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Divergence property of Fourier and Ritz expansions
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A divergence property of approximating sequences$cn5(m51
n cnmwm% that converge in the norm of the

Hilbert spaceL2(RN) to a fast-decay functionc is studied. The expansioncn can be a Fourier one or obtained
by solving an eigenproblem by the Ritz method and the basis set$wm% need not be orthogonal inL2(RN). The
notion of uniform boundedness is used to show that if$cn% is nonuniformly bounded, then it diverges from its
correct limit c in such a way that there is an increasing separation between the asymptotic tails ofcn andc
asn increases. The analytical and numerical examples show that the rate of this divergence may be exponen-
tial, hence the divergence of expectation-value sequences$S(cn)% is proved for some operatorsS whose
correct expectation valueS(c) depends mainly on the long-range behavior ofc. The compatibility between
several convergence properties of the approximating sequence$cn% and basis set properties with the nonuni-
form boundedness property is shown. We show that the well-known property of some trial wave functions to
generate correct expectation values of some operators and incorrect values for other operators is connected
with the property of nonuniformly bounded sequences$cn% to converge correctly on a finite region and diverge
on its complementary one, hence it is proved that correct expectation values can be obtained from a nonuni-
formly bounded sequence by using a suitable limiting procedure. As model examples, Fourier and Ritz expan-
sions of the ground statec52Z3/2e2Zr of a hydrogenlike atom are considered.@S1050-2947~98!07402-2#

PACS number~s!: 03.65.Ge, 03.65.Ca, 03.65.Db
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I. INTRODUCTION

The theory of Fourier series with respect to orthogo
basis sets had its origin in the debate concerning the vib
ing string two hundred years ago@1#. This theory was com-
pletely transformed during the first third of this century a
currently several areas such as quantum mechanics, s
analysis, and numerical analysis, have found a rich st
house in the theory of expansions with respect to system
functions$wm%m51

` @2#.
The present article deals with two classes of expans

of fast-decay functionsc in RN with respect to a linearly
independent system of functions$wm%m51

` that need not be
orthogonal in the Hilbert spaceL2(RN). Let ^,& and i•i de-
note the scalar product and the norm ofL2(RN). The coeffi-
cients of the first class of expansionscn

F5(m51
n cnm

F wm are
~uniquely! determined by minimizing the distanceicn

F2ci
@3#, and the second class is obtained from the variational R
method when the expanded functionc is an eigenfunction of
a self-adjoint operator inL2(RN). As is known @4–8#, the
Ritz method yields expansionscn

R5(m51
n cnm

R wm whose co-
efficients are obtained by minimizing the so-calledenergy
functionalE(•) associated to the operator in question. He
after the expansionscn

F andcn
R will be referred to asFourier

andRitz expansions, respectively.
A deep mathematical study@9# has been devoted to th

investigation of connections between the convergence p
erties of Fourier seriescn5`

F with respect to an orthonorma
system of basis functionswm , the properties of the expande
function, and the behavior of the expansion coefficien
while the problem of computing Ritz expansions that co
verge in the norm to the eigenfunctions of self-adjoint ope
571050-2947/98/57~2!/806~9!/$15.00
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tors can be solved by acompleteness argumentalone for
many eigenproblems of physical interest particularly in n
merical quantum mechanics@4–8#. Improvements in com-
puters, numerical computer programs, and theoretical m
ods to carry out large scale calculations of eigenfunctionc
of atomic and molecular Schro¨dinger operators, suggest th
the largest source of error in mostab initio methods is now
the basis set truncation of Ritz expansionscn

R @10#. However,
an old difficulty in numerical quantum mechanics has be
the calculation of expectation valuesS(c)5^c,Sc& of sym-
metric operatorsS since Ritz expansionscn

R that yield se-
quences$S(cn

R)% that converge to their correct limitS(c) for
some operatorsS can generate sequences$S(cn

R)% for other
operatorsS that converge to a wrong limit or diverge eve
when $cn

R% tends toc in the norm@11–14#, a problem that
has motivated a wide study of criteria for assessing the r
ability or accuracy of trial functions@15,16#. The main aim
of this article is to show that this convergence problem
connected with anintrinsic property of a wide class of se
quences of Fourier and Ritz expansions offast-decayfunc-
tions c in unboundedregions of configuration spaceRN,
rather than a result from the basis set truncation or round
errors.

As model expansions we shall consider one-dimensio
Fourier and Ritz expansions of eigenfunctionsc of the
Schrödinger operator in the Hilbert spaceL2(0,̀ ) for hydro-
genlike atoms. In Sec. II we use the notion of unifor
boundedness to show that a nonuniformly bounded sequ
$cn% divergesfrom its correct limit in such a way that ther
is an increasing separation between the asymptotic tail
cn and c as n increases. The analytical and numerical e
amples of Sec. III indicate that this divergence has an ex
806 © 1998 The American Physical Society
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57 807DIVERGENCE PROPERTY OF FOURIER AND RITZ . . .
nential rate, which in turn generates sequences$S(cn)% that
diverge or converge to a wrong limit for some operatorsS
~Sec. IV!. In Secs. IV A and IV B it is shown that the non
uniform boundedness property is compatible with seve
convergence properties of an approximating sequence$cn%
and basis set properties. In Sec. V it is shown that if$cn% is
nonuniformly bounded, then the integrals*0

Rncn* Scndr can
converge to their correct limitS(c) as n→` with an in-
creasing sequence$Rn% properly chosen, even when th
complete-integral sequence$S(cn)% does not. The final sec
tion VI contains the extrapolation of the main on
dimensional results to high-dimensional expansions
some concluding remarks.

II. NONUNIFORMLY BOUNDED SEQUENCES ˆcn‰

Hereafter̂ ,& andi•i denote, respectively, the inner pro
uct and the norm ofL2(0,̀ ), and S( f )5^ f ,S f&. We will
consider c ’s in L2(0,̀ ) with a fast decay @r k(c)
5^c,r kc&,` for all k>0#, $cn%n51

` will be an approximat-
ing sequence that tends toc in the L2 norm (icn2ci→0),
and by simplicityc and eachcn are continuous in the whole
space.

In this article we say that the sequence$cn% is uniformly
bounded~UB! if there is at least one fast decay functioncUB
such that the inequalityucn(r )u<lcUB(r ) holds on a sub-
interval @R0 ,`) for n>n0, wherel andR0 are independen
of n. Following the idea used to show Theorem 5 of@14#, we
getProposition 1: If $cn% converges toc in the norm and is
UB, then the equation

lim
n→`

r k~cn!5r k~c! holds fork>0. ~2.1!

Intuitively, this result is possible only ifcn tends ‘‘cor-
rectly’’ to c in wholespace so that a correct approximati
sequence$cn% should be UB@17#. Unfortunately, this prop-
erty may fail even if$cn% tends toc in the norm. Accord-
ingly, if icn2ci→0 and Eq.~2.1! fails with one powerk,
then$cn% is nonuniformly bounded~NUB! and hence canno
be bounded uniformly byany fast decay function. This note
worthy property can be characterized geometrically as
lows. Suppose thatucu and eachucnu with large n are
bounded by a fast-decay and continuous functioncB on an
interval @R,`), which is independent ofn, that is, there are
l,ln,` such that

max
r>R

$ucu/cB%<l, max
r>R

$ucnu/cB%<ln .

The nonuniform boundedness of$cn% implies thatln→`
and by continuity there is an intervalI n5@an ,bn# such that
bn<ucnu/cB holds forr PI n with bn→` asn increases~see
Fig. 2!. In geometric terms, this means that there is an
creasing separation between the asymptotic tails ofcn and
its correct limitc asn→`.

III. EXAMPLES

A simple sequence that, as we shall see later on, exh
some of the main convergence properties of NUB sequen
is the Löwdin’s sequence@11# for the function c(r )
l

d

l-

-

its
es

5(4/p)1/4exp(2r2/2) on @0,̀ ):

cn~r !5@c~r !1enc~r 2r n!#cn , ~3.1a!

whereen→0 andr n→` asn→`, cn (→1) being the nor-
malization constant~see Fig. 1!. This sequence converges
the L2(0,̀ ) norm independently of how$en% and $r n% are
chosen,

icn2ci2<2@12cn2cnenexp~2r n
2/2!~p/4!1/4#→0,

~3.1b!

whereas for the momentsr 2k(cn) we get, after algebraic
manipulations, the inequality

~cnenr n
k!2<r 2k~cn!, ~3.1c!

which shows that ifen dies like r n
2k8 , thenr 2k(cn)→` for

k.k8 and therefore$cn% is NUB. This is confirmed by the
graphs of log10c/cB and log10cn /cB with cB5e2r and en

5r n
215n22, plotted in Fig. 2, which shows that there is a

interval I n5@ r̄ n2d/2, r̄ n1d/2# with r̄ n.r n and d;1 for
which bn<cn /cB holds onI n wherebn diverges exponen-
tially as n increases. The consequent increasing separa
between the asymptotic tails ofcn andc is exhibited by the
graph of log10cn /c plotted in Fig. 3.

The next Ritz expansionscn
R are obtained by solving the

Schrödinger equation for the ground state of hydrogenli
atoms with nuclear chargeZ,

2
1

2

d2c

dr2
2

Z

r
c5Ec, 0,r ,` ~3.2!

with c(0)5c(`)50, and the corresponding Fourier seri
cn

F are computed by direct integration of the eigensolut
c52Z3/2re2Zr @18#.

Consider the calculation of the eigenstatec5321/2re22r

of He1 with the basis set

FIG. 1. Graph of 10cn for Löwdin’s sequence withen5r n
21

5n22.
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wm~r !5r 2m21e2r 2/2, m51,2, . . . ~3.3!

used by Klahn and Morgan@13# in their study of the conver-
gence rate of variational calculations. TheW2,1 completeness
of this basis set ensures the convergence in theL2 norm of
sequences$cn

F% and $cn
R% toward their correct limitc @7#.

The Klahn-Morgan’s analysis of$cn
F% showed that the se-

quence$r k(cn
F)%n51

` diverges withk>7 ~see Table I! so that
$cn

F% is NUB. This is confirmed by the graph o
log10ucn

Fu/cB with cB5c plotted in Fig. 4@19#, which shows
that the increasing separation between the asymptotic tail
cn

F andc has an exponential rate,

max
r P@4,bn!

ucn
Fu/cB;10an, an ,bn→`. ~3.4!

FIG. 2. Graph of log10cn /cB for Löwdin’s sequence and its
correct limit c5cn50 with cB5e2r .

FIG. 3. Graph of log10cn /c for Löwdin’s sequence,c being its
correct limit.
of

Similar results are obtained with the Ritz sequence$cn
R% for

which $r k(cn
R)%n51

` diverges withk>6 ~see Table I! and the
increasing separation between the asymptotic tails obey
rule like Eq.~3.4! ~see Fig. 3 of@14#!.

The W2,1 completeness of the basis set

wm~r !5r 2e2@21~m21!/m#r , m51,2, . . . ~3.5!

follows from Theorem 1 of@7#. Table II reports some expec
tation values from sequences$cn

F% and $cn
R% for the eigen-

statec of He1 with this basis set. The divergence of s
quences$r k(cn

F)% and $r k(cn
R)% with k>6 indicates that

TABLE I. Expectation values~taken from Ref.@13#! r k(cn)
from Fourier cn

F and Ritz cn
R expansions withn basis functions

~3.3! for the 1s eigenstate of He1. In this table and the follow-
ing ones the notation 9.06@26# (1.4@4#) means 9.0631026

(1.43104).

n r22 r 3 r 6 r 7 r 9

cn
F

10 5.9 0.98 11.4 48 14@2#

20 6.8 0.95 10.5 57 32@2#

30 7.1 0.94 9.80 60 51@2#

100 7.7 0.94 7.86 64 18@3#

200 7.9 0.94 7.04 65 37@3#

cn
R

10 5.4 1.19 2.5@1# 13@1# 41@2#

20 6.4 1.06 3.7@1# 28@1# 19@3#

30 6.9 1.01 4.3@1# 41@1# 44@3#

100 7.6 0.95 6.1@1# 11@2# 41@4#

200 7.8 0.94 6.8@1# 18@2# 13@5#

exa 8.0 0.94 4.92 11 76

aExact values.

FIG. 4. Graph of log10ucn
F/cu for the 1s eigenstatec of He1

approximated by Fourier expansionscn
F with n basis functions

~3.3!.
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57 809DIVERGENCE PROPERTY OF FOURIER AND RITZ . . .
$cn
F% and$cn

R% are NUB, a result supported by the increasi
separation between the asymptotic tails of the approxima
functions and their correct limit whenn increases as Fig. 5
shows.

IV. ADDITIONAL PROPERTIES OF NUB SEQUENCES

The examples show that the nonuniform boundednes
an intrinsic property of some sequences$cn% that converge
to a fast-decay functionc in theL2 norm. The divergence o
large-k sequences$r k(cn)% from such sets$cn% may be at-
tributed basically to theexponentialrate of separation be
tween the asymptotic tails ofcn and its correct limitc as
n→`. In fact, Figs. 2 and 4 show that ifcB is a fast-decay
bound of eachcn , then there is an intervalI n5@an ,bn# for
which

TABLE II. Expectation valuesr k(cn) from Fouriercn
F and Ritz

cn
R expansions withn basis functions~3.5! for the 1s eigenstate of

He1.

n r22 r 1 r 3 r 6 r 9

cn
F

1 1.3 1.25 3.28 37 99@1#

3 3.7 0.79 1.13 15 77@1#

5 4.8 0.76 1.00 12 12@2#

7 5.5 0.75 0.98 13 24@2#

9 5.9 0.75 0.97 15 48@2#

cn
R

1 1.3 1.25 3.33 37 99@1#

3 2.8 1.00 2.39 41 18@2#

5 3.6 0.91 1.79 46 47@2#

6 3.9 0.88 1.67 50 79@2#

exa 8.0 0.75 0.94 4.9 76

aExact values.

FIG. 5. Graph of log10ucn
F/cu and log10ucn

R/cu for the 1s eigen-
statec of He1 and its Fourier and Ritz expansions with basis fun
tions ~3.5!.
g

is

bn<ucn~r !u/cB~r ! holds forr PI n , ~4.1a!

wherebn diverges exponentially asn increases,an→` and
bn2an>d.0. Hence we get the inequality

bn
2E

an

bn
cB

2~r !r kdr<r k~cn!, ~4.1b!

which, by rewriting the left-hand integral as (bn

2an)(r n* )kcB
2(r n* ) with r n* PI n ~mean value theorem for in

tegrals!, leads to

d~r n* !k@bncB~r n* !#2<r k~cn!. ~4.1c!

This clearly shows that the exponential divergence ofbn can
compensate the fast decay of the factorcB(r n* ) as n in-
creases in such a way that for a large enoughk the left-hand
side and, therefore,$r k(cn)% diverge whenn→`.

The incorrect convergence of some expectation val
from NUB sequences$cn% poses the problem of how to
avoid the calculation of such sequences. Of course, the n
uniform boundedness property is determined by both the
sis set$wm% and the expanded functionc but sincec is
unknown in general and only few of its properties are kno
we shall study the connections between~i! the convergence
properties of$cn% and ~ii ! the basis set properties with th
nonuniform boundedness.

A. Convergence properties of̂ cn‰

In this section we show the coexistence of the nonunifo
boundedness property with the stronger convergence pro
ties thatone-dimensional Fourier and Ritz expansions m
have: the uniform convergence, convergence in the no
and point-by-point. It should be noted that in bounded int
vals there is a hierarchy between these convergence cri
that disappears in unbounded intervals@20#.

It is easy to see that the Lo¨wdin’s sequence converges t
its correct limit ~i! uniformly on each finite interval@0,R#
@ucn(r )2c(r )u,e holds on@0,R# for n.ne,R and any small
e.0, ne,R being properly chosen#, ~ii ! point-by-point in
whole space@ limn→`cn(r )5c(r ) holds for all r>0#, and,
obviously,~iii ! in theL2 norm. Nevertheless,$cn% is NUB, a
result that shows the compatibility of three strong conv
gence criteria with the nonuniform boundedness property

Convergence problems with some trigonometric ser
has motivated a deep mathematical analysis of converge
properties of Fourier series with respect to general ortho
nal basis sets infinite intervals@9#. For example, it is known
the existence of continuous functions whose trigonome
series diverge at some points and, therefore, do not conv
uniformly, and to the date several problems concerning
pointwiseconvergence of generalized Fourier series are
unsolved@9#. Of course, the class of open convergence pr
lems of series in unbounded regions and higher-dimensio
spaces is greater. To circumvent these problems and s
the connections between convergence criteria and the
uniform boundedness we shall consider Ritz expansi
since if the basis set$wm% is complete in the Sobolev spac
W2,1 endowed with the normifi1

25ifi21idf/dri2 (W2,1

completeness!, then the Ritz method provides an approx
-
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810 57MARCO A. NÚÑEZ AND EDUARDO PIÑA
mating sequence$cn
R% for the hydrogenlike problem~3.2!

that converges to the true eigenfunctionc in the normi•i1

@6#, which in turn ensures the uniform convergence of$cn
R%

on each finite interval @0,R# as well as its point-by-poin
convergence in whole space@21#. In this way, the
W2,1-complete basis sets~3.3! and ~3.5! generate Ritz se
quences for the eigenstatec of He1 that have such conver
gence properties and, however, these sequences are
~see Figs. 4 and 5!. Thus, the stronger convergence prop
ties that one-dimensional Fourier and Ritz sequences
have are compatible with the nonuniform boundedness p
erty as occurs with the Lo¨wdin’s sequence.

B. Basis set properties

To begin the study of basis set properties and the non
form boundedness consider theasymptotic behaviorof the
basis functionswm . A first question is ifwm’s that decay
more rapidly than the expanded functionc can yield a UB
sequence$cn%. The sequences$cn

F% and $cn
R% with basis

functions~3.3! for the eigenstatec of He1 indicate that the
answer is negative because such sequences are NUB wh
the wm’s and, therefore,cn

F andcn
R decay more rapidly than

c: for an arbitrarily smalle.0 there is anR(e,n) such that

ucn
Fu,ucn

Ru,ec hold for r P†R~e,n!,`…,

whereR(e,n) diverges asn does~see Fig. 4!. In this case
everywm and each finite linear combinationcn of the wm’s
are bounded by the correct limitc but not uniformly since
R(e,n) depends onn; this suggests to see if a basis set$wm%
that is UB generates Fourier and Ritz sequences with
same boundedness property. The answer to this questio
negative again as is shown by the basis set~3.5!, which is
uniformly bounded byl l r

lc with l>1 and a suitablel l but
yields NUB sequences$cn

F% and $cn
R% for the eigenstate o

He1 ~see Fig. 5 and Table II!.
When the coefficientscnm of cn5(m51

n cnmwm are ob-
tained by means of the Ritz method or by direct integrat
of the expanded function$wm% being anonorthogonal sys-
tem, thecnm’s depend onn. This suggests studying the po
sible connections between thebehavior of the cnm’s as n→`
and the nonuniform boundedness property. Since there i
theory that describes then dependence of thecnm’s in terms
of basis set properties alone we consider some represent
cases of coefficients’ behavior. Table III shows that for ea
m value the coefficientscnm of Fourier expansions with basi
functions~3.5! for He1 diverge asn does, an undesired re

TABLE III. Coefficients cnm of Fourier expansionscn
F with n

basis functions~3.5! for the 1s eigenstate of He1. The values

c̄ nm5(21)n1mcnm are reported.

n c̄ n1 c̄ n2 c̄ n3 c̄ n4

1 7.5
3 1.7@1# 6.4@2# 3.9@3#

5 1.1@2# 4.1@4# 1.2@6# 6.4@6#

7 1.2@3# 3.0@6# 3.2@8# 5.5@9#

9 1.5@4# 2.4@8# 8.4@10# 3.8@12#
UB
-
ay
p-

i-

reas

e
is

n

no

tive
h

sult from the physical point of view that may be connect
with the nonuniform boundedness of$cn

F% ~the correspond-
ing NUB sequence$cn

R% has the same coefficients’ behav
ior!, but the next example shows that this connection is l
obvious. Table IV shows that the Fourier expansioncn

F of
the hydrogen-atom eigenstatec with basis functions

wm~r !5rexp@2~11m/2!r # ~m51,2, . . .! ~4.2!

has coefficientscnm that diverge asn does with eachm
value, whereas Fig. 6 and the correctr k convergence re-
ported in Table IV indicate that$cn

F% is uniformly bounded
by c.

Consider now the case for which the coefficients are w
behaved. The orthonormality and completeness of the b
set ~3.3! guarantee that the coefficients ofcn

F for He1 aren

TABLE IV. Coefficients cnm and expectation valuesr k(cn)
from Fourier expansionscn

F with n basis functions~4.2! for the 1s
eigenstate of hydrogen atom.

n cn1 2cn2 cn3 2cn4

3 1.3@1# 2.4@2# 9.0@2#

7 4.3@1# 3.1@3# 6.0@4# 4.8@5#

11 8.8@1# 1.3@4# 5.7@5# 1.1@7#

15 1.5@2# 3.7@4# 2.8@6# 9.7@7#

n r22 r 3 r 7 r 9

3 2.49 5.94 4.68@2# 7.15@3#

7 2.08 7.35 1.08@3# 2.24@4#

11 2.03 7.48 1.30@3# 3.11@4#

15 2.01 7.49 1.37@3# 3.51@4#

exa 2.00 7.50 1.42@3# 3.90@4#

aExact values.

FIG. 6. Graph of log10ucn
F/cu for the 1s eigenstatec of hydro-

gen atom approximated by Fourier expansionscn
F with n basis

functions~4.2!.
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independent and satisfy(m51
` cm

2 51, a result with physical
sense in the frame of quantum mechanics, but$cn

F% is NUB
~see Fig. 4!. It should be noted that this nonuniform boun
edness cannot be attributed to the powersr m of basis func-
tions ~3.3! alone since the basis functions

wm~r !5r me2r /2 ~m51,2, . . .!, ~4.3!

which also have increasing powersr m, generate a sequenc
$cn

F% for the hydrogen-atom eigenstatec that is uniformly
bounded by it, as follows from Fig. 7@22# and the correctr k

convergence exhibited by Table V, and whose coefficie
cnm converge to a valuecm , which in turn decreases whenm
increases as Table VI shows.

In summary, the results above indicate that there isno
apparent connection between the uniform or nonunifo
boundedness of a sequence$cn% and the behavior of its ex
pansion coefficientscnm asn increases.

The concepts ofovercompleteness~when the complete-
ness of$wm%m51

` remains unchanged after deleting any fin

FIG. 7. Graph of log10ucn
F/cu for the 1s eigenstatec of hydro-

gen atom approximated by Fourier expansionscn
F with n basis

functions~4.3!.

TABLE V. Expectation valuesr k(cn) from Fourier expansions
cn

F with n basis functions~4.3! for the 1s eigenstate of hydrogen
atom.

n r22 r 3 r 5 r 7

2 1.05 2.9@1# 24.4@2# 380@3#

4 1.79 1.0@1# 96.2@1# 345@3#

6 1.97 7.66 18.5@1# 780@2#

8 2.00 7.51 85.98 9827
10 2.00 7.50 79.10 2019
12 2.00 7.50 78.76 1450
14 2.00 7.50 78.75 1419

exa 2.00 7.50 78.75 1418

aExact values.
ts

set of elements! andexact completeness~when the complete-
ness of$wm%m51

` is lost by omission of a single arbitrarily
chosen element! provide a first general classification of bas
sets. The nonuniform boundedness of the He1 sequences
$cn

F% and $cn
R% from basis sets~3.5! and ~3.3!, which are

respectively overcomplete and exactly complete@7#, indi-
cates that these concepts do not play a significant role in
nonuniform boundedness of such sequences.

In infinite-dimensional Hilbert spaces, no standard cri
rion of linear independence can be given, instead of t
there ishierarchy of nonequivalent criteria, each of whic
defines a kind of linear independence property~see, e.g.,@8#!.
It is easy to see that theselinear independence propertiesof
a basis set$wm% do not play a significant role in the bound
edness properties: Consider a basis set$wm% that generates a
UB ~or NUB! sequence$cn5(m51

n cnmwm% and let$fm% be
the corresponding orthonormal system obtained by
Gram-Schmidt procedure, then

cn5 (
m51

n

^fm ,c&fm ~n51,2, . . .!.

The orthonormality of$fn% implies that it has the main
Hilbert-space linear independence properties such asv linear
independence, minimality, uniform minimality, the Bess
and Riez properties, and theg linear independence@8#. Thus,
we get an orthonormal basis set that generates a UB~or
NUB! sequence$cn% and therefore any one of the mentione
linear independence properties is compatible with the u
form ~or nonuniform! boundedness property. In particula
we have that the Gram-Schmidt procedure preserves both
uniform and nonuniform boundedness properties.

V. CORRECT EXPECTATION VALUES
FROM NUB SEQUENCES

We have not attempted to yield an exhaustive discuss
about the factors connected with either the uniform or n
uniform boundedness of an approximating sequence$cn%, in
part, because of the absence of a theory to estimate the
havior of expansion coefficientscnm asn→` when$cn% is a
Fourier sequence and the basis set is nonorthogonal or$cn%
is a Ritz sequence and the limit function is unknown.
course, the difficulty in carrying out such an analysis w
variational calculations that optimize several nonlinear
rameters@23# or employn-dependent sets$wnm%m51

n that be-
come complete in the limitn→` @24# is greater. In general
we can say that a unique way to see if a basis set$wm%
generates a NUB sequence$cn% is by calculating it and de-
termining its nonuniform boundedness~i! by monitoring the
behavior of large-k momentsr k(cn) asn increases, or~ii ! by
using an upper boundcub of the true limit functionc and
verifying that the graph ofucnu/cub behaves as those of Figs
3–5 whenn increases, although these ways may not be
isfactory if a largen that exceeds the computational r
sources is required to observe a clear tendency toward e
uniform or nonuniform boundedness.

The remarks above pose the problem of how to get cor
or, at least, reliable expectation values from a seque
$cn%n51

N that may be NUB in the limitN→` in order to
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TABLE VI. Coefficientscnm of Fourier expansionscn
F with n basis functions~4.3! for the 1s eigenstate

of the hydrogen atom.

n cn1 2cn2 cn3 2cn4 cn5 2cn6 cn7

4 1.8 1.3 0.4 0.04
8 1.993 1.80 0.92 0.31 0.067 0.009 7.0@24#

12 1.9998 1.832 0.988 0.381 0.113 0.026 4.6@23#

14 1.99998 1.8327 0.9909 0.3864 0.118 0.029 5.77@23#

16 1.999997 1.83285 0.9915 0.3877 0.1191 0.030 6.32@23#

18 1.9999995 1.83287 0.99162 0.38793 0.1194 0.0303 6.52@23#

20 1.99999997 1.83288 0.99164 0.38798 0.1195 0.0304 6.59@23#
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compensate part of the computational work that was do
The answer to this question will clarify the apparent cont
diction between the title of this section and the property
NUB sequences to generate nonconvergent seque
$S(cn)%. Figures 3, 4, and 5 show that NUB sequences
‘‘converge correctly’’ in a finite interval@0,R# even when
they ‘‘diverge’’ in the complement@R,`), this observation
can be formalized as follows. LetxR(r ) be the characteristic
function of the interval@0,R#, xR51 for r P@0,R# and xR

50 otherwise, and letxR
c be the corresponding function o

@R,`). Since the local fit ofcn in the interval @a2s,a
1s# can be gauged by the erroruS(xRcn)2S(xRc)u with
an operator S5s(r ) such as s(r )510N(>1)exp@2(r
2a)2/2s2#, we can say that$cn% tends ‘‘correctly’’ to c in
@0,R# if the equation

lim
n→`

S~xRcn!5S~xRc! ~5.1!

holds for each operatorS5s(r ) wheres(r ) is continuous in
@0,R#. Thus, if $cn% converges toc in the L2(0,̀ ) norm,
then cn tends correctly toc in eachfinite interval @0,R#!
since the convergence in the norm guarantees the correc
of Eq. ~5.1! for all continuous functionss(r ) in @0,R#, a
result that includesany NUB sequence@25#. From this it
follows that if $cn% is NUB, then we can choose an increa
ing sequence$Rn% for which every interval@0,Rn# includes
~excludes! the region where the relative error ofcn(r ) is
small ~large! in such a way that the equation

lim
n→`

S~xRn
cn!5S~c! ~5.2!

holds true for many operatorsS5s(r ) including r k with k
>0, a result that validates the title of this section. Additio
ally, from the equation

S~cn!5S~xRn
cn!1S~xRn

c cn! ~5.3!

it follows that if $cn% is NUB, then the convergence of th
complete-integral sequence$S(cn)% is determined by the
competition between the convergence rate oflocally correct
sequence$S(xRn

cn)% and the incorrect convergence

S(xRn

c cn). This provides an explanation of the well-know

fact that trial wave functions that yield a correct expectat
value of one physical property, may fail utterly if they a
used to compute another property. In fact, as occurs with
sequences of Figs. 3–5, if$cn% converges correct but slowl
e.
-
f
ces
n

ess

-

-

n

e

to c in @0,R# and there is an increasing separation betwe
the asymptotic tails in@R,`), then the expectation value
insensitive to the tail, such as the energyE(cn) and the
small-k moments r k(cn), converge to their correct limit
while the sensitive-tail expectation values do not converge
their correct limit as occurs with the large-k moments~see
Tables I and II!.

VI. CONCLUDING REMARKS

The results of Secs. II–V show that if$cn% converges to
a fast decayc and is NUB, thencn diverges fromc in such
a way that there is an increasing separation between the
of cn and c as n increases, and if this divergence has
exponential rate then the sequence$S(cn)% diverges with
some operatorsS whose expectation valueS(c) depends
mainly on the long-range behavior ofc @Eqs. ~4.1a!–~c!#.
This includes both Fourier and Ritz sequences with resp
to a complete basis set$wm% that need not be orthogona
Although there is no obvious criterion that allows us to kno
a priori the boundedness property of an approximating
quence$cn5(m51

n cnmwm% by means of the basis set prop
erties or the stronger convergence properties of$cn% alone,
correct expectation values can be obtained with the limit
procedure~5.2! with an increasing sequence$Rn% properly
chosen.

The extrapolation of the results above to hig
dimensional expansions is immediate. LetV andcUB denote
a bounded region of configuration spaceRN and a fast decay
function inRN, if $cn% converges to a fast-decay functionc
in the norm of the Hilbert spaceL2(RN), then we say that the
sequence$cn% is NUB when it cannot be bounded uniforml
by any cUB in the region RN\V for each V. An
N-dimensional NUB sequence$cn% can be described geo
metrically by means of the increasing separation between
asymptotic tails ofcn and its correct limitc asn increases,
a property that can yield incorrect convergence of so
sensitive-tail expectation valuesS(cn)5^cn ,Scn&, ^,& be-
ing the inner product ofL2(RN). Nonuniform boundednes
of large-scale variational calculations for atoms has b
pointed out in@14# where the convergence problem of expe
tation values was attributed to the incapability of the R
method to control the long-range behavior of a trial functi
cn

R , while the results of previous sections show that suc
problem is connected with an intrinsic property that an a
proximating sequence$cn% may have, namely, the nonun
form boundedness property.
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Although the problem of determininga priori the uniform
or nonuniform boundedness property ofN-dimensional Fou-
rier and Ritz sequences, is a nontrivial one, we can take
account that theL2(RN) convergence guarantees the corre
ness of the equation

lim
n→`

S~V,cn!5S~V,c! ~6.1!

@S(V,f)5*Vf* Sfd r̄ 1 , . . . ,d r̄ N for fPL2(RN)# for any
operatorS defined by a continuous functions( r̄ 1 , . . . , r̄ N)
on V @26#, to obtain correct expectation values by means
the limiting procedure

lim
n→`

S~Vn ,cn!5S~c! ~6.2!

with an increasing sequenceV1,V2, . . . where eachVn
includes~excludes! the region where the relative error ofcn
is small ~large!. It is not hard to extend this result to th
calculation of transition valueŝc ( i ),Sc ( j )&, although the
problem of determining thereliability regionVn of a given
cn remains as an open problem that will be studied in
forthcoming work.

In Sec. V we used theL2 convergence to define a notio
of correct local convergence in spite of the fact that, fo
example, one-dimensional variational sequences conv
uniformly in any finite interval. The motivation lies in th
fact that theL2(RN) convergence of Fourier and Ritz s
quences can be guaranteed by a completeness argu
c-
5
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-

r

-

l.
to
-
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ent

alone whereas other convergence criteria such as the uni
one require theL2 convergence of high derivatives of th
approximating functions toward those of the expanded fu
tion, a requirement that fails in general because of the c
vergence in the energy norm for Schro¨dinger operators, for
example, includes at most the first derivatives@6,21#. Thus
the pointwise convergence or equivalently the calculation
the expectation value of ahigh-dimensionald function re-
mains as an open problem in general.

In the context of numerical quantum mechanics seve
authors have pointed out that the calculation of a functioncn
by means of the energy optimization does not yield the b
trial function to compute other property~see, e.g.,@11–13#!.
This deficiency of energy calculations can, at least in pr
ciple, be eliminated in the limitE(cn)→E(c) because Eck-
art’s inequalityicn2ci<g@E(cn)2E(c)# @5# implies that
correct expectation values of many operatorsS can be ob-
tained by means of the limiting procedure~6.2!, which can
be complemented with the use of criteria for assessing
accuracy or reliabilty of approximating trial wave function
in position space@15# and momentum space@16#.
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