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Bounds on decoherence and error
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Physics Department, Clarkson University, Potsdam, New York 13699-5820
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When a confined system interacts with its walls~treated quantum mechanically!, there is an intertwining of
degrees of freedom. We show thatthis need not lead to entanglement, hence decoherence. However, it will
generally lead to error. The wave-function optimization required to avoid decoherence is also examined.
@S1050-2947~98!05802-8#

PACS number~s!: 03.67.Lx, 03.65.Bz, 03.80.1r, 89.80.1h
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INTRODUCTION

Physical implementation of quantum computing alg
rithms @1#, experimental tests of certain theories@2#, as well
as other contemporary problems require that for fairly la
systems the time evolution be fully described byc
→exp(2iHt/\)c, with no ‘‘measurement’’ or, to be more
precise, no decoherence or interaction with the environm
Such an interaction can cause entanglement with envi
mental degrees of freedom and prevent interference with
tions of the wave function that have not experienced
identical interaction. Moreover, those same interactions
induce wave-function errors even within the original syst
Hilbert space.

For any laboratory system one can expect a degree
entanglement with the environment, simply due to the f
that the system is pinned to the table. In particular, when
of the system rebounds from the walls confining it~even
electromagnetic walls! conservation of momentum deman
an intertwining of the degrees of freedom. One might exp
such confinement to place a fundamental bound on entan
ment.

Taking the approach in@3#, I begin from this inevitable
intertwining and establish the extent to which it leads
entanglement. The measure of entanglement is that give
@4#. There is a surprise in the calculation: for appropriat
tailored wave functions,there need be no decoherence. This
leads us to explore the significance of the tailoring. Howev
although decoherence is avoidable, we will show that erro
not @5#.

Whether the decoherence is large or small~for nearly
matching wave functions it is of the order of the system
container mass ratio!, the resulting amplitude defect must b
subtracted from the wave function foreachcollision, allow-
ing for the possibility of physically significant effects.

INTERACTING WITH A WALL

A confined system will, from time to time, interact wit
its container. Dissipative walls, in the sense that the inte
tion is an inelastic collision, immediately lead to entang
ment; for our bounds we therefore assume that the collis
is elastic and involves no degree of freedom beyond
required to contain the system. Our model is therefore
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scattering of two point particles: one small~massm!, repre-
senting the microscopic system, and one large~massM !,
representing the container@6#.

Before the collision we assume the wave function to
unentangled, that is,C I5G(X)F(x), with position variables
X andx corresponding to the large and small masses, res
tively. We make several simplifying assumptions:~i! restric-
tion to one dimension, reasonable if the large ‘‘particle’’ is
fact a wall;~ii ! rapid completion of the scattering;~iii ! short-
range, infinite repulsion; and~iv! Gaussian wave packets
Assumptions~ii ! and ~iii ! are reasonable and simplify th
calculation, and I expect that departures from them will
crease decoherence and error. We further comment below
these assumptions.

If the interaction with the wall could be treated as a pu
potential interaction with a fixed object, the wave functio
after the collision would be@7# G(X)F(2x). On the other
hand, the correct form of the final wave function can be se
by going to center of mass coordinatesR5(MX1mx)/M,
u5x2X, withM5M1m. In these coordinates

C I5G~R2du!F~R1gu!,

where d5m/M and g5M /M. With the above assump
tions, the wave functionafter the collision is

CF5G~R1du!F~R2gu!,

i.e., u→2u. To show this, recall that the exact propaga
for this problem is

G~R9,u9,t;R8,u8!5g0
M~R92R8,t !@g0

m~u92u8,t !

2g0
m~u91u8,t !#, ~1!

with

g0
n~y,t ![A n

2p i\t
expS i

\

ny2

2t D
the free propagator, andm5mM/M. To a good approxima-
tion, before the collision the wave function is given by th
integral involvingg0

m(u92u8,t) and after the collision@8# by
that involving g0

m(u91u8,t). Thus, to get the final wave
function, one reversesu.

When reexpressed in terms ofx andX,

CF5G„X~122d!12xd…F„2x~122d!12Xg…, ~2!

suggesting that the final wave function has become
tangled. For interactions more general than the hard w
840 © 1998 The American Physical Society
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57 841BOUNDS ON DECOHERENCE AND ERROR
there will be more complicated changes in the functions,
since the separate evolution ofu and R follows from mo-
mentum conservation and the general nature of the t
particle interaction, there is no getting away from the int
twining.

The form we take for the wave function is

C I5
1

A2psS
expS 2

X2

4S2DexpS 2
x2

4s2 1 ikxD , ~3!

with both x andX taking values on the entire real line~the
position spreads areDX5S andDx5s, both assumed real!.
In principle we should use a wave function withx2x0 in
place ofx above and restrict the relative coordinate to~say!
negative values~because the particle is approaching a ha
wall from the left!. However, because we are able to restr
attention to the reflected wave, settingx0 to zero only corre-
sponds to assuming a different moment for the initial time
which the system was assumed to be disentangled—this
no effect on our major conclusion~the existence of
entanglement-free scattering! and little effect on the other
conclusions@10#. Note, by the way, that since this propagat
is exact ~given the hard-wall assumption!, the subsequen
time evolution corresponds to to a pair of free particles in
following way. Write down the integral*GC I , keeping only
the g(u91u8,t) term. Now changeu8 to 2u8 throughout.
The propagator is now the original free-particle propaga
which factorsboth in the center of mass coordinatesand in
the separatex andX coordinates. The result of the transfo
mationu→2u is that it isC I that carries the entanglemen
Thus, if ~as we show below! the transformedC I is at any
time disentangled with respect tox andX, it will remain that
way forever.

We now check error and decoherence. To compute ‘
ror,’’ we compare the outgoing wave to the final state, h
the wall not been treated dynamically. To compute decoh
ence we measure the degree of entanglement as define
@4#.

ERROR

We examine the overlap integral of the actualCF with the
wave function that would have resulted from the idealizatio
x→2x, namely,

C test[G~X!F~2x!5G~R2du!F~2R2gu!. ~4!

Using Eq.~3!,

A[E C test* CF5E dR duG* ~R2du!F* ~2R2gu!

3G~R1du!F~R2gu!

5
1

2psS E dR duexpS 2
~R2du!2

4S2 2
~2R2gu!2

4s2

2 ik~2R2gu! DexpS 2
~R1du!2

4S2 2
~R2gu!2

4s2

1 ik~R2gu! D ,
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we find

A225Fg21d21g2l1
d2

l GexpS 4k2ls2

11l D with l[
S2

s2 .

~5!

To study the extent to which the idealization Eq.~4! can be
accurate, we varys and S so as to minimize the deviatio
~and maximizeA!. For k50, A depends only onl ~not the
sigmas separately! and is optimized by

lmax5
d

g
'

m

M
.

Substituting yieldsA51. There isno error.~N.B. This holds
only for k50 andl5lmax.! WhenkÞ0 we maximizeA by
optimizingl for givenks. We will see that even at best@11#
A falls below unity byO(d). For small and largeks analytic
forms are

lmax'd/g ~as before!,

12A'2dk2s2 for small ks,
~6!

lmax'd/2ks, 12A'2dks for large ks.

These behaviors mesh smoothly atks;1. Equation~6! is a
lower bound on error. The factord'm/M keeps this effect
small and is reminiscent of similar factors in measurem
theory @12#. It may be appropriate to think of the confin
ment process as one in which the system’s components
constantly bumping up against their container, so that
small d could pick up a large factor related to the frequen
of such interactions.

DECOHERENCE

This is potentially the more damaging effect. A basis
dependent measure of the degree of entanglement of the
ticle and wall is given in@4#. It can be shown@13# that this
degree of entanglement is 1 minus the largest eigenvalu
c†c ~or cc†! considered as a matrix operator with matr
indices the arguments ofc.

Because we ultimately wish to use the system variabx
as if it were unentangled, the wave function is expresse
terms ofx andX:

CF~x,X!5F4Vv

p2 G1/4

exp$2V@X~122d!12dx#22v@x~1

22g!12gX#21 ik@x~122g!12gX#%, ~7!

with V[1/4S2 andv[1/4s2. We can form an operator b
integrating either overX or overx. We choose

F~x8,x![E dX CF* ~X,x8!CF~X,x!

5A2vV

pD
expH 2~x21x82!

vV

D
22~x2x8!2

r2

D

1 ik~122g!~x2x8!J , ~8!
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842 57L. S. SCHULMAN
with D[V(g2d)214vg2 andr[u(g2d)(Vd2vg)u. As
indicated, we want the largest eigenvalue ofF, now thought
of as the integral kernel of an operator. Note that the fac
exp@ik(122g)(x2x8)# can be dropped because it does not
fect the eigenvalue. Next observe thatF is almost the same
as the kernel of the propagator for the simple harmonic
cillator. Using a standard form for this operator@15#, we note
the following fact. The operator

G~x,y![A b

p sinhu
expF2

b

sinhu
@~x21y2!coshu22xy#G

has the spectrumGn5exp@2u(n11
2)#, n50,1,2, . . . , irre-

spective of b. ~The connection with the oscillator isb
5mv/2\ and vt52 iu.! It is now straightforward to de-
duce that the spectrum ofF is Fn5(12e2u)e2nu, with n
50,1, . . . , andsinhu/25AvV/2r. It follows that the larg-
est eigenvalue ofF is

F0512z2 with z5Aw2

4
112

w

2
, w[

AvV

r
.

For smallw, F0;w, and for largew, F0;121/w2.
The first issue is minimizing entanglement, that is, ma

mizing F0 . Clearly,F0 reaches its theoretical maximum fo
w5`, which requires@16# in turn Vd5vg. Recalling the
definitions ofv and V, this brings us to the same relatio
S2/s25d/g, that we found when minimizing error@17#. It is
interesting that here the entanglement is strictly zeroeven
when the momentum k is nonzero—if there is the specia
matching of wave function spreads. In the absence of ma
ing, the entanglement, hence the decoherence, can be co
erable, as indicated byF0;w for small w.

This decoherence cuts down theamplitudeof the wave
function that can ultimately yield an accurate computatio
result. By the methods of@4# one can show@13# that the
maximum amplitude available in a putative unentang
wave functionc(x) is AF0 and that for two successive in
dependent collisions it will be the product of two such term
If F0 is not extremely close to 1, the effect can build rapid
Such behavior is to be contrasted with, say, decay, where
initial small deviation is in a phase, so that the effect of ma
independent such deviations is only quadratic in each
them.

OPTIMAL COHERENCE

The minimization of both error and entanglement ha
brought to light a matching condition on the spreads of
system and apparatusS2/s25m/M . This may be surprising
Based on the usual idealization of macroscopic objects,
might have thought that there should be no restriction on
smallnessof DX @18#. Aside from considerations of the so
in @2# ~and for whichF051 provides an example of a ‘‘spe
cial state’’!, there is no reason to think that nature wou
evolve into minimally decohering states@19#. Of course the
constructor of a quantum computer may have a strong in
est in such minimizing. In any case, it is of interest to co
sider the possibility that the optimizing condition hold ge
erally. In @3# it was observed thatall pairs of objects could
satisfy the relation above if for each object its massm ~not
r
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the samem as before! and its position uncertaintysm were
related bysm

2 ;1/m. Possible justifications were considere
in @3#, but we here take the relation as a hypothesis a
extend it using dimensional analysis@20#. Taking \51 and
c51, it is clear that another length~or energy or mass! is
needed. For a confined system the quantities that com
mind are an overall length scale for the system and the t
perature. The former seems to me ill defined, and in part
lar an attractive feature of the relation proposed is that i
not vital to distinguish between ‘‘system’’ and walls. Usin
then the temperature (T) and restoring\, we find

sm
2 ;

\2

mkBT
, ~9!

with kB the Boltzmann constant. Equation~9! gives a mass
m object a packet size that is the geometric mean of
Compton wavelength and;(0.2 cm)/(T K). This does not
seem inconsistent with experience. Lower temperature
lows larger coherent wave packets, distinguishing this eff
from thermal fluctuations@21# where position spreadde-
creaseswith decreasing temperature. If the effective mome
tum k of the small mass is itself the result of thermal flu
tuations, then equipartition relates this to temperature
well. We then havek2s2;(2\2k2/2m)/kBT;1, indepen-
dent of temperature@22#. ~For ks51, A'121.2d.! This
suggests that in a heat bath,Dp;\/Dx, since^p&50.

LIMITATIONS AND EXTENSIONS

We have shown that confinement neednot force entangle-
ment, but if the confined objects strike the walls at fin
velocity, there must be ‘‘error.’’ It must be emphasized th
the no-entanglement result depends not only on a partic
ratio of spreads for small and large systems, but also on
Gaussian form of the wave packet and on the form of
interaction with the wall. Since my expectation in startin
this work was that a nonzero lower bound could be found
entanglement-induced decoherence, it made sense to ide
as much as possible in aiming for the lower bound. It n
turns out that zero entanglement is attainable, so that a
verse orientation is suitable: which assumptions could
dropped and still maintain zero entanglement? My gues
not many, although given our experience with the absenc
momentum-conservation-forced entanglement one sho
not jump to conclusions. That guess is based on another s
able ~nearly solvable, actually! propagator: the harmonic
wall. For a wall ~in the relative coordinateu! of the form

u(u) 1
2 m(p/t)2u2 and for regionsu,0, the propagator is the

same as that given in Eq.~1!, except @23,2# that g0
m(u9

1u8,t) is replaced byg0
m(u91u8,t2t). In other words, the

wave function reflects essentially perfectly off the wall, b
is delayed by one half period. The difference between t
and the free uncoupled propagator~which it would be fort
50! contains terms of the form exp(const3itxX), which do
not seem to me removable, but are small for short reac
times. In any case, this issue remains open.

For applications it is desirable to identify the wall ma
M . Even for a vacuum chamber one would not look to t
mass of the entire chamber, but only the region affected
the particle’s collision, perhaps defined by the wavelength
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57 843BOUNDS ON DECOHERENCE AND ERROR
the appropriate phonon. For ‘‘chambers’’ that are magne
fields ~etc.! one can ultimately look to the laboratory equi
ment that produces these fields.

Finally, there is our decoherence-minimizing relationsm
2

;1/m or, more ambitiously,sm
2 ;\2/mkBT. Do particles

settle into wave packets of this size? Are two-time bound
condition considerations~as in@2#! at work? Or perhaps~not
exclusively! arguments of the form in@3# or @19# hold. Yet
another question is the form such a relation might take
massless particles. Here too one could ask for decohere
minimizing scattering.

In conclusion, we have shown that pinning a system to
table does not in itself force entanglement with the degr
of freedom of the container, treating the latter as a fu
quantum object. Nevertheless, subject to reasonable ass
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tions, that pinning will introduce error, in the sense
changed outgoing wave function. Minimizing both decoh
ence and error are best accomplished when a particular
tion exists between the wave function spreads of the sys
and container. We have also computed the degree of
tanglement in situations where the minimum spread con
tion does not hold.
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generally omit the functionG.

@8# The validity of this assertion depends on the separation of
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Eq. ~1!. Because of the hard wall, the coordinateu ([x2X) is
only defined for negative values~since I take the small particle
to be coming from the left!. It is more convenient, however, t
extend the space to the entire real line and consider the in
wave packet to have consisted of two pieces, one coming f
its actual source and one coming from the mirror image.~This
is the method of images applied to the path integral@9#.! To
study the separation of the wave packets I ignore the sm
effect of the entanglement with the wall@this has been checke
with Gaussian wave packets and only changes the outcom
O(d)#. I thus ascertain whether with the naive calculati
~treating the wall as a fixed potential! the incident and reflected
wave packets separate. First, if the initial position is2x0 , then
it must be the case thatux0u@s, wheres is the spread of the
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x-wave function. All that is left to check is that wave-pack
spreading during the time it takes for the packets to sepa
does not overwhelm the effect of the relative velocity of t
separating~incident and reflected, or source and image! wave
packets. To see this, recall that for a free partic
the time-t evolute of a particle with initial wave
function (1/s)exp$2@(x2x0)

2/4s2#1 ik(x2x0)% is @1/
s(t)#exp$ 2@(x2x0 2v0t)

2/4s2(t)# 1 ik(x2x02v0t) 1 i\k2t/
2m%, with s2(t)[s21 i\t/2m and v0[\k/m. Small wave-
packet spread impliess2@\t/2m, while having the incoming
and outgoing packets separate from one another requiresv0t
.s. Combining these gives the requirementsk@1 in order
for our calculational method to be valid.

@9# A. Auerbach and L. S. Schulman, J. Phys. A30, 5993~1997!.
@10# Allowing the integration to range over the whole line is a

other correlate of the method of images and the assump
that the initial wave packet was negligibly small at the wall. T
show this I drop the complication of treating the wall dynam
cally. What one should calculate is*2`

0 dx8@g(x2x8,t)2g(x
1x8,t)#c0(x8). Sincec0 vanishes forx>0 ~so far, I’ve not
setx0 to zero!, the integral overx8 can be run over the entire
line. For theg(x1x8,t) integral we changex8 to 2x8, so that
it now looks like a source at1ux0u. At this pointI set x050
and make use of the convenient wave function form given
Eq. ~3!.

@11# Recall from Ref.@8# thatks should be larger than one for ou
calculational method to apply.

@12# M. M. Yanase, Phys. Rev.123, 666 ~1961!.
@13# Following Ref.@14# ~and in agreement, up to overall constan

with Ref. @4#!, one can define the measure of entanglem
either as J[minr,s*dx dyuc(x,y)2r(x)s(y)u2 or as K
[maxf,gu*dx dyc* (x,y)f(x)g(y)u, with i f i5igi51 in the sec-
ond version. One then invokes the following mathematical
sult. Let A be an arbitrary n3n matrix and let L
[minu,v(i,juAij2uivj* u2. Then if u andv minimizeL, they sat-
isfy A†u5viui2 and Av5uivi2. From this it follows that
AA†u5lu, A†Av5lv, and l5iui2ivi2, the maximum
eigenvalue of A†A. Defining ũ5u/iui , ṽ5v/ivi , and
S2(B)[TrB†B for a matrix B, we can write L5S2(A
2Aluũ&^ṽu). It is also clear that̂ũuAuṽ&5Al, which is real,
and finallyL512l. The equivalence of the definitionsK and
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J can be seen by noting the correspondence ofL andJ, with
c(x,y) playing the role ofAi j . I need to show that functionsũ
andṽ that minimizeJ also maximizeK. For arbitrary, normal-
izedw andx, let J̃[S2(A2guw&^xu), whereg is an arbitrary
complex constant. If we adjustux& to make^xuAuw& real, then
J̃5S2(A)1ugu22^xuAuw&(g1g* ). Takingg to be real obvi-
ously can only reduceJ. Since the foregoing equation hold
for any realg, it is seen that maximizinĝxuAuw& is the same
as minimizingJ. It then follows thatl5g2, etc.
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ject to putative measurements of a microscopic one. The
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small that the associatedDP destroy the small-system interfe
ed
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-

-
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values. We estimate this kinematic effect as follows. Mome
tum uncertaintyDP in the big system means uncertain
DP/M in the ~velocity! transformation going into the center
of-mass frame. For the small system this velocity uncertai
gives a momentum uncertainty (Dp)8;m(DP/M ) @the prime
on (Dp)8 distinguishes it from the momentum uncertainty
the original wave function, namely, (Dp)usual;\/s#. Taking
DP;\/S, we find (Dp)8;m\/MS. Using S2/s2'm/M
yields (Dp)8/(Dp)usual;Am/M .
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Phys. Rev. Lett.70, 1187~1993!.

@20# The inverse mass relation was also found in@19#. The energy
demanded by dimensional analysis is there an oscillator
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