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Classical and nonclassical interference
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The relation between quantum interference and classical interference is discussed in terms of the Wigner
function and an analogous classical expression. For two displaced coherent states and two displaced electric-
field Gaussian pulses, both the quantum-mechanical and classical Wigner functions exhibit oscillatory behav-
ior. Classical analogs of squeezing, photon-number oscillation, and theQ function are presented.
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I. INTRODUCTION

A fundamental principle of quantum mechanics is the l
ear superposition principle@1#. Summation of quantum
mechanical amplitudes leads to a wide range of interfere
phenomena. Wave theory based on Maxwell equations le
to the linear superposition principle for the electric-field a
plitudes that is the basis of all classical interference phen
ena. Both in classical and quantum mechanics the linear
perposition principle follows from the linearity of th
corresponding wave equations. The fundamental differe
between quantum and classical interference is that
particle-wave duality exhibited by quantum systems lead
interference betweenprobability amplitudes rather than be
tween physical realities such as the electromagnetic wa
This property is reflected in the duality principle that fu
which-way information and a perfect interference effect
mutually exclusive@2#. If the particle character or the wav
character of a system is discussed, quantum and clas
systems may exhibit striking similarities. The best exam
of the wave character is Young’s double-slit experiment
ther for light or for massive particles.

It is well known that quantum interference involvin
many photons can be traced to the wave character of
electromagnetic field. Interference of a single photon w
itself is a quantum-mechanical effect and requires meas
ments of higher-order correlations of the electric field. E
fects such as photon antibunching, squeezing, or quan
nonlocality are examples of nonclassical behavior of qu
tum amplitudes@3#.

Interesting features occur when interference phenom
are investigated for a quantum mesosocopic system exh
ing classical behavior. The Schro¨dinger cat paradox provide
an example of such an interference between the two state
the cat@4#. Interference phenomena occur for a system ra
ating semiclassical fields. The best known example of suc
semiclassical field is the coherent stateua& of a single-mode
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electromagnetic field. The statistical properties of an ar
trary state of light can be described by the Glauber diago
P representation@3#. For a coherent state, theP representa-
tion is just a sharp~Dirac’s d function! distribution in the
coherent-state phase space. A superposition of two or m
coherent states can exhibit nonclassical effects. The simp
case of such a superposition is given by a linear combina
of two ‘‘mirrorlike’’ coherent states

uC&5
1

A2N
~ ua&1u2a&). ~1!

Due to the nonorthogonality of the coherent states^au2a&,
the normalization constant in this expression isN51
1exp(22a2). The state~1!, called the even coherent sta
~ECS!, exhibits properties such as the reduction of quad
ture fluctuations below the vacuum level and the oscillat
of the photon-number distribution@5,6#. The appearance o
these nonclassical features of the ECS has been attribute
the quantum interference of the two coherent states@7#. For
this particular state, the Glauber diagonalP representation is
extremely singular and nonpositive@8#. Linear superposi-
tions of coherent states have been produced experimen
@9,10#. Coherent superpositions of neutron matter wav
have been produced for particle-wave interferometry@11#.

For large values of the mean photon excitation,n̄5a2

@1, the coherent states represent localized Gaussian w
packets. The natural classical analog of the state given
Eq. ~1! is a linear superposition of two spatial wave pack
described in one dimension by complex electric-field amp
tudes

E~x!5E1~x!1E2~x!. ~2!

We shall ignore effects related to time dependence and
larization. This linear superposition of two or more elect
fields exhibits classical interference very similar to the int
ference of coherent states. Although the classical field c
tains many plane-wave components in contrast to the sin
mode of the coherent states, it has been emphasized
t
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superpositions of single mode coherent states are bes
seeing the main ideas of the superposition principle@7#.

It is the purpose of this paper to study the relation b
tween quantum interference effects of the ECS and class
interference of the two electric fields. We shall show th
there are similarities between these two types of interfere
effects. The nonclassical features of the ECS such as squ
ing and photon-number oscillation will have very simp
classical analogies in the framework of destructive interf
ence of classical waves. Although it makes no sense to
about the Glauber diagonalP representation for classica
waves, it is possible to formulate a Wigner representation
classical waves. Using standard paraxial optics, we shall
rive the classical counterpart of the positiveQ representation
and show its relation to the interference effects.

This paper is organized as follows. In Sec. II the class
analog of the Wigner function~classical Wigner function! is
presented, while the similarity of the quantum-mechani
Wigner function for the ECS and the classical Wigner fun
tion for two displaced Gaussian pulses is discussed in S
III. Section IV contains a classical analog of squeezi
Analogies of theQ distribution and photon-number oscilla
tion are exhibited in Sec. V. The results are summarized
discussed in Sec. VI.

II. WIGNER FUNCTION

In this section we present a Wigner function approach
the description of classical and quantum interference.
shall start with the original Wigner definition@12# of the
phase-space quasiprobabilty distribution for the wave fu
tion in one-dimensional configuration space:

Wc~x,p!5E dj

2p
c* S x1

j

2DeipjcS x2
j

2D . ~3!

There is an extensive literature devoted to the properties
various definitions of the Wigner function@13#. We discuss
only the most relevant properties needed for the purpos
this paper. The marginals of the Wigner function yield t
probability densities in configuration or momentum spa
The Wigner function plays the role of a phase-space pr
ability distribution

E dxE dpWc~x,p!51, ~4!

but cannot be guaranteed to be positive. In fact, in o
dimension the Wigner function~3! is positive everywhere if
and only if the wave function is Gaussian@14#. An important
result that we shall use in the following sections is the ov
lap relation for two Wigner functions. This theorem relat
the scalar product to the overlap of two Wigner functions

1

2p
z^c1uc2& z25E dxE dpWc1

~x,p!Wc2
~x,p!. ~5!

Because the Wigner function is bilinear in the wave functio
it can be used to transparently exhibit the quantum inter
ence contribution. For a linear superpositionuc1&1uc2&, the
corresponding Wigner function isWc1

1Wc2
1Wint , where

the last term describes, in phase space, the quantum inte
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ence between the two probability amplitudes^xuc1& and
^xuc2&. The free evolution of a Wigner function during tim
t can be obtained applying a Galilean boost to the Wig
function att50:

Wc~x,p;t !5Wc~x2pt,p;t50!. ~6!

Expression~3! may be used in a similar way to construct
Wigner function for an electric-field amplitudeE. One can
perform such a construction in either time and frequen
phase space or in position and wave-vector phase s
@15,16#. For the purpose of this paper, we choose to wo
with the positionx and wave-vectork Wigner representation
In full analogy to formula~3!, in one dimension and for a
complex scalar electric fieldE(x), the classical Wigner rep
resentation has the form

WE~x,k!5E dj

2p
E* S x1

j

2DeikjES x2
j

2D . ~7!

From this definition, it follows that the marginals of th
Wigner function yield the energy densityI (x) in space and
the energy densityĨ (k) in the wave-vector space:

E dkWE~x,k!5E* ~x!E~x!5I ~x!,

E dxWE~x,k!5
1

2p
Ẽ* ~k!Ẽ~k!5 Ĩ ~k!. ~8!

In this formula Ẽ(k)5*dxe2 ixkE(x) is the Fourier trans-
form of the complex electric-field amplitude. The intensiti
~8! are, of course, different from the marginals of th
quantum-mechanical Wigner function. In the latter ca
c-number equivalents of the intensity operators and integ
tion over both phase-space variables would be required.

Again in full analogy to the quantum-mechanical case~3!,
the Wigner function~7!, being bilinear in the electric-field
amplitudes, leads to a term that corresponds to a phase-s
description of classical interference. For a linear superp
tion of two electric fields~2!, the corresponding classica
Wigner function isWE1

1WE2
1Wint , where the last term

describes classical interference between the two elec
fields E1 andE2.

III. QUANTUM VERSUS CLASSICAL INTERFERENCE

The Wigner function for a linear superposition of tw
coherent states~1! has been calculated and discussed in s
eral of the previous references. For simplicity, we shall
sume a purely reala. In configuration space, the paramet
D52A2a plays the role of a ‘‘distance’’~in suitably se-
lected dimensionless units! between the two coherent state
ua& and u2a& ~each having a mean number of oscillat
quantan̄5a2). The two ‘‘mirror’’ states are said to be mac
roscopically distinguishable if the uncertainty regions of t
two coherent states do not overlap. This is equivalent to
condition thatD@A2. This last condition follows from the
fact that the uncertainty of each of the coherent states
configuration space is of the order 1/A2. The Wigner func-
tion corresponding to the ECS~1! is
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FIG. 1. Plot of the electric fieldE(x) for the two Gaussian pulses as a function ofD.
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Wc~x,p!

5

W0S x2
D

2
,pD1W0S x1

D

2
,pD12W0~x,p!cos~Dp!

2F11expS 2
D2

4 D G ,

~9!

where W0(x,p)5(1/p)e2x22p2
is the Wigner function of

the vacuum stateu0& in dimensionless parametersx and p.
This Wigner function of the linear superposition is not po
tive due to the last term that describes quantum interfere
In the limit of D50, the quantum state~1! is just a
harmonic-oscillator vacuum state and all quantum inter
ence effects are gone. Much has been said about the neg
features of this Wigner function. In most cases the nonp
tive character of this function has been associated with
nonclassical character of the ECS~1!. In this paper we shal
stress the relation between the nonpositive Wigner func
and the interference for both the quantum-mechanical
classical cases.

In fact, below we show that a nonpositive Wigner fun
tion describes classical interference as well. We calculate
interference effects associated with a linear superpositio
two electric pulses in a way similar to that of the quantu
calculation. Let us imagine that in an optical resonator
superpose two Gaussian beamsE0(x)5exp(2x2/2) spatially
separated by a distanceD,

E~x!5E0S x2
D

2 D1E0S x1
D

2 D . ~10!

The two electric fields have equal beam waists equal toA2 in
dimensionless units. These two beams are said to be di
guishable if the Gaussian packets do not overlap. In Fig
we have plots of the two beams as a function of the dista
-
e.
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tive
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e

n
d
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e

in-
1
e

separation. A clear spatial separation of the two beam
obtained ifD@1. In the limit of D50, the electric field is
just a Gaussian beam located at the origin. The class
Wigner function~7! for such a linear superposition of tw
Gaussian beams is

WE~x,k!

5

W0S x1
D

2
,kD1W0S x2

D

2
,kD12W0~x,k!cos~Dk!

2F11expS 2
D2

4 D G ,

~11!

whereW0(x,k)5(1/p)exp(2x22k2) is the Wigner function
of a Gaussian beamE0 and the normalization has been fixe
by the requirement that the total intensity is set to one
arbitrary units, i.e.,*dxI(x)51.

The two formulas~9! and ~11! are both obtained for
single-mode fields, are identical in form, and will exhib
some striking physical similarities. The quantum and t
classical Wigner functions are nonpositive, with the negat
contributions arising from the interference terms. In Fig.
we have plotted the Wigner function~11! for the two Gauss-
ian pulses.

The frequency of the oscillating term can be easily und
stood both classically and quantum mechanically if t
Wigner function of a linear superposition of two plane wav
eik1x andeik2x or two sharp pulsesd(x2x1) andd(x2x2) is
investigated. For the two plane waves the Wigner function

WE~x,k!;d~k2k1!1d~k2k2!

12dS k2
k1

2
2

k2

2 D cos@~k12k2!x#. ~12!

For the two sharp pulses the Wigner function takes the fo
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FIG. 2. Plot of the Wigner functionW(x,k) for the two Gaussian pulses.
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WE~x,k!;d~x2x1!1d~x2x2!12dS x2
x1

2
2

x2

2 D
3cos@~x12x2!k#. ~13!

These two formulas exhibit a simplex andk symmetry. The
first two terms describe two localized distributions ink or x
space located atk1 andk2 or x1 andx2. The last terms are
nonpositive and describe the interference effects of the e
tric fields. For two plane waves the interference term of
Wigner function is located at the mean frequency (k1
1k2)/2 and oscillates inx with a frequency inverse to th
wave-vector separationk12k2. For two spatially sharp
pulses the interference term of the Wigner function is loca
at the mean position (x11x2)/2 and oscillates ink with a
frequency inverse to the spatial separationD5x1 2x2. Both
Wigner functions~9! and ~11! have an oscillating nonposi
tive interference term that oscillates with frequency 1/D.
This property results from the linear superposition princi
and the bilinear character of the Wigner function. The str
ture of the interference term is the same for both the class
and the quantum superpositions.

A coherent Gaussian beam illuminating a double-
setup produces a phase-space Wigner function given by
~11!. A time-resolved evolution~6! of the Wigner function
given by Eq.~9! has been measured for a coherent beam
thermal helium atoms in a double-slit experiment@17#.

IV. CLASSICAL SQUEEZING

In this section we shall show that squeezing of quadra
fluctuations for the quantum ECS~1! has a corresponding
classical analogy in terms of the destructive interferencek
space. We show that this destructive interference reduce
k-vector bandwidth below the original Gaussian beam wa
This provides a classical version of squeezing with the in
pretation that the reduction of the bandwidth is entirely d
to the destructive interference of the two Gaussian bea
c-
e

d

-
al

t
q.

f

re

the
t.
r-
e
s.

For classical fields, the spatial waistDx andk-vector band-
width Dk can be defined, respectively, as statistical spre
of the energy densitiesI (x) and Ĩ (k). In terms of the
Wigner function~7! these beam waists are given by the fo
mulas

~Dx!25E dxE dkx2W~x,k!,

~Dk!25E dxE dkk2W~x,k!. ~14!

We have normalized the total intensity of the electric field
unity in these definitions. For an electric field~10! with D
50 we obtain that the beam waist isDx51/A2 and that the
wave vector spread isDk51/A2 in dimensionless units
These results satisfy the Fourier uncertainty relation

DxDk5
1

2
~15!

which is similar to the Heisenberg uncertainty relation fo
single coherent state that is a minimum-uncertainty st
The Fourier uncertainty relation for the electric fields resu
from the wave character of the pulses. Let us apply formu
~14! to the linear superposition of the two Gaussian bea
~10! for an arbitraryD. Simple integrations lead to

~Dx!25
1

2
1

D2

4

1

11e2D2/4
, ~Dk!25

1

2
2

D2

4

e2D2/4

11e2D2/4
.

~16!

We see that thek-space spread is reduced~‘‘squeezed’’! be-
low the beam waist of the original Gaussian beam waist. T
minimum value of thek-space spread corresponds to t
maximum squeezing (Dk)min

2 50.221 . . . , which is almost
half of the original value. This squeezing is due to a destr
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57 819CLASSICAL AND NONCLASSICAL INTERFERENCE
tive interference of the two waves~10! in a way that is iden-
tical in form to quadrature squeezing of the ECS. Ink space
the superposition has a narrower waist compared to the b
width of a single beam.

V. PHASE-SPACE OVERLAPS

Phase-space overlap techniques have been develope
used in order to establish a connection between interfere
effects and the Wigner function@18#. In this section we shal
provide a classical description of the direct overlap prope
of the Wigner function~5! using a simple example from
Fourier optics.

Let us assume that an arbitrary electric fieldE(x,z50) is
propagated paraxially along thez axis through a thin lens
with a focal lengthf . At z50, where the field starts to propa
gate, there is a mask or filter device with transmittan
t(x02x);exp@2(x02x)2/2# centered around a pointx0. The
intensity of the electric field is recorded at a screen place
the focal lengthz5 f . In the paraxial approximation, th
electric field at the screen is proportional to*dx8exp
(2iux8)t(x02x8)E(x8), whereu5kx/ f is the so-called spatia
frequency@19#. As a result of this propagation through
Fourier device, the intensity recorded at the screen depe
on the spatial frequencyu and the positionx0 where the
mask is centered. This intensity provides a phase-sp
record of the incident field probed by a filtering mask fun
tion. This is a typical measurement in Fourier optics. As
o

o
th

-
th
ed
g
re
-
a
ce

e
o
he
to
d-

and
ce

y

e

at

ds

ce
-
a

result of this, the intensity recorded on the screen is a tw
parameter function

I ~x0 ,u!;U E dx8e2 iux8t~x02x8!E~x8!U2

. ~17!

Using simple manipulations of the Fourier integrals, we c
rewrite this expression in the form

I ~x,u!5E dx8E du8Wt~x2x8,u2u8!WE~x8,u8!,

~18!

where conveniently we have denotedx5x0 and used a nor-
malization *dx*duI(x,u)51. This expression has a ver
simple geometrical interpretation in terms of a phase-sp
overlap. The recorded intensity is just a double convolut
of the Wigner function of the electric field and the Wign
function corresponding to the mask shifted in phase spac
u andx. This is a remarkable expression because it gives
a Gaussian filter function a classical example of the so-ca
Husimi distribution@20#. The Husimi distribution function is
positive everywhere and results from a phase-space smo
ing of the Wigner function. In quantum optics, the Husim
distribution with a smoothing function selected to be t
wave function of a coherent state reduces to Glauber’s p
tive Q function. For such a Gaussian mask function and
superposition~10!, the intensity~18! has the form
I ~x,u!5

I 0S x1
D

2
,uD1I 0S x2

D

2
,uD12e2D2/8I 0~x,u!cosS Du

2 D
2F11expS 2

D2

4 D G , ~19!
se

r
st
the

ion

onal
am
where I 0(x,u)5(1/2p)exp(2x2/22u2/2) is the intensity of
a single Gaussian beam located at the origin with the n
malization*dx*duI0(x,u)51. This function is an example
of a classicalQ distribution for a linear superposition of tw
Gaussian beams. An identical function is obtained if
quantumQ distribution is calculated for the ECS~1!. Note
that the distribution~18! is positive everywhere with the in
terference term oscillating with a frequency that is twice
frequency of the Wigner function. In Fig. 3 we have plott
the intensity~19! for the two Gaussian pulses. The doublin
of the oscillation frequency can be easily understood,
membering that theQ function is a smoothed Wigner func
tion with a Gaussian distribution. The interference term w
making the Wigner function nonpositive. The interferen
term turns theQ function to zero at pointsun5(2p/D)(1
12n) for n50,1, . . . along theu axis. This means that th
above-described device, based on simple principles of F
rier optics, allows, at least in principle, the detection of t
interference pattern. This interference pattern amounts
series of points with a vanishing intensityI (0,u) at the
screen locations corresponding to spatial frequenciesun . In
Fig. 3 we have plottedI (x,u) for D54.
r-

e

e

-

s

u-

a

If the intensity is measured just at the origin of the pha
space, i.e., atx50 andu50, we obtain that

1

2p
I ~0,0!5U E dxt* ~x!E~x!U2

. ~20!

The intensityI (0,0) is the perfect overlap of the field Wigne
function with the mask Wigner function. This integral is ju
a classical scalar product involving a perfect overlap of
transmittance functiont with the electric-field amplitudeE.
This is the classical version of the quantum overlap~5!.

We shall use this expression to exhibit a classical vers
of photon-number oscillation for the linear superposition~1!.
For this purpose we shall assume that a one-dimensi
optical resonator holds two higher-order Gaussian be
modes. In this case the total electric field is

E~x!5EnS x2
D

2 D1EnS x1
D

2 D , ~21!

where the higher-order Gaussian wave packets areEn(x)
5Hn(x)exp(2x2/2), with Hn(x) being the Hermite polyno-
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FIG. 3. Plot of the intensityI (x,u) for the two Gaussian pulses.
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mials with n50,1, . . . @21#. Note that forn50 we recover
the expression~21! that corresponds to the ‘‘zeroth-order
Gaussian mode. The higher-order Gaussian beam modes
play the classical role of then-photon states. For such a
initial electric field probed by a Gaussian transmittance
the integrals in expression~18! can be calculated and as
result we obtain

I ~0,0!;e2D2/8S D2

8 D 2n

@11~21!n#2. ~22!

For a coherent staten̄5D2/8 this intensity is just

I ~0,0!;e2 n̄~ n̄ !2n@11~21!n#2, ~23!

i.e., up to a normalization factor, it is equivalent to t
photon-number probability for the ECS. In the case of
classical intensity, the oscillations in the above express
result from the destructive interference.

VI. CONCLUSIONS

The superposition principle is valid in both quantum m
chanics and classical electrodynamics because of the lin
ity of the underlying equations. Interference phenomena
cur when bilinear or higher-order nonlinear quantities
considered. The Wigner function is bilinear and provide
complete description of a quantum-mechanical system.
analogous quantity, the classical Wigner function, has b
-

ill

ll

e
n

-
ar-
c-
e
a
n
n

constructed for two classical electromagnetic pulses.
For the ECS and two displaced Gaussian pulses, both

quantum-mechanical and classical Wigner function ha
been shown to be the same in form, are nonpositive,
have an oscillatory term with a common frequency desc
ing interference.

The approach has been used to show that there is a
sical analogy to the squeezing of the quadrature fluctuat
of the ECS. For a single Gaussian pulse, the position sp
and wave-vector space bandwidths are equal. As a resu
the interference between two displaced pulses, the for
bandwidth is increased, while the latter is decreased. Ph
space overlap techniques have been used to derive an ex
sion for the classical analog of Glauber’sQ function. Being
an intensity in position and spatial-frequency phase spac
can be measured in a Fourier optics experiment. For the
of two higher-order Gaussian beam pulses, measureme
the intensity at the phase-space origin can be used to obs
a classical analogy to photon-number oscillation. In conc
sion, it has been shown that the classical Wigner funct
approach to classical interference reveals remarkable ana
of quantum-mechanical phenomena.
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