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We present a family of additive quantum error-correcting codes whose capacities exceed those of quantum
random coding(hashing for very noisy channels. These codes provide nonzero capacity in a depolarizing
channel for fidelity parameter§ when f>0.809 44. Random coding has nonzero capacity only ffor
>0.810 71; by analogy to the classical Shannon coding limit, this value had previously been conjectured to be
a lower bound. We use the method introduced by Shor and Smolin of concatenating a nonrandom repetition
(cad code within a random code to obtain good codes. The cat code with block size five is shown to be optimal
for single concatenation. The best known multiple-concatenated code we found has a block size of 25. We
derive a general relation between the capacity attainable by these concatenation schemes and the coherent
information of the inner code statd§1050-294{08)06901-7

PACS numbe(s): 03.67.Hk, 3.65.Bz, 89.88-h, 89.70+c

[. INTRODUCTION case there are just two other actions; we refer to the action of
o, as a “phase flip,” and that ofr, as “both a bit flip and a
It still comes as a surprise to many physicists that thephase flip.” An alternative point of view is to represent the
error correction techniques that we now know to exist forquantum state as a two-bit objésee[3,13]), or an object in
quantum states are basically digital and not analog. EveR four-element Galois field G&) [15], so that the four op-
after the discovery of quantum error correcting cofllsit  erators are just the four possible digital noise actions on
was felt that the analog metaphor must be more appropriatghem. The only “analog” features left in the description of
after all, a quantum state is specified by a continuous set ghe guantum channel are the continuous amplitugesbut
complex numbers, ar‘l‘d t_he”fundamental physical procesgese play a very similar role in the quantum noisy channel
which we consider as “noise” on the quantum state, unitaryy, yhe pit fiip probabilities in the classical digital channel.
transformations involving the state and its environment, also In this paper we will concern ourselves with the quantum
are drawn from a continuous and not a discrete set. Never:

theless, the entangled structure of quantum states, which hca?sazlg);r?;; Si;rr]c%;qltétt)gl Ci?}g?:::’tg:iezzzlilzg‘gg?%l?ﬁl' a
no analogy in classical mechanics, permits an essentiall pietely y y P

digital treatment of errors }/ameterf; with probability f the qubit passes through the

In fact, quantum error correction as we presently underchannel undisturbed¥, = ‘/ﬂ_)’ while with equal probability
stand it[1-18] is required to be oblivious to the continuous 9= (1—f)/3 the qubit is subjected to a rotation by one of the
nature of the quantum state: error correction is accomplishetiree Pauli matrix operatoxs, , , (A 34= 9oy ,).
by using a coded subspace such that the effect of the errors Defining the quantum capacity requires a discussion of
and error-correction scheme are both independent of the dihe quantum error correction codes mentioned above. This
rection of the state vector in that subspace. Furthermoreliscussion will be given in detail in Sec. II. Suffice it to say
these error-correcting actions are not continuous, but argow that many quantum codds,k,d] are now known
drawn from a discrete set. This is related to the fact that thé¢1,3,4,7-9,11-1Kin which an arbitrary state d¢f qubits are
continuous action of the environment can also be ‘“digi-coded into a state afi>k qubits in such a way that if no
tized,” in the following sense: quite generally, noise on amore thant=|d/2] of the n qubits are subjected to an error,
guantum state can be described as a transformation whighe originalk-qubit state can nevertheless be perfectly recov-
takes a pure quantum stafeto a mixed state given as an  ered. Therate of this code isr =k/n.
ensemble of pure stat¢s;,V}. Each of the set of operators  With this, thequantum capacity Qy) of a quantum chan-

A, can be written as a linear combination of some fixed op-el y can be definedQ(x) is the maximum numbe® such
erator basisA;=2;a;;E;. The fixed set of operatois; are  that for any rateR<Q and anys>0 there exists a quantum
the “error operators” of the quantum channel. There form acodeC with ratek/n=R such that after the action gf any
finite set withd? elements, wherd is the dimension of the state) encoded byC can be recovered with fidelity at least
Hilbert space of¥. For qubits (i=2) it has become con- 1-—§ at the receiving end of the chanri&],17,1§.

ventional to use the error basig;=1 (identity), oy, Naively one might expect there to be a relationship be-
oy, o, (the Pauli matrices tween the achievable capaciy for a depolarizing channel

These four operators have a very “digital” interpretation. of fidelity f and the rate of a code in which *t/n~f,

In the simplest memoryless noisy bitwise channel, the “bi-since 1-f is the expected fraction of qubits on which errors
nary symmetric channel,” each bit is either left alone or iswill occur. In fact, there is no direct relationship because the
flipped. This corresponds to the actions of the operdtared  definition of capacity does not require that all errors of
oy on thez-basis quantum bifqubit) states. In the quantum weight less thar are correctable, but only that the fraction

1050-2947/98/52)/830(10)/$15.00 57 830 © 1998 The American Physical Society



57 QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS 831

of uncorrectable errors vanishes for large block sizes. Foattainable capacity of the depolarizing channel is, but hope-
example, Rains has showWh9] that all families of codes for fully the techniques explored here may provide a clue of how
which 1—t/n<2 have vanishing rate; neverthelessQ is  to obtain this result.
known to be greater than zero for a rangd of2. Indeed, in This paper is organized as follows. Section Il briefly re-
our previous work on “one-way hashing[2,3] we identi-  views the orthogonal-geometry group theory which has been
fied a method for which a nonzero capacity could be attainethtroduced for the classification of quantum codes, and intro-
down to aboutf =0.81[20]. The capacity attained has the duces the necessary coset weight polynomials. Section Il
form of one minus a von Neumann entrofgee Eq.(11)]. derives the average-entropy expression for concatenated
This quantum expression bears a close resemblance to tlkedes as originally obtained by Shor and Smolin. Section IV
result of classical information theory, where the maximumshows that the capacity attained by the concatenation proce-
information reliably transferable though a noisy channel isdure is equal to the quantum coherent information. Section V
limited by the Shannon bour{@1] presents the compact expressions which we have obtained
for the concatenation using the “cat” code, which give ca-
pacities exceeding the random-coding bound. Section VI
C<1-H(x), 1) presents our conclusions, and some thoughts about the use of
degeneracies to attain improved capacities using concat-

where H(y) is the average entropy introduced in a bit by enated codes.

classical channey.
In the classical problem the Shannon bound is achieved Il. GROUP-THEORETIC CHARACTERIZATION
by a random coding procedure; the one-way hashing proto- OF CODES
col which we invented is the natural quantum analog of ran- _
dom coding. Thus, it was natural to expect that Efjl) We consider the groujt introduced in[13] which de-
would also be the upper bound on the quantum capacity foscribes all possible standard errorsromises of the channel
the depolarizing channel. (described by products of Pauli-matrix operators on a set of
However, the quantum coding problem has not proved ta qubits. The bar indicates that the group is understood to
be exactly parallel to the classical one; recent work has iderpe taken modulo phasesl, +i. The dimension oF is 22".

tified several important propertié¢the pipelining inequality, As [13] showed, the Abelian subgroups Bfplay a central
and subadditivity of mutual informatigi22] which are true  role in the theory of quantum error correcting codes. Con-

for classical capacity measures, but are not for the quantursider such an Abelian subgro® again, we will work only

version. More concretely, it was recognized early that quany ., 'S, from which phases have been removed. We define

tum error correcting codes can have a property referred to gs . — .
“degeneracy” which is not permitted in the quantum casejKr? by spemfy_lrl:g. thatS hasn—k ggn('—:‘rators'{and thus IS
two different errors may be indistinguishable by their errorOf dimension 27); the_zn alr(1y of the -dlmen5|qnal eigens-
syndromes, but may nevertheless be both correctasle  Pacesidenoted’;, 0<i<2%) of this set of Pauli-matrix op-
Sec. V). Spurred by intuitive ideas of how this degeneracyerators forms a quantum code. We now introd8teand S*
might improve the capacity of the quantum channel, ShowvhereSt consists of all eIeEents iB which commute with
and Smolin[14] explored somenonrandomcoding strate- all the elements oS and S* is S modulo phases. The
gies, and found a range of depolarizing chanifetsy noisy  dimension of the setS™ is 2"*%. To analyze the error-
ones for which the obvious analog of the Shannon bound iscorrection capability of the code, we define the weight of an
violated; a higher capacity is attained than for random codegyperatore in E, wt(e), as the number of Pauli-matrix opera-

. The main point of this paper is to present the_Shor-SmoquOrS (either o, oy, or o) appearing ire. If the minimal-
discovery using the more modern and streamlined tools foleight element oI\ S (i.e., the setS! excluding the ele-
describing quantum coding which have been developed re- - .
cently. We will formulate the capacity calculation in terms of MeNts in S) has weightd, then the correct state can be
the orthogonal-group formalisfil2,13 which has proved restored afteld—l erasures, which means glso that it can
very successful in systematizing almost all known quantunfOrrect arbitrary errors on arty=| d/2| qubits.d is referred to
codes(the additive codes23—25. We identify new quan- &S the “d|§tance” of the quantum code, and the notation for
tum weight enumerator@&ee[16]), for the stabilizercosets ~ the code ifn.k.d]. _ .
with which a compact expression for the capacity can be All these facts have been discussed previously fpr qguan-
given. We show that the Shor-Smolin codes can be undefum codes; but for the present purposes we need to introduce
stood in the language of cod®ncatenatiorwhich has been some additional mathematical objects, tusetsof S in E.
very popular for the discussion of fault-tolerant quantumTo understand why these cosets might be natural objects to
computation26—30. We establish a rather general relation consider for quantum error correcting codes, we recall that
between concatenated-code capacities and the quasdum the elements o8 are thestabilizersof the code; this means
herent information[5,6], a quantity believed to bébut not  that if the error suffered by the set nfqubits is any member
proved to be in generathe quantum capacity31,23. Fi- ¢S then the code state is unaffected. Note that in the same
nally, we show that, using the coset-enumerator formulation, —— . .
closed-form expressions can be derived for the capacities ¢y & element of the cosesta$ gcts identically on the
the original Shor-Smolin protocols, which permit us to per-code; all such elements act as if just the ersor had oc-
form a more extensive quantitative exploration of the perforcurred. For this reason, these cosets will play a central role in
mance of these codes. We do not yet know what the actudhe analysis below. Note that becausds Abelian (N.B. E



832 DiVINCENZO, SHOR, AND SMOLIN 57

_ _ — _ n n
s S| &S | ests _ ndgio 9
! S P(C) _g 2 a(ee)f"ig’= 2 AlT.ee
S eIS
s S |essS | ei1syS fAn 1-f
° A D ™ == > Al=—.eel. (6)
— — eeC 3f
esS e35:S | .8 €25¢x S
&St &S So our new polynomials are simple functions of those which
= — o= |- o= = have been introduced in previous work in quantum error cor-
€357S €38y S | e287S $18y S recting codes.
Our weight polynomialP(C) has particular significance

for the depolarizing channel with fidelifywhenC is the one
FIG. 1. Hierarchical partitioning of the s& into cosets ofs?, ~ Of the various cosets which we introduced above.

and those in turn into cosets 6f The case oS dividing into four P(S) is the probability that the coded quantum state will
cosets is special to the case of coding a single qubit. leave the depolarizing channel without error. Each distinct

operatoree S is an action of the channel which has this

is not Abelian) no distinction need be made between left andproperty, and"~W(®gW(©) js the probability of that action.
right cosets. P(sLS) gives the probability that the coded state leaving

We will need to consider three different coset partition-pe quantum channel idetectedto have no error, but has
ings: (i) The cosets 0" in E. Consider the “transversal” actually been rotated inside the code eigenspace pyThis
of E, the setG= {a}CE which generates the coset decom-js o from the definition ofs ™ : since it commutes with all
position of S in E. That is, e,S'UeS' =0 if a#B,  glements oB, it does not change the eigenvaluesSofvhich
andU ,e,S"=E. The dimension o is 2% We indicate  are detected in the channel-decoding operafif; and,
the ath coset of the coset decomposition @sS’. (i) The  since by definitions’. ¢ S, it performs a nonidentity rotation
cosets ofS in S*. In this case we denote the set generatingof the coded state inside the code eigenspace. In fact, every
all the distinct cosets a6*={s.}CE. The dimension of member of the coses’ S performs the same rotation.
this set is ZX. A typical coset is indicated as_ﬁg (iii) The P(?) gives the probability that no error will be detected
cosets ofS in E. This is just the direct product ¢f) and(ii), ~ UPon decoding, regardless of whether the final quantum state
the generatmg set 8®G*, and the @,8) coset is denoted 'S COrrect or not.
e, s;;S. This hierarchy of coset decompositions is indicated P(e,S") is the probability that decoding detects error

in F|g 1 fork=1. €., regardless of the rotation of the coded state.
We introduce a weight-enumerator polynomialfor set P(elgs S) is the probability that decoding detects error
Cas e, and the coded state is rotated bys- .
These will be the essential tools for developing a compact
P(C)= z fn—wi(e) gwi(e) ) fprmula for the atltainable capacity for gode sta.tes, a|_’1d estab-
éeC ' lishing the identity of the coherent information with the
Shor-Smolin quantum channel capacity.
whereCCE.
We note that this weight polynomial is directly related to  ll. SHOR-SMOLIN CONCATENATION PROCEDURE

the Shor-Laflamme weight enumeratd6]. Their weight

; : A . . In order to formulate the main result, we first review the
function A4 is (we use the normalization choice of Rains

Shor-Smolin procedurgl4] for sending reliable qubit states,

[32) with a finite capacity, over a depolarizing channel. Just as in
conventional channel coding, it involves an additive code
Ag(O1,0,)= 27 tr(e’ Oy)tr(e’ O,) 3 specified above b. In conventional channel coding shown
e cE | in Fig. 2, the additive code is used as follows: the stéteo
wi(e’)=d be transmittedwe specialize in the figure to a single-qubit

state is rotated by the encoding unitary transformatbimto

the eigenspacé€, of the operators inS. When this state
n passes through the depolarizing channel, it is rotated into one

_ d of the other eigenspaces, with some probability: we will
A(2,01,02) dZ‘o Ad(O1, 027" @ analyze this process in detail later. Then after passage

through the noisy channel, the decoding transformafion

and their weight-enumerator polynomial is

To relate these to Ed2), note that placesn—k of the qubits(the lowern—1 in the figurg in a
state such that, when they are measured in the standard basis,
Ad(e,8)=2""Se).d> (5  they give the eigenvalue of each of the k generators o8,

that is, it determines which of the spadég the state had
from which we see that been placed into by the noi§@7]. So long as the errors
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|& (qubit state) & different sets of particlgsis one in which the set of Bell
HE-= | —E el states has been rotated to a set of some of the other Bell
10s( -1 S Enqil.l.ts_ D Himeas. states with various probabilities which we will discuss
{2 hoise | H shortly. The full set of Bell states is
|§>LE CO E __________ :

1

= ®*=—(]00)=|11)), 8
& = gl® V2

|0 ’s:” [n,k=1,d] code |eas.

1

FIG. 2. Quantum-channel coding, in whi¢top) the state to be qfi:_(|01>i|1o>)_ (9)
transmitted &) is encoded by, transmitted through the noisy chan- \/5

nel, decoded by and restored by after syndrome measurement.
The entire encode-transmit-decode process can be thought of asTée probability of a particular set @f Bell states at slicX1
module (double box, belowto be used in concatenatigeee Fig.  is determined by the rule that the Bell state remainda

4). with probability f, and becomes one of the three other states
produced by the channel are restricted to have weight ng— ¥=* with probability g= (1—f)/3.

greater tharjd/2|, then a rotationU can always be deter-  Using the decoding transformatio@and D* in Fig. 3,
mined which restores the state to its noiseless fafm followed by measurements on both ends, classical communi-

The discussion below uses another protocol for codingation from the sender to the receiver, and the final unitary
shown in Fig. 3, the purification protocol ¢2,3]. For the  transformatiorl, the sender and receiver can come into pos-
depolarizing channel the two procedures of Figs. 2 and 3 argession of a “purified"® * pair, which is then used to send
completely equivalent. Referenf®| gives a detailed deriva- the qubit staté£) by teleportatior33] (for details sed3]).
tion of the mapping of the first protocol to the second. Inthe The two methods of employing the channel shown in
protocol of Fig. 3, the sender begins withcompletely en-  Figs. 2 and 3 are completely equivalent. But it will be useful

tangled states, in this example the Bell state to use both points of view for explaining the generalized
1 channel transmission protocol of Shor and Smélid], and
Ot =——(|00)+|11)). 7 we will continue our review using both languages.

\/5 We will need to apply our capacity definition of Sec. | to
the purification picture. The fidelitfF” of the depolarizing

The sender keeps one half of each of th&ell states, and channel output can be most simply defined in this picture in

the othem particles are sent through the depolarizing chanthe following way: at the end of purificatiaislice X P in Fig.

nel to the receiver. When we are sending halves of EPR-BeB) the output is desired to be a collectionlofb * states; if

particles through the channel, we no longer discuss the adhe code scheme is a successful one, then the overlap be-

tion of the channel in terms of rotations among differenttween the actual state at this slipgp and the desired Bell

code spacefo coding transformation has yet been appliedstate will be high; thus the fidelity for an encodifiyis

to these statgsrather, the state of the system at sIX# in

Fig. 3 (which in general is at two different times for the two FP=((@") pxpl(®1)Y). (10

The capacityQ is simply the best ratk/n for a D for which
this fidelity approaches unity, since each high-fidelity EPR
pair can be used to teleport one qubit.

The maximization ofQ has proved to be difficult. But a
variety of code families have been introduced for which fi-
nite Q’s are known, establishing useful lower bounds on the
attainable capacity. One of the most useful is the sequence of
random additive codesreferred to in the original papers
[2,3] as “one-way hashing.” As the name suggests, these
sequences are built by selecting, at random, an Abelian sub-
group S from the group of all Pauli matriceE for succes-
sively larger block sizes. Bennettet al. [3] show that al-
most all such sequences attain the “hashing capacity”

k
FIG. 3. A protocol for transmitting through the noisy channel Qu=lim ==1-S,(f). (11
equivalent to Fig. 2 which uses entanglement purification and tele- n—cel

portation. The sender passes halves of Bell state's) (through the

channel to the receiver; the degraded pairs are purifiéter slice ~ Thus, Qu(f) is a lower bound on the attainable capacity.
X1) by D andD* (sameD as in Fig. 2. The purified pairs at slice  Sy(f) is the von Neumann entropy of one Bell state after
XP can then be used to transmit the stpg from sender to re- one of its particles has been passed through the depolarizing
ceiver by teleportation. Below: the Bell-state distribution and pro-channel, and it is given by

cessing withD andD* may be used as a moduldouble box for

the concatenation of Fig. 5. Sw(f)=—flogf —3glogg. (12
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| §> (qubit state) R
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d. As we discuss at the end, it may be the “degeneracy” of
this code which is relevant.

Shor and Smolin showdd 4] that the following capacity
is attainable by this concatenated scheme:

1
Qss=—(1-Sx2). (13
FIG. 4. Concatented coding for channel transmission. The inner P
code(double box is the encode-transmit-decode module of Fig. 2.

In the Shor-Smolin procedure the outer part is a random code. The 1p just comes from the fact that the whole scheme

requiresp X n bits rather than jush bits to be sent through
the channelSy, is the average entropy of each bipartite state
at sliceX2 in Fig. 5(the total entropy at slicX2 isnSy,).
Shor and Smolin noted that this entropynist given by the

Here is a brief explanation of why one-way hashing
achieves the capacity of E(lL1). The entropy of the mixture

of Bell states at slic&1 is justnSy(f). The decoding can be ;o5 Neymann entropy of the quantum state at this slice, be-
simply thought of as a sequence of measurements ohthe cause of the presence of the results of the classical measure-
—k operators which are the generators@fEach of these ments. Rather it is thaverageof the von Neumann entropies
measurements has two outcomes, splitting the set of possibig the quantum states conditional on the measurement out-
remaining states in two; thus, it has the potential for reducing.omes:

the entropy of the state by one bit. Referef8g provides

arguments for why, for almost all choices $fand for large _ ; O ; i

n, each measurement in fact succeeds in extracting one bit of Sk ie%eas P} S(pli) ie%eas P NP}

entropy. The total state remains a mixture of Bell states, so outcomes outcomes (14)

that if k is chosen so that the entropy is reduced to zero, i.e.,

if n§(W)—(n—Kk)=0, then the Bell mixture becomes a pure It is this entropy that is to be reduced to zero by the random-

state, which is to say that the final state is one particular sdiashing stage of the decoding. In the second part of .

of known Bell states, which can always be rotated Witho ~ we have specialized to the case where the inner code has

become a set ob " states. Thus, purification has succeededk=1 (and thus produces just one-qubit-pair state in Fig. 5

and the ratick/n attains the value given in Eqll). In this case the output is a mixture of the four Bell states
This result naturally raises the question of whether thergB;}=®*, ¥, so that the entropy just involves the prob-

exist any nonrandomlychosen sequences of codes whichability of Bell stateB; conditional on the particular measure-

could attain a capacity exceeding E@1). While appeal to ment outcoma:

analogous classical results and other thinking suggested that 4

random coding would be optimal, the Shor-Smolin construc- . PrB;,i) ) .

tion which we now review shows that higher capacities are PI(B;li)= O Pri)= 21 Pr(Bj.i). (19

attainable. Their construction involves what is known as con- :

catenation; it is illustrated, for both versions of the quantumThe h, function in Eq.(14) on the sefx;} is defined by

coding protocols, in Figs. 4 and 5. In the language of Fig. 4,

the idea is that instead of sending the qubits as encoded by n

the random encodef directly into the channel, they are en- hn({x;})=~ Zl xjlogX; , 21 xj=1. (16)

coded once again in another additive cogek,d], and it is = =

thesen X p qubits that are finally sent through the ChanneI.By using the e|ementary a|gebraic properties ofhhéunc-

The codes whose capacity we will consider involve:=,  tion S,, may be simplified so thassis expressed as

but fixed p. While we tend to associate “good(i.e., high-

n

capacity codes with large distancg, we will find that the 1 i )
desirable innefp,k,d] codes actually have small distance QSS_B[l“LhN({Pr(')})_mN({Pr(BJ Dl @D
IS HereN is the number of distinct measurement outcomes; for

an additive] p,k=1,d] code,N=2P k=2P"1,
The probabilities appearing in Eq17) have appeared
above; in fact they are equal to

Pr(i)=P(e;S"), (18
. PI(B; .i)=P(s| &;S). (19)
npkd2®| D
©0des T anom | || Equation(18) follows from the fact that the members of the
e || set S* are, by definition, those errors which all lead to the

: measurement which indicates the “no-error” condition;
X2 thus, its cosets i, e;S*, each contain the errors which all

FIG. 5. Same as Fig. 4, but using the purification-teleportationlead to the same measuremenFinally, the weight polyno-
protocol. mials are, as discussed above, constructed so as to enumerate
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|§>T and
D)< . —1T—
1 - - S(pro) =han({P(s] €;S)}). (23
[Obs{] -1 pashis 1} D Hmeas L . . . .
1D s R i Establishing these just requires a consideration of how the
 NOISE. X3 noise acts on the input state in Fig. 6. For E2R), we note

that the density matriyo beforethe action of the noise is

FIG. 6. The channel protocol as considered[Byin its treat-  JUSt an equal mixture of thi®), o and|1), o states, where the
ment of coherent information. The Q subsystem in the one transSubscript O indicates that these vectors lie in the eigenspace
mitted through the channel, while the single qubit R remains beCo- Each eigenspadg, 0<i<2""¥, is spanned by a pair of
hind. vectors|0),;, |1).i, where we can define the 0 and 1 vectors

by
properly the probabilities of these sets. Equatib® follows L .
similarly: The setS indicates those errors which lead to the |0)Li=€il0)Lo, [1)Li=eilL)ro, (24)
no-error measuremeand leave the Bell stat®; in the cor- o
rect®* state. Furthermore, the cosef e; S contains those Where e; is the coset-generating operaisee Fig. 1 The
errors which lead to measuremeinand Bell stateB;. It ~ importance of the basi®,1),; is that the density operatpg,
should be noted that the error operatics_fs have the effect after the action Of. the depo[anzmg noise |_s.(.j|agonal in it
of performing a unitary operation of the coded qubit; the fourThe dla_lgonal matrix eIemt_an(se., the probab|l_|t|e)sfor eac_h
. T . . . vector is evaluated by noting that the stfd} ; is reached in

operations aréi) SO:_I. (th_f |den.t|t)), which leaves the Bell four possible ways(i) the initial state ig0) o (with prob-
state® ™ unaffected(ii) sy, which perf_orms a coded, ability 3) and an operator of the coset—Sis applied by the
leading to a final Bell statB,=¥ ", (iii) sy which performs  channel/ii) the initial state ig0), o and an operator of the
oy and leads t@, =¥ ", and(iv) s; which performso, and  cosete;s. S is applied by the channe(ji ) the initial state is
leads toB,=® . So, the weight polynomial in Eq19) is  |1),, (also with probability3) and an operator of the coset
cons:ructed to evaluate the probability that a member of th‘?si?is applied by the channel, div) the initial state is
coset occurs.

i _
Finally we may rewrite the capacity equation as |1)10 and an operator of the cosefsy S is applied by the

channel. Each of these is given by the appropriate weight
polynomial, so

1 N _
Qs§5[1+hN({P(eisi)})_hm({P(sjieiS)})]_ ) ) )
(20 (0lpol0)i=5P(€;S)+5P(es; S)+5P(e;s(S)

IV. RELATION OF Qss TO QUANTUM COHERENT I
INFORMATION +5P(eisyS) (25

The two noisy-channel transmission constructions which
we have discussed above are equivalent to yet a third one
shown in Fig. 6, which has been extensively discussed in the
literature[5,6,22. The rationale of introducing the one-qubit
ancillary systenR is that it is the minimum-size ancilla re- The enumeration of the ways that the sty ; can be ar-
quired to “purify” the input of the channel, that is, to make rived at is identical, with 0’s and 1's interchanged; so we
it part of a larger pure sta{d4] (this is a different sense of find that this matrix element is identical:
the word “purification” than used irf2]). In this scenario

_1 ool
=5P(e/Sh). (26)

there is an important information-theoretic measure,dire (1]pgl1)Li=(0|po|O); . (27
herent informationat sliceX3 this is given by the difference
of two von Neumann entropies: Because it is diagonal, the von Neumann entropy gfis

just the ordinary entropy of the probability distribution

1
IEEE[S(pQ)_S(pRQ)]- (21) 1 — 1 —
S(pq)=hon Ep(eis ),zp(eis )
Refs.[22,35 show thatl . provides an upper bound for the -
quantum channel capacity when maximized over all possible =1+hy({P(e;S")}). (28)
input-state ensembles and quantum codes. What we will
show is that the achievable Shor-Smolin capa@tgin fact ~ And thus Eq.(22) is established. The reasoning needed to
attainsthe coherent information for the same additive quan-establish Eq(23) is very similar: the joint state of systerf¥s
tum code, and for the input as in Fig. 6. To establish this weand Q after encoding but before the noise is
need to show the following two equalities:

1 1
S(po)=1+hy({P(e;SD)}), 22) §|0R>|0Q>Lo+ §|1R)|1Q>LOE‘D5- (29)
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In this notation the in ®;" means that the state in ti@ 1

subsystem lies in thé; eigenspace. After the noise the den- M2
. . . . . . . . T NV {m]
sity matrix prq is diagonal in this generalized Bell basis, p=5 A3
with the probability of the state beirg; given by oy (]
D Ly

—Io 5
(BjilprdBji)=P(eis; ), (30) P, (m]

since it is again only members of a particular coset that will ~FIG. 7. Quantum network for decoding the cat code, shown for
produce a finaB;; state(This discussion can equivalently be P=5- The same network is used for encoding.

given in terms of the behavior of the+ 1,k=0,d] code to

which the composite system belongsrom Eq.(30), the  for counting all the probabilities in Eq14) by determining
desired result Eq(23) follows immediately, so the identity how each different type of error process is modified by the
between the Shor-Smolin capacity and the coherent informaXxOR circuit. We summarize their results here: consider

tion is established for any code. counting the probabilities of the caséacluding all mem-
bers of one of the cosets &) in which the measurements
V. Qss FOR THE CAT CODE give exactlyr 1s, in particular when the measurements of

qubits 2 througtp—r give zero, and qubitp—r +1 through

p give one. It is obvious that the counting is the same for any
It has not proved easy to evaluate the Shor-Smolin capagsermutation of the qubits; this means that there ae (
ity Eq. (20) (or the equivalent coherent informatiofor a  gquivalent cosets being counted. It is this high multiplicity
general concatenation. But a closed-form evaluation hag s permits the calculation to be tractable, despite the fact
proved possible for one important family of inngp,1d]  hat there are exponentially matip p) coset weight poly-
codes which we refer to as “cat” codes. In the cat code for,omials to be evaluated.

p=2 the stabilizer grous is generated by the operators The further four subcasése., the cosets 08; see Fig. 1
31) to be evaluated are as follows.

(i) The remaining qubitgqubit 1 ofQ and the qubit oR)
For this code the code spa€g is spanned by are in the stat& . The error processes for which this occurs
are those where there are amplitudg ) errors on qubits 1
throughp—r, and anevennumber of phased,) errors on

A. Closed-form evaluation

071022, 071023, - -, 07107zp-

p qubits

~ any of the qubits. We may forthwith calculate the probability
10)zo = |000...) (32 of this occurrence:
p—r\f r T
P \I’+,I' — ( . )( ) p—r+t |fr t+i
and " ) t(%enzi i Jle-i)9
1) 0=1111 - -). (33 =2""1gP"(f+g)". (36)

Thus, the source density matrix before passage through the

channel is, using the Schumacher-Nielsen notatfig. 6)  Heret is the total number of phase errors arid the number

(6], of these phase errors occurring on the qubits which already
have amplitude errorleading to ac, error process Thet
andi sums go over the full range for which the binomial
coefficients are nonzero.

(34) (i) The remaining state i¥ ™. For this the error pro-
cesses are those where there are amplitudg érrors on

A purification of this density matrix involving just one qubit qubits 1 throughp—r, and anodd number of phased,)

in the subsystenR is errors on any of the qubits. In fact, it turns out that this count

is exactly the same as fo¥ *:

1 1
PQiin =51000 - -)(000- - | +5|111: - - (111 - -|.

p qubits p qubits

1 —_—— ——
¥ro = Z5(0000) + NTIT)). @9

PHW )= E E (p-l’)( r _)gp—f‘*'t_ifr_“'i

t (odo) T o\t

=2'"1gP " (f+g)". (37)

Here the first qubit is the one belonging to systBmThis
wave function has been referred to as the cat state in the
literature. (iii ) The remaining state i® . In this case there must be

The decoding networkD for this code is extremely amplitude errors on qubitp—r+1 to p (or no amplitude
simple, just consisting of the sequence of XOR gates showerrors ifr=0), and there must be an even number of phase
in Fig. 7. Shor and Smolin provide a detailed argunfddf  errors. This gives
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r _r TABLE I. The value of the threshold fidelity for cat codes of
PH®Tr)= 2 2 . P | gttt sizep. Values ofp not shown all work less well than the random
t(even i ! t=i coding method f=1). The value forp=c is analytic from Eq.
(42).
[(f+gP+(f-g)P], r=0,
T or—1pr —r (38) p f p f
2" g (f+g)P T, r>0.

(iv) The remaining state i® . In this case there must be ;| 0.81071 9 0.81002
amplitude errors on qubits—r+1 to p, and there must be 0.81148 10 0.81028
an odd number of phase errors. The result is the same as fgr 0.80987 1 0.81032

+ — . . '
®™ except for ther =0 case: 4 081010 12 0.81056
. 5 0.80964 best 13 0.81062
Pid- =S > (r> ( P ,r)gr+t—ifp—r—t+i 6 0.80991 14 0.81085
tlodg T \ 1)\ t=1 7 0.80977
N 8 0.81004 © 0.81808
| 2[(f+9)P=(f—g)P], r=0, 39
2" g (f+g)P ", r>0.

code for which the stabilizers are

Plugging these expressions into E¢$5)—(17) permits an
efficient calculation of the Shor-Smolin capacity for the fam-

ily of cat codes. _ and the next-level code remains the ordinary cat code of Eq.
The threshold of the cat-code family may be computed31). The best code we found was for both inner and outer
exactly forp—oo using an asymptotic analysis. Briefly, we cat codes having=5. The capacity of this code was found
find that the capacity Eq20) is dominated for large by o be nonzero down to a fidelity ¢t 0.80944, the best code
two contributions:(i) Those for the cosets o6 with r=0 known (see Fig. 9[36]. This threshold is still far above the
(recall thatr is the number of ones in the measured syn-best known lower bound for the threshold b& 2 [37,3).
drome. We find that this contribution goes as Unfortunately, larger codes become computationally intrac-
) table using our methods, because the number of distinct
(f-9) cosets scales exponentially with It is hoped that another
—_ (40 L
f+g approach, perhaps an approximation method for coset

weights, will permit a more thorough exploration of concat-
(ii) Those for cosets with~p/2. This contribution has the enated codes.

form

O0x10%x2, Ox10%3, - -+, (43

p

Qsdr=0)=c

D VI. CONCLUSIONS
QSS(V%E):_’Y(f)[\/SQ(f+g)]p- (41 _ _ _ _ _

The obvious unanswered question which this work raises
is, can any finite capacity be achieved for even noisier depo-

Here y(f)>0 is a fairly complicated function of. Never- larizing channels, ones with below the lowest value,

theless, the threshold fdrspecified byQgd{f) =0 is simply

obtained by equation the bases of these two contributions: Fidelity
(f-9)? o
o = Vv8g(f+g). (42) g
f+g P
q
-2 4
The relevant root of this equationf~0.81808, is the 19
asymptotic threshold. We have not developed any simple
intuitive understanding for why this threshold should remain 108
finite as p—, but nevertheless remain worse than the
threshold for finitep as we will now see. Yield
104

B. Investigations of cat-code capacities

The simplest codes to calculate are the cat code family
Egs. (32), (33). Table | shows the results for values pf 10°
from one to fourteen. The capaciti€sgof these codes near
f=0.81 are shown in Fig. 8. We note that odd:odes work
better than nearby evgmeodes; the lowest threshold fidelity
in this family is achieved fop=>5. FIG. 8. The yield, i.e., capacit@ss, as a function of fidelityf

Generically, many other multiple-concatenation codes aror inner cat codes of sizp for various values op. Note that the
possible and may lead to better thresholds. We explored theurves are all irp order fromp=1 to p=7 along the right side of
family of codes where the innermost code has a rotated cahe graph.

106
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codes could attain a greater distance. We were thus moti-
vated to consider highly degenerate codes for the attainment
0.819 of high capacity, given the qualitative relationship between
| code distance and capacity. This possibility of attaining large
distance using degeneracy has subsequently been rendered
0817 unlikely by a recent result of Raif49] who has obtained a
bound ond which applies for both degenerate and nondegen-
erate codes and which is tighter than the Hamming bound for
a substantial part of thep(k,d) parameter space. Neverthe-
less the fact is that the cat codes, which we have used suc-
0813 et cessfully to attain high capacity, are highly degenerate:
single phase errors are all indistinguishable, and all pairs of

0.815

Threshold fidelity

. " amplitude errors are indistinguishable from the no-error pro-
0811 | __ et .- cess. All this is true despite the fact that the cat codes have
e very poor distanced=1 for all p).
LR ISR RIS EE ) BE ESRTLERES The best we can say about why this scheme succeeded is
0.809 0 10 20 30 20 o0  that the high degeneracy, by making many outcomes indis-
/ / tinguishable, “hides” the large amount of entropy which the
very noisy channel adds to the quantum states, thus permit-
ting the average entrop$y, to be below one over a greater
FIG. 9. The threshold valuk for which Q=0 vsp. Note that ~ range off. This reasoning is certainly not rigorous; never-
the points fall on two smooth curves, one for eyerand one for ~ theless, in an extensive Monte-Carlo search of other additive
odd p. The value ap—c, f~0.81808, is obtained by asymptotic codes, we found no other inner code witks5 which does a
analysis Eq(42). The heavy dashed line &t0.80944 is the best better job than the cat code for reducing the average entropy
known threshold achieved by the twice concatenated 25-bit schem@nd hence attaining any higher capacity. It was further the
(Sec. V A. The light dashed line &t~0.81071 is the threshold for observation that the cat code “hides” phase error more ef-
ordinary quantum random coding, equivalent to fivel cat code. fectively than amplitude error that motivated us to consider a
second level of concatenation, in which the innermost code
0.80944, achievable with the 25-bit inner code, but above thevas a cat code with the role of amplitude and phase reversed.
absolute minimum threshol@i=0.75 set by the no-cloning Of course, this is what led us to the 25-bit code described
argument[37]? In other words, do there exist even more above which give the best capacity to date.
clever nonrandom codegecall [23]) for protecting qubits It is clear that further generalizations of this problem
from high levels of noise? await exploration. The issue of attainable capacities for chan-
It may be worthwhile to note here why we initially be- nels other than the depolarizing channel is largely untouched.
lieved that the use of inner codes of the cat type was a pronit is fairly clear that for thegeneralizeddepolarizing channel,
ising direction for finding good codes for very noisy chan-in which the error operators are still proportional to the Pauli
nels; this belief was based on the property of degeneracgnatrices, but with unequal probability amplitudes, the for-
mentioned earlier. While these motivations may end up havmalism developed her@e., the weight polynomials, and the
ing no more than historical interest, since they have not atelation to coherent informatigrwill go through with little
present led us to any conclusive answer to the questions justodification, so that would be an easy direction for further
posed, we hope that it might assist some reader who is intestudy. For the much larger space of general channels, noth-
ested in exploring these problems further. ing better than our random-unitary-operati¢tiwirling” )
Degeneracys a property of quantum codes which has noarguments of3] (which bounds the capacity of any arbitrary
analog for classical error correcting codes. Degeneracy arisehannel by that of a corresponding generalized depolarizing
from the fact that two different error patterns can have indischanne) is presently known. Further extensions of the for-
tinguishable effects on a coded quantum state. This is obvimalism would obviously also be desirable; a generalization
ously impossible for a coded binafglassical string, but it  of the present approach for inner codes with 1 would be
is obligatory for additive quantum codes; indeed, the cosetddesirable; also, asymptotic expressions for the capacity
of ?introduced in Sec. Il are precise|y these groups of in.WhiCh would not require an exact evaluation of all the coset

distinguishable errors. A code is considered degenerate Weight polynomials could lead to significant progress. Cer-
some of the low-weight €|d/2] for a[n,k,d] code error tainly there remains much to be done to fully characterize the

patterns fall in the same coset 8fand are therefore indis- usefulness of the very noisy quantum channel.
tinguishable. The original 9-bit code of SHdr] was degen-
erate; the 7-bit codg7—9] and the 5-bit cod¢11,3] are non-
degenerate. We thank Charles H. Bennett, Artur Ekert, Daniel Gottes-

It is known [10] that a Hamming-like bound could be man, Emmanuel Knill, John Preskill, and Eric Rains for
easily derived on the maximum attainable distance for amany helpful discussions. We are grateful to the Army Re-
guantum codeprovidedthat it was nondegenerate. However, search Office for support under Contract No. DAAH04-96-
in this work the possibility remained open that degenerateC-0060.
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