PHYSICAL REVIEW A VOLUME 57, NUMBER 2 FEBRUARY 1998
Divergence property of Fourier and Ritz expansions
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A divergence property of approximating sequenfeés==. _,C,mem} that converge in the norm of the
Hilbert space. ,(RN) to a fast-decay functiog is studied. The expansiaofy, can be a Fourier one or obtained
by solving an eigenproblem by the Ritz method and the basissgtneed not be orthogonal in,(RN). The
notion of uniform boundedness is used to show thé#if} is nonuniformly bounded, then it diverges from its
correct limit ¢ in such a way that there is an increasing separation between the asymptotic tailawd
asn increases. The analytical and numerical examples show that the rate of this divergence may be exponen-
tial, hence the divergence of expectation-value sequef@g,)} is proved for some operatoiS whose
correct expectation valug() depends mainly on the long-range behavior/ofThe compatibility between
several convergence properties of the approximating seqyeng¢eand basis set properties with the nonuni-
form boundedness property is shown. We show that the well-known property of some trial wave functions to
generate correct expectation values of some operators and incorrect values for other operators is connected
with the property of nonuniformly bounded sequenfgs to converge correctly on a finite region and diverge
on its complementary one, hence it is proved that correct expectation values can be obtained from a nonuni-
formly bounded sequence by using a suitable limiting procedure. As model examples, Fourier and Ritz expan-
sions of the ground statg=27%%~?" of a hydrogenlike atom are consider¢81050-294{@8)07402-3

PACS numbe(s): 03.65.Ge, 03.65.Ca, 03.65.Db

[. INTRODUCTION tors can be solved by aompleteness argumeatone for
many eigenproblems of physical interest particularly in nu-
The theory of Fourier series with respect to orthogonalmerical quantum mechanidg—8]. Improvements in com-
basis sets had its origin in the debate concerning the vibraputers, numerical computer programs, and theoretical meth-
ing string two hundred years ag]. This theory was com- ods to carry out large scale calculations of eigenfunctigns
pletely transformed during the first third of this century andof atomic and molecular Schdmger operators, suggest that
currently several areas such as quantum mechanics, sigrtie largest source of error in maeai initio methods is now
analysis, and numerical analysis, have found a rich storethe basis set truncation of Ritz expansimﬁ%[lo]. However,
house in the theory of expansions with respect to systems efn old difficulty in numerical quantum mechanics has been
functions{¢m}m-1 [2]. the calculation of expectation valu8éy) =, Sy) of sym-
The present article deals with two classes of expansionmetric operatorsS since Ritz expansiong? that yield se-
of fast-decay functionsy in RN with respect to a linearly quenceg S( lﬂﬁ)} that converge to their correct lim( ) for
independent system of functiof®} - that need not be  some operator§ can generate sequend(4R)} for other
orthogonal in the Hilbert spade,(R"). Let(,) and|-|| de-  gperatorsS that converge to a wrong limit or diverge even
note the scalar product and the normLg{ RN). The coeffi- when{:ﬁ,’?} tends toy in the norm[11—14, a problem that

: ) L E-on’ F
cients of the first class of expansion§=Sq_1Chmem @€ has motivated a wide study of criteria for assessing the reli-

(uniquely determined by minimizing the distander, — ¢l anility or accuracy of trial function§l5,16. The main aim
[3], and the second class is obtained from the variational Ritaf this article is to show that this convergence problem is
method when the expanded functigris an eigenfunction of = connected with arintrinsic property of a wide class of se-
a self-adjoint operator in,(R"). As is known[4-8], the  quences of Fourier and Ritz expansionsfast-decayfunc-
Ritz method yields expansiong=S11_;Ch¢m Whose co-  tions ¢ in unboundedregions of configuration spaciV,
efficients are obtained by minimizing the so-calledergy rather than a result from the basis set truncation or rounding
functional E(-) associated to the operator in question. Here-errors.
after the expansionz;é,f and z//,Ff will be referred to as-ourier As model expansions we shall consider one-dimensional
andRitz expansions, respectively. Fourier and Ritz expansions of eigenfunctiors of the

A deep mathematical stud®] has been devoted to the Schralinger operator in the Hilbert spatg(0,) for hydro-
investigation of connections between the convergence promenlike atoms. In Sec. Il we use the notion of uniform
erties of Fourier serieg/._.. with respect to an orthonormal boundedness to show that a nonuniformly bounded sequence
system of basis functions,,, the properties of the expanded {,} divergesfrom its correct limit in such a way that there
function, and the behavior of the expansion coefficientsjs an increasing separation between the asymptotic tails of
while the problem of computing Ritz expansions that con-¢, and ¢ asn increases. The analytical and numerical ex-
verge in the norm to the eigenfunctions of self-adjoint operaamples of Sec. Ill indicate that this divergence has an expo-
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nential rate, which in turn generates sequed&%,,)} that
diverge or converge to a wrong limit for some operatsrs
(Sec. V). In Secs. IV A and IV B it is shown that the non-

uniform boundedness property is compatible with several

convergence properties of an approximating sequéucg
and basis set properties. In Sec. V it is shown thauif} is
nonuniformly bounded, then the integraﬂg”zjxﬁ Sy, dr can
converge to their correct limi§(y) as n—o with an in-
creasing sequencéR,} properly chosen, even when the
completeintegral sequenc€S(y,,)} does not. The final sec-
tion VI contains the extrapolation of the main one-

dimensional results to high-dimensional expansions and

some concluding remarks.

II. NONUNIFORMLY BOUNDED SEQUENCES {#,}

Hereafter(,) and| -|| denote, respectively, the inner prod-
uct and the norm ot ,(0,°), and S(f)=(f,Sf). We will
consider ¢'s in L,y(0) with a fast decay [r¥(y)
= (¢, r¥y)<oo for all k=0], {¢,}r_, will be an approximat-
ing sequence that tends #oin the L, norm (|,— ¢ —0),
and by simplicitys and eachy,, are continuous in the whole
space.

In this article we say that the sequergek,} is uniformly
boundedUB) if there is at least one fast decay functiggg
such that the inequalityy,(r)|<X\yg(r) holds on a sub-
interval[ Rg,) for n=ng,, where\ andR, are independent
of n. Following the idea used to show Theorem § 4], we
getProposition 1 If {¢,,} converges tay in the norm and is
UB, then the equation

imr(y,)=r*) holds fork=0. (2.1

I
n—
Intuitively, this result is possible only if},, tends “cor-
rectly” to ¢ in whole space so that a correct approximating
sequencd ¢} should be UB[17]. Unfortunately, this prop-
erty may fail even if{¢,} tends toy in the norm. Accord-
ingly, if |,— ¢ —0 and Eq.(2.1) fails with one powelk,
then{,} is noruniformly boundedNUB) and hence cannot
be bounded uniformly bgnyfast decay function. This note-
worthy property can be characterized geometrically as fol
lows. Suppose thaty| and each|y,| with large n are
bounded by a fast-decay and continuous funcijgnon an
interval [ R,), which is independent af, that is, there are
N, A <o such that

max| |/ gt <X,

r=R

max{| |/ g} <N,.

r=R

The nonuniform boundedness §#,} implies thath,—~
and by continuity there is an intervgl=[a, ,b,] such that
Bn=<|wn|l g holds forr |, with 8,— asn increasegsee
Fig. 2. In geometric terms, this means that there is an in
creasing separation between the asymptotic tailg,pfind

its correct limity asn—oo,

IIl. EXAMPLES

A simple sequence that, as we shall see later on, exhibitég=2Z>re ' [18].
some of the main convergence properties of NUB sequences Consider the calculation of the eigenstate 32Y%re

is the Lowdin’s sequence[1l] for the function (r)
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FIG. 1. Graph of 16, for Lowdin's sequence With'n:r;l
:n*Z

=(4/7) Y exp(=r?2) on[0°):

In(r)=[(r)+ enp(r—ry)]cy, (3.1a

wheree,—0 andr,—» asn—o=, ¢, (—1) being the nor-
malization constantsee Fig. 1L This sequence converges in
the L,(0,2) norm independently of ho{e,} and{r,} are
chosen,

|l n— l><2[1—c,— Crenexpl —r3/2) (m/4) 4] -0,
(3.1b

whereas for the moments?(y,,) we get, after algebraic
manipulations, the inequality
(Crenl B)2<1 (), (3.19

which shows that ife, dies Iikern‘k' , thenr () — for
k>k’ and thereford ¢,} is NUB. This is confirmed by the
graphs of logy/ ¥g and logo, /g With yg=e™" ande,
=r;1=n‘2, plotted in Fig. 2, which shows that there is an
interval | ,=[r ,— 8/2,r ,+ 6/2] with r ,>r, and 6~1 for
which B8,< ¢, /g holds onl,, where B,, diverges exponen-
tially as n increases. The consequent increasing separation
between the asymptotic tails ¢f, and ¢ is exhibited by the
graph of logg,, /¢ plotted in Fig. 3.

The next Ritz expansiong? are obtained by solving the
Schralinger equation for the ground state of hydrogenlike
atoms with nuclear chargg,

0<r<mw

(3.2

with (0)= () =0, and the corresponding Fourier series
z,lfﬁ are computed by direct integration of the eigensolution

—-2r

of Het with the basis set
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TABLE |. Expectation valuegtaken from Ref[13]) r*(¢,)

20
N n=5 from Fourier ¢, and Ritz 4} expansions wittn basis functions
. - n=4 (3.3 for the 1s eigenstate of He. In this table and the follow-
N _ n=>J RN " ing ones the notation 9.066] (1.44]) means 9.0810 ©
r n=2 **** N +
F =0 * 4 . . (1.4x10%.
03k . . \\ 3
= r . \ : n r2 r ré r’ ro
= -~10F e \ '
= ‘ "k ' n
& 2of N ] 10 5.9 0.98 11.4 48 12]
s * \ 20 6.8 0.95 10.5 57 32]
& —30[ * | 30 7.1 0.94 9.80 60 52]
- . \ 100 7.7 0.94 7.86 64 18]
-40F * \ 200 7.9 0.94 7.04 65 33]
F \
50k % \ l//r?
N \\ 10 5.4 1.19 2.B] 131] 41[2]
0l b e vV e 20 6.4 1.06 3E|-] 2&:1] 19{3]
0 10 20 30 40 50 30 6.9 1.01 413 411] 44 3]
100 7.6 0.95 6.[11] 11[2] 4174]
FIG. 2. Graph of logy,/¢g for Lowdin’s sequence and its 200 7.8 0.94 68] 192] 195]
correct limit = i,—o With gg=e~".
ex 8.0 0.94 4.92 11 76
_ _ 2
em(r)=r2"te "2 m=12 ... (3.3 xact values.

used by Klahn and Morgai3] in their study of the conver-  gimjlar results are obtained with the Ritz sequefwg!} for
gence rate_of variational calculations. TWg ; pompleteness which {fk(lﬁﬁ)}ﬁ:l diverges withk=6 (see Table)and the

of this basis Set ensures the convergence inLth@orm of  jncreasing separation between the asymptotic tails obeys a
sequencegy,} and {4y} toward their correct limitys [7].  ryle like Eq.(3.4) (see Fig. 3 of14]).

The Klahn-MOfgan'S anaIySiS qflﬁrﬁ} showed that the se- The W21 Comp|eteness of the basis set
quence{r¥(yF)}~_, diverges withk=7 (see Table)lso that ’
{yf} is NUB. This is confirmed by the graph of om(r)=r2e 2rm=Dimr = m=12 .. (3.5

logyo 5|/ g with 5=y plotted in Fig. 419], which shows
that the increasing separation between the asymptotic tails ddllows from Theorem 1 of7]. Table Il reports some expec-

4% and ¢ has an exponential rate, tation values from sequencég!} and {47} for the eigen-
. state s of He" with this basis set. The divergence of se-
max |y |/ pg~10%,  ay,by—. (3.4 quences{rk(4%)} and {r*(4F)} with k=6 indicates that
re(4by)

150

* 7/

140 .,
L n=5 "
130 S
120 P
+ /7
110 F .,
100 "/ n=4 S
5K

logio |97 (r) /()|

logig ¥n(r)/9(7)

710||||I|||\\\ll\f\|r||||||I|w|\

0 5 10 15 20 25 30
r

FIG. 4. Graph of logy¢5/4| for the 1s eigenstatey of He™
FIG. 3. Graph of logy,, /4 for Lowdin's sequencey being its  approximated by Fourier expansiomﬁ with n basis functions
correct limit. (3.3.
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TABLE Il. Expectation values*(«,) from Fouriery|, and Ritz Bn=|tn(r)|/g(r) holdsforrel,, (4.13
zp,? expansions withn basis functiong3.5) for the 1s eigenstate of
He". where 83, diverges exponentially as increasesa,— o and
> 1 s A . b,—a,=6>0. Hence we get the inequality
n r r r r r
F bn

Ui B f ya(rridr=r(yp), (4.1b
1 13 1.25 3.28 37 99] an
3 3.7 0.79 1.13 15 11]
5 4.8 0.76 1.00 12 12] which, by rewriting the left-hand integral asb({
7 55 0.75 0.98 13 72 —an)(r;‘)"zpé(r:) with r e, (mean value theorem for in-
9 5.9 0.75 0.97 15 48] tegralg, leads to

v S Bars (1) 1P=r* (). (4.19
1 13 1.25 3.33 37 99]
3 2.8 1.00 2.39 41 12] This clearly shows that the exponential divergencgptan
5 3.6 0.91 1.79 46 42] compensate the fast decay of the fact@y(r}) asn in-
6 3.9 0.88 1.67 50 12] creases in such a way that for a large enokidhe left-hand

side and, therefordr*(y,,)} diverge whem—co.
ext 8.0 0.75 0.94 4.9 76 The incorrect convergence of some expectation values
from NUB sequencegi,} poses the problem of how to

“Exact values. avoid the calculation of such sequences. Of course, the non-

. R ) _uniform boundedness property is determined by both the ba-
{#n} and{y,} are NUB, a result supported by the increasingsis set{¢,,} and the expanded functiog but sincey is
separation between the asymptotic tails of the approximatingnknown in general and only few of its properties are known
functions and their correct limit when increases as Fig. 5 we shall study the connections betwe@nthe convergence
shows. properties of{,} and (ii) the basis set properties with the

nonuniform boundedness.

IV. ADDITIONAL PROPERTIES OF NUB SEQUENCES
) ) A. Convergence properties of 4.}
The examples show that the nonuniform boundedness is

an intrinsic property of some sequencég,} that converge
to a fast-decay functioy in theLL, norm. The divergence of
largek sequence$r“(y,)} from such setgy,} may be at-
tributed basically to theexponentialrate of separation be-
tween the asymptotic tails af,, and its correct limitys as
n—oo. In fact, Figs. 2 and 4 show that ifg is a fast-decay
bound of each,, then there is an interval,=[a,,b,] for
which

In this section we show the coexistence of the nonuniform
boundedness property with the stronger convergence proper-
ties thatonedimensional Fourier and Ritz expansions may
have: the uniform convergence, convergence in the norm,
and point-by-point. It should be noted that in bounded inter-
vals there is a hierarchy between these convergence criteria
that disappears in unbounded intervié26).
It is easy to see that the lalin’s sequence converges to
its correct limit (i) uniformly on each finite intervalO,R]
[|#n(r) — ¢(r)|<e holds on[0,R] for n>n_ g and any small
€>0, n_g being properly chosdn (ii) point-by-point in
g whole spacq lim,,_ .¢,(r)=«(r) holds for allr=0], and,
— ¥ obviously,(iii) in theL, norm. Neverthelesg .} is NUB, a
sk ok PR result that shows the compatibility of three strong conver-
""" s gence criteria with the nonuniform boundedness property.
............... Convergence problems with some trigonometric series
2 AR has motivated a deep mathematical analysis of convergence
g - properties of Fourier series with respect to general orthogo-
. ******g*ﬁ*ﬁ*i**i*&*‘ nal basis sets ifinite intervals[9]. For example, it is known
1k s g T the existence of continuous functions whose trigonometric
T series diverge at some points and, therefore, do not converge
7 uniformly, and to the date several problems concerning the
iy, A0 pointwiseconvergence of generalized Fourier series are still
unsolved 9]. Of course, the class of open convergence prob-
! lems of series in unbounded regions and higher-dimensional
spaces is greater. To circumvent these problems and study
g S the connections between convergence criteria and the non-
uniform boundedness we shall consider Ritz expansions

FIG. 5. Graph of log ¢/"/| and logd ¢%/ ] for the 1s eigen- ~ Since if the basis sdtp,} is complete in the Sobolev space

statey of He* and its Fourier and Ritz expansions with basis func-Wa,; endowed with the normie||$= | 4|+ ||d¢/dr||* (W,
tions (3.5). completenegs then the Ritz method provides an approxi-

n ()/9(r)|

logyg |2
*
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TABLE IIl. Coefficients c,,, of Fourier expansiong/!, with n TABLE IV. Coefficients c,, and expectation values*(y,)
basis functions(3.5 for the 1s eigenstate of He. The values from Fourier expansion&ﬁ with n basis functiong4.2) for the 1s
C_nm:(_l)n+mcnm are reported. eigenstate of hydrogen atom.

n Cnt Cna Cna Cna n Cn1 ~Cn2 Cn3 —Cn4
1 75 3 1.91] 2.42] 9.02]
5 1.12] 4.104] 1.76] 6.46] 11 8.41] 1.34] 5.75] 1.97]
7 1.43] 3.06] 3.78] 5.59] 15 1.92] 3.74] 2.96] 9.717]
9 1.94] 2.48] 8.410] 3.912]
n r2 rs r’ ro

. . 3 2.49 5.94 4. 7.193
mating sequencéy R} for the hydrogenlike problent3.2) 208 735 1 %} 9 224%
that converges to the true eigenfunctigrin the norm||- |, 1 2'03 7.48 1'3{(3] 3'1][4]
[6], which in turn ensures the uniform convergencd #f} 201 749 1.93] 3.514]

on eachfinite interval [O,R] as well as its point-by-point
convergence in whole spacg2l]. In this way, the @
W, ;-complete basis set€3.3) and (3.5 generate Ritz se-
quences for the eigenstageof He" that have such conver- aexact values.

gence properties and, however, these sequences are NUB

(see Figs. 4 and)5Thus, the stronger convergence proper-sult from the physical point of view that may be connected
ties that one-dimensional Fourier and Ritz sequences mayith the nonuniform boundedness pp,f} (the correspond-
have are compatible with the nonuniform boundedness progng NUB sequence{zpﬁ} has the same coefficients’ behav-

2.00 7.50 1.48] 3.904]

erty as occurs with the hedin’s sequence. ior), but the next example shows that this connection is less
obvious. Table IV shows that the Fourier expansigh of
B. Basis set properties the hydrogen-atom eigenstatewith basis functions

To begin the study of basis set properties and the nonuni-
form boundedness consider thsymptotic behavioof the
basis functionspr,. A first question is ifen’s that decay pas coefficientsc,,, that diverge asn does with eachm
more rapidly than the expanded functigncan yield a UB  yajye, whereas Fig. 6 and the correét convergence re-
sequence{y,}. The sequence$yr} and {yy} with basis  ported in Table IV indicate thatyF} is uniformly bounded
functions(3.3) for the eigenstatey of He™ indicate that the py ;.
answer is negative because such sequences are NUB whereasconsider now the case for which the coefficients are well
the ¢'s and, thereforey, and y;; decay more rapidly than  pehaved. The orthonormality and completeness of the basis
¢ for an arbitrarily smalle>0 there is arR(e,n) such that  set(3.3) guarantee that the coefficients #f for He" aren

om(r)=rexd —(1+m/2)r] (m=1.2,...) (4.2

|yf]. |4l <ey hold forr e [R(e,n),»),

0.08

whereR(e,n) diverges as does(see Fig. 4. In this case 006 [
every ¢, and each finite linear combinatiaofy, of the ¢,'s r
are bounded by the correct limjt but not uniformly since 004 L
R(e,n) depends om; this suggests to see if a basis &et,} . r n=3
that is UB generates Fourier and Ritz sequences with th = 002 [ * ** -
same boundedness property. The answer to this question § - * % /”: it n=1s
negative again as is shown by the basis (8€%), which is £ Lok
uniformly bounded by r'y with =1 and a suitabla, but L“§ r
yields NUB sequence§yf} and{yf} for the eigenstate of 2 ., [
He™ (see Fig. 5 and Table)ll = i

When the coefficients,,,, of ¢,==n_;Chmem are ob- _0.04 [ *
tained by means of the Ritz method or by direct integratior [
of the expanded functiofie,,} being anomorthogonal sys- _0.06 L "
tem, thec, ;s depend om. This suggests studying the pos- C
sible connections between thehavior of the g.,'s as n—o« —0.08 O‘. R

and the nonuniform boundedness property. Since there is r
theory that describes thedependence of the,,,’s in terms

of basis set properties alone we consider some representative
cases of coefficients’ behavior. Table Ill shows that for each FIG. 6. Graph of log ¢//y| for the 1s eigenstatey of hydro-
m value the coefficients,, of Fourier expansions with basis gen atom approximated by Fourier expansiafs with n basis
functions(3.5) for He' diverge asn does, an undesired re- functions(4.2).

r
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set of elemenjsandexact completeneswhen the complete-
/ ness of{¢y}m—1 iS lost by omission of a single arbitrarily
% chosen elemepprovide a first general classification of basis
sets. The nonuniform boundedness of the' Hequences
ot {yF} and {yR} from basis setg3.5) and (3.3), which are
respectively overcomplete and exactly complEfé indi-
* / cates that these concepts do not play a significant role in the
* * nonuniform boundedness of such sequences.
In infinite-dimensional Hilbert spaces, no standard crite-
* rion of linear independence can be given, instead of this
there ishierarchy of nonequivalent criteria, each of which
defines a kind of linear independence propésse, e.g/8)).
It is easy to see that thesimear independence propertied
a basis sefo,,} do not play a significant role in the bound-
edness properties: Consider a basis{ggf} that generates a
UB (or NUB) sequencé ¢,==/ _Comem} and let{ ¢} be
S T TR IR R PR the corresponding orthonormal system obtained by the

0 5 10 15 20 25 Gram-Schmidt procedure, then
-

N

(r)/a(r)]
*
b *
~*

F
n
B B o
*
J
*

logyg |4

TTRF T T T T T

n
FIG. 7. Graph of logy| #/%/y| for the 1s eigenstate) of hydro- = Z (Dm ) dm (n=12,...).
gen atom approximated by Fourier expansio,frfs with n basis m=1

functions(4.3).
The orthonormality of{¢,} implies that it has the main

independent and satisﬁlﬁ;}:lcﬁs 1, a result with physical Hilbert-space linear independence properties suah lasear
sense in the frame of quantum mechanics, {otff} is NUB independence, minimality, uniform minimality, the Bessel
(see Fig. 4 It should be noted that this nonuniform bound- and Riez properties, and thelinear independendg]. Thus,
edness cannot be attributed to the powdtsof basis func- We get an orthonormal basis set that generates a(&/B

tions (3.3 alone since the basis functions NUB) sequencé,} and therefore any one of the mentioned
linear independence properties is compatible with the uni-

em()=r"e "2 (m=1.2,...), (4.3  form (or nonuniform boundedness property. In particular,
we have that the Gram-Schmidt procedure preserves both the
which also have increasing powerS$, generate a sequence uniform and nonuniform boundedness properties.
{yF} for the hydrogen-atom eigenstafethat is uniformly
bounded by it, as follows from Fig.[22] and the correct*
convergence exhibited by Table V, and whose coefficients
Cnm Converge to a value,,, which in turn decreases whem
increases as Table VI shows. We have not attempted to yield an exhaustive discussion
In summary, the results above indicate that ther@ds about the factors connected with either the uniform or non-
apparent connection between the uniform or nonuniformuniform boundedness of an approximating sequéiigg, in
boundedness of a sequer{ak,} and the behavior of its ex- part, because of the absence of a theory to estimate the be-
pansion coefficients,,, asn increases. havior of expansion coefficients,,, asn— o« when{,} is a
The concepts obvercompletenes@vhen the complete- Fourier sequence and the basis set is nonorthogonak,gr
ness of ¢}m— rfemMains unchanged after deleting any finiteis a Ritz sequence and the limit function is unknown. Of
course, the difficulty in carrying out such an analysis with
TABLE V. Expectation values*(y,) from Fourier expansions variational calculations that optimize several nonlinear pa-
yf, with n basis functiong4.3) for the 1s eigenstate of hydrogen rameterg 23] or employn-dependent setsp, i _, that be-
atom. come complete in the limit— o [24] is greater. In general,
we can say that a unique way to see if a basis{ggt}

V. CORRECT EXPECTATION VALUES
FROM NUB SEQUENCES

n r r? re r’ generates a NUB sequengg,} is by calculating it and de-

2 1.05 2.91] 24.42] 3803] termining its nonuniform boundedne&$ by monitoring the

4 1.79 1.01] 96.41] 3493] behavior of largee moments ¥(y,,) asn increases, ofii) by

6 1.97 7.66 18[4] 78(2] using an upper boung*® of the true limit functiony and

3 2.00 751 85.08 9827 verifying that the graph O|flﬂn|/lﬂUb behaves as those of Figs.

10 200 750 79.10 2019 3-5 whenn increases, although these ways may not be sat-

12 200 750 78.76 1450 isfactory if a largen that exceeds the computational re-

14 200 750 78.75 1419 sources is required to observe a clear tendency toward either
uniform or nonuniform boundedness.

ol 200 750 78.75 1418 The remarks above pose the problem of how to get correct

or, at least, reliable expectation values from a sequence
8Exact values. {yn}N_, that may be NUB in the limitN—o in order to
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TABLE VI. Coefficientsc,, of Fourier expansion$ﬁ with n basis function$4.3) for the 1s eigenstate
of the hydrogen atom.

n Cn1 —Cn2 Cn3 ~Cna Cns —Cne Cn7

4 1.8 1.3 0.4 0.04

8 1.993 1.80 0.92 0.31 0.067 0.009 [04]
12 1.9998 1.832 0.988 0.381 0.113 0.026 [4.8]
14 1.99998 1.8327 0.9909 0.3864 0.118 0.029 B3]
16 1.999997 1.83285 0.9915 0.3877 0.1191 0.030 [6:%3
18 1.9999995 1.83287 0.99162 0.38793 0.1194 0.0303 [6.32
20 1.99999997 1.83288 0.99164 0.38798 0.1195 0.0304 [6.3P

compensate part of the computational work that was doneo « in [O,R] and there is an increasing separation between
The answer to this question will clarify the apparent contrathe asymptotic tails ifR,«), then the expectation values
diction between the title of this section and the property ofinsensitive to the tail, such as the energyy,) and the
NUB sequences to generate nonconvergent sequencemallk momentsr(y,), converge to their correct limit
{S(4,)}. Figures 3, 4, and 5 show that NUB sequences camvhile the sensitive-tail expectation values do not converge to
“converge correctly” in a finite interva[O,R] even when their correct limit as occurs with the largemoments(see
they “diverge” in the complemenfR,), this observation Tables | and ).

can be formalized as follows. Lgiz(r) be the characteristic

function of the interva[O,R], xg=1 for r e[O,R] and xr

=0 otherwise, and lexS be the corresponding function of V1. CONCLUDING REMARKS

[R,). Since the local fit ofy;, in the interval[a—o,a The results of Secs. II-V show that{ifs,} converges to
+ ] can be gauged by the ermB(xri/n) ~ S(xr¥)| With 4 fast decayy and is NUB, theny, diverges fromy in such
an operator S=s(r) such as s(r)=10"CYexd—(r  a way that there is an increasing separation between the tails
—a)%20”], we can say thafy,} tends “correctly” toin  of 4. and ¢ asn increases, and if this divergence has an
[O,R] if the equation exponential rate then the sequen&,)} diverges with
. . some operator$s whose expectation valug§(y) depends
JIZS(XR‘!’“)_S(XR"/’) 6.0 mainly on the long-range behavior @f [Egs. (4.13—(c)].

This includes both Fourier and Ritz sequences with respect
holds for each operat®=s(r) wheres(r) is continuous in 0 @ complete basis sgto,,} that need not be orthogonal.
[OR]. Thus,if {1} converges tay in the L,(0) norm,  Although there is no obvious criterion that allows us to know
then ¢, tends correctly toys in eachfinite interval[O,R]! & priori the boundedness property of an approximating se-
since the convergence in the norm guarantees the correctned¢ence{ ¢/,==_;Chmem} by means of the basis set prop-
of Eq. (5.1) for all continuous functionss(r) in [O,R], a  erties or the stronger convergence propertie$/gff alone,
result that includesany NUB sequencd25]. From this it ~ correct expectation values can be obtained with the limiting
follows that if {1} is NUB, then we can choose an increas- procedure(5.2) with an increasing sequeng®,} properly
ing sequencéR,} for which every interva[ O,R, ] includes  chosen.

(exclude$ the region where the relative error @f,(r) is The extrapolation of the results above to high-
small (large in such a way that the equation dimensional expansions is immediate. Ketand ¢,z denote
a bounded region of configuration spdt® and a fast decay
lim S(xr ¢n)=S(4) (5.2 function inRN, if {4} converges to a fast-decay functign
n—e in the norm of the Hilbert spade,(RN), then we say that the

. . ) sequencéy,} is NUB when it cannot be bounded uniformly
holds true for many operatoi$=s(r) including r* with k by any l/funB in the region RMQ for each Q. An

=0, a result that validates the title of this section. Addition-\;_qimensional NUB sequency,! can be described geo-
n

ally, from the equation metrically by means of the increasing separation between the
_ ¢ asymptotic tails ofys, and its correct limitys asn increases,
S(¢n) = S(xR,¥n) T S(xr ¥n) (5.3 a property that can yield incorrect convergence of some
sensitive-tail expectation value(,,) = (i, ,S¢n), (,) be-
ing the inner product of ,(RN). Nonuniform boundedness
o of large-scale variational calculations for atoms has been
competition between the convergence ratéochlly correct pointed out i 14] where the convergence problem of expec-
sequence{S(xr ¢n); and the incorrect convergence of iaiinn values was attributed to the incapability of the Ritz
S(XR ¥n). This provides an explanation of the well-known method to control the long-range behavior of a trial function
fact that trial wave functions that yield a correct expectations~, while the results of previous sections show that such a
value of one physical property, may fail utterly if they are problem is connected with an intrinsic property that an ap-
used to compute another property. In fact, as occurs with thproximating sequencéy,} may have, namely, the nonuni-
sequences of Figs. 3-5,{ify,,} converges correct but slowly form boundedness property.

it follows that if {¢,} is NUB, then the convergence of the
complete-integral sequende&S(,)} is determined by the
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Although the problem of determinirgpriori the uniform  alone whereas other convergence criteria such as the uniform
or nonuniform boundedness propertyMfdimensional Fou- one require the., convergence of high derivatives of the
rier and Ritz sequences, is a nontrivial one, we can take intapproximating functions toward those of the expanded func-
account that thé ,(R") convergence guarantees the correct-tion, a requirement that fails in general because of the con-
ness of the equation vergence in the energy norm for SchHinger operators, for
. B example, includes at most the first derivatiyés21]. Thus
JTLS(Q'%)_S(Q"’/’) 6.) the pointwise convergence or equivalently the calculation of
the expectation value of high-dimensionals function re-
mains as an open problem in general.
In the context of numerical quantum mechanics several
Authors have pointed out that the calculation of a funciign
by means of the energy optimization does not yield the best

[S(Q.d)=Lad*S¢dry, ... dryfor ¢ eLy(RY)]for any
operatorS defined by a continuous functis{r {, ... ,ry)
on () [26], to obtain correct expectation values by means o

the limiting procedure . :
trial function to compute other propertgee, e.g.[11-13).
lim S(Qp, ) =S(¢) (6.2  This deficiency of energy calculations can, at least in prin-
n—o ciple, be eliminated in the limiE(,,) —E(y) because Eck-

, _ _ art’s inequality|| ¢, — ¥l|< y[E(4,) — E(¥)] [5] implies that
with an increasing sequené®; CQ,C ... where eacl,  correct expectation values of many operatBrsan be ob-
!ncludes(exclude$ Fhe region where the reIapve error ¢f, tained by means of the limiting procedui@ 2, which can
is small (largg). It is not hard to extend this result to the pe complemented with the use of criteria for assessing the
calculation of transition valuegy),Sy!), although the  accuracy or reliabilty of approximating trial wave functions

problem of determining theeliability region{}, of a given jn position spac§15] and momentum spadés6].
¢, remains as an open problem that will be studied in a

forthcoming work.

In Sec. V we used the, convergence to define a notion
of correctlocal convergence in spite of the fact that, for
example, one-dimensional variational sequences converge We wish to thank Professor Gustavo Izquierdo for a criti-
uniformly in any finite interval. The motivation lies in the cal reading of the manuscript and his suggestions. One of us
fact that theL,(R") convergence of Fourier and Ritz se- (M.A.N.) wishes to thank Professor Ma. Trinidad N. P. for
guences can be guaranteed by a completeness argumémialuable help and support.
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