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Quantum-channel capacity of very noisy channels
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We present a family of additive quantum error-correcting codes whose capacities exceed those of quantum
random coding~hashing! for very noisy channels. These codes provide nonzero capacity in a depolarizing
channel for fidelity parametersf when f .0.809 44. Random coding has nonzero capacity only forf
.0.810 71; by analogy to the classical Shannon coding limit, this value had previously been conjectured to be
a lower bound. We use the method introduced by Shor and Smolin of concatenating a nonrandom repetition
~cat! code within a random code to obtain good codes. The cat code with block size five is shown to be optimal
for single concatenation. The best known multiple-concatenated code we found has a block size of 25. We
derive a general relation between the capacity attainable by these concatenation schemes and the coherent
information of the inner code states.@S1050-2947~98!06901-7#

PACS number~s!: 03.67.Hk, 3.65.Bz, 89.80.1h, 89.70.1c
th
fo
ve

ia
t
e
r
ls
ve
h

ia

e
s
he
rro

or
a
th
gi

a
hi

s
op

a

-

n.
bi
is

n of

e

on
f

nel

m

pa-
e

he

of
his
y

r,
ov-

t

e-
l

rs
the
of
n

I. INTRODUCTION

It still comes as a surprise to many physicists that
error correction techniques that we now know to exist
quantum states are basically digital and not analog. E
after the discovery of quantum error correcting codes@1#, it
was felt that the analog metaphor must be more appropr
after all, a quantum state is specified by a continuous se
complex numbers, and the fundamental physical proc
which we consider as ‘‘noise’’ on the quantum state, unita
transformations involving the state and its environment, a
are drawn from a continuous and not a discrete set. Ne
theless, the entangled structure of quantum states, which
no analogy in classical mechanics, permits an essent
digital treatment of errors.

In fact, quantum error correction as we presently und
stand it@1–18# is required to be oblivious to the continuou
nature of the quantum state: error correction is accomplis
by using a coded subspace such that the effect of the e
and error-correction scheme are both independent of the
rection of the state vector in that subspace. Furtherm
these error-correcting actions are not continuous, but
drawn from a discrete set. This is related to the fact that
continuous action of the environment can also be ‘‘di
tized,’’ in the following sense: quite generally, noise on
quantum state can be described as a transformation w
takes a pure quantum stateC to a mixed stater given as an
ensemble of pure states$AiC%. Each of the set of operator
Ai can be written as a linear combination of some fixed
erator basis,Ai5( jai j Ej . The fixed set of operatorsEj are
the ‘‘error operators’’ of the quantum channel. There form
finite set withd2 elements, whered is the dimension of the
Hilbert space ofC. For qubits (d52) it has become con
ventional to use the error basisEj5I (identity), sx ,
sy , sz ~the Pauli matrices!.

These four operators have a very ‘‘digital’’ interpretatio
In the simplest memoryless noisy bitwise channel, the ‘‘
nary symmetric channel,’’ each bit is either left alone or
flipped. This corresponds to the actions of the operatorsI and
sx on thez-basis quantum bit~qubit! states. In the quantum
571050-2947/98/57~2!/830~10!/$15.00
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case there are just two other actions; we refer to the actio
sz as a ‘‘phase flip,’’ and that ofsy as ‘‘both a bit flip and a
phase flip.’’ An alternative point of view is to represent th
quantum state as a two-bit object~see@3,13#!, or an object in
a four-element Galois field GF~4! @15#, so that the four op-
erators are just the four possible digital noise actions
them. The only ‘‘analog’’ features left in the description o
the quantum channel are the continuous amplitudesai j ; but
these play a very similar role in the quantum noisy chan
to the bit-flip probabilities in the classical digital channel.

In this paper we will concern ourselves with the quantu
capacity of a simple qubit channel, thedepolarizingchannel.
This channel is completely characterized by one fidelity
rameter f ; with probability f the qubit passes through th
channel undisturbed (A15Af I ), while with equal probability
g5(12 f )/3 the qubit is subjected to a rotation by one of t
three Pauli matrix operatorssx,y,z (A2,3,45Agsx,y,z).

Defining the quantum capacity requires a discussion
the quantum error correction codes mentioned above. T
discussion will be given in detail in Sec. II. Suffice it to sa
now that many quantum codes@n,k,d# are now known
@1,3,4,7–9,11–15#, in which an arbitrary state ofk qubits are
coded into a state ofn.k qubits in such a way that if no
more thant[ bd/2c of the n qubits are subjected to an erro
the originalk-qubit state can nevertheless be perfectly rec
ered. Therate of this code isr 5k/n.

With this, thequantum capacity Q(x) of a quantum chan-
nel x can be defined:Q(x) is the maximum numberQ such
that for any rateR,Q and anyd.0 there exists a quantum
codeC with ratek/n>R such that after the action ofx any
statec encoded byC can be recovered with fidelity at leas
12d at the receiving end of the channel@3,17,18#.

Naively one might expect there to be a relationship b
tween the achievable capacityQ for a depolarizing channe
of fidelity f and the rater of a code in which 12t/n' f ,
since 12 f is the expected fraction of qubits on which erro
will occur. In fact, there is no direct relationship because
definition of capacity does not require that all errors
weight less thant are correctable, but only that the fractio
830 © 1998 The American Physical Society
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57 831QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS
of uncorrectable errors vanishes for large block sizes.
example, Rains has shown@19# that all families of codes for
which 12t/n, 5

6 have vanishing rater ; nevertheless,Q is
known to be greater than zero for a range off , 5

6. Indeed, in
our previous work on ‘‘one-way hashing,’’@2,3# we identi-
fied a method for which a nonzero capacity could be attai
down to aboutf 50.81 @20#. The capacity attained has th
form of one minus a von Neumann entropy@see Eq.~11!#.
This quantum expression bears a close resemblance to
result of classical information theory, where the maximu
information reliably transferable though a noisy channe
limited by the Shannon bound@21#

C<12H~x!, ~1!

where H(x) is the average entropy introduced in a bit
classical channelx.

In the classical problem the Shannon bound is achie
by a random coding procedure; the one-way hashing pr
col which we invented is the natural quantum analog of r
dom coding. Thus, it was natural to expect that Eq.~11!
would also be the upper bound on the quantum capacity
the depolarizing channel.

However, the quantum coding problem has not proved
be exactly parallel to the classical one; recent work has id
tified several important properties~the pipelining inequality,
and subadditivity of mutual information! @22# which are true
for classical capacity measures, but are not for the quan
version. More concretely, it was recognized early that qu
tum error correcting codes can have a property referred t
‘‘degeneracy’’ which is not permitted in the quantum cas
two different errors may be indistinguishable by their er
syndromes, but may nevertheless be both correctable~see
Sec. VI!. Spurred by intuitive ideas of how this degenera
might improve the capacity of the quantum channel, S
and Smolin@14# explored somenonrandomcoding strate-
gies, and found a range of depolarizing channels~very noisy
ones! for which the obvious analog of the Shannon bound
violated; a higher capacity is attained than for random cod

The main point of this paper is to present the Shor-Smo
discovery using the more modern and streamlined tools
describing quantum coding which have been developed
cently. We will formulate the capacity calculation in terms
the orthogonal-group formalism@12,13# which has proved
very successful in systematizing almost all known quant
codes~the additive codes! @23–25#. We identify new quan-
tum weight enumerators~see@16#!, for the stabilizercosets,
with which a compact expression for the capacity can
given. We show that the Shor-Smolin codes can be un
stood in the language of codeconcatenationwhich has been
very popular for the discussion of fault-tolerant quantu
computation@26–30#. We establish a rather general relatio
between concatenated-code capacities and the quantumco-
herent information@5,6#, a quantity believed to be~but not
proved to be in general! the quantum capacity@31,22#. Fi-
nally, we show that, using the coset-enumerator formulat
closed-form expressions can be derived for the capacitie
the original Shor-Smolin protocols, which permit us to pe
form a more extensive quantitative exploration of the perf
mance of these codes. We do not yet know what the ac
or
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attainable capacity of the depolarizing channel is, but ho
fully the techniques explored here may provide a clue of h
to obtain this result.

This paper is organized as follows. Section II briefly r
views the orthogonal-geometry group theory which has b
introduced for the classification of quantum codes, and in
duces the necessary coset weight polynomials. Section
derives the average-entropy expression for concaten
codes as originally obtained by Shor and Smolin. Section
shows that the capacity attained by the concatenation pr
dure is equal to the quantum coherent information. Sectio
presents the compact expressions which we have obta
for the concatenation using the ‘‘cat’’ code, which give c
pacities exceeding the random-coding bound. Section
presents our conclusions, and some thoughts about the u
degeneracies to attain improved capacities using con
enated codes.

II. GROUP-THEORETIC CHARACTERIZATION
OF CODES

We consider the groupĒ introduced in@13# which de-
scribes all possible standard errors onn uses of the channe
~described by products of Pauli-matrix operators on a se
n qubits!. The bar indicates that the group is understood
be taken modulo phases61, 6 i . The dimension ofĒ is 22n.
As @13# showed, the Abelian subgroups ofE play a central
role in the theory of quantum error correcting codes. Co
sider such an Abelian subgroupS; again, we will work only
with S̄, from which phases have been removed. We de
k,n by specifying thatS̄ hasn2k generators~and thus is
of dimension 2n2k); then any of the 2k-dimensional eigens-
paces~denotedCi , 0< i ,2k) of this set of Pauli-matrix op-
erators forms a quantum code. We now introduceS' and S̄'

whereS' consists of all elements inE which commute with
all the elements ofS and S̄' is S' modulo phases. The
dimension of the setS̄' is 2n1k. To analyze the error-
correction capability of the code, we define the weight of
operatore in E, wt(e), as the number of Pauli-matrix opera
tors ~either sx , sy , or sz) appearing ine. If the minimal-
weight element ofS̄'\ S̄ ~i.e., the setS̄' excluding the ele-
ments in S̄) has weightd, then the correct state can b
restored afterd21 erasures, which means also that it c
correct arbitrary errors on anyt5 bd/2c qubits.d is referred to
as the ‘‘distance’’ of the quantum code, and the notation
the code is@n,k,d#.

All these facts have been discussed previously for qu
tum codes; but for the present purposes we need to introd
some additional mathematical objects, thecosetsof S̄ in Ē.
To understand why these cosets might be natural object
consider for quantum error correcting codes, we recall t
the elements ofS̄ are thestabilizersof the code; this means
that if the error suffered by the set ofn qubits is any member
of S̄, then the code state is unaffected. Note that in the sa
way any element of the cosets̄a S̄ acts identically on the
code; all such elements act as if just the errors̄a had oc-
curred. For this reason, these cosets will play a central rol
the analysis below. Note that becauseĒ is Abelian ~N.B. E
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832 57DiVINCENZO, SHOR, AND SMOLIN
is not Abelian! no distinction need be made between left a
right cosets.

We will need to consider three different coset partitio
ings: ~i! The cosets ofS̄' in Ē. Consider the ‘‘transversal’’
of Ē, the setG5$ā%, Ē which generates the coset decom
position of S̄' in Ē. That is, ēa S̄'ø ēb S̄'5B if aÞb,
andøa ēa S̄'5 Ē. The dimension ofG is 2n2k. We indicate
the ath coset of the coset decomposition asēa S̄'. ~ii ! The
cosets ofS̄ in S̄'. In this case we denote the set generat
all the distinct cosets asG'5$ s̄a

'%, Ē. The dimension of

this set is 22k. A typical coset is indicated ass̄a
' S̄. ~iii ! The

cosets ofS̄ in Ē. This is just the direct product of~i! and~ii !,
the generating set isG^ G', and the (a,b) coset is denoted
ēa s̄b

' S̄. This hierarchy of coset decompositions is indicat
in Fig. 1 for k51.

We introduce a weight-enumerator polynomialP for set
C as

P~C![ (
ePC

f n2wt~e!gwt~e!, ~2!

whereC, Ē.
We note that this weight polynomial is directly related

the Shor-Laflamme weight enumerator@16#. Their weight
function Ad is ~we use the normalization choice of Rain
@32#!

Ad~O1 ,O2!5 (
e8P Ē u

wt~e8!5d

tr~e8O1!tr~e8O2! ~3!

and their weight-enumerator polynomial is

A~z,O1 ,O2!5 (
d50

n

Ad~O1 ,O2!zd. ~4!

To relate these to Eq.~2!, note that

Ad~e,e!522ndwt~e!,d , ~5!

from which we see that

FIG. 1. Hierarchical partitioning of the setĒ into cosets ofS̄',

and those in turn into cosets ofS̄. The case ofS̄' dividing into four
cosets is special to the case of coding a single qubit.
-

g

d

P~C![ (
ePC

(
d50

n

Ad~e,e! f n2dgd5
f n

22n (ePC
AS g

f
,e,eD

5S f

4D n

(
ePC

AS 12 f

3 f
,e,eD . ~6!

So our new polynomials are simple functions of those wh
have been introduced in previous work in quantum error c
recting codes.

Our weight polynomialP(C) has particular significance
for the depolarizing channel with fidelityf whenC is the one
of the various cosets which we introduced above.

P( S̄) is the probability that the coded quantum state w
leave the depolarizing channel without error. Each disti
operatoreP S̄ is an action of the channel which has th
property, andf n2wt(e)gwt(e) is the probability of that action.

P( s̄a
' S̄) gives the probability that the coded state leavi

the quantum channel isdetectedto have no error, but has
actually been rotated inside the code eigenspace bys̄a

' . This

is so from the definition ofs̄a
' : since it commutes with all

elements ofS, it does not change the eigenvalues ofS̄ which
are detected in the channel-decoding operation@27#; and,
since by definitions̄a

'¹ S̄, it performs a nonidentity rotation
of the coded state inside the code eigenspace. In fact, e
member of the cosets̄a

' S̄ performs the same rotation.

P( S̄') gives the probability that no error will be detecte
upon decoding, regardless of whether the final quantum s
is correct or not.

P( ēa S̄') is the probability that decoding detects err
ēa , regardless of the rotation of the coded state.

P( ēb s̄a
' S̄) is the probability that decoding detects err

ēb , and the coded state is rotated byēb s̄a
' .

These will be the essential tools for developing a comp
formula for the attainable capacity for code states, and es
lishing the identity of the coherent information with th
Shor-Smolin quantum channel capacity.

III. SHOR-SMOLIN CONCATENATION PROCEDURE

In order to formulate the main result, we first review th
Shor-Smolin procedure@14# for sending reliable qubit states
with a finite capacity, over a depolarizing channel. Just as
conventional channel coding, it involves an additive co
specified above byS̄. In conventional channel coding show
in Fig. 2, the additive code is used as follows: the stateuj& to
be transmitted~we specialize in the figure to a single-qub
state! is rotated by the encoding unitary transformationE into
the eigenspaceC0 of the operators inS̄. When this state
passes through the depolarizing channel, it is rotated into
of the other eigenspacesCm with some probability: we will
analyze this process in detail later. Then after pass
through the noisy channel, the decoding transformationD̄
placesn2k of the qubits~the lowern21 in the figure! in a
state such that, when they are measured in the standard b
they give the eigenvalue of each of then2k generators ofS̄,
that is, it determines which of the spacesCm the state had
been placed into by the noise@27#. So long as the errors
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57 833QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS
produced by the channel are restricted to have weight
greater thanbd/2c, then a rotationU can always be deter
mined which restores the state to its noiseless formuj&.

The discussion below uses another protocol for cod
shown in Fig. 3, the purification protocol of@2,3#. For the
depolarizing channel the two procedures of Figs. 2 and 3
completely equivalent. Reference@3# gives a detailed deriva
tion of the mapping of the first protocol to the second. In t
protocol of Fig. 3, the sender begins withn completely en-
tangled states, in this example the Bell state

F15
1

A2
~ u00&1u11&). ~7!

The sender keeps one half of each of then Bell states, and
the othern particles are sent through the depolarizing ch
nel to the receiver. When we are sending halves of EPR-
particles through the channel, we no longer discuss the
tion of the channel in terms of rotations among differe
code spaces~no coding transformation has yet been appl
to these states!; rather, the state of the system at sliceX1 in
Fig. 3 ~which in general is at two different times for the tw

FIG. 2. Quantum-channel coding, in which~top! the state to be
transmitteduj& is encoded byE, transmitted through the noisy chan
nel, decoded byD and restored byU after syndrome measuremen
The entire encode-transmit-decode process can be thought of
module~double box, below! to be used in concatenation~see Fig.
4!.

FIG. 3. A protocol for transmitting through the noisy chann
equivalent to Fig. 2 which uses entanglement purification and t
portation. The sender passes halves of Bell states (F1) through the
channel to the receiver; the degraded pairs are purified~after slice
X1) byD andD* ~sameD as in Fig. 2!. The purified pairs at slice
XP can then be used to transmit the stateuj& from sender to re-
ceiver by teleportation. Below: the Bell-state distribution and p
cessing withD andD* may be used as a module~double box! for
the concatenation of Fig. 5.
o

g

re

e

-
ll
c-
t

different sets of particles! is one in which the set of Bel
states has been rotated to a set of some of the other
states with various probabilities which we will discu
shortly. The full set of Bell states is

F65
1

A2
~ u00&6u11&), ~8!

C65
1

A2
~ u01&6u10&). ~9!

The probability of a particular set ofn Bell states at sliceX1
is determined by the rule that the Bell state remains aF1

with probability f , and becomes one of the three other sta
F2, C6 with probability g5(12 f )/3.

Using the decoding transformationsD andD* in Fig. 3,
followed by measurements on both ends, classical comm
cation from the sender to the receiver, and the final unit
transformationU, the sender and receiver can come into p
session of a ‘‘purified’’F1 pair, which is then used to sen
the qubit stateuj& by teleportation@33# ~for details see@3#!.

The two methods of employing the channel shown
Figs. 2 and 3 are completely equivalent. But it will be use
to use both points of view for explaining the generaliz
channel transmission protocol of Shor and Smolin@14#, and
we will continue our review using both languages.

We will need to apply our capacity definition of Sec. I
the purification picture. The fidelityFD of the depolarizing
channel output can be most simply defined in this picture
the following way: at the end of purification~sliceXP in Fig.
3! the output is desired to be a collection ofk F1 states; if
the code scheme is a successful one, then the overlap
tween the actual state at this slicerXP and the desired Bel
state will be high; thus the fidelity for an encodingD is

FD5^~F1!kurXPu~F1!k&. ~10!

The capacityQ is simply the best ratek/n for aD for which
this fidelity approaches unity, since each high-fidelity EP
pair can be used to teleport one qubit.

The maximization ofQ has proved to be difficult. But a
variety of code families have been introduced for which
nite Q’s are known, establishing useful lower bounds on t
attainable capacity. One of the most useful is the sequenc
random additive codes, referred to in the original paper
@2,3# as ‘‘one-way hashing.’’ As the name suggests, the
sequences are built by selecting, at random, an Abelian
group S from the group of all Pauli matricesE for succes-
sively larger block sizesn. Bennettet al. @3# show that al-
most all such sequences attain the ‘‘hashing capacity’’

QH[ lim
n→`

k

n
512SW~ f !. ~11!

Thus, QH( f ) is a lower bound on the attainable capaci
SW( f ) is the von Neumann entropy of one Bell state af
one of its particles has been passed through the depolar
channel, and it is given by

SW~ f !52 f logf 23glogg. ~12!

s a
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834 57DiVINCENZO, SHOR, AND SMOLIN
Here is a brief explanation of why one-way hashi
achieves the capacity of Eq.~11!. The entropy of the mixture
of Bell states at sliceX1 is justnSW( f ). The decoding can be
simply thought of as a sequence of measurements of thn

2k operators which are the generators ofS̄. Each of these
measurements has two outcomes, splitting the set of pos
remaining states in two; thus, it has the potential for reduc
the entropy of the state by one bit. Reference@3# provides
arguments for why, for almost all choices ofS̄ and for large
n, each measurement in fact succeeds in extracting one b
entropy. The total state remains a mixture of Bell states
that if k is chosen so that the entropy is reduced to zero,
if nS(W)2(n2k)50, then the Bell mixture becomes a pu
state, which is to say that the final state is one particular
of known Bell states, which can always be rotated withU to
become a set ofF1 states. Thus, purification has succeed
and the ratiok/n attains the value given in Eq.~11!.

This result naturally raises the question of whether th
exist any nonrandomlychosen sequences of codes whi
could attain a capacity exceeding Eq.~11!. While appeal to
analogous classical results and other thinking suggested
random coding would be optimal, the Shor-Smolin constr
tion which we now review shows that higher capacities
attainable. Their construction involves what is known as c
catenation; it is illustrated, for both versions of the quant
coding protocols, in Figs. 4 and 5. In the language of Fig
the idea is that instead of sending the qubits as encode
the random encoderE directly into the channel, they are en
coded once again in another additive code@p,k,d#, and it is
thesen3p qubits that are finally sent through the chann
The codes whose capacity we will consider involven→`,
but fixed p. While we tend to associate ‘‘good’’~i.e., high-
capacity! codes with large distanced, we will find that the
desirable inner@p,k,d# codes actually have asmall distance

FIG. 4. Concatented coding for channel transmission. The in
code~double box! is the encode-transmit-decode module of Fig.
In the Shor-Smolin procedure the outer part is a random code.

FIG. 5. Same as Fig. 4, but using the purification-teleportat
protocol.
ble
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d. As we discuss at the end, it may be the ‘‘degeneracy’’
this code which is relevant.

Shor and Smolin showed@14# that the following capacity
is attainable by this concatenated scheme:

QSS5
1

p
~12SX2!. ~13!

The 1/p just comes from the fact that the whole schem
requiresp3n bits rather than justn bits to be sent through
the channel.SX2 is the average entropy of each bipartite sta
at sliceX2 in Fig. 5 ~the total entropy at sliceX2 is nSX2).
Shor and Smolin noted that this entropy isnot given by the
von Neumann entropy of the quantum state at this slice,
cause of the presence of the results of the classical mea
ments. Rather it is theaverageof the von Neumann entropie
of the quantum states conditional on the measurement
comes:

SX25 (
i Pmeas
outcomes

Pr~ i !S~ru i !5 (
i Pmeas
outcomes

Pr~ i !h4~$Pr~Bj u i !%!.

~14!

It is this entropy that is to be reduced to zero by the rando
hashing stage of the decoding. In the second part of Eq.~14!
we have specialized to the case where the inner code
k51 ~and thus produces just one-qubit-pair state in Fig.!.
In this case the output is a mixture of the four Bell sta
$Bj%5F6, C6, so that the entropy just involves the pro
ability of Bell stateBj conditional on the particular measure
ment outcomei :

Pr~Bj u i !5
Pr~Bj ,i !

Pr~ i !
, Pr~ i !5(

j 51

4

Pr~Bj ,i !. ~15!

The h4 function in Eq.~14! on the set$xi% is defined by

hn~$xj%![2(
j 51

n

xj log2xj , (
j 51

n

xj51. ~16!

By using the elementary algebraic properties of thehn func-
tion SX2 may be simplified so thatQSS is expressed as

QSS5
1

p
@11hN~$Pr~ i !%!2h4N~$Pr~Bj ,i !%!#. ~17!

HereN is the number of distinct measurement outcomes;
an additive@p,k51,d# code,N52p2k52p21.

The probabilities appearing in Eq.~17! have appeared
above; in fact they are equal to

Pr~ i !5P~ ē i S̄
'!, ~18!

Pr~Bj ,i !5P~ s̄ j
' ē i S̄!. ~19!

Equation~18! follows from the fact that the members of th
set S̄' are, by definition, those errors which all lead to t
measurement which indicates the ‘‘no-error’’ conditio
thus, its cosets inĒ, ē i S̄

', each contain the errors which a
lead to the same measurementi . Finally, the weight polyno-
mials are, as discussed above, constructed so as to enum

er
.
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properly the probabilities of these sets. Equation~19! follows
similarly: The setS̄ indicates those errors which lead to th
no-error measurementand leave the Bell stateBi in the cor-
rect F1 state. Furthermore, the cosets̄ j

' ē i S̄ contains those
errors which lead to measurementi and Bell stateBj . It
should be noted that the error operationss̄ j

' have the effect
of performing a unitary operation of the coded qubit; the fo
operations are~i! s̄0

'5I ~the identity!, which leaves the Bell

stateF1 unaffected,~ii ! s̄ x
' , which performs a codedsx ,

leading to a final Bell stateBx5C1, ~iii ! s̄ y
' which performs

sy and leads toBy5C2, and~iv! s̄ z
' which performssz and

leads toBz5F2. So, the weight polynomial in Eq.~19! is
constructed to evaluate the probability that a member of
coset occurs.

Finally we may rewrite the capacity equation as

QSS5
1

p
@11hN„$P~ ē i S̄

'!%…2h4N„$P~ s̄ j
' ē i S̄!%…#.

~20!

IV. RELATION OF QSS TO QUANTUM COHERENT
INFORMATION

The two noisy-channel transmission constructions wh
we have discussed above are equivalent to yet a third
shown in Fig. 6, which has been extensively discussed in
literature@5,6,22#. The rationale of introducing the one-qub
ancillary systemR is that it is the minimum-size ancilla re
quired to ‘‘purify’’ the input of the channel, that is, to mak
it part of a larger pure state@34# ~this is a different sense o
the word ‘‘purification’’ than used in@2#!. In this scenario
there is an important information-theoretic measure, theco-
herent information; at sliceX3 this is given by the difference
of two von Neumann entropies:

I e[
1

p
@S~rQ!2S~rRQ!#. ~21!

Refs. @22,35# show thatI e provides an upper bound for th
quantum channel capacity when maximized over all poss
input-state ensembles and quantum codes. What we
show is that the achievable Shor-Smolin capacityQSS in fact
attains the coherent information for the same additive qua
tum code, and for the input as in Fig. 6. To establish this
need to show the following two equalities:

S~rQ!511hN„$P~ ē i S̄
'!%…, ~22!

FIG. 6. The channel protocol as considered by@6# in its treat-
ment of coherent information. The Q subsystem in the one tra
mitted through the channel, while the single qubit R remains
hind.
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and

S~rRQ!5h4N„$P~ s̄ j
' ē i S̄!%…. ~23!

Establishing these just requires a consideration of how
noise acts on the input state in Fig. 6. For Eq.~22!, we note
that the density matrixrQ before the action of the noise is
just an equal mixture of theu0&L0 andu1&L0 states, where the
subscript 0 indicates that these vectors lie in the eigensp
C0. Each eigenspaceCi , 0< i ,2n2k, is spanned by a pair o
vectorsu0&Li , u1&Li , where we can define the 0 and 1 vecto
by

u0&Li5 ē i u0&L0 , u1&Li5 ē i u1&L0 , ~24!

where ē i is the coset-generating operator~see Fig. 1!. The
importance of the basisu0,1&Li is that the density operatorrQ
after the action of the depolarizing noise is diagonal in
The diagonal matrix elements~i.e., the probabilities! for each
vector is evaluated by noting that the stateu0&Li is reached in
four possible ways:~i! the initial state isu0&L0 ~with prob-
ability 1

2! and an operator of the cosetē i S̄ is applied by the
channel,~ii ! the initial state isu0&L0 and an operator of the
cosetē i s̄ z

' S̄ is applied by the channel,~iii ! the initial state is
u1&L0 ~also with probability1

2! and an operator of the cose
ē i s̄ x

' S̄ is applied by the channel, or~iv! the initial state is

u1&L0 and an operator of the cosetē i s̄ y
' S̄ is applied by the

channel. Each of these is given by the appropriate we
polynomial, so

^0urQu0&Li5
1

2
P~ ē i S̄!1

1

2
P~ ē i s̄ z

' S̄!1
1

2
P~ ē i s̄ x

' S̄!

1
1

2
P~ ē i s̄ y

' S̄! ~25!

5
1

2
P~ ē i S̄

'!. ~26!

The enumeration of the ways that the stateu1&Li can be ar-
rived at is identical, with 0’s and 1’s interchanged; so w
find that this matrix element is identical:

^1urQu1&Li5^0urQu0&Li . ~27!

Because it is diagonal, the von Neumann entropy ofrQ is
just the ordinary entropy of the probability distribution

S~rQ!5h2NXH 1

2
P~ ē i S̄

'!,
1

2
P~ ē i S̄

'!J C
511hN„$P~ ē i S̄

'!%…. ~28!

And thus Eq.~22! is established. The reasoning needed
establish Eq.~23! is very similar: the joint state of systemsR
andQ after encoding but before the noise is

1

2
u0R&u0Q&L01

1

2
u1R&u1Q&L0[F0

1 . ~29!
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In this notation thei in F i
1 means that the state in theQ

subsystem lies in theCi eigenspace. After the noise the de
sity matrix rRQ is diagonal in this generalized Bell basi
with the probability of the state beingBji given by

^Bji urRQuBji &5P~ ē i s̄ j
' S̄!, ~30!

since it is again only members of a particular coset that w
produce a finalBji state.~This discussion can equivalently b
given in terms of the behavior of the@p11,k50,d# code to
which the composite system belongs.! From Eq. ~30!, the
desired result Eq.~23! follows immediately, so the identity
between the Shor-Smolin capacity and the coherent infor
tion is established for any code.

V. QSS FOR THE CAT CODE

A. Closed-form evaluation

It has not proved easy to evaluate the Shor-Smolin cap
ity Eq. ~20! ~or the equivalent coherent information! for a
general concatenation. But a closed-form evaluation
proved possible for one important family of inner@p,1,d#
codes which we refer to as ‘‘cat’’ codes. In the cat code
p>2 the stabilizer groupS̄ is generated by the operators

sz1sz2 , sz1sz3 , . . . , sz1szp . ~31!

For this code the code spaceC0 is spanned by

~32!

and

u1&L05u111•••&. ~33!

Thus, the source density matrix before passage through
channel is, using the Schumacher-Nielsen notation~Fig. 6!
@6#,

rQ~ in !5
1

2
u000•••&^000•••u1

1

2
u111•••&^111•••u.

~34!

A purification of this density matrix involving just one qub
in the subsystemR is

~35!

Here the first qubit is the one belonging to systemR. This
wave function has been referred to as the cat state in
literature.

The decoding networkD for this code is extremely
simple, just consisting of the sequence of XOR gates sho
in Fig. 7. Shor and Smolin provide a detailed argument@14#
ll

a-

c-

s

r

he

he

n

for counting all the probabilities in Eq.~14! by determining
how each different type of error process is modified by
XOR circuit. We summarize their results here: consid
counting the probabilities of the cases~including all mem-
bers of one of the cosets ofS̄') in which the measurement
give exactlyr 1s, in particular when the measurements
qubits 2 throughp2r give zero, and qubitsp2r 11 through
p give one. It is obvious that the counting is the same for a
permutation of the qubits; this means that there arep

n!
equivalent cosets being counted. It is this high multiplic
that permits the calculation to be tractable, despite the
that there are exponentially many~in p) coset weight poly-
nomials to be evaluated.

The further four subcases~i.e., the cosets ofS̄; see Fig. 1!
to be evaluated are as follows.

~i! The remaining qubits~qubit 1 ofQ and the qubit ofR)
are in the stateC1. The error processes for which this occu
are those where there are amplitude (sx) errors on qubits 1
throughp2r , and anevennumber of phase (sz) errors on
any of the qubits. We may forthwith calculate the probabil
of this occurrence:

Pr~C1,r !5 (
t ~even!

(
i

S p2r
i D S r

t2 i Dgp2r 1t2 i f r 2t1 i

52r 21gp2r~ f 1g!r . ~36!

Heret is the total number of phase errors andi is the number
of these phase errors occurring on the qubits which alre
have amplitude errors~leading to asy error process!. The t
and i sums go over the full range for which the binomi
coefficients are nonzero.

~ii ! The remaining state isC2. For this the error pro-
cesses are those where there are amplitude (sx) errors on
qubits 1 throughp2r , and anodd number of phase (sz)
errors on any of the qubits. In fact, it turns out that this cou
is exactly the same as forC1:

Pr~C2,r !5 (
t ~odd!

(
i

S p2r
i D S r

t2 i Dgp2r 1t2 i f r 2t1 i

52r 21gp2r~ f 1g!r . ~37!

~iii ! The remaining state isF1. In this case there must b
amplitude errors on qubitsp2r 11 to p ~or no amplitude
errors if r 50), and there must be an even number of ph
errors. This gives

FIG. 7. Quantum network for decoding the cat code, shown
p55. The same network is used for encoding.
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Pr~F1,r !5 (
t ~even!

(
i

S r
i D S p2r

t2 i D gr 1t2 i f p2r 2t1 i

5H 1
2 @~ f 1g!p1~ f 2g!p#, r 50,

2r 21gr~ f 1g!p2r , r .0.
~38!

~iv! The remaining state isF2. In this case there must b
amplitude errors on qubitsp2r 11 to p, and there must be
an odd number of phase errors. The result is the same a
F1 except for ther 50 case:

Pr~F2,r !5 (
t ~odd!

(
i

S r
i D S p2r

t2 i D gr 1t2 i f p2r 2t1 i

5H 1
2 @~ f 1g!p2~ f 2g!p#, r 50,

2r 21gr~ f 1g!p2r , r .0.
~39!

Plugging these expressions into Eqs.~15!–~17! permits an
efficient calculation of the Shor-Smolin capacity for the fa
ily of cat codes.

The threshold of the cat-code family may be compu
exactly for p→` using an asymptotic analysis. Briefly, w
find that the capacity Eq.~20! is dominated for largep by
two contributions:~i! Those for the cosets ofS̄ with r 50
~recall that r is the number of ones in the measured sy
drome!. We find that this contribution goes as

QSS~r 50!5cS ~ f 2g!2

f 1g D p

. ~40!

~ii ! Those for cosets withr'p/2. This contribution has the
form

QSSS r'
p

2D52g~ f !@A8g~ f 1g!#p. ~41!

Here g( f ).0 is a fairly complicated function off . Never-
theless, the threshold forf specified byQSS( f )50 is simply
obtained by equation the bases of these two contribution

~ f 2g!2

f 1g
5A8g~ f 1g!. ~42!

The relevant root of this equation,f '0.81808, is the
asymptotic threshold. We have not developed any sim
intuitive understanding for why this threshold should rem
finite as p→`, but nevertheless remain worse than t
threshold for finitep as we will now see.

B. Investigations of cat-code capacities

The simplest codes to calculate are the cat code fam
Eqs. ~32!, ~33!. Table I shows the results for values ofp
from one to fourteen. The capacitiesQSSof these codes nea
f 50.81 are shown in Fig. 8. We note that odd-p codes work
better than nearby even-p codes; the lowest threshold fidelit
in this family is achieved forp55.

Generically, many other multiple-concatenation codes
possible and may lead to better thresholds. We explored
family of codes where the innermost code has a rotated
for
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:

le
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code for which the stabilizers are

sx1sx2 , sx1sx3 , . . . , ~43!

and the next-level code remains the ordinary cat code of
~31!. The best code we found was for both inner and ou
cat codes havingp55. The capacity of this code was foun
to be nonzero down to a fidelity off '0.80944, the best cod
known ~see Fig. 9! @36#. This threshold is still far above the
best known lower bound for the threshold off 5 3

4 @37,3#.
Unfortunately, larger codes become computationally intr
table using our methods, because the number of dist
cosets scales exponentially withp. It is hoped that anothe
approach, perhaps an approximation method for co
weights, will permit a more thorough exploration of conca
enated codes.

VI. CONCLUSIONS

The obvious unanswered question which this work rai
is, can any finite capacity be achieved for even noisier de
larizing channels, ones withf below the lowest value,

TABLE I. The value of the threshold fidelityf for cat codes of
size p. Values ofp not shown all work less well than the rando
coding method (p51). The value forp5` is analytic from Eq.
~42!.

p f p f

1 0.81071 9 0.81002
2 0.81148 10 0.81028
3 0.80987 11 0.81032
4 0.81010 12 0.81056
5 0.80964 best 13 0.81062
6 0.80991 14 0.81085
7 0.80977
8 0.81004 ` 0.81808

FIG. 8. The yield, i.e., capacityQSS, as a function of fidelityf
for inner cat codes of sizep for various values ofp. Note that the
curves are all inp order fromp51 to p57 along the right side of
the graph.
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838 57DiVINCENZO, SHOR, AND SMOLIN
0.80944, achievable with the 25-bit inner code, but above th
absolute minimum thresholdf 50.75 set by the no-cloning
argument@37#? In other words, do there exist even more
clever nonrandom codes~recall @23#! for protecting qubits
from high levels of noise?

It may be worthwhile to note here why we initially be-
lieved that the use of inner codes of the cat type was a prom
ising direction for finding good codes for very noisy chan-
nels; this belief was based on the property of degenera
mentioned earlier. While these motivations may end up ha
ing no more than historical interest, since they have not
present led us to any conclusive answer to the questions ju
posed, we hope that it might assist some reader who is inte
ested in exploring these problems further.

Degeneracyis a property of quantum codes which has no
analog for classical error correcting codes. Degeneracy aris
from the fact that two different error patterns can have indis
tinguishable effects on a coded quantum state. This is obv
ously impossible for a coded binary~classical! string, but it
is obligatory for additive quantum codes; indeed, the coset
of S̄ introduced in Sec. II are precisely these groups of in
distinguishable errors. A code is considered degenerate
some of the low-weight (< bd/2c for a @n,k,d# code! error
patterns fall in the same coset ofS̄ and are therefore indis-
tinguishable. The original 9-bit code of Shor@1# was degen-
erate; the 7-bit code@7–9# and the 5-bit code@11,3# are non-
degenerate.

It is known @10# that a Hamming-like bound could be
easily derived on the maximum attainable distance for
quantum code,providedthat it was nondegenerate. However,
in this work the possibility remained open that degenerat

FIG. 9. The threshold valuef for which QSS50 vs p. Note that
the points fall on two smooth curves, one for evenp and one for
odd p. The value atp→`, f '0.81808, is obtained by asymptotic
analysis Eq.~42!. The heavy dashed line atf '0.80944 is the best
known threshold achieved by the twice concatenated 25-bit schem
~Sec. V A!. The light dashed line atf '0.81071 is the threshold for
ordinary quantum random coding, equivalent to thep51 cat code.
e
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codes could attain a greater distance. We were thus m
vated to consider highly degenerate codes for the attainm
of high capacity, given the qualitative relationship betwe
code distance and capacity. This possibility of attaining la
distance using degeneracy has subsequently been ren
unlikely by a recent result of Rains@19# who has obtained a
bound ond which applies for both degenerate and nondeg
erate codes and which is tighter than the Hamming bound
a substantial part of the (p,k,d) parameter space. Neverthe
less the fact is that the cat codes, which we have used
cessfully to attain high capacity, are highly degenera
single phase errors are all indistinguishable, and all pairs
amplitude errors are indistinguishable from the no-error p
cess. All this is true despite the fact that the cat codes h
very poor distance (d51 for all p).

The best we can say about why this scheme succeed
that the high degeneracy, by making many outcomes in
tinguishable, ‘‘hides’’ the large amount of entropy which th
very noisy channel adds to the quantum states, thus per
ting the average entropySX2 to be below one over a greate
range of f . This reasoning is certainly not rigorous; neve
theless, in an extensive Monte-Carlo search of other addi
codes, we found no other inner code withp<5 which does a
better job than the cat code for reducing the average entr
and hence attaining any higher capacity. It was further
observation that the cat code ‘‘hides’’ phase error more
fectively than amplitude error that motivated us to conside
second level of concatenation, in which the innermost co
was a cat code with the role of amplitude and phase rever
Of course, this is what led us to the 25-bit code describ
above which give the best capacity to date.

It is clear that further generalizations of this proble
await exploration. The issue of attainable capacities for ch
nels other than the depolarizing channel is largely untouch
It is fairly clear that for thegeneralizeddepolarizing channel,
in which the error operators are still proportional to the Pa
matrices, but with unequal probability amplitudes, the fo
malism developed here~i.e., the weight polynomials, and th
relation to coherent information! will go through with little
modification, so that would be an easy direction for furth
study. For the much larger space of general channels, n
ing better than our random-unitary-operation~‘‘twirling’’ !
arguments of@3# ~which bounds the capacity of any arbitra
channel by that of a corresponding generalized depolariz
channel! is presently known. Further extensions of the fo
malism would obviously also be desirable; a generalizat
of the present approach for inner codes withk.1 would be
desirable; also, asymptotic expressions for the capa
which would not require an exact evaluation of all the co
weight polynomials could lead to significant progress. C
tainly there remains much to be done to fully characterize
usefulness of the very noisy quantum channel.
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