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Nonadiabatic transitions in a two-level quantum system: Pulse-shape dependence
of the transition probability for a two-level atom driven by a pulsed radiation field

P. R. Berman, Lixin Yan,* and Keng-Hwee Chiam
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120

Ruwang Sung
Physics Department, University of Northern Colorado, Greeley, Colorado 80639

~Received 22 July 1997!

The problem of a two-level atom interacting with a radiation pulse is studied in the limit that the atom-field
detuning times the pulse duration is much greater than unity. Owing to the large atom-field detuning, transi-
tions result from nonadiabatic coupling of the states by the field. The transition probability for the atom to be
excited following the pulse is studied as a function of field strength for five different pulse shapes: hyperbolic
secant, Lorentzian, hyperbolic secant squared, Lorentzian squared, and Gaussian. It is shown that the behavior
of the transition probability differsqualitatively for these pulses. An explanation of this qualitative difference
is given in terms of the Massey parameter. Numerical solutions are compared with asymptotic solutions and
several anomalies are noted. In the limit of large field strength, a universal expression for the transition
probability is found. An interesting feature of the solutions is that, in the limit of very large field strengths, the
transition probability for a Gaussian pulse can approach unity despite the fact that the pulse has an exponen-
tially small Fourier amplitude at the atom-field detuning. This apparent violation of the energy-time uncertainty
principle is explained in terms of the nonlinear atom-field interactions.@S1050-2947~98!01801-0#

PACS number~s!: 03.65.Sq, 32.80.2t, 42.50.2p
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I. INTRODUCTION

A basic problem in quantum mechanics is to determ
the time evolution of a two-state quantum system whose
namics is governed by an arbitrary, time-dependent Herm
ian Hamiltonian. For example, one could imagine a spin-
system in an external, pulsed magnetic field. The field res
in a time-dependent coupling of the spin-up and spin-do
states, as well as a time-dependent change in the en
separation of the levels. Although this problem appears to
deceptively simple, there exists only a very limited set
pulse shapes for which analytical solutions can be obtai
for the state amplitudes. There is an extensive literature
voted to analytical and approximate methods for attack
this problem~often in the context of semiclassical approx
mations to a two-state scattering problem!, some of which
involve sophisticated mathematical techniques@1–7#. Of
course, one can numerically solve the two, coupled differ
tial equations for the state amplitudes, but, in certain lim
even such numerical methods pose serious challenges.
our contention that this two-level problem still exhibits b
havior that has yet to be fully understood and explored.

To prove our contention, we consider an even simp
problem, that of a two-level atom driven by a pulsed rad
tion field having an electric field vector of the form
E5E0f (t)cosvt. The field amplitudeE0 and frequencyv are
constant and thesmoothfield envelope functionf (t) has a
temporal width of orderT. It is assumedf (t) and all its
derivatives are continuous functions oft, f (t)5 f (2t), and
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that f 8(t) vanishes only att50,6`. It is furthermore as-
sumed thatuv2v0u/(v1v0)!1, wherev0 is the frequency
separation between the levels, allowing one to make
rotating-wave or resonance approximation. Spontaneous
cay during the pulse durationT is assumed to be negligible
With these assumptions, the atomic state amplitudes, wri
in an interaction representation, evolve as

da1

dt
52 ib f ~ t !exp~ iat !a2 , ~1a!

da2

dt
52 ib f ~ t !exp~2 iat !a1 . ~1b!

Herea1 anda2 represent the probability amplitudes asso
ated with the atom’s ground and excited levels, respectiv
b52mE0T/2\ is a coupling strength (m is a dipole moment
matrix element!, anda5(v2v0)T is an atom-field detun-
ing. All quantities, including the time, now expressed
units ofT, are dimensionless. Without loss of generality, w
assume that a>0 and f (t) is normalized so that
*2`

` f (t)dt51. The quantity 2b is often referred to as the
pulse area. Equations~1! define an effective two-level prob
lem in which the couplingb f (t) is time dependent, but the
frequency separation of the levelsa is constant.

For the given set of initial conditions

a1~2`!51, ~2a!

a2~2`!50, ~2b!

we are interested in determining the value ofa2 at t5`
and hence the behavior of the transition probabil
P2[ua2(`)u2 as we vary the pulse parametersf (t) and b.

f
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80 57BERMAN, YAN, CHIAM, AND SUNG
Knowledge of the transition probability for different kinds o
pulse shapesf (t) and pulse strengthsb is important, for
example, when one needs to choose the appropriate p
shape and pulse strength to maximize the transition proba
ity for a given detuning. We are particularly interested in t
so-called nonadiabatic limit

a@1. ~3!

Whena@1, the field does not possess Fourier compone
to compensate effectively for the atom-field detuning. It
precisely the limit in which one might assert that the exci
tion probability is negligibly small following the pulse’s ac
tion owing to the energy-time uncertainty principle.

The uncertainty principle argument certainly is correct
the perturbative limitb!1, for which P2 is exponentially
small in the parametera. However, asb increases in value
is the uncertainty principle argument still valid? One mig
expect that increasing the fieldstrengthdoes not compensat
for the lack of Fourier components in the pulse at the ato
field detuning. This conclusion is reinforced by consideri
the transition probability for the Rosen-Zener@8# pulse en-
velope function f (t)51/2 sech(pt/2), the only smooth,
symmetric pulse for which an analytic solution to Eqs.~1!
has been found. The final-state amplitude and transi
probability for this pulse envelope function are given by@9#

a2~`!52 i sin~b! sech~a!, P25sin2~b! sech2~a!.
~4!

Consistent with the uncertainty principle, the maximum tra
sition probability is of order exp(22a), even forb@1. Is
this a general result, independent of pulse shape? The
mary goal of this paper is to address this question. Usin
dressed-atom approach, we show that an answer to this q
tion can be given in terms of the Massey parameter@10# ~to
be defined below! associated with this problem. For certa
pulse shapes the transition probability can be orders of m
nitude greater than that predicted on the basis of the un
tainty principle. A secondary but equally important goal
this paper is to point out some mathematical anomalies
arise in asymptotic solutions of Eqs.~1!.

In Sec. II we present solutions for the transition probab
ity P2, for different kinds of pulses, obtained by numeric
means. In the limit of largea, one must take some care
numerically integrating Eqs.~1! since the integrands are rap
idly varying on a~dimensionless! time scale of order unity.
In Sec. III we give a qualitative explanation of the pul
shape dependence of the transition amplitudes in the lim
large coupling strengthb. Forb@a, a universal form for the
transition amplitude is given in terms of the Massey para
eter. In Sec. IV we describe asymptotic methods that one
use to obtainP2. In the limit of largea, we obtain approxi-
mate asymptotic solutions in the limitsb!a and b@a.
Some mathematical anomalies associated with th
asymptotic solutions are discussed. In Sec. V the results
summarized and the feasibility of experimental tests of
theory is explored. For those readers not interested in
mathematical details associated with the asymptotic s
tions, Sec. IV can be omitted without loss of continuity.
lse
il-

ts

-

t

-

n

-

ri-
a
es-

g-
r-

f
at

-
l

of

-
an

se
re
e
e

u-

II. NUMERICAL RESULTS

In this section we present solutions forP2, for different
kinds of pulses, obtained by numerical means. We conc
trate on the following pulse shapes in this paper: hyperbo
secant, f 1(t)5(1/2) sech(pt/2); Lorentzian, f 2(t)
51/@p(11t2)#; hyperbolic secant squared, f 3(t)
5(p/4) sech2(pt/2); Lorentzian squared,f 4(t)52/@p(1
1t2)2]; and Gaussian,f 5(t)5(1/Ap)exp(2t2). In Fig. 1, the
solid curves show howP2 varies with b for these f i(t)
( i 5125). We obtainP2 by numerically integrating Eqs
~1!, subject to the initial conditions~2!.

Owing to the Rosen-Zener solution~4!, one may be led to
believe that any symmetric ‘‘bell-shaped’’ pulse, of whic
the hyperbolic secant is an example, will result in an at
acquiring a transition probability whose envelope is indep
dent ofb. However, we see from Fig. 1 that this is true on
for the hyperbolic secant pulse and, at large pulse streng
the hyperbolic secant squared pulse. For the Lorentzian
Lorentzian squared pulses, the transition probability dec
to zero eventually, while for the Gaussian pulse, the en
lope of the transition probability increases in the range ob
studied@11#. For both the Lorentzian squared and hyperbo
secant squared pulses, the envelope ofP2 increases with in-
creasingb for r 52b/a,1, in agreement with the predic
tions of Robinson and Berman@12#. That the strong-field
behavior of the transition probability should be so drastica
different for these pulses, which are all rather similar
shape, is somewhat surprising. We seek to account for th
differences in the next section.

III. PREDICTING THE TREND OF P2 USING
THE MASSEY PARAMETER

It is assumed thata@1. We find it convenient to work in
the adiabatic or semiclassical dressed-state basis. To tr
form to the dressed-state basis, we first define new proba
ity amplitudesã1 and ã2 as

ã1~ t !5a1~ t !expS 2 i
a

2
t D , ~5a!

ã2~ t !5a2~ t !expS i
a

2
t D , ~5b!

from which we can then rewrite the two-state equations

d ã1

dt
52 i

a

2
ã12 ib f ~ t ! ã2 , ~6a!

d ã2

dt
52 ib f ~ t ! ã11 i

a

2
ã2 . ~6b!

We then obtain the equations in the dressed-state repres
tion by instantaneously diagonalizing the Hamiltonian

Hd5S a/2 b f

b f 2a/2D . ~7!
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57 81NONADIABATIC TRANSITIONS IN A TWO-LEVEL . . .
FIG. 1. Graph of the transition probabilityP2 versus pulse strengthb for a detuninga55. In each graph the exact numerical solutio
~solid line!, asymptotic solution of the differential equations given by Eqs.~31! and ~32! ~dashed line!, and perturbative solution in the
dressed basis given by Eq.~27! ~dotted line! are shown. The various pulse shapes considered are~a! hyperbolic secant,~b! hyperbolic secant
squared,~c! Lorentzian,~d! Lorentzian squared, and~e! Gaussian. The hyperbolic secant and hyperbolic secant squared graphs are sc
the asymptotic value for the envelope ofP2 predicted by Eqs.~38a! and ~38c!.
ba

If we call b̃1 and b̃2 the probability amplitudes in the

dressed basis, then the transformation to the dressed
can be expressed through

b̃15cos~u! ã11sin~u! ã2 , ~8a!

b̃252sin~u! ã11cos~u! ã2 , ~8b!
sis

where the angleu(t) is defined by

sin@2u~ t !#5
2b f ~ t !

V~ t !
, ~9!

V~ t !5Aa214b2f 2~ t !, ~10!
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82 57BERMAN, YAN, CHIAM, AND SUNG
with 0<u<p/4. The time evolution of the dressed-state a
plitudes is governed by the equations

d b̃1

dt
52 i

V~ t !

2
b̃11 u̇ b̃2 , ~11a!

d b̃2

dt
52 u̇ b̃11 i

V~ t !

2
b̃2 , ~11b!

which can be solved subject to the initial conditio
b̃1(2`)51 and b̃2(2`)50 @9#. We note that Eqs.~9!–
~11! are completely equivalent to Eqs.~1! and that

P2[ua2~`!u25u ã2~`!u25u b̃2~`!u2. ~12!

In fact, our numerical solutions are actually based on a s
tion of Eqs.~11! rather than Eqs.~1!.

Equations~11! can be given a simple physical interpret
tion. The quantityV(t) is the instantaneous frequency sep
ration of the dressed states. ForaÞ0 the system starts in
dressed state 1 att52`, when the frequency separation
the dressed states isa. As time evolves, the frequency sep
ration of the levels increases, reaches a maximum att50,
and then decreases, again achieving a value ofa at t5`.
The coupling between the dressed states is determined b
parameter

u̇5
r /2

11r 2f 2

d f

dt
, ~13!

where

r 52b/a. ~14!

For a@1, the coupling parameteru̇ does not possess Fourie
components to compensate for the detuningV(t). As such,
all transitions from dressed state 1 to 2 result fromnonadia-
batic coupling of the states. With increasing couplin
strength, both the separation of the dressed states and
coupling between the dressed states increases. Wheth
not the transition probability increases with increasing c
pling strength depends on the relative increases of the
pling strength and level separation.

A measure of the nonadiabatic coupling of the states
provided by the Massey parameter defined by@10,1#

M ~ t !5UV~ t !

u̇
U5Ua@11r 2f 2~ t !#3/2

r /2 S d f

dt D
21U. ~15!

For the problem under consideration in whicha@1, one
finds that the Massey parameter is much greater than u
indicating that one is in the regime of nonadiabatic coupl
@13#. It is not the magnitude ofM that is of primary concern
here. Rather it is the dependence ofM on r and f (t) that
may provide us with some insight into the dependence of
envelope ofP2 as a function ofr for a given f anda. For
example, ifr !1, M;u(2a/r )(d f /dt)21u*2a/r ; regardless
of the pulse shape, the nonadiabatic coupling increases
increasingr ~that is, M decreases!. This result is to be ex-
pected from a perturbative solution to Eqs.~11!, where one
finds thatã2(`)}r .
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We are interested in explaining the qualitative differenc
that occur for different pulse shapes whena@1 and r @1
(b@a) . For r @1, the minimum value of the Massey pa
rameter occurs whenr f (t);1. Thus it is reasonable to ex
pect that a measure of the nonadiabatic coupling is given
the parameter

C52
r

a

d f

dt0
, ~16!

wheret0 is the positive solution of

r f ~ t0!51. ~17!

As r increases for a givena, one would expect an increasin
envelope forP2 if C increases, a decreasing envelope ifC
decreases, and a constant envelope ifC is constant. Specifi-
cally, for the pulse shapes of Fig. 1, one finds the followin

f 1(t)5(1/2) sech(pt/2): C;1/a. The frequency separa
tion of the two dressed states grows at the same rate as
the coupling strength whenb is increased. As a result of thi
lack of dependence ofC on r , one expects the transitio
probability to saturate at a constant value with increasingb.
This conclusion, of course, is consistent with Eq.~4! and Fig.
1~a!.

f 2(t)51/@p(11t2)#: C;1/(aAr ), which decreases with
increasingr . In this case, the frequency separation of the t
adiabatic states grows faster than the coupling strength ab
is increased. Thus, at largeb, the nonadiabatic coupling is
expected to decrease. Referring to Fig. 1~b!, we see that this
is true: the transition probability decays asb increases.

f 3(t)5(p/4 ) sech2(pt/2): C;1/a, which is independent
of b. By a similar argument as that given for the hyperbol
secant pulse, we expect that the transition probability sho
saturate to a constant value. This agrees with the res
shown in Fig. 1~c!.

f 4(t)52/@p(11t2)2#: C;1/ar 1/4, which decreases asr
increases. Employing a similar argument as that for
Lorentzian pulse, we see that the transition probabi
should decay to zero also for largeb. This is what is ob-
served in Fig. 1~d!. In addition, we see thatC falls off more
slowly with increasingr than in the case of the Lorentzia
pulse (r 21/4 as compared tor 21/2). This weaker dependenc
of C on r translates to a weaker decrease in the transi
probability asb is increased. Comparing the results in Fig
1~c! and 1~d!, we see that the decay inP2 is indeed more
gradual for the Lorentzian-squared pulse than it is for
Lorentzian pulse.

f 5(t)51/Ap exp(2t2): C;Alnr/a , which increases asr
increases forr .1. In this case, the nonadiabatic couplin
increases at a faster rate than the frequency separation o
levels. This means that the transition probability should
crease asb is increased, in agreement with the results sho
in Fig. 1~e! @11,13#.

Thus, using this approach, by investigating the dep
dence of the Massey parameterM on the pulse strengthb,
we are able to qualitatively account for the strong-field b
havior of the transition probability as a function of puls
shape. In Sec. IV we obtain asymptotic expressions forP2 in
the limitsa@1 andr @1, which are in agreement with thes
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57 83NONADIABATIC TRANSITIONS IN A TWO-LEVEL . . .
qualitative findings. Moreover, we show that there appear
be a universal form for the transition amplitude in this lim
which can be expressed as

a2~`!;22ie2KImM~zc
0
!sin@b2KReM~zc

0!#, ~18!

where

M~zc
0!;2a/~r d f /dzc

0! ~19!

is proportional to the minimum value of the Massey para
eter when r @1, zc

0 is the solution of V(z)
5Aa214b2f 2(z)50 that lies in the first quadrant of th
complex-z plane and is closest to the real axis, andK is a
constant of order unity that varies with pulse shape. W
Eqs.~18! and~19!, one achieves an amazingly compact fo
for the dependence of the transition amplitude in the limits
large detuning and large coupling strengtha,r @1. This was
the primary goal of this work.

IV. ASYMPTOTIC APPROACHES

In this section we examine a few approximate solutions
the equations for the probability amplitudes in the limit
large a. These approximation techniques are by no me
exhaustive, but they reveal several interesting anomalie
the solutions that have yet to be resolved. The methods t
discussed are~A! perturbative solution in the normal basi
~B! first-order perturbative solution in the dressed basis@~1!
series solution inb, ~2! asymptotic solution for arbitraryb,
and ~3! numerical solution for arbitraryb], and ~C!
asymptotic solutions of the differential equations@~1! solu-
tion for b@a, ~2! solution forb!a, and~3! numerical so-
lution for arbitraryb].

A. Perturbative solution in the normal basis

It is possible to solve Eqs.~1! iteratively to obtaina2(`)
as a series in odd powers ofb. To lowest order inb, the
solution is proportional to the Fourier transform of the pu
envelope function. It is not possible, in general, to obt
analytical solutions for terms of orderb3 or higher, but ap-
proximate expressions can be obtained in some cases w
a@1. A method for obtaining such solutions is given in t
Appendix, in which the terms of orderb3 andb5 have been
calculated to lowest nonvanishing order in 1/a. For the hy-
perbolic secant pulse, one finds

a2~`,hs!;22ie2a~b2b3/3!1b5/5!2••• !, ~20!

which coincides with the solution~4! in the limit a@1. Note
that this series, which is an approximate solution to the eq
tions of motion in the limita@1, converges to the correc
asymptotic solution for all powers ofb. For the Lorentzian
pulse, one obtains

a2~`,lz!;22ie2aFb2 2S 1

3! D S b

2 D 3

1S 1

5! D S b

2 D 5

2••• G .
~21!

The two results differ by only by a scale factor inb, as
predicted by Robinson and Berman@12# for pulses whose
Fourier transform is of the form exp(2a) for largea. Note,
to
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however, that Eq.~21! is not asymptotically correct for allb
since it does not exhibit the falloff with increasingb shown
in Fig. 1~b!; the approximate solution~21! is valid only for
a@1, r ,1, andrb5(2b/a)b!1 @14#. In the case of the
hyperbolic secant squared pulse, we find

a2~`,hs2!;22ipe2aF S ab

p D2S 102p2

6 D S ab

p D 3

13.50531025 S ab

p D 5

2••• G , ~22!

valid for a@1 and rAab!1 @14#, and, for the Lorentzian
squared pulse,

a2~`,lz2!;22ipe2aF S 11
1

a D S ab

2p D2S 102p2

6 D S ab

2p D 3

13.50531025 S ab

2p D 5

2••• G , ~23!

valid for a@1, r ,1, rb!1, and rAab!1 @14#. The
asymptotic forms, which again differ only by a scale fact
@12# for a@1, can no longer be factored into separate fun
tions of a andb. As is to be seen below, these terms rep
sent an envelope function for the transition probability th
increases with increasingb for r ,1. The calculations for the
Gaussian pulse are somewhat more complicated since
Gaussian does not have a simple pole structure. Never
less, it is still possible to carry out an iterative solution
obtain

a2~`,gs!;2 i Fbe2a2/42S 9b3e2a2/12

4A3pa2 D 1S 625b5e2a2/20

64A5p2a4 D
2•••G , ~24!

valid for a@1 andb!aea2/140 @see Eq.~A16e! of the Ap-
pendix#. Note that for largea, the third-order contribution
can become larger than the first-order one even for value
b less than unity. The origin of this effect can be traced
the fact that the Fourier spectrum of the third-order coupl
is significantly broader than that of the linear coupling ter

B. First-order perturbative solution in the dressed basis

By definingb1 andb2 using

b̃1~ t !5b1expS 2 i E
0

tV~ t8!

2
dt8D , ~25a!

b̃2~ t !5b2expS i E
0

tV~ t8!

2
dt8D , ~25b!

one can transform Eqs.~11! into the form

db1

dt
5 u̇expS i E

0

tV~ t8!

2
dt8D b2 , ~26a!
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84 57BERMAN, YAN, CHIAM, AND SUNG
db2

dt
52 u̇expS 2 i E

0

tV~ t8!

2
dt8D b1 . ~26b!

From Eqs.~2!, ~5!, and~8!, it follows that the initial condi-
tions are b1(2`)5e2 iF and b2(2`)50, where F
5*0

`@V(t)2a#dt @9#. Since the dressed states account
the rapid phase oscillations of the atom-field interaction a
since the entire coupling to dressed state 2 has as its o
nonadiabatic transitions from state 1 to state 2, it is not
reasonable to believe that an accurate solution to our p
lem can be obtained by solving these equationsto first order
in the coupling constantu̇, namely

b2
~1!~`;ad!5e2 iFa2

~1!~`;ad!

52e2 iFE
2`

1`

u̇expS 2 i E
0

t

V~ t8!dt8D dt

52e2 iFE
2`

1`

dt
r /2

11r 2f 2

d f

dt

3expS 2 iaE
0

t
A11r 2f 2~ t8!dt8D

52e2 iFE
2`

1`

dt
ab

a214b2f 2

d f

dt

3expS 2 i E
0

t
Aa214b2f 2~ t8!dt8D . ~27!

It is important to note that a solution to first-order inu̇ is a
solution toall orders in the coupling strengthb. One would
expect corrections to first-order perturbation theory to be
order 1/a sinceu̇;1/a for a@1, but, as we shall see, this
not necessarily the case.

1. Series solution inb

The integrand in Eq.~27! can be expanded as a pow
series inb and then integrated term by term. Details a
given in the Appendix. Fora@1 andr 52b/a!1, one ob-
tains

a2
~1!~`,hs;ad!;22ie2a@b2A~hs;3!b3/3!

1A~hs;5!b5/5!2•••#, ~28a!

a2
~1!~`,lz;ad!;22ie2aFb2 2A~ lz;3!S 1

3! D S b

2 D 3

1A~ lz;5!

3S 1

5! D S b

2 D 5

2••• G , ~28b!

a2
~1!~`,hs2;ad!;22ipe2aH S ab

p D2A~hs2;3!

3F S 102p2

6 D S ab

p D 3G1A~hs2;5!
r
d
in
-
b-

f

3F3.50531025 S ab

p D 5G2•••J ,

~28c!

a2
~1!~`,lz2;ad!;22ipe2aH S 11

1

a D S ab

2p D2A~ lz2;3!

3F S 102p2

6 D S ab

2p D 3G1A~ lz2;5!

3F3.50531025 S ab

2p D 5G2•••J , ~28d!

a2
~1!~`,gs;ad!;2 i Fbe2a2/42A~gs;3!S 9b3e2a2/12

4A3pa2 D
1A~gs;5!S 625b5e2a2/20

64A5p2a4 D 2•••G ,

~28e!

where

A~hs;3!5A~ lz;3!510/p2'1.01, ~29a!

A~hs;5!5A~ lz;5!5S 298

300D S 10

p2D 2

'1.02, ~29b!

A~hs2;3!5A~ lz2;3!5S 2

15D S 1

102p2D '1.02, ~29c!

A~hs2;5!5A~ lz2;5!5S 24

9! D S 516

630D S 1

3.50531025D '1.03,

~29d!

A~gs;3!5S 28

27D'1.04, ~29e!

A~gs;5!5
51

5

64

625
'1.04. ~29f!

~In the Appendix, the terms of orderb3 are calculated for
arbitrarya.! If the A’s were equal to unity, Eqs.~28! would
coincide with Eqs.~20!–~24!. The fact that all theA’s are
nearly equal to unity indicates thatfirst-order perturbation
theory in the dressed basis reproduces with high accu
term by term the iterative solution~20!–~24! of the exact
equations~1!.

There are some anomalies in the solution, however. N
that theA’s are independent ofa, indicating that the term-
by-term corrections do not decrease with increasinga as had
been anticipated. One can show that by carrying out anit-
erativesolution of Eqs.~26! in powers ofu̇ each successive
term in the iteration corrects the corresponding term in
series solutions~28!. For example, by going to orderu̇3

~only odd orders enter the solution fora2), one finds that all
the coefficients of theb3 terms agreeexactly with the
corresponding terms of the iterative solutions~20!–~24!; by
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going to fifth order inu̇, the coefficients of theb5 terms
agree, etc. Although the coefficients of the individual ter
in Eqs. ~28! do not agree exactly with the correspondi
terms of the iterative solution, it is still possible that firs
order perturbation theory in the dressed basis can provi
good approximation to theexact solution of Eqs.~1!. We
now turn our attention to this question.

2. Asymptotic solution for arbitraryb

It is possible to evaluate the integral~27! by the method
of steepest descents. Since the techniques involved are
lar to those encountered in asymptotic solutions of the
ferential equations~26! that are discussed below, we defer
detailed discussion of the steepest-descent method for
time being. It is interesting, however, to give the result of t
steepest-descent calculation for the hyperbolic secant p
In that case, one finds@15#

a2
~1!~`,hs;ad!;22i S p

3 De2asinb. ~30!

Aside from the overall factor ofp/3, this result agrees with
the exact asymptotic result~4!. That the prefactor is no
given correctly has been pointed out by Nikitin and Uma
skii @1# and Davis and Pechukas@4#, among others. Nikitin
and Umanskii state that this is related to the fact that
integrand is not an analytic function of the Massey para
eter. The true prefactor can be obtained by comparison w
the solution of an exactly solvable problem. Putting as
any problems related to the prefactor, the solution~30! pre-
sents an interesting mathematical anomaly. The sinb depen-
dence in Eq.~30! agrees with the exact asymptotic result~4!,
but not with the series expansion~28a! of the integral ~27!,
which has been evaluated by the steepest-descent meth
arrive at the result~30!. In other words, it does not appea
that the standard steepest-descent evaluation of the int
~27! can reproduce the series~28a!. As such, one must con
sider the correct asymptotic evaluation of the integral~27!
for a@1 and arbitraryb as an open problem.

3. Numerical solution for arbitraryb

The integral~27! can be evaluated numerically for th
various pulse shapes considered in this paper. The nume
evaluation of the integral can be more time consuming tha
direct solution of the differential equations~11!, so there is
little benefit to be gained by using the first-order result in
dressed basis if one is interested in exact results. Neve
less, it is of some interest to compare the first-order per
bative results in the dressed basis with the exact results.
first-order perturbative results in the dressed basis are sh
as the dotted lines in Fig. 1. As seen in the figures,
first-order perturbative solution in the dressed basis qua
tively tracks the exact solution, but overestimates the tra
tion probability at largeb. For b!1, the integral solution
~27! reproduces the perturbative results~20!–~24!. For b
@1, the relative error in the solution appears to saturate
the range of b that we studied. Note that acorrect
asymptotic evaluation of the integral~27! must reproduce its
almost perfect agreement with the exact solution forb!1
and its deviations from the exact solution forb*1.
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C. Asymptotic solutions of the differential equations

Crothers@2#, Davis and Pechukas@4#, and Nikitin and
Umanskii@1# employ steepest-descent methods to solve E
~26!. For symmetric pulse shapes anda@1, the transition
amplitude is given by@15#

a2~`!;22ie2yasinxa , ~31!

where

za[xa1 iya5E
0

zc
0

Aa214b2f 2~z!dz ~32!

and zc
0 is the zero of the integrand lying closest to the re

axis in the first quadrant of the complex-z plane. Crothers@2#
presents a modified version of the result

a2~`!;2 i sechyasinxa , ~33!

which coincides with Eq.~31! whenya@1. The relative cor-
rections to Eqs.~31! and ~33! depend on the specific puls
shape, but decrease, at worst, as an inverse power ofa. In
general, the errors also decrease with increasingb. In order
to understand the approximations that are used to obtain
~31!, one must examine the zeroszc of a214b2f 2(z). In the
steepest-descent method the major contributions to the s
tion come from regions around the zeros in the upper h
plane since these are the saddle points of the integral form
the differential equations. For the solution~31! to be valid,
the zeros must be separated by a distance much greater
a21, so that the dominant contribution to the solution will b
from the zeros closest to the real axis in the upper half pla
For symmetric pulses, if there is a zero atxc1 iyc , there is
also one at2xc1 iyc . The contributions from these two ze
ros combine to give the sine function in Eq.~31!, but, in
principle, the zeros at6xc1 iyc must also be well separate
for Eq. ~31! to remain valid. For the pulse shapesf i(t) ( i
5125) considered in this work, the zeroszc and zeros clos-
est to the real axis in the first quadrantzc

0 are given by@16#

zc~hs!56 i 6~2/p!lnFb

a
1A11S b

a D 2G ,
zc

0~hs!5 i 1~2/p!lnFb

a
1A11S b

a D 2G ,
~34a!

zc~ lz!56 iA16 i S 2b

pa D , zc
0~ lz!5 iA12 i S 2b

pa D ,

~34b!

zc~hs2!56~2/p!ln~6Air 31Air 321!,

r 356S pb

2a D ,

zc
0~hs2!5~2/p!lnFAi S pb

2a D1Ai S pb

2a D21 G ,
~34c!
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zc~ lz2!56 i F16e6 ip/4AS 4b

pa D G1/2

,

zc
0~ lz2!5 i S 12eip/4A4b

pa D 1/2

, ~34d!

zc~gs!56F lnS 2b

Apa
D 1~2n11!i

p

2 G 1/2

$n,2`,`%,

zc
0~gs!5F lnS 2b

Apa
D 1 i

p

2 G 1/2

. ~34e!

The hyperbolic secant and Lorentzian pulses have a si
zero in the first quadrant@16#, the hyperbolic secant square
and Lorentzian squared pulses have two zeros in the
quadrant@16#, and the Gaussian pulse has an infinite num
of zeros in the first quadrant.

It is easy to verify that, whena@1, the zeros in the lowe
half plane are well separated from those in the upper
plane, as is required for the validity of Eq.~31!. For b@a,
the zeros in the upper half plane are well separated for e
pulse and one would expect Eq.~31! to be valid. This con-
clusion is not strictly true for the Gaussian pulse; wh
p/Aln(2b/Apa)!1, the infinite number of zeros in eac
quadrant coalesce and the zeros in the first quadrant coa
with those in the fourth, as do those in the second and t
quadrants. Nevertheless, owing to the logarithmic behav
there is a wide range ofb for which the zeros are wel
separated. On the other hand, it is also easy to verify that
each pulse shape,all the zeros in the upper half plane co
lesce forb!a, implying that the result~31! cannot be relied
upon in this perturbative limit. It is possible to modify th
asymptotic procedure to allow for coalescing zeros~and for
weighting functionsu̇ that possess poles at the position
the coalescing zeros! @3,17,18#, but we have not carried ou
such calculations for this problem.

For the hyperbolic secant pulse,zc
05b1 ia @2#. Generally

speaking, however, Eq.~32! must be evaluated numerically
In contrast to the numerical evaluation of the integral~27! or
the numerical solution of the differential equations~11!, one
does not encounter problems relating to an oscillating in
grand in Eq.~32!, allowing one to easily obtain values forza
for arbitrarily largea andb. This is an important consider
ation if one wishes to obtain reasonably good values for
transition probability in the limits of very largea and b
without extensive and difficult numerical computation. It
also possible to obtain expressions forza in the limit of large
and smallr 52b/a. As noted above, the asymptotic forms
the limit of small r may have a limited range of validity
owing to the fact that the various zeroszc are not well sepa-
rated in the complex plane. Nevertheless, results for
limit are given along with some suggestions for improvi
these results.

1. Asymptotic solution for r@1

When r @1, one can expand Eq.~32! as

za5aE
0

zc
0

dz S r f ~z!1 (
n51

`
~21!n11~2n21!!!

2nn! ~2n21!@r f ~z!#2n21D
le

st
r

lf

ch

sce
rd
r,

or

f

-

e

is

5b2aE
zc
0

`

dz r f~z!

1a (
n51

`
~21!n11~2n21!!!

2nn! ~2n21!
E

0

zc
0

dz
1

@r f ~z!#2n21
,

~35!

where the equalities*0
`dz f(z)51/2 and r 52b/a have

been used. Each term is then evaluated to give the lea
contribution whenr @1. For a pulse shape that varies
bt2m (m.1) for utu@1 @as do the Lorentzian
(b51/p, m52) and Lorentzian squared (b52/p, m54)#
pulses, one finds thatzc

0;(br)1/mexp@ip/(2m)# and

za;b1 ia~br !1/mS 1

m21

1 (
n51

`
~2n21!!!

2nn! ~2n21!~2mn2m11!
D expS ip

2m D .

~36!

On the other hand, for pulse shapes that vary
bexp@2atm# (m.1) when utu@1 @as do the hyperbolic se
cant (b51, a5p/2, m51), hyperbolic secant square
(b5p, a5p/2, m51) and Gaussian (b51/Ap, a51, m
52)# pulses, one finds thatzc

0;@ ln(rb)/a#1/m and

za;b1 i
pa

2am

1

@ ln~rb !/a#121/m
. ~37!

The corrections to Eqs.~36! and~37! depend on the specific
form of the pulse shape.

For the specific pulse shapes considered in this paper
finds

a2~`,hs!;22ie2asinb, ~38a!

a2~`,lz!;22ie21.20~ab/p!1/2
sin@b21.20~ab/p!1/2#,

~38b!

a2~`,hs2!;22ie2a/2sinb, ~38c!

a2~`,lz2!;22ie20.416a@4b/pa#1/4
sin@b

20.172a~4b/pa!1/4#, ~38d!

a2~`,gs!;22ie2ap/4lnA2b/Apasinb. ~38e!

The corrections to the arguments of the exponentials and
functions are of ordera/Ar for the Lorentzian pulse,a/r for
the hyperbolic secant squared pulse,a/r 1/4 for the Lorentzian
squared pulse, anda/( lnr)3/2 for the Gaussian pulse. Th
error correction for the Gaussian actually must be of or
unity if the zeroszc are to be well separated in the fir
quadrant of the complex plane. Thus the asymptotic form
the Gaussian cannot be considered to be totally relia
Clearly, as the field strength approaches infinity, the mag
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tude of a2(`,gs) cannot exceed unity, whereas th
asymptotic result~38e! increases~albeit very slowly! without
limit.

The asymptotic forms~38! correctly map the large-b de-
pendence of the transition probabilities shown in Fig. 1 a
are in agreement with the conclusions reached in the qu
tative discussion of the Massey parameter given in Sec.
In fact, by comparing Eqs.~15! and ~38!, one finds that all
the asymptotic results in the limit of largeb are given by the
relationship

a2~`!;22ie2KImM~zc
0
!sin@b2KReM~zc

0!#, ~39!

where

M~zc
0!;2a/~r d f /dzc

0!, ~40!

is proportional to the minimum value of the Massey para
eter whenr @1 andK is a constant of order unity that varie
with pulse shape. We conjecture that Eq.~39! is a universal
equation for the transition amplitude, even though it has b
strictly proved only for pulse shapes that vary asbt2m

(m.1) or bexp@2atm# (m.1) whenutu@1.

2. Series solution in r

When r !1, one can expand Eq.~32! as

za;aE
0

zc
0

dz S 11 (
n51

`
~21!n11~2n21!!! @r f ~z!#2n

2nn! ~2n21!
D .

~41!

Using the valueszc
0;a@ i 1r /p1O(r 2)# for the hyperbolic

secant pulse,

zc
0;aF i S 11

r 2

8p2D 1
r

2p
1O~r 3!G

for the Lorentzian pulse,

zc
0;aF i 2 iA r

2pS 12
pr

24D1A r

2pS 11
pr

24D1O~r 5/2!G
for the hyperbolic secant squared pulse,

zc
0;aF i 2 i

1

2
A r

pS 12
r

4p D1
1

2
A r

pS 11
r

4p D1
r

4p

1O~r 5/2!G
for the Lorentzian squared pulse, and

zc
0;aF i u ln~r /Ap!u1/21

p

4u ln~r /Ap!u1/2
1O~ u lnr u23/2!G

for the Gaussian pulse, it follows from Eqs.~41! and ~14!
that for the specific pulse shapes considered in this pape

a2~`,hs!;22ie2asinb, ~42a!
d
li-
I.

-

n

a2~`,lz!;22iexpF2aH 11S 6ln22122lnS 2b

pa D
16

D
3S 2b

pa D 2J G sinFb2H 11
1

4S 2b

pa D J G , ~42b!

a2~`,hs2!;22iexpF2a1A2ab

p H 0.847

20.309S pb

2a D J GsinFA2ab

p H 0.847

20.309S pb

2a D J G , ~42c!

a2~`,lz2!;22iexpF2a1Aab

p H 0.84720.232S 4b

pa D J
1aS 4b

pa D 2H 0.058620.0391lnS 4b

pa D J G
3sinFAab

p H 0.84710.232S 4b

pa D J
10.196S 4b

pa Da10.0614S 4b

pa D 2

aG , ~42d!

a2~`,gs!;22iexpF 2aU lnS 2b

Apa
D U1/2

3S 12
0.153

U lnS 2b

Apa
D U D G sinF ap

4U lnS 2b

Apa
D U1/2G .

~42e!

The corrections to the arguments of the exponentials and
functions are of orderar 3 for the Lorentzian pulse,O(ar 5/2)
for the hyperbolic secant squared pulse,O(ar 5/2) for the
Lorentzian squared pulse, andO(au lnru23/2) for the Gaussian
pulse.

Several features are present in these results that one
consider to be puzzling. Equation~42a! for the hyperbolic
secant pulse is the correct asymptotic result, despite the
that the zeros in the first and second quadrants atzc; i 6r
coalesce asr;0. For the Lorentzian pulse whose zeroszc
; i 6r /2 also coalesce asr;0, the term of orderb,
a2(`,lz);22ibe2a, agrees with the perturbation theor
result~20!, but higher-order terms do not even have the sa
functional form. For both the hyperbolic secant squared a
Lorentzian squared pulses, the lowest-order term inb does
not agree with the perturbation theory result. For examp
a2(`,hs2);22ie2a(0.847A2ab/p), whereas the pertur
bation theory result~22! is a2(`,hs2);22iabe2a. This
result is not surprising since, for the hyperbolic seca



s
s

e
a
a
it
e

su

r,
fo

g.

ns
th
e
e

th
io

y

ci

-
s
v

ic
y
-
n

c

d

-
n
,
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squared and Lorentzian squared pulses, there aretwo domi-
nant zeros in the first quadrants that coalesce asr;0. For the
hyperbolic secant squared pulse, they occur atzc(hs2)
; i (16Aab/p)1Aab/p. If one includes the contribution
from each of these zeros independently, the asymptotic re
becomes

a2~`,hs2!;24ie2asinF0.847A2ab

p GsinhF0.847A2ab

p G
;21.83iabe2a,

which has the correct functional form but differs from th
perturbation theory result by about 9%. The sin sinh beh
ior has been predicted previously by Robinson and Berm
@12# and shows that the probability envelope increases w
increasingb for b!a (r !1). For the Gaussian pulse, th
lead term of the asymptotic expansion

a2~`,gs!;22iexpF2aU lnS 2b

Apa
D U1/2G

3S ap

4U lnS 2b

Apa
D U1/2D

has no resemblance to the perturbation theory re
a2(`,gs);2 ibe2a2/4. The Gaussian pulse has aninfinite
number of zeros zc;a i @ u ln(r/Ap)u2(2n11)ip/2#1/2

$n,2`,`%, which coalesce asr;0. It remains a challenge
to modify the asymptotic results@3,17,18# so that they cor-
rectly reproduce the perturbation theory results. Moreove
would be interesting to know why the asymptotic result
the hyperbolic secant pulse is essentially exact.

3. Numerical results

The transition probabilityP254e22ya
0
sin2xa

0 for the vari-
ous pulse shapes is shown as the dashed curves in Fi
with xa

0 andya
0 obtained by numerically integrating Eq.~32!.

Aside from significant relative differences in the solutio
near the minima, which are not apparent in Fig. 1,
asymptotic and exact solutions are in very good agreem
over the entire range ofb shown in the graphs. To get som
idea of the errors involved, we have plotted the ratio of
values of the envelopes of the asymptotic and exact solut
for a55 and several values ofb in Fig. 2~a! and at fixedb
for several values ofa in Fig. 2~b!. In general, the accurac
of the solution increases with increasinga or b as one might
expect, but the rate of improvement depends on the spe
pulse shape. The values ofa andb in Fig. 2 are chosen to
ensure that the zeroszc in the first quadrant for the hyper
bolic secant squared, Lorentzian squared, and Gaus
pulses are well separated, in accordance with one of the
lidity criteria for the asymptotic solution. For the hyperbol
secant pulse, the asymptotic and exact solutions differ b
negligible amount fora.5; consequently, data for the hy
perbolic secant pulse are omitted from Fig. 2. For the Lore
zian pulse, agreement between the exact and asymptoti
lutions is good over the entire range ofb, differing at most
ult
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by of order 6%. Values ofb.20 have not been considered
for the Lorentzian pulse owing to the long integration times
required for the exact solution, but we expect the ratio of
asymptotic to exact results to diminish with increasingb.
For the hyperbolic secant squared and Lorentzian square
pulses, the asymptotic solution can beorders of magnitude
larger than the exact solution forAab!1 owing to the coa-
lescing of the two zeroszc in the first quadrant. A marked
improvement in the solution forAab!1 can be achieved if
the second saddle point is properly incorporated into the
problem. On the other hand, forAab.1, the asymptotic and
exact solutions are in excellent agreement. The relative ac
curacy for the hyperbolic secant squared pulse is better tha
that for the Lorentzian squared pulse. For the Gaussian pulse
the asymptotic solution can again be orders of magnitude
greater than the exact solution ifaAu ln(b/au@1, owing to the
coalescing of an infinite number of zeros in the first quad-
rant. This condition occurs forboth very small and very
large-b. Some evidence for the large-b behavior is seen in
Fig. 2~a!, where the ratio of the asymptotic to exact solution
grows with increasingb for b*400. Better agreement for
largeb can be obtained by using Crother’s form~33! for the
transition amplitude since it guarantees unitarity, but a

FIG. 2. Ratio of the envelope of the asymptotic solution of the
differential equations given by Eqs.~31! and ~32! for P2 to the
exact numerical results~a! as a function ofb for a55 and~b! as a
function of a for b52.8 ~Lorentzian pulse! andb575p/2 ~hyper-
bolic secant squared, Lorentzian squared, and Gaussian pulses!.
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57 89NONADIABATIC TRANSITIONS IN A TWO-LEVEL . . .
proper treatment for very small and very largeb requires one
to include the contributions from the infinite number of zer
zc in the complex plane.

V. SUMMARY

The nonadiabatic coupling of a two-level quantum syst
has been considered in detail. The specific model system
a two-level atom driven by an off-resonance radiation pu
but the calculations apply to a large class of problems. It w
shown that the dependence of the transition probability
coupling strength exhibits qualitatively different behavior f
different pulse shapes. An explanation of this feature co
be given in terms of the Massey parameter~ratio of the fre-
quency separation of the semiclassical dressed states t
coupling strength in the semiclassical dressed-state basi!. If
the Massey parameter decreases with increasing coup
strength, the transition probability envelope increases w
increasing field strength. In this limit the transition probab
ity is no longer bound by a value based on the energy-t
uncertainty principle. The uncertainty principle argument,
which the transition probability is exponentially small in th
dimensionless detuning parametera, is associated with first-
order perturbation theory~Fourier transform of the pulse!. Its
extension to the nonlinear domain depends on the p
shape and requires a pulse shape for which the Massey
rameter increases or remains constant with increasing
pling strengthb for b@1.

Numerical and asymptotic solutions have been presen
For a@1, the asymptotic solution of the differential equ
tions yields results that are in excellent agreement with
exact result, provided thatb is limited to values~usuallyb
*1) for which there are no coalescing zeroszc in the first
quadrant of the complex plane of the function@a2

14b2f 2(z)#. However, several anomalies in the asympto
solutions have been noted. In particular, there does not
pear to be a correct asymptotic evaluation of the integral~27!
encountered in first-order perturbation theory in the dres
basis. Moreover, there does not appear to be any system
way in which the asymptotic solutions of the differenti
equations approach the results of perturbation theory.

The results derived in this work could be tested us
pulsed radiation fields interacting with atoms. Two types
experiments can be envisioned. In the first, an ultrafast
diation pulse (;100 fs! is incident on atoms in a vapor cel
The pulse duration must be much less than the excited s
lifetime and pulse areas 2b greater than unity should b
accessible, but the pulse strength should not be so large
ionize the atom. With modest power density (; 101021012

W/cm2), values ofb on the order of 20 can be achieved. T
second type of experiment is one in which a beam of ato
passes through a cw laser field. If one chooses an atom
as ytterbium for which the resonance transition has a lifet
of order 1 ms, large pulse areas can be realized by us
relatively long interaction times@19#. The advantage of this
method is that the pulse shape in the atom’s rest frame
be Gaussian if the spatial profile of the laser field is Gau
ian.
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APPENDIX

Several details of the calculations are presented below

1. Perturbation series solution

Equations~1! can be solved iteratively. To first order i
b, one finds

a2
~1!52 ibE

2`

`

dt e2 iat f ~ t !. ~A1!

The third-order contribution is

a2
~3!5~2 ib!3E

2`

`

dte2 iat f ~ t !E
2`

t

dt8eiat8 f ~ t8!

3E
2`

t8
dt9e2 iat9 f ~ t9!. ~A2!

To obtain an asymptotic expansion for largea, we integrate
by partsn times to arrive at

a2
~3!;~2 ib!3E

2`

`

dt e2 iat f ~ t !E
2`

t

dt8eiat8 f ~ t8!

3 (
n51

`

~2 ia!2n~21!n11f ~n21!~ t8! e2 iat8.

~A3!

It is worth noting two things at this point. First,all terms in
the sum must be retained. The higher-order derivati
f (n21) lead to contributions that are higher order ina, com-
pensating for the (2 ia)2n dependence. Second, the integr
tion by parts technique does not work for the first-order co
tribution @Eq. ~A1!# since all terms in the asymptotic serie
vanish att5`. By interchanging the order of integration
one finds

a2
~3!;~2 ib!3E

2`

`

dt f~ t ! (
n51

`

~2 ia!2n~21!n11f ~n21!~ t !

3E
t

`

dt e2 iat f ~ t !. ~A4!

Again integrating by partsm times, one finally obtains

a2
~3!;~2 ib!3(

n51

`

(
m51

`

~21!n1m11~2 ia!2~n1m!

3E
2`

`

dt f~ t ! f ~n21!~ t ! f ~m21!~ t ! e2 iat. ~A5!

The fifth-order contribution is
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a2
~5!5~2 ib!5E

2`

`

dt e2 iat f ~ t !E
2`

t

dt8eiat8 f ~ t8!

3E
2`

t8
dt9e2 iat9 f ~ t9!E

2`

t9
dt- eiat- f ~ t-!

3E
2`

t iv

dtiv e2 iat iv f ~ t iv!. ~A6!

Using techniques similar to those used for the third-ord
contribution, one can obtain

a2
~5!;~2 ib!5 (

n,m,p,q51

`

~ ia!2~n1m1p1q!E
2`

`

dt f~ t !

3 f ~n21!~ t !e2 iat
dm21

dtm21
@ f ~ t ! f ~p21!~ t ! f ~q21!~ t !#.

~A7!

It is now possible to carry out explicit evaluations of Eq
~A1!, ~A5!, and ~A7! for the f j (t) ( j 5125) considered in
this work. In doing so, one obtains the leading terms
a21 by approximating the derivatives asf 1

(n)(t)
;(1/2)(2p/2)nn!sinhn(pt/2)cosh2(n11)(p t/2), f 2

(n)(t)
;(1/p)(22t)nn!(11t2)2(n11), f 3

(n)(t);(p/4)(2p/2)n(n
11)!sinhn(p t/2)cosh2(n12)(p t/2), f 4

(n)(t);(2/p)(22t)n(n
11)!(11t2)2(n12), and f 5

(n)(t);(1/Ap)(22t)nexp(2t2).
Using these expressions in Eqs.~A1!, ~A5!, and ~A7!, one
finds

a2~`,hs!52 i sechaS b2
b3

3!
@11O~a22!#

1
b5

5!
@11O~a22!#2••• D , ~A8a!

a2~`,lz!522ie2aFb2 2S b

2 D 3S 1

3! D @11O~a22!#

1S b

2 D 5S 1

5! D @11O~a22!#2••• G , ~A8b!

a2~`,hs2!52 ip cschaF S ab

p D2S ab

p D 3S 102p2

6 D
3@11O~a22!#13.50531025S ab

p D 5

3@11O~a22!#2••• G . ~A8c!

a2~`,lz2!522ipe2aF S ab

2p D S 11
1

a D2S ab

2p D 3S 102p2

6 D
3@11O~a22!#13.50531025S ab

2p D 5

3@11O~a22!#2••• G , ~A8d!
r

.

a2~`,gs!52 ie2a2/4Fbe2a2/42S 9b3e2a2/12

4A3pa2 D
3@11O~a22!#1

625b5e2a2/20

64A5p2a4
@11O~a22!#

2O~b7a26e2a2/28!G . ~A8e!

2. First-order perturbative solution in the dressed basis:
Series solution inb

The first-order perturbative solution in the dressed ba
~27! can also be expanded as a power series inb. The first-
order contribution is

a2
~1,1!~ad!52~b/a!E

2`

`

dt e2 iatd f /dt

52 ibE
2`

`

dt e2 iat f ~ t !, ~A9!

which is identical to the first term in the perturbative expa
sion of the exact equations. The superscript (1,n) indicates
that the result is thebn term in the expansion of the first
order perturbative solution of the dressed-state equat
~26! ~recall that the first-order perturbative solution in th
dressed-state basis contains all powers ofb). The third-order
contribution is

a2
~1,3!~ad!5~b3/a3!E

2`

`

dt e2 iat
d f

dt

3S 4 f 212iaE
0

t

dt8 @ f ~ t8!#2D ~A10!

and the fifth-order contribution is

a2
~1,5!~ad!52~b5/a5!E

2`

`

dt e2 iat
d f

dt

3F16f 418ia f 2E
0

t

dt8 @ f ~ t8!#2

18iaE
0

t

dt8 @ f ~ t8!#4

22a2S E
0

t

dt8 @ f ~ t8!#2D 2G . ~A11!

For the various pulse shapes functionsf j (t) ( j 5125), we
have evaluated theb3 terms to all orders ina21 and theb5

terms to lowest nonvanishing order ina21.
Most of the integrals are tabulated or can be done

contour integration. However, we encountered a few in
grals that do not appear in standard integral tables. For
Lorentzian and Lorentzian-squared pulses, one must eval
integrals of the form*2`

` dt e2 iattan21t /(11t2)n with n
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n51,2. These integrals can be evaluated by definingI (b)
5*2`

` dt e2 iattan21(bt) /(11t2)n, differentiating with re-
spect tob ~at which point the integral over time can b
carried out!, integrating the result overb from 0 to 12e, and
taking the limite;0. In this manner one finds

E
2`

`

dt e2 iattan21t /~11t2!52 i ~p/2!e2a@M ~a!

1N~a!#, ~A12a!

E
2`

`

dt e2 iattan21t /~11t2!252 i ~p/4!e2a@2a

1~11a!M ~a!

1~12a!N~a!#,

~A12b!

where

M ~a!5C1 ln21 lna,

N~a!5S 1

2a
2

1

4a2
1

2

8a3
2••• D , ~A13!

C.0.577 is Euler’s constant, andN(a) is the
asymptotic series(k51

` (21)k11(k21)!/(2a)k. For the
Gaussian pulse, one encounters integrals
the form *2`

` dt te2 iate2t2*0
t dt8e22t82

and

*2`
` dt te2 iate2t2(*0

t e22t82
dt8)2. The first of these can

be calculated by interchanging the order of integrat
and using integration by parts. The second can be calcul
by an n-fold integration by parts in which, at eac
step, one replaces d/dt@ tne2t2(*0

t dt8 e22t82
)2# by

22tn11e2t2(*0
t dt8 e22t82

)21tne23t2*0
t dt8e22t82

to get the
leading terms ina21. In this manner one finds

E
2`

`

dt te2 iate2t2E
0

t

dt8e22t82
5S Ap

4A3
D e2a2/12@11S~a!#,

~A14a!

E
2`

`

dt te2 iate2t2S E
0

t

e22t82
dt8 D 2

5S iA5p

8a D e2a2/20@11O~a22!#, ~A14b!

where

S~a!5A6ea2/12E
2`

`

dt te2 iate2t2erf~A2t !11

~A15!

can be developed as an asymptotic series ina22 whose lead
term is approximately equal to29.4/a2. With these results
one can carry out the integrations in Eqs.~A9!–~A11! to
obtain
f

n
ed

a2
~1!~`,hs;ad!52 i sechaFb2

b3

3! S 10

p2D S 12
p2

20a2D
1

b5

5! S 10

p2D 2S 298

300D @11O~a22!#2•••G ,

~A16a!

a2
~1!~`,lz;ad!522ie2aH b

2
2S b

2 D 3S 1

3! D S 10

p2D F12
3

5a

2
3

5a2
1M ~a!1N~a!G1S b

2 D 5S 1

5! D
3S 10

p2D 2S 298

300D @11O~a21!#2 . . . J ,

~A16b!

a2
~1!~`,hs2;ad!52 ip cschaF S ab

p D2S ab

p D 3S 16

6! D
3S 11

15p2

2a2
2

p4

a4D 1S 16

9! D S 516

630D S ab

p D 5

3@11O~a22!#2•••G , ~A16c!

a2
~1!~`,lz2;ad!522ipe2aF S ab

2p D S 11
1

a D2S ab

2p D 3S 16

6! D
2S ab

2p D 3S 16

6! D S 11
520

32a
1

4560

32a2
1

2040

32a3

2
7560

32a4
2

7560

32a5
1

7200

32a4

3@2a1~11a!M

3~a!1~12a!N~a!# D 1S 24

9! D S 516

630D
3S ab

2p D 5

@11O~a21!#2•••G , ~A16d!

a2
~1!~`,gs;ad!52 i Fbe2a2/42S 7b3e2a2/12

3A3pa2 D
3F12

3

7
S~a!G1S 51

5 Db5e2a2/20

A5p2a4

3@11O~a22!#2O~b7a26e2a2/28!G .

~A16e!
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