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Reflectionless potentials for the one-dimensional Dirac equation: Pseudoscalar potentials
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For the Dirac equation in one dimension, a method for constructing reflectionless pseudoscalar potentials is
presented. This is a relativistic generalization of Kay and Moses’s classic mgthéghpl. Phys.27, 1503
(1956] that deals with a similar problem for the ScHhager equation. This can also be viewed as an inverse
scattering problem. For a set of assumed energy levels, the method furnishes a family of potentials, each of
which reproduces the energy levels. These potentials are all reflectidr84850-294{©8)02001-7

PACS numbegs): 03.65.Ge., 03.40.Kf

[. INTRODUCTION Dirac matricesa and B, we use the X2 Pauli matrices
In their classic paper of 1956, Kay and Moses gave a9 and g=o,. The potential inHp, is called the pseu-

. -1- . _
method of constructing reflectionless potentials for thedoscalar potential becausg afy is a pseudoscalar. Re

. L ; . . cently, there has been a surge of interest in the “Dirac oscil-
eSgtréréd;rr: gaep:p?y?rl:gtltﬁg I}ga;/)-nMe Ogldn&?\;])&%né]t.h\(/)\éet : rt?] em(;ire- lator” that is obtained with the special choice ffx) = mwx
dimensional Dirac equation. Regarding its behavior undeLi’OSl])'lelr: t'rll'ﬁerpe?gre; Wi eres 'nmtgr?r?;i(; rlgn':g_enstr?ﬁ;m;zlon
the Lorentz transformation, there are three types of potentiale o .Our goal is’t(\)Nfincf(xl; such that all w;veslinlcident
for the Dirac equation: scalar, vector, and pseudoscalar. B _— =~ 90 15 W ) .
th(ra vectolrr typeqvl:/e Imea?] the z;/roth compo?wsenl: ofSaCLorrent om negative infinity, irrespective of their wave numbers,
vector (like the Coulomb potential We have examined the go to positive |nf|n!ty without any reflepuon. In "?‘Ch'e‘."”g
scalar type potential and have shown how an infinite familyth'sfg?al' the following features of the Dirac equation will be
of reflectionless potentials can be construdia@]. We also UST_ ut.th | t of b Th
have indicated that reflectionless potentials are impossible llf:_ el be upper(lower) component ofi be iy (). Then
they are of the vector typg2]. g.(1) becomes

The purpose of this paper is to examine the remaining

possibility with the pseudoscalar type. We show that the KM — ot Td=(E-m)yn, 2
method again enables us to construct reflectionless poten-
tials. The problem can also be viewed as an inverse scatter- Y1+ Tg=(E+m)ys,, (©)

ing or inverse spectrum problem. For a set of assumed en-

ergy levels, we can construct a family of potentials, each ofynere ¥, =dy, /dx. These two equations can be manipu-

which reproduces the energy levels. These potentials turn oy;o 4 into the supersymmetr§USY) pair of Schidinger
to be all reflectionless. The situation is similar to that of theequations

scalar type, but there are nontrivial differences.
In Sec. Il we summarize some general features of the

2 2 2
Dirac equation with a pseudoscalar potential. In Sec. Il we H, = p—+Ui pi=elh, €= E*—m , (4)
present a method for constructing a reflectionless potential. 2m 2m
Section IV deals with a few examples. Some intriguing as-
pects of the problem are illustrated. Summary and discussion 1
are given in Sec. V. Ui(x)= ﬁ(fzif'), 5
Il. GENERAL FEATURES OF THE DIRAC EQUATION wherei =1 or 2 and the double sign in E(p) is — (+) for
WITH A PSEUDOSCALAR POTENTIAL i=1 (2). In the SUSY terminologyf is the superpotential.

Although U, andU, are different, all eigenvalues, with the
possible exception of the smallest one, are shareld pgnd
) H,. For SUSY see, e.g., Reff6,7]. It is known thate is
Hot(X)=E¢(x), Hp=ea[p—iBf(x)]+Bm, (1)  pon-negative. Itis also known that the SUSY ddirandU,
are phase equivalent, that is, the resulting transmission and
wherec=A=1, p=—id/dx, andm is the mass of the par- reflection coefficients are the same betwdén and U,.
ticle. The wave functiongs has two components. For the Therefore, ifU, is a reflection potential, so 1d,. If U; and
U, are both reflectionless, the underlying pseudoscalar po-
tential is clearly reflectionless.
* Author to whom correspondence should be addressed. FAX: Let us consider Eq4) for i=1 with e=0. For this spe-
(905) 546-1252. Electronic address: nogami@mcmaster.ca cial choice ofe, we designate the wave function with,

The Dirac equation that we consider is
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Let x; (i=1,2,--,N) beN positive constants that are arbi-

T 1+U1¢,=0. (6)  trary but nondegenerate. Let us order them such that
K1>Ky>--->ky. Also let A; (i=1,2,...N) beN con-
The ¢, andf are related by stants that can be chosen arbitrarily except that they are all
positive. The KM potential is defined by
4 X
f)=—-=, ¢1(X)=exp(—f f(X)dX). () 1 d? .
1 Vi) == oin{dell +ACON, (12
X

Since e=0 is the minimum possible value of, we can

choose¢; such that it has no node. Thenis free from  where| stands for theNx N unit matrix andA(x) is the
singularity. The state thab, represents may or may not be a N x N matrix with matrix elements

bound state, depending on the asymptotic behavidr &f f

is such that glritrpx

Aij (X) = \/AiAj

. (13
f()>0, f(—=)<0, ® A
then theg, is normalizable and it represents a bound stateThe S_chrdlnger equgmonil_l)_wnh Vi hasN bound states
. . i e with eigenvalues— «{/2m (i=1,2 N). Also Vg is a
Otherwise, is not normalizable. Conversely, i, is nor- . ! R KM
malizable.f has to conform to Eq8). Let us add that if we reflectionless potential. For an arbitrary choicefgf, Vi

take Eqg.(4) of i=2 (instead ofi=1), we obtain formulas has no symmetry in general. If we chookgs as

similar to Eqs.(6)—(8) except thaf is replaced by-f. The A P
H, has a bound state with eigenvalge 0 if and only if f is — =] —, (14)
such that 2K 171 | ki~ Kl

f()<0, f(—o)>0. (9)  thenVyy becomes symmetric, i.eVixm(X) =Vim(—X).

Equation (11) with Vi of Eqg. (12) has the scattering
There is a sort of symmetry between positive- andstate solution
negative-energy solutions of E¢L) in the following sense. N
If we go to the Foldy-Wouthuysen representatié,5, Hp s VA (X)exi* ik

is transformed to X1(K,x) = 1+i:1 ik x, : (15

Hew=BVm?+p?+f2—gf’. (10) whereg;(x)’s are defined by th&l linear algebraic equations

10
With =1 (—1) we obtain positive-(negative} energy [10]

states. It is clear that the eigenvaluesf (H,) are related N

to positive- (negative} energy eigenvalues dfi,. TheH; > [ 6ij +Aij(x)]gj(x)+ VA€ *=0. (16)
andH, share the same eigenvalues, possibly except the low- =1

est one, and they are phase equivalent. If we find a reflection . ik

potential for positive energies, it is also reflectionless for! N€ x1(k.x) of Eq. (15) is such thate™y(k,x)—1 as

negative energies. We focus on positive-energy states in this— — ., Which means that a wave of unit amplitude is inci-
paper. dent from negative infinity. There is no reflected wave.

HenceVy is a reflectionless potential. This ends the sum-
mary of the KM method.

lll. HOW TO CONSTRUCT REFLECTIONLESS Returning to the relativistic case, we assume that

POTENTIALS
. 2.2
Assume a sequence ¢ energy eigenvalues ofip, RS
E,<E,<.--<Ey. The E;'s can take any positive values Ui(¥)= 5=+ Vkm(¥), A=1. 17)

not smaller tharm. Although we use the same indéxor

H;, etc., and forg;, the distinction between thiées should  Then Eq.(4) for ¢, hasN bound states wittN eigenvalues

be clear from the context. On the basis of the KM method

[1], we can findf(x) such that the Dirac equation has the EZ—m? N2kZ—«?

assumed sequence of energy eigenvalues. It turns out that the S~ "Hom T 2m (18)

pseudoscalar potential with tHéx) so determined is a re-

flectionless potential. Sucf(x) is not unique. We will see  There are no other bound states. For essumed eigen-

that there is aI(I+2)-parameter famlly of such potentials. values OfHD, ie., Ei’S, the Ki,S and\ (;1) can be chosen
Before working out the above scenario, let us summarizeyitrarily as long as they are related to fgs through Eq.

the gist of the KM method for the nonrelativistic Sctioger  (18). Equations(11) and (4) with U, of Eq. (17) share the

equation[1,9]. Consider the Schdinger equation same wave function. Sincéyy, is reflectionless, so i);.
’ ) Apart from a constant factokp, can be taken as
p &
{EWKM(X) TR 100 =xaixry ). 19
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Now that the¢, is known, the potential functiof can be

determined by Eq(7). Then we can go on to determine the

SUSY partnetJ,, which is also reflectionless.

About the symmetry olU; and U,, let us chooséA;’s
according to Eq(14) so thatU, is symmetric. The symmetry
of the associatetd, depends on the choice &f If A\=1, ¢,
of Eqg. (19) obtains definite parity. Note that this; is the
wave function of a bound state. It then follows tHigx) is an
odd function ofx andU, an even function ok.

If \>1, the situation can be complicated. Tie¢ of Eq.
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k 1
P (X)= \[EM’ P2(X)=0. (27
Next let us consider a more general cas&gfm. Then
A>1. Let us takey=0. Apart from a constant factot), is
given by

(19) does not represent a bound state. It does not have defi-

nite parity, nor thef(x) andU, that ensue. Actually, a more
general choice ofh, is possible in this case, that is,
h1(X) = x1(iN k1, X)+ yx1(iN kg, —X), (20)

wherev is a constant. We can choosearbitrarily as long as

¢, has no node. A similar situation was found in the case of

the scalar type potential: see Eg.9) of Ref.[3]. If we take
vy=1, ¢, becomes an even function vfand so doedJ,.

Let us sort out how many parameters are involved. The

potential contains 2+ 1) parameterg\;, «;, A\, andvy. If
we specifyN energies in terms dt;’s, then the potential is
left with N+ 2 arbitrary parameters. If we require thaf be
symmetric, allA;’s are determined by Eq14). If we require
thatU, also be symmetric, we have to take= 1. If E;=m,
thenA=1 and the value ofy becomes irrelevant.

IV. EXAMPLES

Let us examine a few examples.
Example 1 Assume just one positive-energy lexe] for
Hp. The k=« and\ are related tde; by

EZ—m?=(\%—1)«>2. (22)

Otherwisex andx can be chosen arbitrarily. We assume that

A./2k=1 so thatU,; becomes symmetric. Then we obtain

ik — ktanhkx

ikx
ik+x '

x1(K,x)= (22

Let us start with the simplest case®f=m. Thena =1,
but « is still arbitrary. Let us seyy=0. Apart from an unim-
portant constant factogp, is given by

1

h1(X)= Coshex (23
Then we find
f(x) = ktanhkX, (24
2
Ui()= | 1- , (25)
2m costkx

2

Un(x)= 5. (26)

The HamiltoniarH; has one bound state with=0, whereas

d1(X)=(\ +tanhkx)e <X, (28
Then we are led to
2_
f(X)= k| tanhex+ m), (29
U, (%) <y 2 (30)
X)==—| \2— ,
! 2m cosikx
Us(0=| 32 2 (31)
X)=— N2 —————|,
2 2m cosik(x+a)
2 M1 \ = cothx (32
et =11, = cothxa.

If A\>1, f of Eq. (29 does not conform to Eq8) nor Eq.
(9). Hence there is no bound state witk- 0. TheH; andH,
both have a bound state wite=(\?—1)(x?/2m). The
eigenfunctions oH,; andH, give the two components of the
normalized Dirac wave function, which are

B } k(m+m,) 1 33
1(x)=3 m,  coshex’ (33
K [ k(N2—1) 1 34

Ya(X)=7 my(m-+m,) coshe(x+a)’
my = Vm?+ k?(\%—1). (35

Although the two Schidinger equation$4) are formally de-
coupled,;, and ¢, are coupled through the Dirac equation
(1). Hence their ratio is not arbitrary.

The U, obtained above is the 'Bohl-Teller potential with
one bound statgll]. In additon to the bound state that we
obtained above, H; has a half-bound state with
e=(\«)?/2m. Its wave function isy(0x), which is not nor-
malizable. IfU; is made infinitesimally more attractive, the
half-bound state becomes a genuine bound state Upheas
the same feature. The existence of such a half-bound state is
characteristic of all reflectionless potentifl<].

Suppose that we chooge<1. Then the eigenvalue of the
ground state ofH; becomes negative and it is no longer
possible to haveb,; without a node. This results in a singu-
larity of f. This actually does not matter as far dg is
concerned. The singularity 6f and that off’ cancel and the
resultingU; is free from singularity. Howevet), becomes
singular andy, becomes unnormalizable. This is not accept-
able because the Dirac wave function with componehts
and ¢, becomes unnormalizable. Let us emphasize that a

H, has no bound state. The two components of the normalsingularf can be acceptable in the nonrelativistic case, but

ized Dirac wave function are given by

not in the relativistic case with the Dirac equation.
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Example Il We assume one positive-energy levelHtf

as in example |, but we take=1. Proceeding in the same P1(X)= , (42
way as in example |, we obtain costfix
d1(X)=(\ +tanhkx)e M+ (N —tanhkx)e**.  (36) f(x)=2«ktanhkx, (43
Then we are led to 2 3
U,(x)=—| 2— , 44)
00 =x| tanhexs A2-1 @7 1(%) m( cosﬁxx) (
(x)=x tanhkx— A coth\ kx|
2
K 1
TheU; and; that follow are the same as those of E(@)) U,(x)= E( 2— ) . (45)
and(33), whereadJ, and ¢, are given by cosffxx
2 2(\2— 1)(A\2cosRkx+ SINFEA kX) The U, obtained above is the"BohI—TeIIer potential with
Uz(x):z— AZ— . : 1l two bound state$11]. In example I, if we takeA=2 we
m (N coshexcosh kx — sinhkxsinhh «x) obtainU; andU, that are the same as ths, andU; of the
(38)  present example, respectively.
Example IV Let us assumBl energy levels with¢; =N«,
Pa(X) ky=(N—1)k, ....If wechoosex=1, we obtain
B k(N2=1) |/ K tanh\ kX 1
2 m, (m+m,) sinhkxtanh\ kx— A coshex ()= ———, (46)
cost'kx
(39
There is something intriguing. We started by assuming f(x)=N«ktanhx, (47)
one positive-energy level fdd, and accordingly one bound
state forH,. TheH,, however, obtains two bound states. The NKZ/ N+1
i, of EQ.(39) is an odd function ok and has one node. This Ui(x)= 2m \ N-— cosfux )’ (48)
¥, therefore represents the first excited stateHgf Note
that, when\>1, f of Eq. (37) conforms to Eq(9). Hence 2
H, has a bound state witk=0 [13]. This results in the Uy(x)= N« /N— N-1 _ (49)
bound-state solution of the Dirac equation with the two com- 2m \ coslfxx
ponents
#1(X)=0, V. SUMMARY AND DISCUSSION

We have presented a method for constructing reflection-

MM 1 less pseudoscalar potentials for the one-dimensional Dirac
Y2(x)= 2 Ncosh kx —tanhkxsint\ kx equation. We can view it as an inverse scattering problem.
(40 We started with a set of energy levels and constructed po-
tentials, each of which reproduces the assumed energy levels.
The state that has emerged is the eigenstatéi@fwith  They are all reflectionless potentials. If the number of the
E=-m. assumed energy levels N, there is a N+ 2)-parameter
TheHp, has only one positive-energy bound state that we a,’s, \, andy) family of such potentials.
initially assumed to exist and two negative-energy bound e jllustrated the method by a few examples. Example |
states. Instead of Starting Wlthl as we have done, we can js similar to examp|e A of Re[g] for the Sca|ar_type poten-
start withU, assuming two energy levels witty =\« and  tjal. Example A also has a SUSY pair Hf, andH, with U
k2=k. This means that we assume two negative-energyundu,, respectively. As far abl, is concerned, examples |
bound states ofi, . We end up with the same results as weand A look the same except that thig of the two examples
have obtained above. differ by a constant energy shift?<%/2m. Note, however,
Example IIl Assume two positive-energy levels B, |E|>m in example I, whereal€E|<m in example A. For the
Instead of starting witlk;’s, let us start withw; =2« forthe  y,, the two examples are very different. Similar remarks
lower level and x,=k. Equation (14) leads to apply to the other examples that we examined.
A1/2k1=Asl2k,=3. Note that ourx; and «, respectively It seems to us that this work, together with the earlier
correspond to the, and «; of example D of Ref[3]. For  similar work on the scalar-type potentif2,3], covers all
simplicity let us set\=1 and y=0. Then the positive- conceivable extensions of the method of Kay and Moses to
energy eigenvalues of H, become E;=m and the Dirac equation. There is an interesting relationship be-

E,=Jm?+3«?. We obtain tween the reflectionless potentials of the scalar type and so-
T 2ean? Iutions of_ the nonli_ne.ar Dirfac equation wit_h the scalar-type
(k)= — k®+ k“+ ik ktanhkX — 3k “tanit xx ik nonlinearity[2]. This is similar to the relation between the
' (ik+ k) (ik+2k) ' KM potential and solutions of the nonlinear Sctiiger

(41 equation[14]. We have tried to find such a relationship for
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the reflectionless potentials of the pseudoscalar type, butated manner. This is essentially due to the fact that the
without success. energy levels of the Dirac oscillator are not equally spaced.
As an application of the method that we have presented, if the energy levels are equally spaced, a wave packet will

would be interesting to construct a pseudoscalar potentisdehave much more like Schdimger’s coherent wave packet.
such that the energy levels are all equally spaced. Recently,

we examined the behavior of a wave packet in the Dirac
oscillator potential, which is the pseudoscalar potential with
f(x) =mwx [5]. We attempted to construct a relativistic ana-
log of Schralinger’s coherent wave packet of the nonrelativ- This work was supported by the Natural Sciences and
istic harmonic oscillatof15]. We found that the wave packet Engineering Research Council of Canada and the Ministry of
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