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Nonadiabatic transitions in a two-level quantum system: Pulse-shape dependence
of the transition probability for a two-level atom driven by a pulsed radiation field
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The problem of a two-level atom interacting with a radiation pulse is studied in the limit that the atom-field
detuning times the pulse duration is much greater than unity. Owing to the large atom-field detuning, transi-
tions result from nonadiabatic coupling of the states by the field. The transition probability for the atom to be
excited following the pulse is studied as a function of field strength for five different pulse shapes: hyperbolic
secant, Lorentzian, hyperbolic secant squared, Lorentzian squared, and Gaussian. It is shown that the behavior
of the transition probability differgjualitativelyfor these pulses. An explanation of this qualitative difference
is given in terms of the Massey parameter. Numerical solutions are compared with asymptotic solutions and
several anomalies are noted. In the limit of large field strength, a universal expression for the transition
probability is found. An interesting feature of the solutions is that, in the limit of very large field strengths, the
transition probability for a Gaussian pulse can approach unity despite the fact that the pulse has an exponen-
tially small Fourier amplitude at the atom-field detuning. This apparent violation of the energy-time uncertainty
principle is explained in terms of the nonlinear atom-field interactif®$050-294{8)01801-7

PACS numbefs): 03.65.Sq, 32.80t, 42.50—p

[. INTRODUCTION that f'(t) vanishes only at=0,*. It is furthermore as-
sumed thatw — wg|/(w+ wp) <1, wherewy is the frequency

A basic problem in quantum mechanics is to determineseparation between the levels, allowing one to make the
the time evolution of a two-state quantum system whose dyrotating-wave or resonance approximation. Spontaneous de-
namics is governed by an arbitrary, time-dependent Hermitcay during the pulse duratioh is assumed to be negligible.
ian Hamiltonian. For examp|e, one could imagine a Spm-]_/ZNIth these as_sumptions, the. atomic state amplitudes, written
system in an external, pulsed magnetic field. The field result#) an interaction representation, evolve as
in a time-dependent coupling of the spin-up and spin-down

: . da; ) .
states, as well as a time-dependent change in the energy —=—ipf(t)expiat)a,, (1a
separation of the levels. Although this problem appears to be dt
deceptively simple, there exists only a very limited set of
ulse shapes for which analytical solutions can be obtained da, i i
p p . YUc can | —=—ipf(t)exp —iat)a;. (1b)
for the state amplitudes. There is an extensive literature de- dt

voted to analytical and approximate methods for attackin . . .
n PP q—|erea1 anda, represent the probability amplitudes associ-

this problem(often in the context of semiclassical approxi- ; ) . .
mations to a two-state scattering problersome of which ated with the at.0m S grOL_md and excngd Iev_els, respectively,
B=— uEyT/2% is a coupling strengthy is a dipole moment

involve sophisticated mathematlcal techniquds-7]. Qf matrix element and a=(w— wo)T is an atom-field detun-
course, one can numerically solve the two, coupled differen:

. . ) . 7 2ing. All quantities, including the time, now expressed in
tial equations for the state amplitudes, but, in certain I|m|ts,units of T, are dimensionless. Without loss of generality, we
even such numerical methods pose serious challenges. It iS¢\ e ,thatazo and f(t) is normalized so th:alt
our contention that this two-level problem still exhibits be—foo f(t)dt=1. The quantity B is often referred to as the

ha\#or that has yet to be_fully understqu and explore'd. | Ipulse area. Equation(d) define an effective two-level prob-
O prove our contention, we consider an even Simplelon, iy which the couplingdf(t) is time dependent, but the
problem, that of a two-level atom driven by a pulsed radia

, . X S f i f the | i )
tion field having an electric field vector of the form reng?ﬁg Zievpeirastle?nog intitiZI i\éerr]ig;tsiocr:]c;nstant
E=Ef(t)coswt. The field amplitudés, and frequency are

constant and themoothfield envelope functiorf(t) has a ay(—°)=1, (2a)
temporal width of orderfT. It is assumedf(t) and all its
derivatives are continuous functions tff (t)=f(—t), and a,(—»)=0, (2b)

we are interested in determining the value af at t=o0
*Present address: Department of Kinesiology, University ofand hence the behavior of the transition probability
Michigan, Ann Arbor, MI 48109-2214. P,=|a,(=)|? as we vary the pulse parametdi¢) and S.
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Knowledge of the transition probability for different kinds of Il. NUMERICAL RESULTS
pulse shapeg$(t) and pulse strengthg is important, for . . . .
example, when one needs to choose the appropriate pUIT(e In this section we present solutions By, for different

shape and pulse strength to maximize the transition probabi 'rlgtde SO?]f tﬂg'?gﬁ(’)vazta'nﬁliebghr;urgg':"#]irsne:n:r_vr\]/e gcr’gg”ecrl'
ity for a given detuning. We are particularly interested in the 9p b paper. hyp

. ST secant, f;(t)=(1/2) secht/2); Lorentzian, f,(t)
so-called nonadiabatic limit =1[7(1+t?)]; hyperbolic secant squared, fs(t)
=(ml4) secR(wt/2); Lorentzian squaredf,(t)=2[(1

a>1. () +12)2]; and Gaussiaris(t) = (1/\/7)exp(—td). In Fig. 1, the
solid curves show howP, varies with 8 for these f;(t)

When a> 1, the field does not possess Fourier component§i=1—5). We obtainP, by numerically integrating Egs.
to compensate effectively for the atom-field detuning. It is(1), subject to the initial condition&2).
precisely the limit in which one might assert that the excita- Owing to the Rosen-Zener soluti¢d), one may be led to
tion probability is negligibly small following the pulse’s ac- believe that any symmetric “bell-shaped” pulse, of which
tion owing to the energy-time uncertainty principle. the hyperbolic secant is an example, will result in an atom

The uncertainty principle argument certainly is correct inacquiring a transition probability whose envelope is indepen-
the perturbative limit3<<1, for which P, is exponentially dent of 8. However, we see from Fig. 1 that this is true only
small in the parametex. However, a3 increases in value, for the hyperbolic secant pulse and, at large pulse strengths,
is the uncertainty principle argument still valid? One mightthe hyperbolic secant squared pulse. For the Lorentzian and
expect that increasing the fietrengthdoes not compensate Lorentzian squared pulses, the transition probability decays
for the lack of Fourier components in the pulse at the atomto zero eventually, while for the Gaussian pulse, the enve-
field detuning. This conclusion is reinforced by consideringlope of the transition probability increases in the ranggsof
the transition probability for the Rosen-Zer{@&] pulse en- studied[11]. For both the Lorentzian squared and hyperbolic
velope function f(t)=1/2 sech{t/2), the only smooth, secant squared pulses, the envelop®gfncreases with in-
symmetric pulse for which an analytic solution to E¢s)  creasingg for r=28/a<1, in agreement with the predic-
has been found. The final-state amplitude and transitiomions of Robinson and Bermaji2]. That the strong-field
probability for this pulse envelope function are given[By  behavior of the transition probability should be so drastically

different for these pulses, which are all rather similar in
a,()=—i sin(B) seclia), P,=sirA(B) sech(a). shape, is so_mewhat surpris_ing. We seek to account for these
(4) differences in the next section.

Consistent with the uncertainty principle, the maximum tran- Il. PREDICTING THE TREND OF P, USING
sition probability is of order expf2a), even forg>1. Is THE MASSEY PARAMETER

this a general result, independent of pulse shape. The pri It is assumed thax>1. We find it convenient to work in

mary goal of this paper is to address this question. Using the adiabatic or semiclassical dressed-state basis. To trans-

d_ressed—atorq approach, we show that an answer to this AY&3tm to the dressed-state basis, we first define new probabil-
tion can be given in terms of the Massey paramgtéi (to . . ~ ~
ity amplitudesa, anda, as

be defined beloyvassociated with this problem. For certain
pulse shapes the transition probability can be orders of mag-
nitude greater than that predicted on the basis of the uncer- ~ L@
tainty principle. A secondary but equally important goal of al(t)—al(t)exy{ - Et)’ (53
this paper is to point out some mathematical anomalies that
arise in asymptotic solutions of Eq4). _ w

In Sec. Il we present solutions for the transition probabil- az(t)=a2(t)exr< i Et)’ (5b)
ity P,, for different kinds of pulses, obtained by numerical
means. In the limit of larger, one must take some care in ) _ _
numerica”y integrating qul) since the integrands are rap- from which we can then rewrite the two-state equat|0ns as
idly varying on a(dimensionlesstime scale of order unity.
In Sec. lll we give a qualitative explanation of the pulse da, L ~
shape dependence of the transition amplitudes in the limit of ot - lzamipfivay, (6a)
large coupling strengt. For 8> «, a universal form for the
transition amplitude is given in terms of the Massey param-
eter. In Sec. IV we describe asymptotic methods that one can 2 ) - 0
use to obtairP,. In the limit of largea, we obtain approxi- ar -~ startiza,. (6b)
mate asymptotic solutions in the limit8<a and 8> «a.
Some mathemgtlcal anqmalles associated  with thes\we then obtain the equations in the dressed-state representa-
asymptotic solutions are d_|s_c_ussed. In S_ec. V the results atg by instantaneously diagonalizing the Hamiltonian
summarized and the feasibility of experimental tests of the
theory is explored. For those readers not interested in the
mathematical details associated with the asymptotic solu- :(a/ 2 pf )
tions, Sec. IV can be omitted without loss of continuity. U\ pt —al2)

)
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FIG. 1. Graph of the transition probabiliy, versus pulse strengiB for a detuninga=5. In each graph the exact numerical solution
(solid line), asymptotic solution of the differential equations given by E&4) and (32) (dashed ling and perturbative solution in the
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dressed basis given by E@7) (dotted ling are shown. The various pulse shapes considere@ahgperbolic secantb) hyperbolic secant

squared(c) Lorentzian,(d) Lorentzian squared, an@) Gaussian. The hyperbolic secant and hyperbolic secant squared graphs are scaled to
the asymptotic value for the envelope B§ predicted by Eqs(38a and(380).

If we call b; and b, the probability amplitudes in the

dressed basis, then the transformation to the dressed basis
can be expressed through

bi=cog6)a;+sin(h)a,,

b,=—sin(#)a,+cogb)a,,

(8a)

(8b)

sin26(t)]=

where the angl®(t) is defined by

2Bf(Y)
Q)

Q(t)= Va?+4B%52(1),

€)

(10
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with 0=< #< 7/4. The time evolution of the dressed-state am- We are interested in explaining the qualitative differences

plitudes is governed by the equations that occur for different pulse shapes whes1 andr>1
(B>a) . Forr>1, the minimum value of the Massey pa-

db, . Q) .~ rameter occurs whenf (t)~1. Thus it is reasonable to ex-

gt ' 2 by+ 60y, (11a pect that a measure of the nonadiabatic coupling is given by
the parameter

db; _ #5,+i V5 11b

ot~ fbiti——bo, (11b oo ! df 16

o dtoy
which can be solved subject to the initial conditions
bi(—»)=1 andb,(—=)=0 [9]. We note that Eqs(9)—  wheret, is the positive solution of
(11) are completely equivalent to Egd) and that
- - rf(to)=1. 17
Po=]ap(0)[?=ay(=)|?=[b()|%. (12
As r increases for a givear, one would expect an increasing

In fact, our numerical solutions are actually based on a SOIUénveIo e forP. if C increases. a decreasing envelon€ if
tion of Eqgs.(11) rather than Eqs(1). P 2 ’ g P

Equations(11) can be given a simple physical interpreta- decreases, and a constant envelopg i§ constant. Specifi-

. . . . cally, for the pulse shapes of Fig. 1, one finds the following.
tlop. The quantity()(t) is the instantaneous frequency sepa f,(t)=(1/2) sech@t/2): C~1/a. The frequency separa-
ration of the dressed states. F@r 0 the system starts in ..

. tion of the two dressed states grows at the same rate as does
dressed state 1 at —o, when the frequency separation of

. . the coupling strength whef is increased. As a result of this
the dressed states dis As time evolves, the frequency sepa- .
. ; . lack of dependence of onr, one expects the transition
ration of the levels increases, reaches a maximum=d1,

and then decreases, again achieving a value @t t=c probability to saturate at a constant value with increagng

The coupling between the dressed states is determined by t%"s conclusion, of course, is consistent with &4.and Fig.

a).
parameter fo(t)=1[m(1+t2)]: C~1/(a\r), which decreases with

r/2 df increasing . In this case, the frequency separation of the two
= m at’ (13 gd?abatic states grows faster than the c_oupli_ng stren_gnh as
is increased. Thus, at large, the nonadiabatic coupling is
where gxpected to decr'e'ase. Refer.ri'ng to Fi@))lvye see that this
is true: the transition probability decays Adncreases.
r=2pla. (14) f4(t)= (/4 ) secR(wt/2): C~ 1/a, which is independent
] . ~of B. By a similar argument as that given for the hyperbolic-
Fora>1, the coupling parameterdoes not possess Fourier gecant pulse, we expect that the transition probability should
components to compensate for the deturib@). As such,  saturate to a constant value. This agrees with the results
all transitions from dressed state 1 to 2 result freomadia-  shown in Fig. 1c).
batic coupling of the states. With increasing coupling f,(t)=2[m(1+1t?)2]: C~1arY which decreases as
strength, both the separation of the d_ressed states and treases. Employing a similar argument as that for the
coupling between the dressed states increases. Whether Q§rentzian pulse, we see that the transition probability
not the transition probability increases with increasing coupgyld decay to zero also for largg This is what is ob-
pling strength depends on the (elative increases of the CoWsaryved in Fig. (d). In addition, we see that falls off more
pling strength and level separation. , _slowly with increasingr than in the case of the Lorentzian
A measure of the nonadiabatic coupling of the states iSulse ¢~ as compared to~ 2. This weaker dependence
provided by the Massey parameter defined by, 1] of C onr translates to a weaker decrease in the transition
probability asg is increased. Comparing the results in Figs.
(15) 1(c) and 1d), we see that the decay i, is indeed more
gradual for the Lorentzian-squared pulse than it is for the
Lorentzian pulse.
For the problem under consideration in whial®»1, one f5(t)=1/Jmexp(t?): C~/Inr/a , which increases as
finds that the Massey parameter is much greater than unityhcreases for>1. In this case, the nonadiabatic coupling
indicating that one is in the regime of nonadiabatic couplingincreases at a faster rate than the frequency separation of the
[13]. It is not the magnitude d¥ that is of primary concern |evels. This means that the transition probability should in-
here. Rather it is the dependenceMfonr and f(t) that crease ag is increased, in agreement with the results shown
may provide us with some insight into the dependence of thén Fig. 1(e) [11,13.
envelope ofP, as a function of for a givenf and a. For Thus, using this approach, by investigating the depen-
example, ifr<1, M~|(2a/r)(df/dt) "= 2a/r; regardless dence of the Massey parametdr on the pulse strengtfs,
of the pulse shape, the nonadiabatic coupling increases witfte are able to qualitatively account for the strong-field be-
increasingr (that is,M decreasgs This result is to be ex- havior of the transition probability as a function of pulse
pected from a perturbative solution to E@41), where one  shape. In Sec. IV we obtain asymptotic expressionsfoin
finds thata,()or. the limits a>1 andr>1, which are in agreement with these

Q(t)\:
b |

a[1+r2f2(t)]3/2/ﬂ> -1

M®)= 2 \dt
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gualitative findings. Moreover, we show that there appears thowever, that Eq(21) is not asymptotically correct for alB
be a universal form for the transition amplitude in this limit, since it does not exhibit the falloff with increasifgyshown
which can be expressed as in Fig. 1(b); the approximate solutiof21) is valid only for
o a>1,r<1, andr8=(28/a)B<1 [14]. In the case of the
ay(%)~ —2ie” KM Zsif B—KReM(2)], (18  hyperbolic secant squared pulse, we find

where 10— 72 3
esmnsy—2ire]| ][22 2
M(22)~—al(r df/dD) (19 ™ K
5
is proportional to the minimum value of the Massey param- +3.505< 10 ° (ﬁ) —.. } (22)
eter when r>1, zg is the solution of Q(2) 77

=\a?+4B%f?(z)=0 that lies in the first quadrant of the . .
complexz plane and is closest to the real axis, aads a  Valid for a>1 andryaB<1 [14], and, for the Lorentzian

constant of order unity that varies with pulse shape. withsduared pulse,

Egs.(18) and(19), one achieves an amazingly compact form 1 10— 72 3

for the dependence of the transition amplitude in the limits of ay(,1z2)~—2ime 9 | 1+ _) (ﬁ) _( —T ) (ﬁ)

large detuning and large coupling strengtfr>1. This was a\2m 6 2m
apf 5

27

the primary goal of this work.

+3.505< 10 ° 1 (23

IV. ASYMPTOTIC APPROACHES

In this section we examine a few approximate solutions tovalid for a>1, r<1, rg<1, and r@<1 [14]. The
the equations for the probability amplitudes in the limit of asymptotic forms, which again differ only by a scale factor
large «. These approximation techniques are by no mean§12] for a> 1, can no longer be factored into separate func-
exhaustive, but they reveal several interesting anomalies itions of « and 8. As is to be seen below, these terms repre-
the solutions that have yet to be resolved. The methods to hsent an envelope function for the transition probability that
discussed ar€A) perturbative solution in the normal basis, increases with increasing for r <1. The calculations for the
(B) first-order perturbative solution in the dressed b&&is  Gaussian pulse are somewhat more complicated since the
series solution inB, (2) asymptotic solution for arbitrarg,  Gaussian does not have a simple pole structure. Neverthe-
and (3) numerical solution for arbitraryB], and (C) less, it is still possible to carry out an iterative solution to
asymptotic solutions of the differential equatiori$) solu-  obtain
tion for 8> «, (2) solution for 8< «, and(3) numerical so-
lution for arbitrary 8].

a(®,gs)~—i

. 2 9ﬂ3e—a2/12 . 625359—a2/20
e ¢
4+\/3ma? 64/5m2at

A. Perturbative solution in the normal basis

It is possible to solve Eqgl) iteratively to obtaina, ()
as a series in odd powers gf To lowest order ing3, the
solution is proportional to the Fourier transform of the pulse

envelope function. It is not possible, in general, to obtain . 221140
analytical solutions for terms of ordg® or higher, but ap- valid for a>1 andS<ae [see Eq(A16¢) of the Ap-

proximate expressions can be obtained in some cases thﬁnd')q' Note that for Iargea,_ the third-order contribution
a>1. A method for obtaining such solutions is given in the can become larger than the first-order one even for values of

o - 5 B less than unity. The origin of this effect can be traced to
églgﬁgg(é |trc1) vl\g/lvcehstthneo:S;?sﬁ]icnogjrdoﬁe?r;gg Frc])?\;ﬁeb?\;? the fact that the Fourier spectrum of the third-order coupling
perbolic secant pulse, one finds is significantly broader than that of the linear coupling term.

: 1 (24)

ay(»,hs)~—2ie *(B— B33+ B%5!—-..), (20 B. First-order perturbative solution in the dressed basis
which coincides with the solutiofd) in the limit o> 1. Note By definingb; andb, using
that this series, which is an approximate solution to the equa- Q(t")
tions of motion i.n the limitae>1, converges to the correct '51(t)=blex;{ _if Tdt,)' (259
asymptotic solution for all powers ¢8. For the Lorentzian 0
pulse, one obtains
B [1\(B\® [1)/B)\® ba(t)=b exp(iftwdt') (25b)
a(wo,lz)~-2ie Y ==\l =] Hl=Il5] — | 2 ? 0o 2 '
2 \3!)\2 51/\2

(2D one can transform Eq¢11) into the form

The two results differ by only by a scale factor p as db Lt
predicted by Robinson and Bermah2] for pulses whose —1299XF<if ﬂdt’)bz, (263
Fourier transform is of the form exp(a) for large «. Note, dt o 2
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@ 5
dbz p(—lfﬁdt') X 3.505<105<7ﬁ) }—]

28C
From Egs.(2), (5), and(8), it follows that the initial condi- (289
tions are by(—=)=e '® and b,(—x)=0, where ®
= [5[Q(t)— a]dt [9]. Since the dressed states account for
the rapid phase oscillations of the atom-field interaction and
since the entire coupling to dressed state 2 has as its origin x{(lo_ 772) ( ap\?

(26b

ast(,1z%ad)~ —2i me™ @

1\[aB ).
l+; E)—A(IZ i 3)

hatad 2.
nonadiabatic transitions from state 1 to state 2, it is not un- 6 +A(1z;5)

2
reasonable to believe that an accurate solution to our prob-

lem can be obtained by solving these equatimnfirst order
in the coupling constar®, namely

bi(0;ad) =

. +o t
=—e*"1>f 0exp( —if Q(t’)dt’)dt
— 0

) ‘i‘bfmdt (2 df
T M e

Xex;{ —iaft\/1+r2f2(t’)dt’)
0

e "*alV(=;ad)

= —e_i¢f+wdt—aﬂ df
—»  a?+4p2f2 dt

xexp —i ta2+4[32f2(t’)dt’. (27
Joy
0

It is important to note that a solution to first-order ris a

solution toall ordersin the coupling strengti8. One would
expect corrections to first-order perturbation theory to be of A(hs?5)=A(Iz%5)=

order 1k sinced~ 1/a for a>1, but, as we shall see, this is

not necessarily the case.

1. Series solution ing

The integrand in Eq(27) can be expanded as a power
series inB and then integrated term by term. Details are
given in the Appendix. For>1 andr=28/a<1, one ob-

tains

as?(»,hs;ad)~ —2ie” [ B—A(hs;3) 8%3!

+A(hs;5)8%/51—- - -], (283
ast(,1z;ad)~ —2ie” @ §—A(Iz;3)<%)(§ 3+A(|z;5)
X % (2)5—} (28h)
a(zl)(OO,hsz;ad)~—2i1-re‘“i(a—f)—A(hsz;B)
x 10;772)<ﬁ i +A(hs2:5)

5
X 3.505><1o—5<£ }—] (280

alt(,gs;ad)~ —i

9,83e’ a?/12
4\/§7Ta2

pe 14— A(gs;3>(

625ﬁ567a2/20
+A(gs,5)<—64\/5772&4 )—]
(28¢
where
A(hs:3)=A(lz;3)=10/m?~1.01, (293
208 [ 10\°
A(hs:5)=A(Iz;5)= (300) ~1.02, (29b
A(hs%;3)=A(1z%3)= (2>< ! ) 1.02, (290
Z ~1. C
15/\ 10— =2 ’
( )(516) 1 _
630/ | 3.505<105) >
(290
28
A(gs;s):(2—7)~1.04, (29
51 64
A(gs;5) €@~104 (29f)

(In the Appendix, the terms of ordg8® are calculated for
arbitrary «.) If the A’s were equal to unity, Eq$28) would
coincide with Eqs.(20)—(24). The fact that all theA’s are
nearly equal to unity indicates théitst-order perturbation
theory in the dressed basis reproduces with high accuracy
term by term the iterative solutiofR0)—(24) of the exact
equationg1).

There are some anomalies in the solution, however. Note
that theA’s are independent ok, indicating that the term-
by-term corrections do not decrease with increasirap had
been anticipated. One can show that by carrying ouit-an
erative solution of Eqs(26) in powers of# each successive
term in the iteration corrects the corresponding term in the
series solutiong28). For example, by going to orde®
(only odd orders enter the solution fag), one finds that all
the coefficients of theB® terms agreeexactly with the
corresponding terms of the iterative solutidi2§)—(24); by



57 NONADIABATIC TRANSITIONS IN A TWO-LEVEL ... 85

going to fifth order in 6, the coefficients of the3® terms C. Asymptotic solutions of the differential equations
agree, etc. Although the coefficients of the individual terms Crothers[2], Davis and PechukaB], and Nikitin and

in Egs. (28) do not agree exactly with the corresponding ymanskii[1] employ steepest-descent methods to solve Egs.

terms of the iterative solution, it is still possible that first- (26). For symmetric pulse shapes ané>1, the transition
order perturbation theory in the dressed basis can provide &nplitude is given by15] '

good approximation to thexact solution of Egs.(1). We
now turn our attention to this question. a,()~ — 2ie Yasinx,, (32)

2. Asymptotic solution for arbitraryB where

It is possible to evaluate the integr@7) by the method o
of steepest descents. Since the techniques involved are simi- 2, =Xty = fzc J2+4B%%(2)dz (32)
lar to those encountered in asymptotic solutions of the dif- 0
ferential equation$26) that are discussed below, we defer a
detailed discussion of the steepest-descent method for thend 2 is the zero of the integrand lying closest to the real
time being. Itis interesting, however, to give the result of theaxis in the first quadrant of the compleplane. Crotherf2]
steepest-descent calculation for the hyperbolic secant pulspresents a modified version of the result
In that case, one find45]
a,(o)~—i secly,sinx,, (33

1 . T — e}
ay”(,hs;ad)~—2i (g) e “sing. (80 which coincides with Eq(31) wheny,> 1. The relative cor-
rections to Eqs(31) and (33) depend on the specific pulse

Aside from the overall factor ofr/3, this result agrees with SP@pe, but decrease, at worst, as an inverse power of
the exact asymptotic result(4). That the prefactor is not general, the errors also d_ecre_ase with increaginn orde_r
given correctly has been pointed out by Nikitin and Uman-to understand the approxmatlons thazt are léjsgzd to obtain Eq.
skii [1] and Davis and Pechuk&é], among others. Nikitin (31), One must examine the zergsof a”+48%(2). In the
and Umanskii state that this is related to the fact that thét€epest-descent method the major contributions to the solu-
integrand is not an analytic function of the Massey paramiion come from regions around the zeros in the upper half
eter. The true prefactor can be obtained by comparison witR!ane since these are the saddle points of the integral form of
the solution of an exactly solvable problem. Putting asiddhe differential equations. For the soluti¢sl) to be valid,
any problems related to the prefactor, the solutid) pre- the zeros must be separated by a distance much greater than
sents an interesting mathematical anomaly. The siepen- a1, so that the dominant contribution to the solution will be
dence in Eq(30) agrees with the exact asymptotic resul, from the zeros closest tp the regl axis in the upper half plane.
but not with the series expansiof28a of theintegral (27), ~ FOr symmetric pulses, if there is a zeroxqttiy., there is
which has been evaluated by the steepest-descent method&§0 One at-xc+iy.. The contributions from these two ze-
arrive at the result30). In other words, it does not appear '0S combine to give the sine function in E@1), but, in
that the standard steepest-descent evaluation of the integfinciple, the zeros at-x.+iy. must also be well separated
(27) can reproduce the seri¢88a. As such, one must con- 0r EQ. (31) to remain valid. For the pulse shapggt) (i

sider the correct asymptotic evaluation of the integes) = 1—5) considered in this work, the zerasand zeros clos-
for a>1 and arbitrary3 as an open problem. est to the real axis in the first quadradtare given by[16]
. . . 2
3. Numerical solution for arbitrary 8 2,(hs)=+i+(2/m)In §+ /1+ E },
The integral(27) can be evaluated numerically for the @ «
various pulse shapes considered in this paper. The numerical B B\ 2
evaluation of the integral can be more time consuming than a zg(hs) =i+ (2/m)In|—+ 1+(— ,
direct solution of the differential equatioril), so there is a a
little benefit to be gained by using the first-order result in the (343

dressed basis if one is interested in exact results. Neverthe-

less, it is of some interest to compare the first-order pertur- 28 28
bative results in the dressed basis with the exact results. The z (lz)==*i 1ti(—), z‘c’(lz)zi \/ 1—i<—),
first-order perturbative results in the dressed basis are shown ma Ta 34b
as the dotted lines in Fig. 1. As seen in the figures, the (34
first-order perturbative solution in the dressed basis qualita- : .

tively tracks the exact solution, but overestimates the transi-Ze(Ns%) = = (2/m)In(= \firg+ \irs— 1),
tion probability at largeB. For 8<1, the integral solution B
(27) reproduces the perturbative resu(®0)—(24). For B r3=i(2—),
>1, the relative error in the solution appears to saturate in @
the range of 8 that we studied. Note that &orrect Py Py
asymptotic evaluation of the integrd7) must reproduce its Z2(hs?)=(2/m)In \/i (2—) + \/i (2—) -1 }
almost perfect agreement with the exact solution g1 @ @

and its deviations from the exact solution {8 1. (340
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:I_ieii71'/41 [(4_B)
T

1/2 - N B
zg(lzz)=i(l—ei"’4\/%) . (340 fad (—1)""(2n 1)”fzgdz 1

1 2micen-1) Jo o [ri(m Y

1/2
z.(1z%)=*i

, =,B—af:dz rf(z)

Zﬂ - 1/2 (35)
z.(gs)==|In| — +(2n+1)i§ {n, —o0,00}, o
Jra where the equalitie,dz f(z)=1/2 andr=2B/« have

12 been used. Each term is then evaluated to give the leading
In 2_'8 (340 contribution whenr>1. For a pulse shape that varies as

Vra bt™# (u>1) for |t|>1 [as do the Lorentzian

(b=1/m, u=2) and Lorentzian squared€2/7, u=4)]

The hyperbolic secant and Lorentzian pulses have a singlgulses, one finds tha€~(br)1’“exp[i7-r/(2u)] and
zero in the first quadrariL6], the hyperbolic secant squared
and Lorentzian squared pulses have two zeros in the first
qguadran{16], and the Gaussian pulse has an infinite number za~ﬁ+ia(br)1’”(
of zeros in the first quadrant.

It is easy to verify that, when>1, the zeros in the lower w®
half plane are well separated from those in the upper half (2n—-Djt!
plane, as is required for the validity of E1). For 8> «a, n=12"n!(2n—21)(2un—u+1)
the zeros in the upper half plane are well separated for each
pulse and one would expect E@1) to be valid. This con-
clusion is not strictly trl.Je.f(.)r the Gaussian pulge; WhenOn the other hand, for pulse shapes that vary as
w/\/ln(2,8/:]7ra)<1, the infinite n_umber_ of zeros in each bexy{ —at“] (+>1) when|t|>1 [as do the hyperbolic se-
qgadrant cqalesce and the zeros in the first quadrant coalgsg&,lt b=1, a=x/2, p=1), hyperbolic secant squared
with those in the fourth, as do those in the second and thir b=, a=m/2, u=1) and Gaussianb= 117, a=1,
guadrants. Nevertheless, owing to the logarithmic behaworﬁz)] pulses, one finds tha€~[ln(rb)/a]1”‘ and
there is a wide range oB for which the zeros are well '
separated. On the other hand, it is also easy to verify that, for
each pulse shapeall the zeros in the upper half plane coa-
lesce forB< a, implying that the resulf31) cannot be relied
upon in this perturbative limit. It is possible to modify the
asymptotic procedure to allow for coalescing zefasd for  The corrections to Eq$36) and(37) depend on the specific
weighting functionsé that possess poles at the position of form of the pulse shape.
the coalescing zerp$3,17,18, but we have not carried out For the specific pulse shapes considered in this paper one

ko

2:(9)= iz

u—1

o)

(36)

i T 1
| .
2ap [In(rb)/a]*~ Y+

Z.~B 37

such calculations for this problem. finds

For the hyperbolic secant puls€= 8+ i« [2]. Generally
speaking, however, E432) must be evaluated numerically. ay(®,hs)~—2ie” “sing, (38a
In contrast to the numerical evaluation of the inted@al) or
the numerical solution of the differential equaticiid), one a,(,12)~ — 2ie~ 120 m P5i B 1 20 a Bl )V,
does not encounter problems relating to an oscillating inte- (38b)
grand in Eq(32), allowing one to easily obtain values fay
for arbitrarily largea and 8. This is an important consider- ay(,hs?)~ — 2ie~*'%sing, (380

ation if one wishes to obtain reasonably good values for the
transition probability in the limits of very larger and 8 2 041648 malVA
without extensive and difficult numerical computation. It is a(,1z%)~ —2ie sin

also possible to obtain expressions Zgiin the limit of large —0.172(4Bl wa) V4, (380
and smalF =28/ «. As noted above, the asymptotic forms in
the limit of smallr may have a limited range of validity
owing to the fact that the various zerpsare not well sepa-

rated in the complex plane. Nevertheless, results for thig ) ) ,
limit are given along with some suggestions for improvingThe corrections to the arguments of the exponentials and sine

these results. functions are of ordea/r for the Lorentzian pulsey/r for
the hyperbolic secant squared pulaé;, ¥/ for the Lorentzian
1. Asymptotic solution for »1 squared pulse, and/(Inr)>? for the Gaussian pulse. The
error correction for the Gaussian actually must be of order
unity if the zerosz. are to be well separated in the first
o o (—1)"*(2n—1)1 gquadrant 01_‘ the complex plane. _Thus the asymptotic forr_n for
za=afzcdz (rf(z)+ > - the Gaussian cannot be considered to be totally reliable.
0 n=12"n!(2n—1)[rf(2)]*" ! Clearly, as the field strength approaches infinity, the magni-

ay(,gs)~ — 2ieamANV2pmaging. (380

Whenr>1, one can expand E¢32) as
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tude of a,(e°,gs) cannot exceed unity, whereas the 2B
asymptotic result38e increasesalbeit very slowly without 6In2—1-2In| —
limit. ay(,lz)~—2iexp —a| 1+ 16

The asymptotic form$38) correctly map the larg@- de-
pendence of the transition probabilities shown in Fig. 1 and
are in agreement with the conclusions reached in the quali- 252 5
tative discussion of the Massey parameter given in Sec. Il X(_ﬁ) sir{ﬁ _B)H (420
In fact, by comparing Eq9.15) and(38), one finds that all TA 2 mal ||’
the asymptotic results in the limit of larggare given by the

relationshi 2
P az(oo,hsz)~—2iexp{—a+ \/—iﬁ[o,847

ay(0)~ —2ie”KMNDsir| g— KReM(22)],  (39)

1

1+4

where —0.30?{% ] sin VZaT,B[ 0.847
(N 0
M(ze)~—al(r df/dz), (40 —0.30?{%)]}, s

is proportional to the minimum value of the Massey param-
eter wherr>1 andK is a constant of order unity that varies B 48
with pulse shape. We conjecture that E89) is a universal ay(o,1z%)~ —2iexp{ —a+ "\ /_[ 0.847—0.232{ _)]
equation for the transition amplitude, even though it has been ™ T

strictly proved only for pulse shapes that vary bt # 482 48
(u>1) orbexd —at“] (u>1) when|t|>1. +a —) {0.0586—0.0391Ir(—)H
T e
2. Series solution in r _ B 48
Whenr<1, one can expand Eq32) as Xsin \/——10.847+0.234 —
0 S (D" 2n—1)![rf(2)]>" 4 4B\2
za~afz°dz 143 )L JHrt(z)] . +o.196<—ﬁ a+0.061£(—'8) al, (420
0 n=1 2"n!(2n—1) T T
(41)
28 172
Using the valueg®~ afi+r/7+0O(r?)] for the hyperbolic ~ ay(*,gs)~—2iexp —a In(—)
secant pulse, Jra
2
0 _afil 14— +L+0(r3) 0.153
w1 ) T 2n Y AP O LA
28 2
for the Lorentzian pulse, In = 4/In Jra
42¢
0 glicin/ =T e ™ 5/ (
zZe=a|i=i\5-| 1= 51+ \5-| 1+ 5; +0(r%?)

The corrections to the arguments of the exponentials and sine
functions are of ordewr® for the Lorentzian pulsé)(ar>?)

for the hyperbolic secant squared pul&ar®?) for the
Lorentzian squared pulse, a@q «|Inr|~%?) for the Gaussian

for the hyperbolic secant squared pulse,

0 o1 \f ( r ) 1 \ﬁ r r
Zo~ali—iz\ = 1-—|+5\/—| 1+ —|+-— pulse.
2Nm 4m) 2 N 4m| 4w Several features are present in these results that one may
consider to be puzzling. Equatiqd2a for the hyperbolic
+0(r%? secant pulse is the correct asymptotic result, despite the fact
that the zeros in the first and second quadrantg.ati =r

coalesce as~0. For the Lorentzian pulse whose zems

~i*xr/2 also coalesce as~0, the term of orderg,

a,(x,lz)~—2iBe” ¢ agrees with the perturbation theory
+ O(|Inr|‘3’2)] result(20), but higher-order terms do not even have the same

for the Lorentzian squared pulse, and

i[In(r/ )| Y2+

0_
Zema functionalform. For both the hyperbolic secant squared and

o
alIn(r/ )| Y2
Lorentzian squared pulses, the lowest-order terng idoes
for the Gaussian pulse, it follows from Eqgll) and (14) not agree with the perturbation theory result. For example,
that for the specific pulse shapes considered in this paper a,(,hs?)~—2ie”*(0.847%/2aB/ ), whereas the pertur-
bation theory resul(22) is a,(,hs?)~—2iaBe ®. This
a,(o0,hs)~—2ie™ “sing, (429 result is not surprising since, for the hyperbolic secant
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squared and Lorentzian squared pulses, therevay&omi-
nant zeros in the first quadrants that coalesae-a8. For the
hyperbolic secant squared pulse, they occurzghs?) - (a) 1
~i(1*=apBl7)+aplm. If one includes the contributions B

. . S 1.05 - | -
from each of these zeros independently, the asymptotic rest g i
becomes % T e N
< o—8—— ° °
< _
s 2aB| 2ap R
ay(»,hs?)~ —4ie™%sin 0.847\/——|sinh 0.847\/ —— 2 "
a v 1 —-' i
(2]
—a S —@— hyperbolic secant squared
~—1.83 ape ¢, ot 0.95 A Lorentzian squared —

--4&-- Gaussian
which has the correct functional form but differs from the I 1
perturbation theory result by about 9%. The sin sinh behav 0.90 | | !

ior has been predicted previously by Robinson and Berma 0 1000 2000 3000

[12] and shows that the probability envelope increases witt B

increasingp for B<a (r<<1). For the Gaussian pulse, the
lead term of the asymptotic expansion

1.10 ‘ |

—e— Lorentzian
B (b) -~ hyberbolic secant squared 1

2,8 12 = -m-- Lorentzian squared
a,(%,gs)~ —2iexpg —a|ln| — § 1.05 - ---#-- Gaussian |
\/;a 5‘_}“
& r -
aTr 2 A
_—— g_ 1.00 & & & A
2 - T — .
4 In = % [ < P *- 1
Jra = .
095 - ¢ .
has no resemblance to the perturbation theory resu
. _ .2 . L . 7
a,(,gs)~—iBe *’ The Gaussian pulse has arfinite
i ; 1/2 1 | L I
number of zeros zc~a|[|ln(r/ﬁ)|—(2n+ 1)i /2] 080 - w9 -3 6
{n,—,}, which coalesce as~0. It remains a challenge o

to modify the asymptotic resul{s,17,1§ so that they cor-
rectly reproduce the perturbation theory results. Moreover, it FIG. 2. Ratio of the envelope of the asymptotic solution of the
would be interesting to know why the asymptotic result fordifferential equations given by Eq$31) and (32) for P, to the

the hyperbolic secant pulse is essentially exact. exact numerical result@) as a function of3 for «=5 and(b) as a
function of @ for 8= 2.8 (Lorentzian pulsgand 8= 75x/2 (hyper-
3. Numerical results bolic secant squared, Lorentzian squared, and Gaussian pulses

The transition probability32=4e‘2ygsin2xg for the vari- by of order 6%. Values of8>20 have not been considered
ous pulse shapes is shown as the dashed curves in Fig. for the Lorentzian pulse owing to the long integration times
with xg andyg obtained by numerically integrating E(2). required for the exact solution, but we expect the ratio of
Aside from significant relative differences in the solutionsasymptotic to exact results to diminish with increasjfg
near the minima, which are not apparent in Fig. 1, theFor the hyperbolic secant squared and Lorentzian squared
asymptotic and exact solutions are in very good agreemertulses, the asymptotic solution can telers of magnitude
over the entire range g8 shown in the graphs. To get some larger than the exact solution fafa3<1 owing to the coa-
idea of the errors involved, we have plotted the ratio of théescing of the two zerog, in the first quadrant. A marked
values of the envelopes of the asymptotic and exact solutiongnprovement in the solution fofaB<1 can be achieved if
for =5 and several values ¢ in Fig. 2(a) and at fixed3  the second saddle point is properly incorporated into the
for several values of in Fig. 2(b). In general, the accuracy problem. On the other hand, fofa 3> 1, the asymptotic and
of the solution increases with increasiagr 8 as one might exact solutions are in excellent agreement. The relative ac-
expect, but the rate of improvement depends on the specificuracy for the hyperbolic secant squared pulse is better than
pulse shape. The values afand 8 in Fig. 2 are chosen to that for the Lorentzian squared pulse. For the Gaussian pulse,
ensure that the zerag in the first quadrant for the hyper- the asymptotic solution can again be orders of magnitude
bolic secant squared, Lorentzian squared, and Gaussiameater than the exact solutiondfy|In(8/a|>1, owing to the
pulses are well separated, in accordance with one of the vaoalescing of an infinite number of zeros in the first quad-
lidity criteria for the asymptotic solution. For the hyperbolic rant. This condition occurs foboth very small and very
secant pulse, the asymptotic and exact solutions differ by arge8. Some evidence for the largébehavior is seen in
negligible amount fora>5; consequently, data for the hy- Fig. 2(@), where the ratio of the asymptotic to exact solution
perbolic secant pulse are omitted from Fig. 2. For the Lorentgrows with increasing3 for 8=400. Better agreement for
zian pulse, agreement between the exact and asymptotic slarge 8 can be obtained by using Crother’s fof88) for the
lutions is good over the entire range Bf differing at most  transition amplitude since it guarantees unitarity, but a
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proper treatment for very small and very lafgeequires one  Crothers, J. L. Cohen, and J. Thomas. This research is sup-
to include the contributions from the infinite number of zerosported by the National Science Foundation under Grant No.
z. in the complex plane. PHY-9414020 and by the U.S. Office of Army Research

under Grant No. DAAG55-97-0113.
V. SUMMARY

The nonadiabatic coupling of a two-level quantum system APPENDIX
has been considered in detail. The specific model system was ) )
a two-level atom driven by an off-resonance radiation pu|se, Several details of the calculations are presented below.
but the calculations apply to a large class of problems. It was
shown that the dependence of the transition probability on 1. Perturbation series solution
coupling strength exhibits qualitatively different behavior for , , ) , .
different pulse shapes. An explanation of this feature could Eduations(l) can be solved iteratively. To first order in
be given in terms of the Massey paramefatio of the fre- B, one finds
guency separation of the semiclassical dressed states to the .
coupling strength in the semiclassical dressed-state)béfsis all= _iﬂf dt e 1ot £(t). (A1)
the Massey parameter decreases with increasing coupling —
strength, the transition probability envelope increases with . o
increasing field strength. In this limit the transition probabil- The third-order contribution is
ity is no longer bound by a value based on the energy-time
uncertainty principle. The uncertainty principle argument, in a(3)=(—iﬂ)3J
which the transition probability is exponentially small in the 2
dimensionless detuning parameteris associated with first-
order perturbation theoryFourier transform of the pulselts % Jt' dt7e-iat” F(t")
extension to the nonlinear domain depends on the pulse —w '
shape and requires a pulse shape for which the Massey pa-

rameter increases or remains constant with increasing coyg optain an asymptotic expansion for largewe integrate

pling strengthg for g>1. . by partsn times to arrive at
Numerical and asymptotic solutions have been presented.

For a>1, the asymptotic solution of the differential equa- o ' t o
tions yields results that are in excellent agreement with the a(23)~(—i,6’)3f dt e 't f(t)f dt’e'*t f(t")
exact result, provided tha is limited to valuesusually 8 - ‘°°

[

4 t .
dte"“‘f(t)J dt’e'*t f(t")

(A2)

=1) for which there are no coalescing zemsin the first o

quadrant of the complex plane of the functigm? X 2 (—ia) N(=1)" =D g iat’
+48%f2(z)]. However, several anomalies in the asymptotic n=1

solutions have been noted. In particular, there does not ap- (A3)

pear to be a correct asymptotic evaluation of the inte@3al

encountered in first-order perturbation theory in the dresself is worth noting two things at this point. Firsill terms in

basis. Moreover, there does not appear to be any systematfée sum must be retained. The higher-order derivatives

way in which the asymptotic solutions of the differential f("~*) lead to contributions that are higher orderdncom-

equations approach the results of perturbation theory. pensating for the{ia) " dependence. Second, the integra-
The results derived in this work could be tested usingtion by parts technique does not work for the first-order con-

pulsed radiation fields interacting with atoms. Two types oftribution [Eq. (A1)] since all terms in the asymptotic series

experiments can be envisioned. In the first, an ultrafast ravanish att=c. By interchanging the order of integration,

diation pulse (100 f9 is incident on atoms in a vapor cell. one finds

The pulse duration must be much less than the excited state

lifetime and pulse areas greater than unity should be B *

accessible, but the pulse strength should not be so large asQés)N(—iB)sf dt f(t) >, (—ia) (=)L)

ionize the atom. With modest power density (10'°— 102 o =1

Wi/cm?), values of8 on the order of 20 can be achieved. The o ,

second type of experiment is one in which a beam of atoms Xf dt e ' f(1). (A4)

passes through a cw laser field. If one chooses an atom such !

as ytterbium for which the resonance transition has a lifetime . . . .

of order 1 us, large pulse areas can be realized by using9in integrating by parten times, one finally obtains

relatively long interaction timegl9]. The advantage of this Y

method is that the pulse shape in the atom'’s rest frame will .

be Gaussian if the spati i ield i 2y~ (-’ X

patial profile of the laser field is Gauss=2
ian.

(_1)n+m+l(_ia’)_(n+m)
n=1m=1

ACKNOWLEDGMENTS ><J dt f(t) f""H(t) FMU(t) et (A5)

We are pleased to acknowledge helpful discussions with
B. Dubetsky, W. Molander, E. J. Robinson, D. S. F.The fifth-order contribution is
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0 . t i ,
a(25)=(—i,8)5J dt e it f(t)J dt’efet’ f(t')
t’ - t” Cm
xf dt"eflat f(t”)J dtIN elat f(tm)

xjt dtiv et f(tiv), (A6)

9 3e— a?/12
az(oo’gs):_iea2/4[ﬁea2/4_< ’3 )

4\/§7Ta2

62 5e7a2/20
X [1+O(a_2)]+ %[14‘0(6!_2)]
—O(BTa be o8| (A8e)

Using techniques similar to those used for the third-order

contribution, one can obtain

[

&~ (=ip)°

o (ia)_<“+m+p+q)f_ dt f(t)

m—1

x f(n=D(t)eiat [f(t) fP~Y(t) faY(1)].

dtm*l

(A7)

It is now possible to carry out explicit evaluations of Eqgs.
(A1), (A5), and (A7) for the f;(t) (j=1—5) considered in
this work. In doing so, one obtains the leading terms i

a~' by approximating the derivatives asf{"(t)

~(1/2)(— w/2)"n!sinh(7t/2) cosh " D7 t/2) ()
~(Um)(—2t)"n1(1+t2) "D f ()~ (7/4) (— w/2)"(n
+1)1sinH(7 t/2) cosh "2z 1/2), £V (1)~ (2/7)(—2t)"(n
+1)1(1+t2) (2 and (1)~ (1) (— 2t)"exp(t?).
Using these expressions in Edé1), (A5), and (A7), one
finds

ﬁ3
ay(o,hs)=—i secha(,B— §[1+O(a*2)]

5
+§[1+O(a2)]—~-~), (A8a)
. IB [B\1 s
a,(x,lz)=—2ie HE—(E) (g [1+O0(a 9)]
B\°l 1 _
+5 (a [1+O0(a ?)]—---|, (A8b)
o o 3 —77'2
ay(»,hs?)=—imcscha (7'8)—(7'8) (106 )
af 5
><[1+O(a2)]+3.505<105(7)
><[1+O(a_2)]—-~}. (A8c)
o o 3 — 72
ssmtz e | 2] 2] 28 225
2 apB)|®
- 75 _"
X[1+0O(a ?)]+3.505% 10 (277)
X[l-l—O(a_Z)]—‘-'}, (A8d)

2. First-order perturbative solution in the dressed basis:
Series solution ing

The first-order perturbative solution in the dressed basis
(27) can also be expanded as a power serie8.ifhe first-
order contribution is

a(zl,l)(ad):_(/g/a)J’_ dt e 'tdf/dt

:_ilgj:dt e et f(1), (A9)

MWwhich is identical to the first term in the perturbative expan-

sion of the exact equations. The superscriph) lindicates
that the result is theg8" term in the expansion of the first-
order perturbative solution of the dressed-state equations
(26) (recall that the first-order perturbative solution in the
dressed-state basis contains all powerg8)fThe third-order
contribution is

= df
a(21’3)(ad)=(/33/a3)f dte '

X

t

4f2+2iaf dt’ [f(t')]Z) (A10)
0

and the fifth-order contribution is

- - df
aglva(ad)z—(gf’/af’)f dte '

t
X 16f4+8iaf2f dt’ [f(t")]?
0

+8iaftdt’ [f(t')]*
0

2
—2a2< fotdt’ [f(t’)]z) }

For the various pulse shapes functidpét) (j=1-5), we
have evaluated thg® terms to all orders inx~* and theg®
terms to lowest nonvanishing order én *.

Most of the integrals are tabulated or can be done by
contour integration. However, we encountered a few inte-
grals that do not appear in standard integral tables. For the
Lorentzian and Lorentzian-squared pulses, one must evaluate
integrals of the form[” _dt e '“‘tan 1t /(1+t%)" with n

(A11)
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n=1,2. These integrals can be evaluated by defirifig) 83 10 w2
=[”_dt e"'*'tan Y(bt) /(1+t?)", differentiating with re-  a\"(x,hs;ad)=—i sechr 31 2/ 15
spect tob (at which point the integral over time can be N 20a

taking the limite~0. In this manner one finds

+_
51| 72

carried out, integrating the result ovdy from 0 to 1— ¢, and 85/ 10 2598
300

[1+0(a"?)]~- l

» _ Al16
J' dt e "tan it /(1+t?)=—i(w/2)e” [M(a) (A163)
B (B\31)\[10 3
(1) . - _ ) T[T R b _
+N(a)], (Al23a) ay’(«,lz;ad) 2ie 5 (2) (3!> 772) 5.
® . 5
f_ dt e71ettan 3t /(1+12)2= —i (w/4)e~ [ — o _ 3 MoN [+ B[
= 502 2/ |5l
+(1+a)M(a) 10\ 2/ 208 B
+(1- a)N(@)], 2 |30/t O D= g
(A12b) (Al6b)
where 5
1) ) . af 3 aB\°16
M(a)=C+In2+Ina, ay’(o,hs*ad) = Iwcscm“7) (7 &1
1 1 2 2 4 5
N@=|5 - st g ] (A1) A DY e e
2a 40° 8a® x| 1+ 2u? ot *lo1/l630/|
C=0.577 is Euler's constant, andN(a) is the
asymptotic series=;_,;(—1)*"}(k—1)!/(2a)X. For the X[1+0(a"?)]—---|, (A160)
Gaussian  pulse, one encounters integrals  of
the form J7.dt te vt gy 2’ and

. , 3
[7.dt teiete"(fle2"’dt")2. The first of these can (a_ﬂ)(1+ i)_<ﬂ) (E)
be calculated by interchanging the order of integration 2@ @ 2m) | 6!
and using integration by parts. The second can be calculated

by an n-fold integration by parts in which, at each _(a_ﬁ)3(l_6) +5_20+4560+ 2040
step, one replaces d/dt[t“e*tz(fgdt’ e 2'%2]  py 2m) \6! 32a  320°% 32a°
—2t" e P(fidt’ e 224 tne 3 ldt’e2t"? to get the

ait(»,1z%ad)=—2ime *

leading terms ine L. In this manner one finds 7560 7560+ 7200
32a* 32a° 32a°
oo . t , B
f dt te"“te“zf dt'e 2 2=(ﬁ)e‘a2’12[1+5(a)], X[—a+(1+a)M
- O e 2%\ (516
(Al4a) - 2 _)
X(a)+(1=a)N(a)]|+| 57/| 530
* i 2 t 12 2
J dt te 'te ! (Jezt dt’ ) wp!s
- O X[ 5| [1+0(a™H]=--+|,  (A16d)
iVv5
:( 77) e7a2/20[1+ O(a72)], (A14b)
8«
2
7B3e—a /12
where aP(w gsad)= —i e“2’4—(—
2 (79 : P 3\/§7Ta2
S(Ct’): \/gea2/12f dt tefiateftzerf( \/Et)‘Fl 3 51 1[)’5e*(12/20
- X|1-5S +| =] —
(A15) 75 (5) N

can be developed as an asymptotic seriesid whose lead _2 T
term is approximately equal te 9.4/a2. With these results, X[1+0(a )]-0(B'a e * ") |.
one can carry out the integrations in Eq89)—(Al1l) to

obtain (Al6e
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