to Eq.~9!. Hence
H2 has a bound state withe50 @13#. This results in the
bound-state solution of the Dirac equation with the two co
ponents

c1~x!50,

c2~x!5Akl~l221!

2

1

lcoshlkx2tanhkxsinhlkx
.

~40!

The state that has emerged is the eigenstate ofHD with
E52m.

TheHD has only one positive-energy bound state that
initially assumed to exist and two negative-energy bou
states. Instead of starting withU1 as we have done, we ca
start withU2 assuming two energy levels withk15lk and
k25k. This means that we assume two negative-ene
bound states ofHD . We end up with the same results as w
have obtained above.

Example III. Assume two positive-energy levels ofHD .
Instead of starting withEi ’s, let us start withk152k for the
lower level and k25k. Equation ~14! leads to
A1/2k15A2/2k253. Note that ourk1 and k2 respectively
correspond to thek2 andk1 of example D of Ref.@3#. For
simplicity let us setl51 and g50. Then the positive-
energy eigenvalues of HD become E15m and
E25Am213k2. We obtain

x~k,x!52
k21k213ikktanhkx23k2tanh2kx

~ ik1k!~ ik12k!
eikx,

~41!
g

-

e
d

y

f1~x!5
1

cosh2kx
, ~42!

f ~x!52ktanhkx, ~43!

U1~x!5
k2

mS 22
3

cosh2kx
D , ~44!

U2~x!5
k2

mS 22
1

cosh2kx
D . ~45!

The U1 obtained above is the Po¨schl-Teller potential with
two bound states@11#. In example II, if we takel52 we
obtainU1 andU2 that are the same as theU2 andU1 of the
present example, respectively.

Example IV. Let us assumeN energy levels withk15Nk,
k25(N21)k, . . . . If we choosel51, we obtain

f1~x!5
1

coshNkx
, ~46!

f ~x!5Nktanhkx, ~47!

U1~x!5
Nk2

2m S N2
N11

cosh2kx
D , ~48!

U2~x!5
Nk2

2m S N2
N21

cosh2kx
D . ~49!

V. SUMMARY AND DISCUSSION

We have presented a method for constructing reflecti
less pseudoscalar potentials for the one-dimensional D
equation. We can view it as an inverse scattering probl
We started with a set of energy levels and constructed
tentials, each of which reproduces the assumed energy le
They are all reflectionless potentials. If the number of t
assumed energy levels isN, there is a (N12)-parameter
(Ai ’s, l, andg) family of such potentials.

We illustrated the method by a few examples. Exampl
is similar to example A of Ref.@3# for the scalar-type poten
tial. Example A also has a SUSY pair ofH1 andH2 with U1
andU2, respectively. As far asU1 is concerned, examples
and A look the same except that theU1 of the two examples
differ by a constant energy shiftl2k2/2m. Note, however,
uEu.m in example I, whereasuEu,m in example A. For the
U2, the two examples are very different. Similar remar
apply to the other examples that we examined.

It seems to us that this work, together with the earl
similar work on the scalar-type potential@2,3#, covers all
conceivable extensions of the method of Kay and Moses
the Dirac equation. There is an interesting relationship
tween the reflectionless potentials of the scalar type and
lutions of the nonlinear Dirac equation with the scalar-ty
nonlinearity @2#. This is similar to the relation between th
KM potential and solutions of the nonlinear Schro¨dinger
equation@14#. We have tried to find such a relationship fo
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the reflectionless potentials of the pseudoscalar type,
without success.

As an application of the method that we have presente
would be interesting to construct a pseudoscalar poten
such that the energy levels are all equally spaced. Rece
we examined the behavior of a wave packet in the Di
oscillator potential, which is the pseudoscalar potential w
f (x)5mvx @5#. We attempted to construct a relativistic an
log of Schrödinger’s coherent wave packet of the nonrelat
istic harmonic oscillator@15#. We found that the wave packe
in the Dirac oscillator potential behaves in a rather com
ut

it
al
ly,
c
h
-
-

-

cated manner. This is essentially due to the fact that
energy levels of the Dirac oscillator are not equally spac
If the energy levels are equally spaced, a wave packet
behave much more like Schro¨dinger’s coherent wave packe
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