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Bounds on decoherence and error
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When a confined system interacts with its wdtleated quantum mechanicallyhere is an intertwining of
degrees of freedom. We show tithis need not lead to entanglemehence decoherence. However, it will
generally lead to error. The wave-function optimization required to avoid decoherence is also examined.
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INTRODUCTION scattering of two point particles: one sméathassm), repre-
senting the microscopic system, and one latgassM),
Physical implementation of quantum computing algo-representing the contaings].

rithms [1], experimental tests of certain theor{g, as well Before the collision we assume the wave function to be
as other contemporary problems require that for fairly largeunentangled, that ist',=I'(X)®(x), with position variables
systems the time evolution be fully described hy X andx corresponding to the large and small masses, respec-
—exp(—iHt/A)y, with no “measurement” or, to be more t!vely. We make sgveral S|mpI|fy|ng assumptlo(ls:r'estrlc'— .
precise, no decoherence or interaction with the environmention to one dimension, reasonable if the large “particle” is in
Such an interaction can cause entanglement with envirorfact a wall;(ii) rapid completion of the scatteringii) short-
mental degrees of freedom and prevent interference with pof2nge, infinite repulsion; andv) Gaussian wave packets.
tions of the wave function that have not experienced the\ssumptions(ii) and (iii) are reasonable and simplify the

identical interaction. Moreover, those same interactions caf@lculation, and I expect that departures from them will in-
induce wave-function errors even within the original systemcrease decoherence and error. We further comment below on

Hilbert space. these assumptions.

For any laboratory system one can expect a degree of If the interaction with the wall could be treated as a pure
entanglement with the environment, simply due to the facpotential interaction with a fixed object, the wave function
that the system is pinned to the table. In particular, when parfter the collision would b¢7] I'(X)®(~x). On the other
of the system rebounds from the walls confining(éten hand, the correct form of the final wave function can be seen
electromagnetic waljsconservation of momentum demands by going to center of mass coordinas: (MX+mx)/M,
an intertwining of the degrees of freedom. One might expect=X— X, with M=M+m. In these coordinates
z:.lecrf]]t confinement to place a fundamental bound on entangle- ¥, =T(R— 8u)®(R+ yu),

Taking the approach if3], | begin from this inevitable where §=m/M and y=M/M. With the above assump-
intertwining and establish the extent to which it leads totions, the wave functiomfter the collision is
entanglement. The measure of entanglement is that given in
[4]. There is a surprise in the calculation: for appropriately Ve=T(R+6u)@(R—yu),
tailored wave functlonsth_erg .need be no dec_:oheren&dms .e., Uu——u. To show this, recall that the exact propagator
leads us to explore the significance of the tailoring. Howevers,, ihis ;

] . . . problem is
although decoherence is avoidable, we will show that error is

not[5]. G(R”,u”,t;R’,u’)=gé‘4(R”—R’,t)[gg(u”—u’,t)
Whether the decoherence is large or smédr nearly L
matching wave functions it is of the order of the system to —ghH(u"+u’,1)], 1)
container mass ratjpthe resulting amplitude defect must be with
subtracted from the wave function feachcollision, allow-
ing for the possibility of physically significant effects. v i vy?
%(¥:U= N 27t exP(% ?)
INTERACTING WITH A WALL the free propagator, and=mM/M. To a good approxima-

A confined system will, from time to time, interact with tion, before the collision the wave function is given by the

its container. Dissipative walls, in the sense that the interad/t€gral invplvinggglgu”—’ u’,t) and after the collisio8] by
tion is an inelastic collision, immediately lead to entangle-that involving gg(u”+u’,t). Thus, to get the final wave
ment; for our bounds we therefore assume that the collisiofinction, one reverses.

is elastic and involves no degree of freedom beyond that When reexpressed in terms »fandX,

required to contain the system. Our model is therefore the We=T(X(1—28)+ 2x8) D (—x(1—28)+2X7), (2)

suggesting that the final wave function has become en-
*Electronic address: schulman@polaris.clarkson.edu tangled. For interactions more general than the hard wall
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there will be more complicated changes in the functions, butve find
since the separate evolution ofand R follows from mo-

i 5 4k?\ o2 32
mentum conservation and the general nature of the two—A,zz 2, 524 2+ lex with A= —
particle interaction, there is no getting away from the inter- Y Y N 1+\ o
twining. 5)

The form we take for the wave function is

To study the extent to which the idealization E4) can be
accurate, we varyr and 3, so as to minimize the deviation

, (3 (and maximizeA). For k=0, A depends only on (not the
sigmas separatelyand is optimized by

- 1 p( X? p( X2 ik
= exp — -——s|exp — — +ikx
! V2mo 432 40°

with both x and X taking values on the entire real lirjthe 5§ m

position spreads a®X =3, andAx= o, both assumed real ?\maxz;* M

In principle we should use a wave function wixrXg in

place ofx above and restrict the relative coordinate(¢ay)  Substituting yieldsA= 1. There isno error.(N.B. This holds
negative valuegbecause the particle is approaching a hardonly for k=0 and\ =\ may.) Whenk+#0 we maximizeA by
wall from the lef). However, because we are able to restrictoptimizing\ for givenko. We will see that even at belst1]

attention to the reflected_ wave, settirgto zero only'cor're- A falls below unity byO( ). For small and larg&o analytic
sponds to assuming a different moment for the initial time aforms are

which the system was assumed to be disentangled—this has

no effect on our major conclusiorithe existence of Amax= 6/ y (as beforg,
entanglement-free scatteringnd little effect on the other

conclusiong10]. Note, by the way, that since this propagator 1—A~26k?c? for small ko,

is exact(given the hard-wall assumptinthe subsequent ©
time evolution corresponds to to a pair of free particles in the Amax= 0/2ko, 1-—A~26ko for large ko

following way. Write down the integral G\, , keeping only

the g(u”+u’,t) term. Now changes’ to —u’ throughout.  These behaviors mesh smoothlykat~ 1. Equation(6) is a

The propagator is now the original free-particle propagatorlower bound on error. The factat~m/M keeps this effect
which factorsboth in the center of mass coordinatasad in small and is reminiscent of similar factors in measurement
the separate& and X coordinates. The result of the transfor- theory[12]. It may be appropriate to think of the confine-
mationu— —u is that it isW¥, that carries the entanglement. ment process as one in which the system’s components are
Thus, if (as we show belowthe transformed?, is at any constantly bumping up against their container, so that the
time disentangled with respectxoandX, it will remain that ~ small & could pick up a large factor related to the frequency

way forever. of such interactions.
We now check error and decoherence. To compute “er-
ror,” we compare the outgoing wave to the final state, had DECOHERENCE

the wall not been treated dynamically. To compute decoher-
ence we measure the degree of entanglement as defined

[4].

in TNis is potentially the more damaging effect. A basis in-
dependent measure of the degree of entanglement of the par-
ticle and wall is given inf4]. It can be showri13] that this
degree of entanglement is 1 minus the largest eigenvalue of
YTy (or yy") considered as a matrix operator with matrix

We examine the overlap integral of the acta! with the  indices the arguments af.

wave function that would have resulted from the idealization, Because we ultimately wish to use the system variable
X— —X, namely, as if it were unentangled, the wave function is expressed in

terms ofx and X:

ERROR

Vo= (X)®(—X)=T (R 6W)®(—R—yu).  (4) v

We(x,X)= exp{— Q[X(1—26)+26x]*— w[x(1

4Q)
71'2

Using Eq.(3),
—2y)+2yX]P+ik[x(1—2y)+2yX]}, (7)
AEJ \If;;st\IfF:J dR duI*(R—6u)®*(—R—yu)
with Q=1/45? and w=1/40%. We can form an operator by
X '(R+ du)®(R— yu) integrating either oveK or overx. We choose

- sres i o L F(x' —deqr*x ) We(X
C 2moy JdR duexp — 437 4g7° (x',x)= F (XX WE(X,X)

(R+6u)? (R—yu)? B 20Q) 5 o 0( ,2p2
exp(— y . _Vﬂ-D exp —(X“+x )F 2(x—x") D

; ®

—ik(—R—yu)

+ik(R—yu)), +ik(1—2y)(x—x")
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with D=Q(y— 6)?+4wy? andp=|(y— 6)(Q6— wy)|. As
indicated, we want the largest eigenvalug=gfnow thought
of as the integral kernel of an operator. Note that the facto
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the samem as befor¢ and its position uncertainty,, were
related byo?~1/m. Possible justifications were considered
in [3], but we here take the relation as a hypothesis and

exfik(1—2vy)(x—x")] can be dropped because it does not af-extend it using dimensional analy$i0]. Takingz=1 and

fect the eigenvalue. Next observe thats almost the same

c=1, it is clear that another lengttor energy or magsis

as the kernel of the propagator for the simple harmonic osneeded. For a confined system the quantities that come to

cillator. Using a standard form for this operaf@6], we note
the following fact. The operator

has the spectrunG,=exd—u(n+3)], n=0,1,2 ..., irre-
spective of 8. (The connection with the oscillator i8
=mw/2h and wt=—iu.) It is now straightforward to de-
duce that the spectrum & is F,=(1—e Y)e"Y, with n
=0,1,..., andsinhu/2= \JwQ/2p. It follows that the larg-
est eigenvalue oF is

Snfo [(x?+y?)coshu—2xy]

2

_J’__
71

w
E,

JoQ

p

Fo=1—2? with z= w=

For smallw, Fo~w, and for largew, Fo~1—1/w?.

The first issue is minimizing entanglement, that is, maxi-
mizing Fy. Clearly, Fq reaches its theoretical maximum for
w=oc0, which require§16] in turn )= wy. Recalling the
definitions of w and (), this brings us to the same relation,
32/ o?= 81y, that we found when minimizing err¢t7]. It is
interesting that here the entanglement is strictly zewven
when the momentum k is nonzeri there is the special

matching of wave function spreads. In the absence of match-
ing, the entanglement, hence the decoherence, can be consj

erable, as indicated biyo~w for small w.

This decoherence cuts down thenplitude of the wave
function that can ultimately yield an accurate computationa
result. By the methods df4] one can show13] that the
maximum amplitude available in a putative unentangle
wave functiony(x) is \Fo and that for two successive in-
dependent collisions it will be the product of two such terms
If Fqis not extremely close to 1, the effect can build rapidly.

Such behavior is to be contrasted with, say, decay, where thg,

mind are an overall length scale for the system and the tem-
perature. The former seems to me ill defined, and in particu-
lar an attractive feature of the relation proposed is that it is
not vital to distinguish between “system” and walls. Using
then the temperaturel§ and restoring:, we find

hZ

" Mkt 9

o
with kg the Boltzmann constant. Equatid®) gives a mass
m object a packet size that is the geometric mean of its
Compton wavelength ane (0.2 cm)/(T K). This does not
seem inconsistent with experience. Lower temperature al-
lows larger coherent wave packets, distinguishing this effect
from thermal fluctuationg§21] where position spreadie-
creaseswith decreasing temperature. If the effective momen-
tum k of the small mass is itself the result of thermal fluc-
tuations, then equipartition relates this to temperature as
well. We then havek?o?~ (242k?/2m)/kgT~1, indepen-
dent of temperatur¢22]. (For ko=1, A~1—-1.25.) This
suggests that in a heat bathp~#/Ax, since{p)=0.

LIMITATIONS AND EXTENSIONS

We have shown that confinement neexd force entangle-
ent, but if the confined objects strike the walls at finite
locity, there must be “error.” It must be emphasized that
the no-entanglement result depends not only on a particular
atio of spreads for small and large systems, but also on the
aussian form of the wave packet and on the form of the
jnteraction with the wall. Since my expectation in starting
his work was that a nonzero lower bound could be found on
entanglement-induced decoherence, it made sense to idealize
as much as possible in aiming for the lower bound. It now
turns out that zero entanglement is attainable, so that a con-
rse orientation is suitable: which assumptions could be

initial small deviation is in a phase, so that the effect of Manyyropped and still maintain zero entanglement? My guess is

independent such deviations is only quadratic in each of many

them.

OPTIMAL COHERENCE

The minimization of both error and entanglement hav
brought to light a matching condition on the spreads of th
system and apparats/o?=m/M. This may be surprising.

although given our experience with the absence of
momentum-conservation-forced entanglement one should
not jump to conclusions. That guess is based on another solv-
able (nearly solvable, actuallypropagator: the harmonic
wall. For a wall (in the relative coordinat&) of the form

e
H(u) 3 u( 7/ 7)?u? and for regions1<0, the propagator is the

same as that given in Edl), except[23,2] that gf(u”

Based on the usual idealization of macroscopic objects, one u’,t) is replaced bygg(u”+u’,t— 7). In other words, the

might have thought that there should be no restriction on th
smallnesof AX [18]. Aside from considerations of the sort
in [2] (and for whichFy=1 provides an example of a “spe-

cial state”), there is no reason to think that nature would
evolve into minimally decohering stat€$9]. Of course the

avave function reflects essentially perfectly off the wall, but
is delayed by one half period. The difference between this
and the free uncoupled propagatarich it would be forr

=0) contains terms of the form exp(condtxX), which do

not seem to me removable, but are small for short reaction

constructor of a quantum computer may have a strong intetimes. In any case, this issue remains open.

est in such minimizing. In any case, it is of interest to con-
sider the possibility that the optimizing condition hold gen-
erally. In[3] it was observed thaill pairs of objects could
satisfy the relation above if for each object its masgnot

For applications it is desirable to identify the wall mass
M. Even for a vacuum chamber one would not look to the
mass of the entire chamber, but only the region affected by
the particle’s collision, perhaps defined by the wavelength of
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the appropriate phonon. For “chambers” that are magnetidions, that pinning will introduce error, in the sense of
fields (etc) one can ultimately look to the laboratory equip- changed outgoing wave function. Minimizing both decoher-
ment that produces these fields. ence and error are best accomplished when a particular rela-

Finally, there is our decoherence-minimizing relatiofy  tion exists between the wave function spreads of the system
~1/m or, more ambitiously,afn~h2/kaT. Do particles and container. We have also computed the degree of en-
settle into wave packets of this size? Are two-time boundaryanglement in situations where the minimum spread condi-
condition consideration@s in[2]) at work? Or perhap&ot tion does not hold.
exclusively arguments of the form ifi3] or [19] hold. Yet
another question is the form such a relation might take for
massless particles. Here too one could ask for decoherence-
minimizing scattering.

In conclusion, we have shown that pinning a system to the | thank B. Gaveau, D. Mozyrsky, P. Pechukas, and S.
table does not in itself force entanglement with the degree$sonchev for helpful discussions. This work was supported
of freedom of the container, treating the latter as a fullyin part by NSF Grant No. PHY 93 16681 and by U.S. Air
guantum object. Nevertheless, subject to reasonable assunfperce Grant No. F30602-97-2-0089.
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