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Level-density fluctuations at the bottom of a potential
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We evaluate trace formulas for various perturbations of two-dimensional harmonic oscillators. Such systems
arise naturally in the expansion of generic potentials about local minima. For large enough perturbations, the
usual theory for isolated orbits applies and we can reproduce the long and medium-range oscillations in the
density of states in terms of the shortest periodic orbits. For small perturbations, or low energies, the Gutzwiller
amplitudes diverge due to the approaching degeneracy of the harmonic oscillator. We employ a perturbative
analysis of the classical dynamics to give a treatment of the trace formula that is valid near the degenerate
harmonic regime. First-order perturbation theory works for generic cases. For certain potentials, such as
Hénon-Heiles, discrete symmetries lead to a null result at first order and second-order calculations are neces-
sary to capture the dominant features.@S1050-2947~98!06002-8#

PACS number~s!: 03.65.Sq
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I. INTRODUCTION

Local harmonic approximation near the minima of pote
tials is a first step in many physical calculations. In this pa
we address some fundamental qualitative changes that
occur in quantum fluctuations of such problems when anh
monic corrections are included. These changes arise w
ever the starting harmonic approximation has degenerate
quencies, and are due to breaking of the continu
symmetries that characterize such problems. Such symm
breaking has a strong effect on the behavior of the tr
formula @1,2#, which relates fluctuations in the density
states to periodic orbits in the corresponding classical s
tem.

Suppose we start with a harmonic Hamiltonian that ha
set of frequencies (v1 , . . . ,v r) with respective degenera
cies (k1 , . . . ,kr), so that the frequencyv1 occurs with mul-
tiplicity k1 and so on. Such might be the case for the vib
tional spectrum of a molecule, for example. Trace formu
relate spectral oscillations to the classical periodic orbits
this system which, if we assume the frequenc
(v1 , . . . ,v r) to be mutually nonresonant, consist of traje
tories in which motion is confined to thekj degrees of free-
dom corresponding to a single frequencyv j , all other coor-
dinates being fixed. In this way the problem decoup
naturally into consideration of isotropic harmonic oscillato
The orbits for each one occur in (2kj21)-fold degenerate
families, filling each energy shell in the restricted pha
space corresponding tov j . The effect of anharmonicity is to
break the degeneracy of these families, so that generic

*Present address: Service de Physique The´orique, CEA Saclay,
France.
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each one is replaced by a discrete set of isolated peri
orbits.

In the trace formula, the large spectral fluctuations p
duced by the degenerate family are replaced by the m
smaller fluctuations associated with isolated orbits. Wh
any slight anharmonicity breaks the classical structure imm
diately, the effect is visible in quantal properties only as so
as classical action shifts are of the order of\ or bigger.
Typically, this means that the lowest levels remain harmo
in character and spectral fluctuations are then progressi
suppressed as energy increases. In this paper we offe
analysis of this transition and investigate in detail its beh
ior for the Hénon-Heiles potential@3# and some variants of it

Calculation of the effect on the trace formula of the brea
ing of continuous symmetries was first performed in@4#,
where the perturbation of generically integrable systems
treated. Related results have been applied to the calcula
of magnetic susceptibilities of two-dimensional electr
gases in@5#, where a small magnetic field breaks the integ
bility of certain billiard potentials. The breaking of arbitraril
degenerate symmetry, of which the harmonic oscillator is
example, was treated in@6#. Applications of this general cal
culation to the shell structure in metal clusters and in se
conductor quantum dots in external magnetic fields can
found in @7,8#. The underlying idea in all of these calcula
tions is that a calculation to first order in perturbation theo
of the actions entering in the trace formula should be su
ciently accurate to capture the transition to a regime wh
the periodic orbits are effectively isolated and the stand
trace formula for isolated orbits can take over. As point
out in @9#, it is often of great value in practical situations
use a uniform calculation that is valid for arbitrarily larg
values of the perturbation parameter. In that calculation
resonance in a two-degree-of-freedom near-integrable
788 © 1998 The American Physical Society
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57 789LEVEL-DENSITY FLUCTUATIONS AT THE BOTTOM OF . . .
tem is treated in such a way that the usual Gutzwiller exp
sion is recovered exactly in the limit of moderate to lar
perturbations. Related calculations in the uniform treatm
of bifurcations can be found in@10#. A different extension is
considered here—to cases where perturbation theory yie
null result at first order. It is then necessary at least to pas
second order in order to capture the essential features o
transition. The second-order calculation is considerably m
complex, but can be shown in the case where the first-o
result is systematically zero to result in an explicit, cano
cally invariant expression for the action shifts relevant to
trace formula.

We concentrate on the problem of a single isotropic h
monic oscillator in two degrees of freedom—highe
dimensional systems bring increased complexity of nota
but are not fundamentally different. It is also not difficult
include later the effect of decoupled degrees of freedo
Explicit exact trace formulas for two- and three-dimensio
harmonic oscillators have been given in@11#. The treatment
of anharmonic deformations in the two-dimensional ca
within the first order of classical perturbation theory has be
explicitly discussed in@6#. We review that calculation in Sec
II and in Sec. III we examine in detail the application of th
treatment to a problem in which there is a quartic anharm
nicity resulting in a potential that is a fourfold analog of th
Hénon-Heiles potential. We find that the analysis succe
fully predicts the level density oscillations up to energ
where orbits are effectively isolated and the usual trace
mulas for generic systems works.

For many problems, symmetry considerations lead t
null result at first order in perturbation theory and it is ne
essary to pass to higher order. Such is the case for
Hénon-Heiles potential, for example, where the anharmo
part of the potential is odd under spatial inversion. We of
in Sec. IV a calculation of action perturbations to seco
order. For systems in which a systematic symmetry is
sponsible for a vanishing first-order effect, the second-or
shift can be put in a form that is explicitly canonically in
variant and derives from a calculation in which perturbatio
of the trajectories themselves are needed only to first or
In Sec. V we apply this calculation to the case of the origi
Hénon-Heiles potential, finding good agreement up to a
gime where the shortest periodic orbits are sufficiently i
lated and the Gutzwiller trace formula reproduces the coa
grained level density very well@12#.

II. TRACES FOR PERTURBED
HARMONIC OSCILLATORS

The trace formula for a two-dimensional isotropic ha
monic oscillatorH5(px

21py
2)/21v2(x21y2)/2 can be writ-

ten as a simple modification of a one-dimensional version
follows:

r~E!5
E

~\v!2H 112 Re(
r 51

`

e2p irE /\vJ . ~1!

The term in brackets is proportional to the decomposition
the density of states for a one-dimensional oscillator w
energiesEn5(n11)\v. The energy factor outside reflec
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the degeneracy of levels of the two-dimensional syste
which grows with energy according todn5n11;E/\v.

Similar trace formulas are available for arbitrary oscill
tors with distinct frequenciesv j with respective degenera
cieskj . Explicit examples in two and three dimensions wi
various symmetries are given in@11#. Some elements of the
calculation are described in Appendix A. In addition to t
Thomas-Fermi density of states, there is a contribution co
ing from each orbit family, labeled by the frequencyv i at
which motion takes place. Each additional degree of deg
eracy leads to a factor ofE/\v i , resulting eventually in a
term proportional toEki21/(\v i)

ki in the amplitude. The
transverse degrees of freedom are accounted for by a m
dromy matrix termA2det (Mr2I )5) j Þ i@2isinrpvj /vi#

kj

in the denominator for ther th repetition of the primitive
orbit. It just remains to clear up numerical factors a
phases, and this is done in Appendix A. In the following, t
effect of perturbation on each orbit contribution in this mo
general case is similar to the calculation for an isotropic h
monic oscillator of the same degeneracy, except that
monodromy terms must be carried along and expressions
phase shifts must be extended somewhat. Little is lost, th
fore, in restricting the discussion to the isotropic case, as
do in the main text. Furthermore, degeneracies greater
two are different only in the degree of complexity of orb
labeling and the essential idea is captured by the tw
dimensional calculation, so that we may concentrate on
case particularly.

A semiclassical calculation of Eq.~1! from first principles
is complicated@13# due to the fact that periodic orbits ar
highly degenerate in the harmonic oscillator, filling all
phase space. An evaluation of the trace of the Green’s fu
tion using the stationary phase approximation leads to a
over orbit repetitions as above. Each contributes an inte
over the degenerate orbit family filling the energy sh
H5E @6,14#, resulting in the amplitude proportional toE
seen in Eq.~1!. Despite the comparative complexity of th
calculation, however, it is necessary to keep it in mind if w
wish to treat symmetry breaking perturbations. This is b
cause every orbit is affected differently by the perturbat
and the manner in which each contributes individually is
relevance, not just the collective final result.

In order to proceed, we will discuss in detail the labeli
of individual orbits in the harmonic oscillator and its re
evance for constructing the trace formula. This labeling
achieved using the symmetry group U(n) of the isotropic
harmonic oscillator inn dimensions. Assume that a canon
cal change of coordinates has been performed so that
Hamiltonian is( lv(Ql

21Pl
2)/2. Then the symmetry is sim

ply understood if we identify each point in phase space w
an n-dimensional complex vectoruc& whosel th component
is Ql1 iPl . The Hamiltonian is then

H5
v

2
^cuc&, ~2!

which is clearly invariant under unitary rotations o
uc&—hence the U(n) symmetry. Under time evolution, th
vector uc& is simply multiplied by the phase factore2 ivt. If
we fix the energy, we can therefore make a one-to-one
respondence between orbits in phase space and raysuc&^cu
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790 57M. BRACK, S. C. CREAGH, AND J. LAW
in the projective vector space. Points in the projective sp
are conveniently labeled by elementsuPU(n)—we fix some
reference stateuc0& and defineuc(u)&5uuc0&. The only
problem with this is that the labeling is not unique since
we precedeu with any unitary matrixv such thatvuc0&
5eiauc0&, then uv defines the same orbit asu. Therefore,
for a one-to-one labeling of periodic orbits of fixed energ
we use the space U(n)/Fix(c0) of left cosets of the subgrou
Fix(c0) of transformations leavinguc0& invariant up to a
phase. This subgroup has the structure U(1)3U(n21)—the
first component corresponding to multiplication ofuc0& by a
phase and the second to unitary rotation in the space
thogonal touc0&.

In two degrees of freedom, this procedure results in
construction of the Poincare´ sphere. Phase-space points a
identified with two-component spinors in this case. Choos
for a reference spinor the spin-up stateu1&, we find that the
corresponding reference orbit is invariant under the appl
tion of unitary matrices of the formeia1 ibs3 ~we denote by
(s1 ,s2 ,s3) the Pauli sigma matrices!. Removing this de-
generacy, distinct orbits are obtained from transformation
the form un̂&5e2 i (f/2)s3e2 i (u/2)s2u1&. In this way every or-
bit of a given energy is uniquely labeled by a vectorn̂ on the
unit sphere, for which (u,f) are the polar coordinates. Fo
concrete calculations, we will take the initial conditions
the orbit from the real and imaginary parts of the comp
nents ofun̂&. This convention is discontinuous along the m
ridian f50 because the initial coordinates depend on h
angle trigonometric functions. However, when we deal w
quantities that depend only on the orbits themselves,
discontinuity disappears and we will be left with whol
angle trigonometric functions defining single-valued fun
tions on the sphere.

In the trace formula, summation over the degenerate f
ily of orbits at each energyE is achieved by integrating ove
this sphere of orbits with a solid angle as a measure. For
unperturbed system, this integration is done trivially and
no longer evident in the result quoted in Eq.~1!. However,
this aspect of the calculation is important for the treatmen
systems with a symmetry-breaking perturbation. Then
contributing orbits violate the condition of periodicity t
some small degree and as a result a slight action varia
DS(n̂) is introduced in the integration over the orbit famil
This is taken approximately into account by including
modulation factor

M5
1

4pE dVeiDS~ n̂!/\, ~3!

with the unperturbed phase of the contribution of each o
family, as described fully in@6#. The strict definition of the
action variationDS depends on the representation in whi
one computes the trace. We will give a more complete d
cussion of this in Sec. IV. For the moment, we will just sta
that a simple calculation to first order in classical pertur
tion theory gives the following approximation:

DS~ n̂!5a R
g~ n̂!

2H1dt1O~a2!, ~4!
e
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where the perturbed Hamiltonian isH5H01aH1 andg(n̂)
is the orbit defined by the unit vectorn̂. This expression is
independent of the choice of initial condition along the orb
and of the representation in which the trace is computed.
always expect the dominant contribution to the trace form
to be a canonical invariant in this way, but with higher-ord
corrections, this situation might change.

In generic perturbations of the harmonic oscillator, use
Eq. ~4! should capture the essential behavior of the tra
until the perturbation is large enough that any surviving is
lated periodic orbits can be successfully treated by the u
Gutzwiller formula. There are cases, however, the He´non-
Heiles potential among them, where some discrete symm
of the perturbation results in a vanishing first-order pertur
tion. In such cases, it is necessary to use second-order
turbation theory to predict the leading behavior ofDS. This
calculation is considerably more complex because traje
ries in the perturbed system must be calculated explicitly
the representation in which the action is defined plays a m
prevalent role. We defer this discussion to a later section
instead illustrate the generic first-order calculation with
Hénon-Heiles-type perturbation for which this complicatio
is unnecessary.

Finally, we note that if the dimension of the isotrop
oscillator is greater, one still modulates the contribution
an orbit family with a function of the form given in Eq.~3!,
except that now the integration measure is that of the lar
projective space U(n)/Fix(c0) discussed earlier. The pres
ence of other frequencies is accounted for by including
monodromy terms of Appendix A.

III. A FOURFOLD HE´ NON-HEILES DEFORMATION

We illustrate the general discussion of the previous s
tion with an application to a harmonic oscillator perturbed
adding a potentialaV(x,y), where

V~x,y!5
3

2
x2y22

1

4
~x41y4!52

1

4
r 4cos4u. ~5!

In Fig. 1 we show a contour plot in the (x,y) plane fora
51. The potential resembles that of He´non-Heiles, but with a
fourfold instead of a threefold symmetry. Before applyin
the perturbative analysis, we describe the isolated perio
orbits that dominate spectral fluctuations at larger energ
They are shown in Fig. 1 for the energy at the saddle po
of the potential, which equalsE* 5v4/(4a). A1 denotes a
straight-line oscillation along a symmetry axis connecti
two saddle points. It is stable up to energyE.0.85E* and
then undergoes a sequence of increasingly frequent bifu
tions, alternating between being stable and unstable, un
vanishes atE5E* . A2 is another straight-line oscillation
this time along the diagonals; this orbit is stable up to en
gies aboveE52E* . The third orbitC is a rotation and is
always unstable. Each of these three orbits has a two
degeneracy: the straight-line librations because of the ch
of their orientation in the (x,y) plane, and orbitC because of
its two distinct versions connected by time reversal. Wh
these isolated orbits are sufficiently separated from e
other in phase space, the standard Gutzwiller trace form
@1# for the oscillating part of the level density applies:
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dr~E!5(
po
ApocosFSpo

\
2spo

p

2 G . ~6!

The amplitudesApo and the actionsSpo of the periodic orbits
must be evaluated numerically at each energyE; the Maslov
indices have been found to besA1

55 ~below the bifurca-

tions!, sA2
53, andsC54.

The dynamics of this system has a significant chao
component near the saddle point energyE* . Figure 2 shows
some trajectories in a surface of section for this ener
Regular and chaotic domains coexist; the circles in
middle of the regular regions are elliptic fixed points and
crosses are hyperbolic fixed points. Most of phase spac
chaotic at this critical energy, though to a lesser extent t
in the equivalent picture for the regular He´non-Heiles poten-
tial. For such moderate to large energies, the dynamic
generic and the trace formula involves summation over
lated orbits and narrow resonances corresponding to rati
tori. At lower energies, however, the approximate symme

FIG. 1. Equipotential contours of the quartic HH potential~5!
for a51. Also shown~by heavy lines! are the three shortest type
of periodic orbits in this potential:A1, A2, andC ~evaluated at the
saddle-point energyE5E* ).

FIG. 2. Poincare´ surface of section of the quartic HH potenti
at the saddle-point energyE* . The small circles and crosses ind
cate elliptic and hyperbolic fix points, respectively, correspond
to periodic orbits.
c
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of the harmonic oscillator will play an important role and
will be necessary to apply the analysis of the previous s
tion.

The quantum-mechanical eigenvalue spectrum was ca
lated, as in@12#, by diagonalization of Eq.~5! in the basis of
the unperturbed harmonic oscillator. Some typical results
the level density are shown in Fig. 3 fora50.0064 where
the critical energy isE* 539\v. Since our focus is not on
the semiclassical quantization nor on the short-range co
lations in the quantum spectrum, but on the long-range fl
tuations of the coarse-grained spectrum, we have avera
the level density by convoluting it with a Gaussian over t
energy rangeg50.25\v. In the top part of the figure, the
result of the Gutzwiller trace formula~6!, using only the
lowest harmonics (r 51) of the orbitsA1, A2, and C, is
shown as a solid line. The quantum-mechanical resul
shown as a dotted line. In the region 10\v,E,30\v, the
agreement is very good, including details of the beating p
tern that comes about through the interference of the th
periodic orbits.1 The growing discrepancies whenE.30\v
arise because some other orbits with comparable act
arise aboveE.0.85E* 533\v, which are not taken into
account. For low energies, the Gutzwiller result diverges~it

1We should point out that the amplitude of orbitA1 formally
diverges at the bifurcations points of orbitA1 at E.0.85E* . It was
simply smoothly interpolated through these points, as shown in
4 below. Errors introduced by skipping over the singularities are
evident after the energy averaging used to obtain the figure.

g

FIG. 3. Oscillating part of level density of the quartic HH po
tential with a50.0064, Gaussian averaged withg50.25\v. En-
ergy units are\v. Top: semiclassical result of the Gutzwiller trac
formula for isolated orbits~solid line!, compared to the quantum
result~dotted line!; the semiclassical result diverges for small en
gies and is not shown belowE59\v. Bottom: semiclassical first-
order perturbative result~11! ~solid line!, compared to the quantum
result ~dotted line!.
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792 57M. BRACK, S. C. CREAGH, AND J. LAW
is not shown in the figure forE,9\v) as a result of the
approaching symmetry of the unperturbed harmonic osc
tor.

Here we must apply the perturbative analysis describe
the previous section. It is a straightforward matter to evalu
the action shift in Eq.~4! for the r th repetition of an orbit
with initial conditions defined by the spinorun̂&. One gets

DS5aS 2pr

v D 3E2

8v4
~n1

22n3
2!. ~7!

Now define the dimensionless variablex by

x5
3praE2

4\v5
5

3pr

16 S E2

\vE*
D . ~8!

The resulting modulation factor is

M~x!5
1

4pE dVeix~n1
2
2n3

2
!. ~9!

It is a real function since the integration measure is symm
ric with respect to interchange ofn1 andn3 while the phase
is odd. The harmonic case is recovered in the limitx→0,
which givesM(0)51. This limit corresponds toa→0 or
E→0 ~or both!. As x increases,M(x) decreases and decay
to zero in an oscillating manner asx→`. Whenx is large
the formula for isolated orbits should be recovered in
approximate way, but for moderate values ofx it is necessary
to use Eq.~9! fully. In evaluating this integral, we are free t
rotate the coordinate system on the sphere at will. If
rotate n1

22n3
2 into 2n1n3, the integral can be evaluated a

follows:

M~x!5
1

4pE dVe2ixn1n35
1

2E0

p

sinu J0~x sin2u!du

5
p

2A2
J21/4S x

2D J1/4S x

2D . ~10!

The last line is obtained from an identity on p. 150 of@15#
following a rescaling of the integration variable and som
cancellation.

Modifying Eq. ~1! by including this modulation factor, we
obtain the perturbative trace formula for the oscillating p
of the level density:

dr~E!5
2E

~\v!2(r 51

r max

M~x!cos~2prE/\v!. ~11!

Note that sincex must be of order unity or less for th
perturbation theory to apply, the sum over the repetition
dex r has to be cut at a maximum valuer max, which is not
too large.

The numerical result obtained from Eq.~11! is shown as a
solid line in the bottom part of Fig. 3. It is compared with th
the quantum-mechanical result shown as a dotted line~both
averaged over the same energy rangeg50.25\v). The
agreement in the low-energy limit is very good. Note th
both of the two lowest harmonics (r 51 andr 52) had to be
-

in
te

t-

n

e

t

-

t

used to reproduce correctly the asymmetry of the quan
result belowE;12\v. ~For larger energies, the contribu
tions from r 52 are negligible.! Above E.14\v, the per-
turbative result starts differing from the exact one; it rep
duces some of the beat structure but with incorr
amplitudes (E.14\v corresponds tox.3.0 for the lowest
harmonic!.

It is instructive to investigate the asymptotic behavior
the modulation factor asx→`. This is done by evaluating
the solid angle integration using the stationary phase
proximation. The three isolated orbit-typesA1, A2, and C
then emerge as critical points of the phasen1

22n3
2. The har-

monic orbits labeled by these critical points on the sph
approximate the isolated orbits in the perturbed system.
example, the pair of saddle points (n1 ,n2 ,n3)5(0,61,0) la-
bel circular orbits with maximal angular momentum and c
respond to the orbit-typeC. Similarly, the two saddle points
at (n1 ,n2 ,n3)5(0,0,61) correspond to the two librating or
bits A1 and those at (n1 ,n2 ,n3)5(61,0,0) to the orbitsA2.
The asymptotic amplitudes forr 51 are predicted from the
stationary phase evaluation to vary as

AC~E!;
E

~\v!2

1

2x
5

8

3p~\v!

E*

E
,

AA1
~E!;AA2

~E!;
E

~\v!2

1

2A2x
5

8

3A2p~\v!

E*

E
.

~12!

The resulting oscillations are valid only whenx is neither too
small ~so that the underlying stationary phase approximat
is valid! nor too large~so that the perturbative procedure
still good!. In this intermediate regime the results are close
those of the usual Gutzwiller formula. Whenx is small and
the perturbative expansion valid, the expressions~12! cor-
rectly reproduce the diverging Gutzwiller amplitudes of E
~6! determined numerically, as shown in Fig. 4.

IV. HIGHER-ORDER THEORY

For the standard He´non-Heiles potential~treated in the
following section!, the basic first-order calculation used
the previous section gives a null result and it is necessar
pass to second order to calculate the dominant effect. In
section, we outline the calculation of action perturbations
higher order. Much of this discussion applies to proble
other than the harmonic oscillator, so we will keep the no
tion general as long as there is no additional cost.

For first-order shifts of the action, it was sufficient
evaluate a simple integral around the unperturbed orbit.
higher orders, it is necessary to evaluate perturbations of
orbit itself. Therefore, let us develop a perturbation exp
sion

g~ t;a!5g0~ t !1ag1~ t !1a2g2~ t !1••• ~13!

for the orbit g that replaces the periodic orbitg0 in the
perturbed system. For an arbitrary functionF(q,p) on phase
space, it is convenient to denote byXF5(]F/]p,2]F/]q)
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the corresponding Hamiltonian flow vector in phase spa
Then, insertion of the expansion forg in the equations of
motion

ġ0~ t !1aġ1~ t !1a2ġ2~ t !1•••

5XH0
~g01ag11a2g21••• !

1aXH1
~g01ag11••• ! ~14!

yields, at first order ina,

ġ1~ t !5g1~ t !•¹XH0
~ t !1XH1

~ t !. ~15!

Here, and in the future, we use the notation that when ph
space functions are to be evaluated atg0(t), we simply uset
as an argument. At higher orders, we obtain identical eq
tions of motion forgn(t), except that the inhomogeneou
term XH1

is replaced by more complicated expressions
pending on the solutions at lower orders. A good geometr
account of the systematic expansion is given in@16#. We will
concentrate on the first-order calculation.

The homogeneous part of Eq.~15! is the usual linearized
equation of motion for unperturbed dynamics around the
riodic orbit g0(t). This fact explains the first term in th
solution,

g1~ t !5M ~ t,0!g1~0!1J~ t !. ~16!

We denote byM (t,t8) the symplectic matrix linearizing mo
tion from a neighborhood ofg0(t8) to one ofg0(t) in un-

FIG. 4. Amplitudes in the trace formula of the three leadi
classical orbitsA1, A2, andC in the quartic HH potential. The thin
lines are the numerical result using the Gutzwiller trace formula
isolated orbits.~The values for the orbitA1 are given by crosses
they diverge at the bifurcation points forE.0.85E* and have been
smoothly interpolated by the long-dashed thin line.! The heavy
dashed and dotted lines are the asymptotic predictions~12! for the
C orbit ~dashed! and theA1 andA2 orbits ~dotted!.
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perturbed dynamics. For the harmonic oscillator it is simp
M (t,t8)5e2vJ(t2t8), whereJ is the unit symplectic matrix.
The second part of the solution is

J~ t !5E
0

t

dt8M ~ t,t8!XH1
~ t8!, ~17!

which is likewise a vector in the tangent space atg0(t). This
contribution reflects the fact thatM (t,t8) acts as a Green’s
function for the linearized equations of motion. This seco
part is independent of the boundary conditions placed
g(t) and will turn out to dominate the second-order acti
perturbations for the He´non-Heiles potential.

Before we proceed, it is necessary to specify the bound
conditions placed on the orbits so thatg1(0) may be com-
puted. These boundary conditions arise from the station
phase calculation of the trace of the Green’s function a
depend on the representation used for that purpose, so
must examine that calculation more carefully. In a syst
such as the harmonic oscillator where periodic orbits
very degenerate, one must be careful with the choice of r
resentation so that the Green’s function is well defined.
acceptable choice is to evaluate the trace in a mixed re
sentation, using TrĜ(E)5*dpdx8eipx8/\^puĜ(E)ux8&. This
leads to an integration over coordinatesz̄5(x8,p) of orbits
at energyE that start at positionx8 and end with momentum
p. @We will keep the initial coordinatesz85(x8,p8) primed
and the final coordinatesz5(x,p) unprimed.# These contrib-
ute with a phase dominated by the actionS(p,x8,E)5(p

2p8)x82*xdp whose derivative¹ z̄S( z̄ ,E)5J(z2z8) re-
sults in the stationary phase condition selecting periodic
bits z5z8. For the unperturbed harmonic oscillator, one
tegration can be done using stationary phase and
remaining 2n21 result in the integration over the orbit fam
ily with the measure discussed in the previous section. In
perturbed system, we retain this sequence, the difference
ing that the integration over the orbit family is nontrivia
leading to a modulation factor of the type shown in Eq.~3!.

The boundary conditions forg(t) arise from a choice of
integration direction in the first stationary phase integr
This amounts to making a choice, for each pointz0 on the
orbit manifold, of a vectorz along which we require thatS
be stationary. It leads to the condition

05z•¹ z̄S~ z̄ ,E!5z•J~z2z8!5V~z,z2z8!, ~18!

where V(j,h)5jTJh is the symplectic form (T denotes
transpose!. For systems other than the harmonic oscillat
we would choose a set of vectorsza whose number is the
codimension of the orbit family in phase space. It is reas
able to impose the condition that these vectors tra
form under the symmetry group according toz(g•z0)
5g•z(z0)—for example,z(z0)5z0 is a sensible choice fo
the harmonic oscillator. The resulting equations define a s
face in phase space of the same dimension as the per
orbit family and coinciding with it whena50. Stationary
phase integration of the trace along the direction defined bz
leaves an integral over this surface, which we choose

r
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evaluate using the measure defined by the group as in
~3!. It should be noted, however, that the surface is not
variant under the symmetry ofH0, and so there is som
ambiguity in labeling points on it with elements of the sym
metry group. This will present itself in our calculation as
freedom in the choice ofg1(0) after the condition in Eq.
~18! has been imposed. This freedom can be removed
explicit reference to the representation used for the calc
tion, but the dominant contributions to which we confine o
attention, being independent of representation, should
mately not depend on this choice. Finally, we point out t
variation in amplitude is ignored here, but should be
cluded for a consistent treatment of corrections beyond
dominant term~see@9#, for example!.

Let us now return to the imposition of boundary cond
tions ong1(t), for which we once again confine our attentio
to the harmonic oscillator. It is necessary to take into acco
the fact that the time of the contributing orbit might also va
with a. So let us develop a perturbation expansion for it:

T~a!5T01aT11a2T21•••. ~19!

The first-order estimate forz2z8 is then given by

g1~T0!1T1XH0
~0!2g1~0!5J01T1XH0

~0!, ~20!

where we used the fact thatM (T0,0)5I for the harmonic
oscillator. With this, and making use of the identi
V(XH0

,z)5dH0(z) ([z•¹H0), the stationary phase cond
tion in Eq. ~18! becomes

T1dH0~z!5V~z,J0!, ~21!

whereJ05J(T0). This determinesT1 uniquely.
We are now ready to develop the expansion for acti

Equation~4! results in an expression]S/]a5r2H1dt for
the first derivative of the action that is valid for any value
a as long as we deal with boundary conditions correctly~and
we will!. Taking one further derivative we then get

]2S

]a252H1~0!T11 R 2dH1„g1~ t !…dt. ~22!

As suspected, there is some ambiguity in this result co
sponding to the choice ofg1(0). In any case the second
order action shift in the expansionDS5aS11a2(S21R2)
1••• can be written as the sum of a representati
independent part,

S25
1

2 R 2dH1„J~ t !…dt, ~23!

and a possibly representation-dependent part,

R252
1

2
H1~0!T11

1

2 R 2dH1„M ~ t,0!g1~0!…dt.

~24!

A significant simplification occurs for systems, such
the standard He´non-Heiles potential, for which the first-orde
action shift vanishes systematically due to some disc
symmetry. One finds in such cases that the same symm
q.
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considerations result inJ050 and Eq.~21! then givesT1
50. Furthermore,J050 is equivalent to the fact thatr
2dH1„M (t,0)j…dt50 for arbitrary constant vectorsj.
Therefore we find thatR250 and the second-order actio
shift is given by the representation-independent expres
for S2 in Eq. ~23!. This confirms our expectation that th
dominant action shift should never depend on representa

We also note that there is a straightforward generaliza
to the case where there are additional degrees of free
uncoupled to the harmonic oscillator before perturbati
The problem of findingg1(t) decouples into the one abov
for the central harmonic degrees of freedom and a sepa
calculation in the remaining degrees of freedom for wh
the corresponding components ofg1(0) vanish. The action
shift is then accounted for simply by including the addition
components ofJ(t) in Eq. ~23!.

V. THE STANDARD HÉ NON-HEILES POTENTIAL

We will now apply the second-order theory developed
the previous section to the standard He´non-Heiles potential.
At low energies this is a perturbation of the harmonic osc
lator by the potentialaV(x,y), where

V~x,y!5x2y2 1
3 y352 1

3 r 3cos3u. ~25!

As mentioned before, the average of this potential arou
any orbit of the harmonic oscillator is zero and as a res
there are no first-order action shifts according to Eq.~4!. We
will therefore apply the analysis of the previous section
calculate action shifts at second order.

Let us write the phase-space gradient of this potentia
the column vector

¹H15S ¹V

0 D 5S 2xy

x22y2

0

0

D . ~26!

Then the second-order action shift in Eq.~23! is given in
coordinates by

S252
1

2 R dtE
0

t

dt8@e2vJt¹H1~ t !#T
•J•@e2vJt8¹H1~ t8!#,

~27!

whereT denotes transpose here. Evaluation of these integ
is tedious but straightforward. The result for an orbit who
initial conditions are defined byun̂& is

S25
pr

6v7
~5E227v2L2!5

prE2

6v7
~527n2

2!, ~28!

whereL is the angular momentum of the unperturbed orb
We denote

x5
pra2E2

\v7
5

pr

6 S E2

\vE*
D , ~29!
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where in this sectionE* 5v6/(6a2) is the saddle energy fo
the potential in Eq.~25!. The modulation factor is then inte
grated in terms of Fresnel functions as follows:

M~x!5
1

4pE dVeix~527n2
2
!/65E

0

1

dueix~527u2!/6

5e5ix/6
1

j
@C~j!2 iS~j!#, j5A7x

3p
. ~30!

Since this modulation factor is complex, we have to write
perturbed trace formula for the oscillating part of the lev
density as

dr~E!5
2E

~\v!2Re(
r 51

`

M~x!e2p irE /\v. ~31!

A striking feature of the phase function in Eq.~28! is that,
depending only on the energy and angular momentum,
invariant with respect to spatial rotations. This continuo
symmetry is not shared by the potential itself. It is an a
proximate symmetry that emerges in the first few terms
the perturbation expansion but which will disappear at hig
order. In fact, an examination of the terms following su
gests that the third-order action shiftS3 retains circular sym-
metry before it is finally broken at fourth order inS4 ~which
is proportional toE3). Here we will satisfy ourselves with a
truncation at second order, for which the symmetry rema

As for the first-order calculation considered in Sec. I
critical points of the phase function on the sphere sho
correspond to the isolated periodic orbits that replace
orbit family under perturbation. For the He´non-Heiles poten-
tial ~25! the shortest isolated orbits can be labeled byA, B,
andC; a detailed description of these orbits is given in@12#.
As in Sec. III, C is a rotation and is twofold degenerat
corresponding to the two senses of rotation. In the ph
function these orbits correspond to the minima
(n1 ,n2 ,n3)5(0,61,0). OrbitsA and B are each threefold
degenerate librations. In the limitE→0, they approach linea
orbits with zero angular momentum passing through the
gin. In the phase functionS2 there is actually a continuou
circle of critical points on the two meridians defined byn2
50. The isolated orbitsA andB approach orbits that lie on
this circle. When the higher-order correctionS4 is included,
this circle will be replaced by an alternating sequence o
maxima and 3 saddles corresponding to these isolated or

In Fig. 5 we compare the result of the perturbative tra
formula ~31! with exact quantum-mechanical results a
with those obtained from the Gutzwiller trace formula~6!
including orbits A, B, and C @12#. The agreement of the
present perturbative treatment with the exact quantum ca
lation is good at low energies, where the Gutzwiller formu
fails, successfully capturing the suppression of shell osc
tions for the first couple of beats. Before the perturbat
treatment starts to fail, it has reached the Gutzwiller res
there is a reasonable overlap of both semiclassical resul
the rangeE;(35240)\v. ~Note that the critical energy in
this example is atE* 5104\v.!

The stationary phase integration of the modulation fac
~30! around (n1 ,n2 ,n3)5(0,61,0) predicts the amplitude o
the orbitC contribution to the trace formula to go like
e
l

is
s
-
f
r

-

s.
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i-

3
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e

u-

-
e
t;
in

r

AC~E!;
3E

~\v!2

1

7x
5

18

7p~\v!

E*

E
. ~32!

As shown in Fig. 6, this prediction agrees with the nume
cally evaluated Gutzwiller amplitudes from Ref.@12# ex-
tremely well, even up to the critical energyE5E* . This

FIG. 5. Same as Fig. 3 for the standard cubic HH potential~25!
with a50.04. In the lower part, we show the semiclassical seco
order perturbative result of Eq.~31!.

FIG. 6. Amplitude of the circulating orbitC in the trace formula
for the standard HH potential. Solid line: numerical result using
Gutzwiller trace formula; dashed line: asymptotic prediction~32! in
the present second-order perturbation theory by stationary p
integration of the modulation factor.
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shows us that the breakdown of the present second-o
perturbation treatment found already at lower energies
Fig. 5 is mainly due to the fact that it does not yield t
isolated orbitsA andB.

VI. CONCLUSION

We have shown that the suppression of level density fl
tuations as energy increases from the bottom of poten
wells can be modeled by perturbative treatment of harmo
potentials. This suppression arises from the breaking
SU(n) symmetries characterizing multidimensional ha
monic oscillators, which appears because of the increa
importance of anharmonicities at higher energies.

For most systems a perturbative analysis of the class
dynamics to first order is sufficient to capture the essen
behavior. This has been demonstrated by explicit calcula
for a fourfold version of the He´non-Heiles potential. In cer
tain problems with a discrete symmetry, such as the us
Hénon-Heiles potential, it is necessary to compute pertur
tions of the classical action to second order. This is con
erably more complex but was seen to yield a straightforw
canonically invariant result. Explicit comparison with n
merical calculations for the He´non-Heiles potential has
shown that the second-order calculation captures the m
important features in such cases.

We finally note that the He´non-Heiles potential~25! and
potentials of the form~5! or similar were originally used in
an astrophysical context as simple models for flat galax
@3,17#. But there may actually also be use for this type
potential for modeling the confinement potential in a sem
conductor quantum dot of appropriate shape@8,18#.
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APPENDIX: ARBITRARY HARMONIC OSCILLATORS

In this Appendix we give the leading-order terms in t
semiclassical trace formula for an arbitrary harmonic os
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lator in which several nonresonant~i.e., incommensurate!
frequenciesv j occur with the degeneracieskj . The periodic
orbits are labeled by the indexi of the frequency to which
their motion is constrained, and the numberr of repetitions
of the primitive orbit. Summing over repetitions of a prim
tive orbit family i , we obtain the following contribution a
lowest order2 in \ to the density of states:

r i~E!5
2

\v i
di~E!Re(

r 51

`

Air e
2priE /\v i. ~A1!

Here,

di~E!5
1

~ki21!! F E

\v i
Gki21

~A2!

is a classical approximation to the quantum mechanical
generacy (n1k21)!/n!(k21)! of a state with energyE
5(n1k/2)\v i in a k-fold degenerate harmonic oscillato
We note in passing thatdi(E)/\v i is the Thomas-Fermi den
sity of states@2# for an isotropic harmonic oscillator of di
mensionki and frequencyv i . The amplitudesAir in Eq.
~A1! are given by

Air 5~21!rki)
j Þ i

@2isin~rpv j /v i !#
2kj ; ~A3!

they come from the amplitude termsA2det (M j
r2I ) asso-

ciated with the monodromy matricesM j for the motion in
the degrees of freedom transverse to the orbit family@11#.

To account for perturbations of this system, each su
contribution is multiplied by a modulation factor obtained b
averaging the phase shift over the corresponding orbit fam
in phase space, as described in the main text.

2Correction terms of higher order in\, both to the Thomas-Ferm
level density and its oscillating part, may be found in some
amples given in@2,11#.
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