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Full three-body primitive semiclassical treatment of H,*
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Primitive semiclassical quantization ofyHand D; without the restriction of the separation of electronic and
nuclear motions, reveals the existence of a sriPg classical contribution to the one-electron chemical
bond. It is found that in the electronic ground state the electron is exchanged classically between the two nuclei
and that this exchange is correlated with the molecular vibraf®h050-29478)03302-2

PACS numbdrs): 31.10+z, 31.15.Gy

[. INTRODUCTION Coulomb problem has yet to succumb to an exact analytical
analysig 7] and its accurate description demands a numerical
Very shortly after its inception, Schilinger's wave me- treatment not possiblante high speed digital computers.
chanics was successfully applied to the hydrogen molecular
ion H," [1]. Numerous earlier attempts to derive the struc-
ture of the hydrogen molecular ion in terms of the old quan-
tum theory had failed. The unqualified success of the wave Semiclassical mechanics allows one to extract approxi-
mechanics on this and other molecular systems therefore ladlate quantum eigenenergies from a classical description of
Pauling to notd 1] the following: the system, in the spirit of the old quantum theory and the
“It is of particular significance that the straightforward WKB approximation[8]. The quantization conditions for a
application of the quantum mechanics results in the unammultidimensional systertas discussed in detail by Kellg9]
biguous conclusion that two hydrogen atoms will form aand later by Marcu§10]) are given by
molecule but that two helium atoms will not; for this distinc-
tion is characteristically chemical, and its clarification marks
the genesis of the science of sub-atomic theoretical chemis- > pdg=h
try.” G r
From that time on, chemical bonding has been viewed as
a quantum-mechanical phenomenon, a view now entrencheghere thec; are topologically independent closed paths in
in the textbook literature of physical chemis{g]. A few configuration spacd is the Planck constant of action, and
subtle apparent contradictions to Pauling’s declaration arandm are integers. The integer is the Maslov index, which
themselves a consequence of tunneling, which is a strictlgepends on the frequency with which the path touches a
quantum mechanical phenomenon. Strand and Reinf@ldt caustic, and the integar is the quantum number. At the
for example, demonstrated that semiclassical methods can beart of semiclassical quantization then is the computation of
used to recover the chemical bond in"H provided tunnel- the action integrals
ing is properly accounted for within the semiclassical frame-
work. More recently, the experimental observatidhof the
helium dimer He has demonstrated that two helium atoms i; =pdg= 4; E p,dq; . (2
can indeed form a “molecule,” albeit an extremely fragile r
one. The bonding in He has subsequently been shown to
involve deep penetration of the electron into the classicallyin the present case, as detailed below, we have chosen to use
forbidden regiorn{5]. the surface-of-sectiofSOS method of semiclassical quan-
Mudiller et al.[6] have reported that when the restriction of tization [11]. Originally presented for a two-dimensional,
the separation of electronic and nuclear motignsed by nonresonant, quasiperiodic, Hamiltonian systgM], the
Strand and Reinhard8]) is removed, orbits exist in 4 in SOS method has been generalized, first for application to a
which the electron is exchangethssicallybetween the pro- system with a zero-order 1:1 resonarid®], and then to
tons. In the current paper, primitive semiclassical quantizasystems of three dimensiof$3,14.
tion of H," is employed, without the restriction of the sepa- In the SOS method, the topologically independent paths
ration of electronic and nuclear motions. These calculationsf integration are taken to lie along Poincasarfaces of
demonstrate that such trajectories result in a s section. For arN-dimensional system, given thé coordi-
classical contribution to the chemical bonding in™H In natesq, and conjugate momenga , A Poincaresurface of
retrospect then, historical applications of the old quantunrsection consists of the set of points; (q,) where a dynami-
theory failed to quantitatively recover the magnitude of thecal trajectory intersects the surface;€constV i#r),
chemical bond in H" because chemical bonding is a quan-subject to ;=0 V i#r). (Different branches can be cho-
tum mechanical phenomena, but produced the wrong sign fazen by selecting different signs of tigg wherei+#r.) The
the binding energy in k" due only to a lack of modern quantum condition for such a path then reduces to a one-
numerical computing facilities. To date, the full three-bodydimensional integral

II. SEMICLASSICAL METHODOLOGY
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Birkhoff [24] for zero-order nonresonant systems. Exten-
€ sions have been made to zero-order resonant systems, first
with numerical techniqgueq25], and later analytically
[26,27. The issues of convergeng28] and symmetryf29]
have also been addressed. For the present case ‘ofthé
method of approximate Hamiltonians suffers, as does AS,
' from the lack of a good zero-order Hamiltonian.

The SOS method uses only the full Hamiltonian, and does
not require a “nearby” zero-order Hamiltonian. Semiclassi-
cal quantization on the novel adiabatic invariant of IMu
et al. [6] is also plausible, and may be more precise, but the

A. Choice of the SOS method insights afforded by the trajectory based nature of the SOS

At this juncture it is appropriate to comment on other Méthod would be lost.
methods of semiclassical quantization and their applicability

m;,
fﬁ p,dg,=h nr+Z .
This reduction in dimensionality is a tremendous simplifica-
tion and arises because the conditiag=constV i#r)
implies thatdg;=0 everywhere along the path of integration
which forces all terms in the suif2) to be rigorously zero,

save one. A SOS can be generated for egghd;) sheet to
specify each of the quantum conditions in turn.

to the present problem, approximating the eigenstates of B. Computational details
Hy" . o ) ) The classical Hamiltonian for 44 and its isotopomers is
The popular periodic orbit method of Gutzwillg5] gen-
erates the quantum density of states from a knowledge of the p2  ps p: 1 1 1
eriodic classical orbits. It is equally applicable to separable H= + + ts————, (4)
P qually app P 2m, 2m, 2m; R r, Iy

and nonseparable cases. Miller has argued that the periodic
orbit method makes approximations beyond the semiclass
cal approximatior{16], an issue that has been resolved, in
large measure, by Berry and Taldr7] through the use of

complex periodic orbits. The challenge of locating all of the
important periodic orbits precludes the use of this method in

(/'vhereml, m,, andmj; are the masses of the two nuclei and
the electron, respectively, with coordinatgsand momenta
andp; . The distance parameters, r,, andR are given by

the present case. R=[(d—qy)- (a2~ a1,
The Fourier method, based on the work of Perc|Na],
relies on the computation of the action integrals from the ra=[(dz—0ay)- (dz—ay) 12,
coefficients in a Fourier series representation of the classical
coordinates and momenita9]. The Fourier method has seen ro=[(az—0,)- (93— )] *2. (5)

considerable success, particularly in the determination of the

vibrational levels of coupled oscillator systeni80-22.  Classical trajectories are represented discretely by numerical

Nevertheless, the Fourier method is likely to be prohibitivesplution [30] of the Hamilton differential equations of mo-
to use in the current case because it requires that the classigin

trajectory be numerically integrated for a minimum of sev-
eral periods of the lowest frequency fundamental mode of
the system. In |' , the electronic and nuclear motions differ (dg,/dt)=

in their characteristic frequencies by more than two orders of Pa (6)
magnitude. This means that in order to successfully apply the

Fourier method, it would be necessary to compute trajecto- —(dp,/dt)= ﬁ

ries long enough to encompass several periods of the nuclear “ "

vibration, but with a step size small enough to track the

electronic motion accurately, a prohibitive computationalusing Cartesian coordinates, and momenta,, where the
task. The electronic motion is particularly difficult to track index « runs over the three spatial coordinates and each of
with accuracy near the sharp inner turning points, which rethe three particles.

sult from close electron-proton encounters. Such encounters During numerical integration, near one of the previously
occur frequently on the time scale of the electronic motion.mentioned close electron-proton encounters, the force be-

The adiabatic switchingAS) method, in which a solvable tween the two particles becomes very large and hence the
zero-order Hamiltonian is gradually perturbed into the full electron, owing to its small mass, is given tremendous accel-
Hamiltonian over the course of a numerical classical trajeceration. If such an encounter is too close, the force exceeds
tory [23], is not applicable to the ground state of 'Hdue to  the dynamic range of the numerical integration and conser-
the lack of a good zero-order Hamiltonian. The excited  vation of total energy is lost. The calculations reported
state of H* in many ways resembles a perturbed hydrogerherein were run, at a minimum, in doul{@4 bit) precision,
atom, however, and might be a candidate for investigatiorbut for some trajectories it was necessary to employ qua-
with AS. Herein we consider both the electronic ground statelruple (128 bit) precision to properly track the electron mo-
of H,* and theo* state. tion [31].

Another method that is particularly appealing for non-  While the trajectories are computed in Cartesian coordi-
separable coupled oscillator systems is to quantize on a sepaates, these are not the most useful coordinates for semiclas-
rable Hamiltonian that approximates the fully nonseparablesical quantization with the SOS method. We note that in the
Hamiltonian. An iterative scheme for developing such anclamped nuclei approximation, the problem is separable in
approximate Hamiltonian was originally developed by confocal elliptic coordinateg3,32],
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(ra+rp) 00
I :
(7) ‘g
n= (ra_rb) *or ES
2C
e -
where X is the separation of the foci. We will make certain & 44| - -
restrictions on the K" system that permit the use of a simple M,...w*""‘“’
extension of the confocal elliptic coordinate system. All /r"'
three particles are restricted to lie in they) plane, which g
is coplanar with the {, ») plane. The foci are at-C along S0r¢
the x axis. Additionally, the system is translated to have its ;'
center of mass at thex{y) =(0,0) origin and the total linear .
momentum of the system is zero, 100 ‘ ‘ ‘
o 1.2 1.4 1.6 1.8 2.0
P=p;+p2+ps=0. 8 r
Finally, only initial conditions with zero total angular mo- FIG. 1. Typical (p,,¢) SOS figure.
mentumL are considered,
g1 92 O3 numerical methods. Tiling schemes based on circle sectors,
and triangles both produced results in good accord with the
L_zn: de pf pf pf =0. ®  trapezoidal rule integration.
i)k As suggested in Eq10), to computeAs, (pgr,R) is sim-

" ply accumulated for a few cycles of the nuclear motion with

Herei, j, andk are the Cartesian unit vectors, and of course© restriction onZ or 7. The total energy is only weakly
9s=ps=0 V n by the above condition of planarity. The sensitive t0A3, S0 any error in the value &; resulting from

indexn runs over the three particles. With the above restric0t restrictingZ and/or» introduces errors in the total energy
tions, the relative orientation of three particles is specified@’ below those introduced by the uncertainty inherent in the
with the space fixed confocal elliptic coordinates 4) to calculation ofA; (which is under full andR restriction$

specify the position of the electron, aril to specify the Since the total energy is strongly dependentAqn An ex-
relative internuclear distance. ample (pgr,R) figure is shown in Fig. 2. The spikes result

For semiclassical quantization by the surface of sectiodom the previously mentioned close electron-proton encoun-

method, the following SOS figures were selected: ters. o _
In the limit C— 0, { becomes a radiug\, therefore cor-

relates with the action associated with radial motion in the
united atom limit. For thex* state, discussed in Sec. Il B,
the total energy, by analogy to the hydrogen atom, depends

Al:(pgrg)i 77: 77(:; Rc_éSR$RC+ 6

A=(p,,n), (=L, Rc—6sRsR+4 (10 100

Asz=(pr,R), (Z,n unrestricteq.

The 7. and{. are constants. Along any given trajectory the

condition (= 7, and R=const) is met with vanishing fre- sor
guency, soR is allowed to fall within a rangeR.— <R

<R;+ ¢ in order to collect sufficiently many SOS points

within a finite time. The width factoé is chosen to be small ool

P(R)

enough that further reduction ié results in no appreciable
change in the area of the resulting SOS figir8]. Empiri-
cally, 6=0.15 bohr was found to meet this criteria. A typical
(ps,¢) SOS figure is shown in Fig. 1. Note thg&1 in 50}
accordance with its definitio7), and the momenturp, is

small where{ is maximum. The SOS areas were computed
numerically by summation of the areas of an array of trap-
ezoids, which were chosen to tile the SOS figure, a scheme %90 200 220 240 260

that is equivalent to the common “trapezoid rule” for nu- R

merical integration. The uncertainty in the area computation

was found to be+0.5% with 100 SOS points defining the  FIG. 2. (ps,R) for about one cycle of the nuclear motion. Note
figure. Typically several hundred SOS points were used. Athe spikes that result from close electron-nucleus encounters
a check, selected areas were also computed with two othésitomic units.
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almost exclusively or\;. This is the only action used in the
semiclassical quantization of* by the SOS method.

Since the numerical integration is accomplished in Carte
sian coordinates and momenta, it is necessary to express the™ M102

SOS coordinates {(7,R) and their conjugate momenta
(p¢»P,,Pr) in terms of the Cartesian coordinatgs and

momentap;, in order to generate the SOS figures from the
trajectory data. The SOS coordinates are easily expressed

terms of the Cartesian coordinates by substitution of(&y.

into Eq. (7). To find expressions for the SOS momenta, we

make use of

T
Pe=5(dzide)

aT

o= 5(dqrdy) (19

T
PR=5(dRidt)

whereT is the kinetic energy operator

T mld% + mgd% 4 msqg
2 2 2

12

To find the SOS momenta based on Efjl) we need the
kinetic energy operatoF in terms of the SOS velocitieg,
7, R. These velocities are given by

. d¢ iz .

g_a_g Eqav

. dy an .

ﬂ—a—; @qar (13
IR .

. dR
-5 -

>

< Eqa-
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miq: —MxQs mMyQqs —Mgdg M3(y
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adqy  dqp dd4 Qs dgq7  dag
n 7 9m 9n 9 9n I
ddq;  dQp dds Qs dd7  dQg
IR IR oR IR IR IR
L d01  9qy dds Qs dq7  d0g]
0 0
9| |0
: 0
q
X _4 =| -1 (14
ds {
&r| |7
Las] LR

Here the subscript cycles over the three Cartesian spatial
coordinates for each of the three particles, €X,, 9,=VY1,
0s=2Z1, Q4= Xy, ...). Note that the components are all zero
by the condition of planarity and therefore not present in Eq.

(14). Substitution of theq, into Eq. (12) and subsequent
differentiation according to Eq.11) produces the required
SOS momenta expressions, which for the sake of brevity are
not reproduced here.

For semiclassical quantization, one could in principle
search for initial conditions, which lead to a trajectory whose
actions(SOS aregssatisfy the quantization condition. For
multidimensional systems this involves searching over many
initial conditions in an attempt to satisfy several quantization
conditions simultaneously. In the present case, this demand-
ing task is frustrated by a nonobvious mapping of initial
conditions to actions. For multidimensional systems, a more
efficient method of semiclassical quantization involves inter-
polating eigenenergiel83—35 based on an approximating
function E(A1,A,, ... ,Ay). Using the methods outlined
above, actiongSOS aregswere computed for many trajec-
tories and the resulting energy vs actions data fit to the func-
tional form

E(Al ,A2 ,A3) = Cl+ C2A1 + 03A2+ 04A3+ C5A§+ CGAg
+C7A%+ CgAL AL+ CoAL A+ C1ALAS,
(15

where thec; were optimized by the method of least squares
to give the best fit. Once the best fit is determined, the de-
sired eigenenergy is easily computed. As an added advan-
tage, this method allows the determination of primitive semi-
classical eigenstates even in regions of phase space where

Here the indexx runs over the three spatial coordinates anty,e classical motion is chaot[85]. There is one important

each of the three particles. Equatiofi) along with the
constraints(8) and (9) result in the following system of six

caveat, this method works well only if the eigenstates are
interpolated[35], a restriction that precludes the application

equations, which can be solved for the six nonzero Cartesiagf this technique to the higher vibrational levels of 'HX

derivativesq,, :

229. With increasing energy, it becomes increasingly diffi-
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TABLE |. Energetics for H* and D,*. Energies are relative to dissociation, i.e., 3B + H*
(in cm™1). Note that in the clamped nuclei cag®] given in the column labeled SR, semiclassical"H
X 2Eg(V:O) is unbound and only becomes bound when tunneling is inclag&tbrm approximation The
present full three-body treatment predicts a weak chemical bond in the primitive semiclassical approximation.
Of course there are no nuclear isotope effects in the clamped nuclei case because the nuclei are effectively
infinite in mass. All values are in cnt.

State S08 exact QM SR
Hy " X235 4(v=0) —2.6x10° —21379.348 +724(—22694
D, " X?54(v=0) —2.7x10° —21711.580 —
H, o™ +2.9x10° (—9)¢ —3.43% —
D,"o* +2.9x10° (—9)¢ -5.51% —

8Present workuncertainty is= 20 in units of the last reported digit fot 229).

bwolniewicz and Orlikowsk{38].

‘Strand and Reinhard8], primitive semiclassical, 5 X3, (R = 2.0 bohj. The molecule is bound only in

the uniform semiclassical approximatigivalue given parenthetically.

dUncertainty undetermined. Approximate primitive semiclassical energy by adiabatic switching given paren-
thetically.

cult to locate classical trajectories for which good actions can lll. RESULTS AND DISCUSSION
be computed. Only in the case of regular motion \{vill the A. The X 23, state

SOS points fall on a smooth cury86], and the SOS figure
have a well-defined area. While chaotic and autoionizing The state energies for i as computed with the semi-
classical trajectories are both present intH37], our suc-  classical SOS method buithout the Born-Oppenheimer ap-
cess lies in finding sufficiently many trajectories in the en-Proximation(BO) are given in Table I, where a comparison

ergy regime of interest for which smooth SOS figutkise is ”f‘ad? to Strand and Reinhard’S] semiclass!cal .result
that shown in Fig. L can be generated. Numerical trajecto- (which includes the Born-Oppenheimer approximatiand

ries do not reveal the ultimate fate of the systam (), but to numerically exact quantum valug38]. Note in particular

the trajectories that were employed remained bound ant at while primitive semiclassical 1 is unbound in the
e . lamped nuclei(BO) approximation, when the full three-
regular for at least 1.2610* atomic time units(about 0.3 P (BO) app

body dynamics is considered,,H is weakly bound within
Ps). ) ) the primitive semiclassical approximation. A physical picture

In the present calculation there are issues of both accuracy ihis bonding is afforded by Fig. 3 which shows a portion
and precision. The_ primitive semiclassical gpproximat_ion iSof an electron trajectory that approximately corresponds to
of course, not equwallent to an exact soluthn to the SchroH2+ X 23.,(v=0). A histogram of the electron’s position is
dinger equation but yields eigenstate energies that are onyhown in Fig. 4. Note that the electron exchanges between
approximate. The difference between the primitive semiclasthe nuclei with its most probable position being between
sical result and the exact quantum result represexehod-  them. This is in accord with long standing views of chemical
ological inaccuracy Generally the primitive semiclassical bonding. The remarkable observation is that this “chemical
eigenenergy is above the corresponding exact quantum resiiond,” while very weak, is entirely classical. The electron’s
because penetration of the quantum wave function into the
classically forbidden regiotan effect neglected in the primi-
tive semiclassical caggermits more of phase space to be
accessed by the wave function than is accounted for in the
primitive semiclassical theory. As a consequence of this ex- 10|
tra phase accumulation, quantizing eigenstates lie deeper ir
the potential and hence lower in energy than the semiclassi-
cal theory predicts. Nevertheless, the primitive semiclassical
eigenenergy is a mathematically well-defined, albeit approxi- ¥ 090
mate, quantity. It is in obtaining this quantity that the issue of
precision is encountered.

As discussed above, there is some uncertainty in comput-
ing the areas of the SOS figures. This uncertainty translates
directly into uncertainty in the primitive semiclassical
eigenenergy. In the present case, the uncertainty in the cal-
culation of the areas of the SOS figures results in an uncer-  _2p ‘ : -
tainty in the final eigenenergies of abatu2000 cmi *. The 20 -0 00 10 20
cost of increasing this precision is not justified in light of the
inaccuracy inherent in the primitive semiclassical approxi- FIG. 3. A portion of an electron trajectory that approximately
mation. corresponds to 5 X 2Eg(v=0) (atomic units.
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FIG. 4. Histogram of the electron’s position for a trajectory that
approximately corresponds to,H X 2Eg(v=0), which is shown
in part in Fig. 3(atomic units.

trajectory is found with Hamilton’s classical mechanics, and
the semiclassical quantization is primitive, making no adjust-
ment for tunneling other than the standar@t phase accu-
mulation at each turning poif8,9].

The exchange of the electron is most easily seen in Fig. 5
which shows the time dependence of theomponent of the
instantaneous molecular dipol€lThe molecular axis is ap-
proximately parallel to thex axis) Figure Ha) is for a tra-

dipole

jectory approximating k" X 229(1/:0), and Fig. ) is 30

for a trajectory approximating H X ZEg(vz 1). Changes

in sign of thex component of the instantaneous molecular 49, 500.0 10000 1500.0 2000.0 5500.0
dipole are a manifestation of the electron swapping nuclei (b) time

Note that the frequency of this exchange correlates with mo-

lecular vibration. Electron exchange or “sharing” is, of  £G 5. Time dependence of thecomponent of the instanta-
course, the signature of chemical bond[dg. In Fig. 5 we  neous molecular dipole. The time dependence of the internuclear
Clearly see the|aSSIca|eXChal’lge Of the e|ectl’0n betWeen the SeparatiorR is Superimposea)roken cuer for purposes of com-

nuclei. parison. Note that classical electron exchange occurs only near the
inner turning point(a) Hy" X 254(»=0). (b) Hy" X 2S4(v=1).
B. The 23, state (¢*) R in bohr, dipole in atomic units.

The 23, state of H* nominally arises from the antisym-
metric combination of the two hydrogenis Wave functions M= rb=E,
and in the treatment of Pauliid] is antibonding, repulsive 2 (17)
at all internuclear separatio& As first calculated by Peek
[39], and much more recently observed for somg ksoto- V(R)= __3

pomers by Carringtoet al. [40], this o* state has a weak R’
van der Waals minimum at large. It is easily shown that
the classical exchange of the electron is forbidden indftis According to Carringtoret al.[40], the »=0 turning points
state. on the ¢* PEC arern~5 A=9.45 bohr, rgye~10

For the electron to exchange classically between the twé\=18.9 bohr. At 9.45 bohr, the closest approach of the nu-
nuclei it must at some time be exactly half-way betweenclei, the potential energy ¥(9.45)= —0.317 hartree, which
them, which represents the top of the potential barrier tdS the barrier to exchanging the electron. Tdi state ener-

exchange. This barrier decreases with decreasing R. The pgies are [39] D,"=—0.500025 hartree, and M=

tential energy is —0.5000156 hartree. These energies are far below the height
of the barrier to electron exchange. The electron can there-
1 1 1 fore only exchange between the nuclei by tunneling, a non-
VIR==————. (16) .
R r, rp classical process.

Note that since some energy is tied up in the kinetic en-
ergy of the electron, it is possible for the electron to be
With the electron exactly half-way between the nuclei, dynamically confined to one or the other nucleus, even
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though its classical exchange is energetically allowed. Such¢ 40
case is seen for the )’(29 state in Fig. 5 where the electron

gets temporarily “stuck” on one nucleus even thoughs 20 Qw 1
such that classical electron exchange is energetically al > ——————————
lowed. This effect betrays a total energy that is only slightly 0.0 WMMWWUMW’/

greater than the potential barrier to electron exchange, ai
energy regime where tunneling is particularly significant  _so |
[41]. The close energetic proximity of the potential maxi-
mum to the eigenstate energies in"Haccounts for the siz-
able tunneling correctiof].

Because the electron cannot exchange between the nucli i
classically in theo* state, for primitive semiclassical quan- HMW

MMM

Energy
| |
»
[=]

tization this state must be viewed as a perturbed hydroger
atom.

Consider the following physical picture: when a hydrogen ‘ ‘ ‘ . .
atom is perturbed by bringing a second proton in from a %% 2000 4000 6000  800.0 10000  1200.0
great distance, the Coulomb potential well in which the elec- time
tron is trapped expands slightly. Instead of rising symmetri-

cally from —oo at the atomic center to the zero of potential
Y P eigenenergy. The solid curve shows the system en@mgyn 1) as

far from the nucleus, in the direction of the perturbing proton : ) ) . ;
- . - . . . a function of time over the course of a numerical classical trajectory
the rise is slightly attenuated. This perturbation increases

. . Whose initial conditions mimic a hydrogen atom in its gigen-
slightly the vc_)Iume_ of the potential well and_ hence IOWersstate. The broken curve shows the time dependence of the charge on
the hydrogenic & _elge_nstate. Because the _elgenstate In thea bare proton placed at a distance equal to the separation of the
perturbed system is slightly lower than that in separatetd H |, jei at the outer classical turning point in H 23 ,(v=0).

H™, the perturbed system is bound with respect to dissocia-
tion into a hydrogen atom plus a proton. The electron there-

fore orbits one nucleus with the second nucleus hovering at a ) ) ] o
greater distance. mode system has permitted the semiclassical quantization of

The effect of the perturbing proton on the hydrogenic 1 the hydrogen molecular ion A without the restriction of
eigenenergy is shown in Fig. 6, which displays the graduathe Born-Oppenheimer separation of nuclear and electronic
transformation, H $— H,™ o*. A classical trajectory is Mmotions. Unlike the clamped-nuclei approximation, in the
computed numerically such that at tirre O the coordinates present full three-body treatment, primitive semiclassical
and momenta are set to mimic a hydrogen atom in the 1quantization properly predicts the sign of the dissociation
state with a second bare proton placed at a distance equal @ergy of H* . While primitive semiclassical quantization
the nuclear separation at the outer classical turning point igives a quantitatively inaccurate description of the one-
H,™ 23,(r=0). (As previously noted, the outer turning electron chemical bond in H because it ignores the domi-
point is R=18.9 bohr{40].) The chargeQ, on the bare pro- nant tunneling contribution, it does reveal a previously un-
ton, however, is given the time dependence appreciated 10% classical contribution.

The o* van der Waals state of H is also discussed and
shown to correspond physically to a perturbed hydrogen
atom. The slight expansion of the Coulomb potential well
brought about by an adjacent proton leads to a bousd H
Here ¢ sets the switching time an@l is chosen such that the state by lowering very slightly theslhydrogen ground-state
rate of change of charge is very small, while still achievingjeyel.
the conditionsQ,(0)~0 andQ4(2¢)~1. Here 3=0.015,
¢=750, and the final energy was found to be converged

M,

FIG. 6. Effect of a perturbing proton on the hydrogenis 1

Qi(t)= 1 (18

Fefo0
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