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Full three-body primitive semiclassical treatment of H2
1
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Primitive semiclassical quantization of H2
1 and D2

1 without the restriction of the separation of electronic and
nuclear motions, reveals the existence of a small~10%! classical contribution to the one-electron chemical
bond. It is found that in the electronic ground state the electron is exchanged classically between the two nuclei
and that this exchange is correlated with the molecular vibration.@S1050-2947~98!03302-2#

PACS number~s!: 31.10.1z, 31.15.Gy
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I. INTRODUCTION

Very shortly after its inception, Schro¨dinger’s wave me-
chanics was successfully applied to the hydrogen molec
ion H2

1 @1#. Numerous earlier attempts to derive the stru
ture of the hydrogen molecular ion in terms of the old qua
tum theory had failed. The unqualified success of the w
mechanics on this and other molecular systems therefore
Pauling to note@1# the following:

‘‘It is of particular significance that the straightforwar
application of the quantum mechanics results in the un
biguous conclusion that two hydrogen atoms will form
molecule but that two helium atoms will not; for this distin
tion is characteristically chemical, and its clarification mar
the genesis of the science of sub-atomic theoretical che
try.’’

From that time on, chemical bonding has been viewed
a quantum-mechanical phenomenon, a view now entrenc
in the textbook literature of physical chemistry@2#. A few
subtle apparent contradictions to Pauling’s declaration
themselves a consequence of tunneling, which is a stri
quantum mechanical phenomenon. Strand and Reinhard@3#,
for example, demonstrated that semiclassical methods ca
used to recover the chemical bond in H2

1 , provided tunnel-
ing is properly accounted for within the semiclassical fram
work. More recently, the experimental observation@4# of the
helium dimer He2 has demonstrated that two helium atom
can indeed form a ‘‘molecule,’’ albeit an extremely fragi
one. The bonding in He2 has subsequently been shown
involve deep penetration of the electron into the classic
forbidden region@5#.

Müller et al. @6# have reported that when the restriction
the separation of electronic and nuclear motions~used by
Strand and Reinhardt@3#! is removed, orbits exist in H2

1 in
which the electron is exchangedclassicallybetween the pro-
tons. In the current paper, primitive semiclassical quant
tion of H2

1 is employed, without the restriction of the sep
ration of electronic and nuclear motions. These calculati
demonstrate that such trajectories result in a small~10%!
classical contribution to the chemical bonding in H2

1 . In
retrospect then, historical applications of the old quant
theory failed to quantitatively recover the magnitude of t
chemical bond in H2

1 because chemical bonding is a qua
tum mechanical phenomena, but produced the wrong sign
the binding energy in H2

1 due only to a lack of modern
numerical computing facilities. To date, the full three-bo
571050-2947/98/57~2!/906~8!/$15.00
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Coulomb problem has yet to succumb to an exact analyt
analysis@7# and its accurate description demands a numer
treatment not possibleantehigh speed digital computers.

II. SEMICLASSICAL METHODOLOGY

Semiclassical mechanics allows one to extract appro
mate quantum eigenenergies from a classical descriptio
the system, in the spirit of the old quantum theory and
WKB approximation@8#. The quantization conditions for a
multidimensional system~as discussed in detail by Keller@9#
and later by Marcus@10#! are given by

R
ci
(

r
prdqr5hS nr1

mr

4 D , ~1!

where theci are topologically independent closed paths
configuration space,h is the Planck constant of action, andn
andm are integers. The integerm is the Maslov index, which
depends on the frequency with which the path touche
caustic, and the integern is the quantum number. At the
heart of semiclassical quantization then is the computatio
the action integrals

R 5p dq5 R (
r

prdqr . ~2!

In the present case, as detailed below, we have chosen to
the surface-of-section~SOS! method of semiclassical quan
tization @11#. Originally presented for a two-dimensiona
nonresonant, quasiperiodic, Hamiltonian system@11#, the
SOS method has been generalized, first for application
system with a zero-order 1:1 resonance@12#, and then to
systems of three dimensions@13,14#.

In the SOS method, the topologically independent pa
of integration are taken to lie along Poincare´ surfaces of
section. For anN-dimensional system, given theN coordi-
natesqr and conjugate momentapr , A Poincare´ surface of
section consists of the set of points (pr ,qr) where a dynami-
cal trajectory intersects the surface (qi5const ; iÞr ),
subject to (pi>0 ; iÞr ). ~Different branches can be cho
sen by selecting different signs of thepi where iÞr .! The
quantum condition for such a path then reduces to a o
dimensional integral
906 © 1998 The American Physical Society



a

n,

er
ilit

f t
b
io
ss
in

he
i

th
ic
n
th

ive
s
v
o
r

s o
th

ct
cle
h
a
k
re
te
n

ul
ec

e
tio
at

n-
e
b
a
by

n-
first

AS,

es
si-

the
OS

d

rical
-

of

ly
be-
the

cel-
eds
er-

ed

ua-
-

rdi-
clas-
the

in

57 907FULL THREE-BODY PRIMITIVE SEMICLASSICAL . . .
R prdqr5hS nr1
mr

4 D . ~3!

This reduction in dimensionality is a tremendous simplific
tion and arises because the condition (qi5const ; iÞr )
implies thatdqi50 everywhere along the path of integratio
which forces all terms in the sum~2! to be rigorously zero,
save one. A SOS can be generated for each (pr ,qr) sheet to
specify each of the quantum conditions in turn.

A. Choice of the SOS method

At this juncture it is appropriate to comment on oth
methods of semiclassical quantization and their applicab
to the present problem, approximating the eigenstates
H2

1 .
The popular periodic orbit method of Gutzwiller@15# gen-

erates the quantum density of states from a knowledge o
periodic classical orbits. It is equally applicable to separa
and nonseparable cases. Miller has argued that the per
orbit method makes approximations beyond the semicla
cal approximation@16#, an issue that has been resolved,
large measure, by Berry and Tabor@17# through the use of
complex periodic orbits. The challenge of locating all of t
important periodic orbits precludes the use of this method
the present case.

The Fourier method, based on the work of Percival@18#,
relies on the computation of the action integrals from
coefficients in a Fourier series representation of the class
coordinates and momenta@19#. The Fourier method has see
considerable success, particularly in the determination of
vibrational levels of coupled oscillator systems@20–22#.
Nevertheless, the Fourier method is likely to be prohibit
to use in the current case because it requires that the clas
trajectory be numerically integrated for a minimum of se
eral periods of the lowest frequency fundamental mode
the system. In H2

1 , the electronic and nuclear motions diffe
in their characteristic frequencies by more than two order
magnitude. This means that in order to successfully apply
Fourier method, it would be necessary to compute traje
ries long enough to encompass several periods of the nu
vibration, but with a step size small enough to track t
electronic motion accurately, a prohibitive computation
task. The electronic motion is particularly difficult to trac
with accuracy near the sharp inner turning points, which
sult from close electron-proton encounters. Such encoun
occur frequently on the time scale of the electronic motio

The adiabatic switching~AS! method, in which a solvable
zero-order Hamiltonian is gradually perturbed into the f
Hamiltonian over the course of a numerical classical traj
tory @23#, is not applicable to the ground state of H2

1 due to
the lack of a good zero-order Hamiltonian. The exciteds*
state of H2

1 in many ways resembles a perturbed hydrog
atom, however, and might be a candidate for investiga
with AS. Herein we consider both the electronic ground st
of H2

1 and thes* state.
Another method that is particularly appealing for no

separable coupled oscillator systems is to quantize on a s
rable Hamiltonian that approximates the fully nonsepara
Hamiltonian. An iterative scheme for developing such
approximate Hamiltonian was originally developed
-
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Birkhoff @24# for zero-order nonresonant systems. Exte
sions have been made to zero-order resonant systems,
with numerical techniques@25#, and later analytically
@26,27#. The issues of convergence@28# and symmetry@29#
have also been addressed. For the present case of H2

1 the
method of approximate Hamiltonians suffers, as does
from the lack of a good zero-order Hamiltonian.

The SOS method uses only the full Hamiltonian, and do
not require a ‘‘nearby’’ zero-order Hamiltonian. Semiclas
cal quantization on the novel adiabatic invariant of Mu¨ller
et al. @6# is also plausible, and may be more precise, but
insights afforded by the trajectory based nature of the S
method would be lost.

B. Computational details

The classical Hamiltonian for H2
1 and its isotopomers is

H5
p1

2

2m1
1

p2
2

2m2
1

p3
2

2m3
1

1

R
2

1

r a
2

1

r b
, ~4!

wherem1 , m2, andm3 are the masses of the two nuclei an
the electron, respectively, with coordinatesqi and momenta
andpi . The distance parametersr a , r b , andR are given by

R5@~q22q1!•~q22q1!#~1/2!,

r a5@~q32q1!•~q32q1!#~1/2!,

r b5@~q32q2!•~q32q2!#~1/2!. ~5!

Classical trajectories are represented discretely by nume
solution @30# of the Hamilton differential equations of mo
tion

~dqa /dt!5
]H

]pa
,

~6!

2~dpa /dt!5
]H

]qa
,

using Cartesian coordinatesqa and momentapa , where the
index a runs over the three spatial coordinates and each
the three particles.

During numerical integration, near one of the previous
mentioned close electron-proton encounters, the force
tween the two particles becomes very large and hence
electron, owing to its small mass, is given tremendous ac
eration. If such an encounter is too close, the force exce
the dynamic range of the numerical integration and cons
vation of total energy is lost. The calculations report
herein were run, at a minimum, in double~64 bit! precision,
but for some trajectories it was necessary to employ q
druple ~128 bit! precision to properly track the electron mo
tion @31#.

While the trajectories are computed in Cartesian coo
nates, these are not the most useful coordinates for semi
sical quantization with the SOS method. We note that in
clamped nuclei approximation, the problem is separable
confocal elliptic coordinates@3,32#,
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908 57SOHLBERG, TUZUN, SUMPTER, AND NOID
z5
~r a1r b!

2C
,

~7!

h5
~r a2r b!

2C
,

where 2C is the separation of the foci. We will make certa
restrictions on the H2

1 system that permit the use of a simp
extension of the confocal elliptic coordinate system. A
three particles are restricted to lie in the (x,y) plane, which
is coplanar with the (z,h) plane. The foci are at6C along
the x axis. Additionally, the system is translated to have
center of mass at the (x,y)5(0,0) origin and the total linea
momentum of the system is zero,

P5p11p21p350. ~8!

Finally, only initial conditions with zero total angular mo
mentumL are considered,

L5(
n

detF q1 q2 q3

p1 p2 p3

î ĵ k̂
G

n

50. ~9!

Here î , ĵ , andk̂ are the Cartesian unit vectors, and of cou
q35p350 ; n by the above condition of planarity. Th
indexn runs over the three particles. With the above rest
tions, the relative orientation of three particles is specifi
with the space fixed confocal elliptic coordinates (z,h) to
specify the position of the electron, andR to specify the
relative internuclear distance.

For semiclassical quantization by the surface of sec
method, the following SOS figures were selected:

A15~pz ,z!, h5hc , Rc2d<R<Rc1d

A25~ph ,h!, z5zc , Rc2d<R<Rc1d
~10!

A35~pR ,R!, ~z,h unrestricted!.

The hc andzc are constants. Along any given trajectory t
condition (h5hc andR5const) is met with vanishing fre
quency, soR is allowed to fall within a rangeRc2d<R
<Rc1d in order to collect sufficiently many SOS poin
within a finite time. The width factord is chosen to be smal
enough that further reduction ind results in no appreciable
change in the area of the resulting SOS figure@13#. Empiri-
cally, d50.15 bohr was found to meet this criteria. A typic
(pz ,z) SOS figure is shown in Fig. 1. Note thatz>1 in
accordance with its definition~7!, and the momentumpz is
small wherez is maximum. The SOS areas were compu
numerically by summation of the areas of an array of tr
ezoids, which were chosen to tile the SOS figure, a sch
that is equivalent to the common ‘‘trapezoid rule’’ for nu
merical integration. The uncertainty in the area computat
was found to be60.5% with 100 SOS points defining th
figure. Typically several hundred SOS points were used.
a check, selected areas were also computed with two o
l

e

-
d

n

d
-
e

n

s
er

numerical methods. Tiling schemes based on circle sec
and triangles both produced results in good accord with
trapezoidal rule integration.

As suggested in Eq.~10!, to computeA3, (pR ,R) is sim-
ply accumulated for a few cycles of the nuclear motion w
no restriction onz or h. The total energy is only weakly
sensitive toA3, so any error in the value ofA3 resulting from
not restrictingz and/orh introduces errors in the total energ
far below those introduced by the uncertainty inherent in
calculation ofA1 ~which is under fullh andR restrictions!
since the total energy is strongly dependent onA1. An ex-
ample (pR ,R) figure is shown in Fig. 2. The spikes resu
from the previously mentioned close electron-proton enco
ters.

In the limit C→0, z becomes a radius.A1 therefore cor-
relates with the action associated with radial motion in
united atom limit. For thes* state, discussed in Sec. III B
the total energy, by analogy to the hydrogen atom, depe

FIG. 1. Typical (pz ,z) SOS figure.

FIG. 2. (pR ,R) for about one cycle of the nuclear motion. No
the spikes that result from close electron-nucleus encoun
~atomic units!.
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57 909FULL THREE-BODY PRIMITIVE SEMICLASSICAL . . .
almost exclusively onA1. This is the only action used in th
semiclassical quantization ofs* by the SOS method.

Since the numerical integration is accomplished in Ca
sian coordinates and momenta, it is necessary to expres
SOS coordinates (z,h,R) and their conjugate moment
(pz ,ph ,pR) in terms of the Cartesian coordinatesqi and
momentapi , in order to generate the SOS figures from t
trajectory data. The SOS coordinates are easily expresse
terms of the Cartesian coordinates by substitution of Eq.~5!
into Eq. ~7!. To find expressions for the SOS momenta,
make use of

pz5
]T

]~dz/dt!
,

ph5
]T

]~dh/dt!
, ~11!

pR5
]T

]~dR/dt!
,

whereT is the kinetic energy operator

T5
m1q̇1

2

2
1

m2q̇2
2

2
1

m3q̇3
2

2
. ~12!

To find the SOS momenta based on Eq.~11! we need the

kinetic energy operatorT in terms of the SOS velocities,ż,

ḣ, Ṙ. These velocities are given by

ż5
dz

dt
5(

a

]z

]qa
q̇a,

ḣ5
dh

dt
5(

a

]h

]qa
q̇a, ~13!

Ṙ5
dR

dt
5(

a

]R

]qa
q̇a .

Here the indexa runs over the three spatial coordinates a
each of the three particles. Equations~13! along with the
constraints~8! and ~9! result in the following system of six
equations, which can be solved for the six nonzero Carte

derivatives,q̇a :
-
the

in

d

an

3
m1 0 m2 0 m3 0

0 m1 0 m2 0 m3

2m1q2 m1q1 2m2q5 m2q4 2m3q8 m3q7

]z

]q1

]z

]q2

]z

]q4

]z

]q5

]z

]q7

]z

]q8

]h

]q1

]h

]q2

]h

]q4

]h

]q5

]h

]q7

]h

]q8

]R

]q1

]R

]q2

]R

]q4

]R

]q5

]R

]q7

]R

]q8

4
33

q̇1

q̇2

q̇4

q̇5

q̇7

q̇8

4 53
0

0

0

ż

ḣ

Ṙ

4 . ~14!

Here the subscript cycles over the three Cartesian sp
coordinates for each of the three particles, (q15x1, q25y1,
q35z1, q45x2, . . .!. Note that thez components are all zero
by the condition of planarity and therefore not present in E
~14!. Substitution of theq̇a into Eq. ~12! and subsequen
differentiation according to Eq.~11! produces the required
SOS momenta expressions, which for the sake of brevity
not reproduced here.

For semiclassical quantization, one could in princip
search for initial conditions, which lead to a trajectory who
actions~SOS areas! satisfy the quantization condition. Fo
multidimensional systems this involves searching over m
initial conditions in an attempt to satisfy several quantizat
conditions simultaneously. In the present case, this dema
ing task is frustrated by a nonobvious mapping of init
conditions to actions. For multidimensional systems, a m
efficient method of semiclassical quantization involves int
polating eigenenergies@33–35# based on an approximatin
function E(A1 ,A2 , . . . ,AN). Using the methods outlined
above, actions~SOS areas! were computed for many trajec
tories and the resulting energy vs actions data fit to the fu
tional form

E~A1 ,A2 ,A3!5c11c2A11c3A21c4A31c5A1
21c6A2

2

1c7A3
21c8A1A21c9A1A31c10A2A3 ,

~15!

where theci were optimized by the method of least squar
to give the best fit. Once the best fit is determined, the
sired eigenenergy is easily computed. As an added ad
tage, this method allows the determination of primitive sem
classical eigenstates even in regions of phase space w
the classical motion is chaotic@35#. There is one importan
caveat, this method works well only if the eigenstates
interpolated@35#, a restriction that precludes the applicatio
of this technique to the higher vibrational levels of H2

1 X
2Sg . With increasing energy, it becomes increasingly dif
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TABLE I. Energetics for H2
1 and D2

1 . Energies are relative to dissociation, i.e., H (2S) 1 H1

~in cm21). Note that in the clamped nuclei case@3# given in the column labeled SR, semiclassical H2
1

X 2Sg(n50) is unbound and only becomes bound when tunneling is included~uniform approximation!. The
present full three-body treatment predicts a weak chemical bond in the primitive semiclassical approxim
Of course there are no nuclear isotope effects in the clamped nuclei case because the nuclei are ef
infinite in mass. All values are in cm21.

State SOSa exact QM SRc

H2
1X2Sg(n50) 22.63103 221379.348b 1724 ~222694!

D2
1X2Sg(n50) 22.73103 221711.580b —

H2
1s* 12.93103 ~29!d 23.434b —

D2
1s* 12.93103 ~29!d 25.513b —

aPresent work~uncertainty is620 in units of the last reported digit forX 2Sg).
bWolniewicz and Orlikowski@38#.
cStrand and Reinhardt@3#, primitive semiclassical, H2

1 X2S ~R 5 2.0 bohr!. The molecule is bound only in
the uniform semiclassical approximation.~Value given parenthetically.!
dUncertainty undetermined. Approximate primitive semiclassical energy by adiabatic switching given
thetically.
ca
he

in

n

o-

an

ra
is
ro

on
la

l
es
th
-
be
th
e
er
s
ic
x
o

pu
at
al
c

ce

he
xi

-
-
n

t

-

re
n
to

s
een
en
al

cal
’s

ly
cult to locate classical trajectories for which good actions
be computed. Only in the case of regular motion will t
SOS points fall on a smooth curve@36#, and the SOS figure
have a well-defined area. While chaotic and autoioniz
classical trajectories are both present in H2

1 @37#, our suc-
cess lies in finding sufficiently many trajectories in the e
ergy regime of interest for which smooth SOS figures~like
that shown in Fig. 1! can be generated. Numerical traject
ries do not reveal the ultimate fate of the system (t→`), but
the trajectories that were employed remained bound
regular for at least 1.253104 atomic time units~about 0.3
ps!.

In the present calculation there are issues of both accu
and precision. The primitive semiclassical approximation
of course, not equivalent to an exact solution to the Sch¨-
dinger equation but yields eigenstate energies that are
approximate. The difference between the primitive semic
sical result and the exact quantum result representsmethod-
ological inaccuracy. Generally the primitive semiclassica
eigenenergy is above the corresponding exact quantum r
because penetration of the quantum wave function into
classically forbidden region~an effect neglected in the primi
tive semiclassical case! permits more of phase space to
accessed by the wave function than is accounted for in
primitive semiclassical theory. As a consequence of this
tra phase accumulation, quantizing eigenstates lie deep
the potential and hence lower in energy than the semicla
cal theory predicts. Nevertheless, the primitive semiclass
eigenenergy is a mathematically well-defined, albeit appro
mate, quantity. It is in obtaining this quantity that the issue
precision is encountered.

As discussed above, there is some uncertainty in com
ing the areas of the SOS figures. This uncertainty transl
directly into uncertainty in the primitive semiclassic
eigenenergy. In the present case, the uncertainty in the
culation of the areas of the SOS figures results in an un
tainty in the final eigenenergies of about62000 cm21. The
cost of increasing this precision is not justified in light of t
inaccuracy inherent in the primitive semiclassical appro
mation.
n

g

-

d

cy
,

ly
s-

ult
e

e
x-
in

si-
al
i-
f

t-
es

al-
r-

-

III. RESULTS AND DISCUSSION

A. The X 2Sg state

The state energies for H2
1 as computed with the semi

classical SOS method butwithout the Born-Oppenheimer ap
proximation~BO! are given in Table I, where a compariso
is made to Strand and Reinhard’s@3# semiclassical resul
~which includes the Born-Oppenheimer approximation! and
to numerically exact quantum values@38#. Note in particular
that while primitive semiclassical H2

1 is unbound in the
clamped nuclei~BO! approximation, when the full three
body dynamics is considered, H2

1 is weakly bound within
the primitive semiclassical approximation. A physical pictu
of this bonding is afforded by Fig. 3 which shows a portio
of an electron trajectory that approximately corresponds
H2

1 X 2Sg(n50). A histogram of the electron’s position i
shown in Fig. 4. Note that the electron exchanges betw
the nuclei with its most probable position being betwe
them. This is in accord with long standing views of chemic
bonding. The remarkable observation is that this ‘‘chemi
bond,’’ while very weak, is entirely classical. The electron

FIG. 3. A portion of an electron trajectory that approximate
corresponds to H2

1 X 2Sg(n50) ~atomic units!.
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57 911FULL THREE-BODY PRIMITIVE SEMICLASSICAL . . .
trajectory is found with Hamilton’s classical mechanics, a
the semiclassical quantization is primitive, making no adju
ment for tunneling other than the standardp/4 phase accu-
mulation at each turning point@8,9#.

The exchange of the electron is most easily seen in Fig
which shows the time dependence of thex component of the
instantaneous molecular dipole.~The molecular axis is ap
proximately parallel to thex axis.! Figure 5~a! is for a tra-
jectory approximating H2

1 X 2Sg(n50), and Fig. 5~b! is
for a trajectory approximating H2

1 X 2Sg(n51). Changes
in sign of thex component of the instantaneous molecu
dipole are a manifestation of the electron swapping nuc
Note that the frequency of this exchange correlates with m
lecular vibration. Electron exchange or ‘‘sharing’’ is, o
course, the signature of chemical bonding@1#. In Fig. 5 we
clearly see theclassicalexchange of the electron between t
nuclei.

B. The 2Su state „s* …

The 2Su state of H2
1 nominally arises from the antisym

metric combination of the two hydrogenic 1s wave functions
and in the treatment of Pauling@1# is antibonding, repulsive
at all internuclear separationsR. As first calculated by Peek
@39#, and much more recently observed for some H2

1 isoto-
pomers by Carringtonet al. @40#, this s* state has a weak
van der Waals minimum at largeR. It is easily shown that
the classical exchange of the electron is forbidden in thiss*
state.

For the electron to exchange classically between the
nuclei it must at some time be exactly half-way betwe
them, which represents the top of the potential barrier
exchange. This barrier decreases with decreasing R. The
tential energy is

V~R!5
1

R
2

1

r a
2

1

r b
. ~16!

With the electron exactly half-way between the nuclei,

FIG. 4. Histogram of the electron’s position for a trajectory th
approximately corresponds to H2

1 X 2Sg(n50), which is shown
in part in Fig. 3~atomic units!.
d
t-

5,

r
i.

o-

o
n
o
o-

r a5r b5
R

2
,

~17!

V~R!5
23

R
.

According to Carringtonet al. @40#, then50 turning points
on the s* PEC are r inner'5 Å59.45 bohr, r outer'10
Å518.9 bohr. At 9.45 bohr, the closest approach of the
clei, the potential energy isV(9.45)520.317 hartree, which
is the barrier to exchanging the electron. Thes* state ener-
gies are @39# D2

1520.500025 hartree, and H2
15

20.5000156 hartree. These energies are far below the he
of the barrier to electron exchange. The electron can th
fore only exchange between the nuclei by tunneling, a n
classical process.

Note that since some energy is tied up in the kinetic
ergy of the electron, it is possible for the electron to
dynamically confined to one or the other nucleus, ev

t

FIG. 5. Time dependence of thex component of the instanta
neous molecular dipole. The time dependence of the internuc
separationR is superimposed~broken curve! for purposes of com-
parison. Note that classical electron exchange occurs only nea
inner turning point.~a! H2

1 X 2Sg(n50). ~b! H2
1 X 2Sg(n51).

R in bohr, dipole in atomic units.
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though its classical exchange is energetically allowed. Su
case is seen for the X2Sg state in Fig. 5 where the electro
gets temporarily ‘‘stuck’’ on one nucleus even thoughR is
such that classical electron exchange is energetically
lowed. This effect betrays a total energy that is only sligh
greater than the potential barrier to electron exchange
energy regime where tunneling is particularly significa
@41#. The close energetic proximity of the potential max
mum to the eigenstate energies in H2

1 accounts for the siz-
able tunneling correction@3#.

Because the electron cannot exchange between the n
classically in thes* state, for primitive semiclassical quan
tization this state must be viewed as a perturbed hydro
atom.

Consider the following physical picture: when a hydrog
atom is perturbed by bringing a second proton in from
great distance, the Coulomb potential well in which the el
tron is trapped expands slightly. Instead of rising symme
cally from 2` at the atomic center to the zero of potent
far from the nucleus, in the direction of the perturbing prot
the rise is slightly attenuated. This perturbation increa
slightly the volume of the potential well and hence lowe
the hydrogenic 1s eigenstate. Because the eigenstate in
perturbed system is slightly lower than that in separated H1
H 1, the perturbed system is bound with respect to disso
tion into a hydrogen atom plus a proton. The electron the
fore orbits one nucleus with the second nucleus hovering
greater distance.

The effect of the perturbing proton on the hydrogenics
eigenenergy is shown in Fig. 6, which displays the grad
transformation, H 1s→ H2

1 s* . A classical trajectory is
computed numerically such that at timet50 the coordinates
and momenta are set to mimic a hydrogen atom in thes
state with a second bare proton placed at a distance equ
the nuclear separation at the outer classical turning poin
H2

1 2Su(n50). ~As previously noted, the outer turnin
point is R518.9 bohr@40#.! The chargeQ1 on the bare pro-
ton, however, is given the time dependence

Q1~ t !5
1

11eb~f2t !
. ~18!

Heref sets the switching time andb is chosen such that th
rate of change of charge is very small, while still achievi
the conditionsQ1(0)'0 andQ1(2f)'1. Hereb50.015,
f5750, and the final energy was found to be converg
with respect to decreasingb. The time dependence of th
chargeQ1 is also shown in Fig. 6. Clearly, the perturbin
charge very slightly lowers the hydrogenic 1s eigenenergy.

IV. SUMMARY

The extension of the surface-of-section method of prim
tive semiclassical quantization to a three-body@42#, three-
a

l-

an
t

lei

n

a
-

i-
l

s

e

a-
-

t a

l

l to
in

d

-

mode system has permitted the semiclassical quantizatio
the hydrogen molecular ion H2

1 without the restriction of
the Born-Oppenheimer separation of nuclear and electro
motions. Unlike the clamped-nuclei approximation, in t
present full three-body treatment, primitive semiclassi
quantization properly predicts the sign of the dissociat
energy of H2

1 . While primitive semiclassical quantizatio
gives a quantitatively inaccurate description of the on
electron chemical bond in H2

1 because it ignores the dom
nant tunneling contribution, it does reveal a previously u
appreciated 10% classical contribution.

Thes* van der Waals state of H2
1 is also discussed an

shown to correspond physically to a perturbed hydrog
atom. The slight expansion of the Coulomb potential w
brought about by an adjacent proton leads to a bound H2

1

state by lowering very slightly the 1s hydrogen ground-state
level.
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