PHYSICAL REVIEW A VOLUME 57, NUMBER 2 FEBRUARY 1998
Classical and nonclassical interference
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The relation between quantum interference and classical interference is discussed in terms of the Wigner
function and an analogous classical expression. For two displaced coherent states and two displaced electric-
field Gaussian pulses, both the quantum-mechanical and classical Wigner functions exhibit oscillatory behav-
ior. Classical analogs of squeezing, photon-number oscillation, an@ tluaction are presented.
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[. INTRODUCTION electromagnetic field. The statistical properties of an arbi-
trary state of light can be described by the Glauber diagonal
A fundamental principle of quantum mechanics is the lin-P representatiof3]. For a coherent state, tHe representa-
ear superposition principl¢l]. Summation of quantum- tion is just a shargDirac’s ¢ function distribution in the
mechanical amplitudes leads to a wide range of interferencgoherent-state phase space. A superposition of two or more
phenomena. Wave theory based on Maxwell equations lead®herent states can exhibit nonclassical effects. The simplest
to the linear superposition principle for the electric-field am-case of such a superposition is given by a linear combination
plitudes that is the basis of all classical interference phenon®f two “mirrorlike” coherent states
ena. Both in classical and quantum mechanics the linear su-
perposition principle follows from the linearity of the 1
corresponding wave equations. The fundamental difference W)= \/:(|a>+|_a>)- (1)
between quantum and classical interference is that the 2N
particle-wave duality exhibited by quantum systems leads to )
interference betweeprobability amplitudes rather than be- DU€ to the nonorthogonality of the coherent states- a),
tween physical realities such as the electromagnetic waved!® normazllzatlon constant in this expression Ne=1
This property is reflected in the duality principle that full = €XP(-2°). The state(1), called the even coherent state
which-way information and a perfect interference effect ard ECS, exhibits properties such as the reduction of quadra-
mutually exclusivg[2]. If the particle character or the wave ture fluctuations below the vacuum level and the oscillation

character of a system is discussed, quantum and classic3i the photon-number distributiof5,6]. The appearance of
systems may exhibit striking similarities. The best exampléhese nonclassical features of the ECS has been attributed to

of the wave character is Young’s double-slit experiment i€ guantum interference of the two coherent stgfgsFor
ther for light or for massive particles. this parucula}r state, the Glauber.Q|agoﬁ>a_|‘epresentat|on is
It is well known that quantum interference involving €xtremely singular and nonpositi@]. Linear superposi-
many photons can be traced to the wave character of thons of coherent states ha_v_e been produced experimentally
electromagnetic field. Interference of a single photon withl9:10. Coherent superpositions of neutron matter waves
itself is a quantum-mechanical effect and requires measurd!@ve been produced for particle-wave interferomgtrij.
ments of higher-order correlations of the electric field. Ef- For large values of the mean photon excitations o
fects such as photon antibunching, squeezing, or quantus 1, the coherent states represent localized Gaussian wave
nonlocality are examples of nonclassical behavior of quanpackets. The natural classical analog of the state given by
tum amplitudeg3]. Eq. (1) is a linear superposition of two spatial wave packets
Interesting features occur when interference phenomendescribed in one dimension by complex electric-field ampli-
are investigated for a quantum mesosocopic system exhibitudes
ing classical behavior. The Scliinger cat paradox provides
an example of such an interference between the two states of E(X)=E(X)+E»(x). (2
the cat[4]. Interference phenomena occur for a system radi-
ating semiclassical fields. The best known example of such We shall ignore effects related to time dependence and po-
semiclassical field is the coherent stpi¢ of a single-mode larization. This linear superposition of two or more electric
fields exhibits classical interference very similar to the inter-
ference of coherent states. Although the classical field con-
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superpositions of single mode coherent states are best fence between the two probability amplitudéd ¢,) and

seeing the main ideas of the superposition princifle (X|1,). The free evolution of a Wigner function during time
It is the purpose of this paper to study the relation bet can be obtained applying a Galilean boost to the Wigner

tween quantum interference effects of the ECS and classicflinction att=0:

interference of the two electric fields. We shall show that

there are similarities between these two types of interference Wy (x,p;t) =Wy (x—pt,p;t=0). (6)

effects. The nonclassical features of the ECS such as Squeelfipression(?;) may be used in a similar way to construct a

ing and photon-number oscillation will have very simple Wi function f lectric-field litude. O
classical analogies in the framework of destructive interfer- Igner function for an €lectric-neid ampiitudae. ©ne can
erform such a construction in either time and frequency

ence of classical waves. Although it makes no sense to talk . o
about the Glauber diagond& representation for classical phase space or in position and wave-vector phase space
waves, it is possible to formulate a Wigner representation foLl.S’lq' For_the purpose of this paper, we choose to. work
classical waves. Using standard paraxial optics, we shall d vith the positiorx and wave-vectok Wigner representation.

rive the classical counterpart of the positi@erepresentation n full analogy to formula(S), in one dlme_nsmn .and for a
and show its relation to the interference effects. complex. scalar electric fielE(x), the classical Wigner rep-
This paper is organized as follows. In Sec. Il the classical€Sentation has the form

analog of the Wigner functiofclassical Wigner functionis dé
presented, while the similarity of the quantum-mechanical WE(x,k)zf—E*
Wigner function for the ECS and the classical Wigner func- 2m
tion for two displaced Gaussian pulses is discussed in Se
lll. Section IV contains a classical analog of squeezing
Analogies of theQ distribution and photon-number oscilla- O
tion are exhibited in Sec. V. The results are summarized ani'® €nergy density (k) in the wave-vector space:
discussed in Sec. VI.

"+
2

eika(x— g) (7)

From this definition, it follows that the marginals of the
‘Wigner function yield the energy densityx) in space and

fdeE(x,k)=E*(x)E(x)=I(x),
1. WIGNER FUNCTION

In this section we present a Wigner function approach to
the description of classical and quantum interference. We
shall start with the original Wigner definitiofil2] of the
phase-space quasiprobabilty distribution for the wave funcin this formuIaE(k)=fdxe*‘X"E(x) is the Fourier trans-

1_ - ~
j dxXWe(x, k)= EE*(k)E(k)= I (k). (8)

tion in one-dimensional configuration space: form of the complex electric-field amplitude. The intensities
q (8) are, of course, different from the marginals of the
_ _§ * ﬁ ipé _§ quantum-mechanical Wigner function. In the latter case,
W,(X,p) g x+ 5 eyl x : () : : : :
2m 2 c-number equivalents of the intensity operators and integra-

. L . tion over both phase-space variables would be required.
There is an extensive literature devoted to the properties and Again in full analogy to the quantum-mechanical c&@e

various definitions of the Wigner functidi3]. We discuss e \wigner function(7), being bilinear in the electric-field
only the most relevant properties needed for the purpose Qfyjitydes, leads to a term that corresponds to a phase-space
this paper. The marginals of the Wigner function yield the yegcrintion of classical interference. For a linear superposi-
probability densities in configuration or momentum spaceyjon of two electric fields(2), the corresponding classical

The Wigner function plays the role of a phase-space prObWigner function isWg +Wg +W,,,., where the last term
1 2

ability distribution . . i .
y describes classical interference between the two electric
fields E; andEs.
J dxfdpww(x,p)zl, (4)
. QUANTUM VERSUS CLASSICAL INTERFERENCE
but cannot be guaranteed to be positive. In fact, in one-

dimension the Wigner functio8) is positive everywhere if The Wigner function for a linear superposition of two
and only if the wave function is Gaussifib4]. An important coherent state€l) has been calculated and discussed in sev-

result that we shall use in the following sections is the overeral of the previous referen(_:es_ For simplicity, we shall as-
lap relation for two Wigner functions. This theorem relatesSUme @ purely reak. In configuration space, the parameter

the scalar product to the overlap of two Wigner functions DZZ\/E_Cr plays the role of a “distance’(in suitably se-
lected dimensionless unjtbetween the two coherent states

1 ) |a) and |—a) (each having a mean number of oscillator
Sl ¥2)] :f dxf dpW, (x,P)Wy,(X,P)- (9 quantan = a?). The two “mirror” states are said to be mac-
roscopically distinguishable if the uncertainty regions of the

Because the Wigner function is bilinear in the wave functiontwo coherent states do not overlap. This is equivalent to the
it can be used to transparently exhibit the quantum interfercondition thatD> /2. This last condition follows from the
ence contribution. For a linear superpositign) + |4,), the  fact that the uncertainty of each of the coherent states in
corresponding Wigner function ¥/, +W, +W.., where  configuration space is of the ordery®. The Wigner func-
the last term describes, in phase space, the quantum interfé¢ren corresponding to the ECQ) is
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FIG. 1. Plot of the electric fieldE(x) for the two Gaussian pulses as a functiorDof

W,(X,p) separation. A clear spatial separation of the two beams is
b 5 obtained ifD>1. In the limit of D=0, the electric field is
just a Gaussian beam located at the origin. The classical
WO(X_ 2P +Wol X+ 2P +2Wo(x,p)codDp) Wigner function(7) for such a linear superposition of two
= D2 ’ Gaussian beams is
2|1+ ex% - TH
WEe(X,k)
€)
D D
where Wy(x,p) = (1/m)e **"P is the Wigner function of Wol X+ 5K | +Wo| x= 7,k | +2Wo(x,k)cog Dk)
the vacuum stat¢0) in dimensionless parametexsand p. D2 ,
This Wigner function of the linear superposition is not posi- 2|1+ ex;{ - —”
tive due to the last term that describes quantum interference. 4
In the limit of D=0, the quantum stat€l) is just a (11)

hﬁrmor;flc-ct)scnrlatornvac’\L/JIumh shtatebang allidqugntlirtr;] 'nrgerfe:i'vvherewo(x,k)=(1/7-r)exp(—x2—k2) is the Wigner function
ence efiects are gone. viuch has been sald about the Negaliye, Gayssian beais, and the normalization has been fixed
f_eatures of this Wigner fun_ctlon. In most cases the no_np05|by the requirement that the total intensity is set to one in
tive character of this function has been associated with thgrbitrary units, i.e. fdxI(x)=1

nonclassical character of the ECB. In this paper we shall The two fo,rr.nﬁlas(g) and '(11) are both obtained for
stress the relation between the nonpositive Wigner functio%

and the interference for both the quantum-mechanical an ingle-mode fields, are identical in form, and will exhibit
classical cases q ome striking physical similarities. The quantum and the

classical Wigner functions are nonpositive, with the negative

_In fact,.below we sh(_)w that a nonpositive Wigner func- contributions arising from the interference terms. In Fig. 2
tion describes classical interference as well. We calculate tWZ
]

. ) ) . . e have plotted the Wigner functiqdl) for the two Gauss-
interference effects associated with a linear superposition Q n pulses

two elegtrlc pulses In a way S|m|.Iar to tha't of the quantum The frequency of the oscillating term can be easily under-
calculation. Let us imagine that in an optical resonator we

. - 2 . stood both classically and quantum mechanically if the
superpose two Ggussmn beaBytx) = exp(-x72) spatially Wigner function of a linear superposition of two plane waves
separated by a distan@,

e'*1* ande'*2>* or two sharp pulsed(x—x;) and (x—x,) is
investigated. For the two plane waves the Wigner function is

D
X+ =]. (20

E(X): Eo 2

X— E) +Eq
2 We(x, k)~ 8(k—ky) + 8(k—Kkjy)

The two electric fields have equal beam waists equatan

dimensionless units. These two beams are said to be distin-
guishable if the Gaussian packets do not overlap. In Fig. 1
we have plots of the two beams as a function of the distancBor the two sharp pulses the Wigner function takes the form

+20

ki ko
k—g—?) COi(kl—kz)X]. (12
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0.3+ W(ix, k)

FIG. 2. Plot of the Wigner functioiV(x,k) for the two Gaussian pulses.

X; X For classical fields, the spatial waid andk-vector band-
WE(X,K)~ 8(x=X1) + 8(X=Xp) + 26| X— o — 3) width Ak can be defined, respectively, as statistical spreads
of the energy densitie$(x) and T(k). In terms of the
X cog (X1 —Xz)K]. (13)  wigner function(7) these beam waists are given by the for-

mulas
These two formulas exhibit a simpkeandk symmetry. The

first two terms describe two localized distributionskiror x

space located dt, andk, or x; andx,. The last terms are (AX)2=f dxf dkx®W(x,k),

nonpositive and describe the interference effects of the elec-

tric fields. For two plane waves the interference term of the

Wigner function is located at the mean frequendy; ( (Ak)2=f dXJ’ dkIRW(x,k). (14
+k,)/2 and oscillates irx with a frequency inverse to the

wave-vector separatiork, —k,. For two spatially sharp e have normalized the total intensity of the electric field to
pulses the interference term of the Wigner function is locateqypity in these definitions. For an electric fie{@i0) with D
at the mean positionxg +X,)/2 and oscillates irk with a  _ 5 '\ve obtain that the beam waistdsc=1/y2 and that the

frequency inverse to the spatial separalida x; —Xz. Both — ave vector spread idk=1/\2 in dimensionless units.
Wigner functions(9) and (11) have an oscillating nonposi- g6 results satisfy the Fourier uncertainty relation
tive interference term that oscillates with frequency 1/

This property results from the linear superposition principle 1
and the bilinear character of the Wigner function. The struc- AxAk= > (15
ture of the interference term is the same for both the classical

and the quantum superpositions. which is similar to the Heisenberg uncertainty relation for a

A coherent Gaussian beam |_Ilum|nat|ng_ a qOUble'S“tsingle coherent state that is a minimum-uncertainty state.
setup prpduces a phase-quce Wigner fun_ct|on given by EShe Fourier uncertainty relation for the electric fields results
(11). A time-resolved evolution6) of the Wigner function ¢, the wave character of the pulses. Let us apply formulas
given by Eq.(9) has bgen measured.for a cpherent beam 0E14) to the linear superposition of the two Gaussian beams
thermal helium atoms in a double-slit experiméhf]. (10) for an arbitraryD. Simple integrations lead to

IV. CLASSICAL SQUEEZING 1 D2 e*D2/4

2
2_ 2_

In this section we shall show that squeezing of quadrature(AX) 2 4 14 DU (Ak) 2 4 14D
fluctuations for the quantum EC8) has a corresponding (16
classical analogy in terms of the destructive interferende in
space. We show that this destructive interference reduces tie see that th&-space spread is reducétsqueezed’) be-
k-vector bandwidth below the original Gaussian beam waistlow the beam waist of the original Gaussian beam waist. The
This provides a classical version of squeezing with the interminimum value of thek-space spread corresponds to the
pretation that the reduction of the bandwidth is entirely duemaximum squeezingA(k)ﬁqm=0.221 ..., which is almost
to the destructive interference of the two Gaussian beam#alf of the original value. This squeezing is due to a destruc-
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tive interference of the two wavd40) in a way that is iden- result of this, the intensity recorded on the screen is a two-
tical in form to quadrature squeezing of the ECSklgpace parameter function
the superposition has a narrower waist compared to the band-

width of a single beam. 2

I(xo,u)~‘ dx’ e ¥ t(xo—x")E(X")| . (17

V. PHASE-SPACE OVERLAPS o S o
_ Using simple manipulations of the Fourier integrals, we can
Phase-space overlap techniques have been developed g@ghrite this expression in the form

used in order to establish a connection between interference

effects and the Wigner functidri 8]. In this section we shall

provide a classical description of the direct overlap property |(X1U):f dx’f du’Wi(X—x",u=u")We(x",u"),

of the Wigner function(5) using a simple example from (18
Fourier optics.

Let us assume that an arbitrary electric figl{k,z=0) is  where conveniently we have denoted x, and used a nor-
propagated paraxially along tleaxis through a thin lens malization fdx/dul(x,u)=1. This expression has a very
with a focal lengthf. At z=0, where the field starts to propa- simple geometrical interpretation in terms of a phase-space
gate, there is a mask or filter device with transmittanceoverlap. The recorded intensity is just a double convolution
t(xo—X)~exd — (X—X)%2] centered around a poimt. The  of the Wigner function of the electric field and the Wigner
intensity of the electric field is recorded at a screen placed dtunction corresponding to the mask shifted in phase space by
the focal lengthz=f. In the paraxial approximation, the u andx. This is a remarkable expression because it gives for
electric field at the screen is proportional fodx’exp  a Gaussian filter function a classical example of the so-called
(—iux")t(xg—x")E(x’), whereu=kx/f is the so-called spatial Husimi distribution[20]. The Husimi distribution function is
frequency[19]. As a result of this propagation through a positive everywhere and results from a phase-space smooth-
Fourier device, the intensity recorded at the screen dependsg of the Wigner function. In quantum optics, the Husimi
on the spatial frequency and the positionx, where the distribution with a smoothing function selected to be the
mask is centered. This intensity provides a phase-spaogave function of a coherent state reduces to Glauber’s posi-
record of the incident field probed by a filtering mask func-tive Q function. For such a Gaussian mask function and the
tion. This is a typical measurement in Fourier optics. As asuperposition10), the intensity(18) has the form

D D o2 Du
lo x+§,u +1g X— .U +2e lo(X,u)co >
I(Xau): D2 ’ (19)
2 1+ex;{ — T”
|
wherel o(x,u) = (1/27)exp(—x%/2—u?/2) is the intensity of If the intensity is measured just at the origin of the phase
a single Gaussian beam located at the origin with the norspace, i.e., ak=0 andu=0, we obtain that
malization fdxJdulg(x,u)=1. This function is an example )
of a classicalQ distribution for a linear superposition of two i _ f *
Gaussian beams. An identical function is obtained if the 2ﬂ_|(0,0) dxt* ()B(X)] - 20

guantumQ distribution is calculated for the ECQ&). Note

that the distribution(18) is positive everywhere with the in- The intensityl (0,0) is the perfect overlap of the field Wigner
terference term oscillating with a frequency that is twice thefunction with the mask Wigner function. This integral is just
frequency of the Wigner function. In Fig. 3 we have plotted@ classical scalar product involving a perfect overlap of the
the intensity(19) for the two Gaussian pulses. The doubling transmittance functiom with the electric-field amplitudé&.

of the oscillation frequency can be easily understood, reThis is the classical version of the quantum over(ap
membering that th€ function is a smoothed Wigner func- We shall use this expression to exhibit a classical version
tion with a Gaussian distribution. The interference term wa®f photon-number oscillation for the linear superpositjdn
making the Wigner function nonpositive. The interferenceFor this purpose we shall assume that a one-dimensional
term turns theQ function to zero at pointsi,=(27/D)(1 optical resonator holds two higher-order Gaussian beam
+2n) for n=0,1, . . . along theu axis. This means that the modes. In this case the total electric field is
above-described device, based on simple principles of Fou-
rier optics, allows, at least in principle, the detection of the
interference pattern. This interference pattern amounts to a
series of points with a vanishing intensitfO,u) at the
screen locations corresponding to spatial frequengjesin ~ where the higher-order Gaussian wave packets Ej)
Fig. 3 we have plotted(x,u) for D=4. =H,(x)exp(—x42), with H,(x) being the Hermite polyno-

+E, (22)

D
XE,

D
E(x)=En(x—§
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FIG. 3. Plot of the intensity(x,u) for the two Gaussian pulses.

mials withn=0,1, ... [21]. Note that forn=0 we recover constructed for two classical electromagnetic pulses.

the expressior{21) that corresponds to the “zeroth-order” For the ECS and two displaced Gaussian pulses, both the
Gaussian mode. The higher-order Gaussian beam modes wijuantum-mechanical and classical Wigner function have

play the classical role of tha-photon states. For such an been shown to be the same in form, are nonpositive, and
initial electric field probed by a Gaussian transmittance allhave an oscillatory term with a common frequency describ-

the integrals in expressiofl8) can be calculated and as a ing interference.

result we obtain The approach has been used to show that there is a clas-
. sical analogy to the .squeezing qf the quadrature fI'u.ctuations

10 O)~eD2/8( D_) [14(—1)"2 22) of the ECS. For a single Gaussian pulse, the position space

' 8 ' and wave-vector space bandwidths are equal. As a result of

o the interference between two displaced pulses, the former

For a coherent state=D?/8 this intensity is just bandwidth is increased, while the latter is decreased. Phase-
_ space overlap techniques have been used to derive an expres-

1(0,00~e "(n)2"1+(-1)"]?, (23 sion for the classical analog of Glaube€sfunction. Being

an intensity in position and spatial-frequency phase space, it

i.e., up to a normalization factor, it is equivalent to the can he measured in a Fourier optics experiment. For the case

photon number probability for the ECS. In the case of theyf two higher-order Gaussian beam pulses, measurement of

classical intensity, the oscillations in the above expressiog,e intensity at the phase-space origin can be used to observe
result from the destructive interference. a classical analogy to photon-number oscillation. In conclu-
sion, it has been shown that the classical Wigner function

VI. CONCLUSIONS approach to classical interference reveals remarkable analogs

The superposition principle is valid in both quantum me-Of quantum-mechanical phenomena.

chanics and classical electrodynamics because of the linear-
ity of the underlying equations. Interference phenomena oc-
cur when bilinear or higher-order nonlinear quantities are

considered. The Wigner function is bilinear and provides a The authors have benefited from discussions with J. H.
complete description of a guantum-mechanical system. Arfcberly and W. Schleich. This work was partially supported
analogous quantity, the classical Wigner function, has beehy Polish KBN Grant No. 2 PO3B 006 11.
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