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We evaluate trace formulas for various perturbations of two-dimensional harmonic oscillators. Such systems
arise naturally in the expansion of generic potentials about local minima. For large enough perturbations, the
usual theory for isolated orbits applies and we can reproduce the long and medium-range oscillations in the
density of states in terms of the shortest periodic orbits. For small perturbations, or low energies, the Gutzwiller
amplitudes diverge due to the approaching degeneracy of the harmonic oscillator. We employ a perturbative
analysis of the classical dynamics to give a treatment of the trace formula that is valid near the degenerate
harmonic regime. First-order perturbation theory works for generic cases. For certain potentials, such as
Henon-Heiles, discrete symmetries lead to a null result at first order and second-order calculations are neces-
sary to capture the dominant featurf81050-294{@8)06002-9

PACS numbs(s): 03.65.Sq

[. INTRODUCTION each one is replaced by a discrete set of isolated periodic
orbits.

Local harmonic approximation near the minima of poten- In the trace formula, the large spectral fluctuations pro-
tials is a first step in many physical calculations. In this papeduced by the degenerate family are replaced by the much
we address some fundamental qualitative changes that camaller fluctuations associated with isolated orbits. While
occur in quantum fluctuations of such problems when anharany slight anharmonicity breaks the classical structure imme-
monic corrections are included. These changes arise wheakately, the effect is visible in quantal properties only as soon
ever the starting harmonic approximation has degenerate frers classical action shifts are of the order7ofor bigger.
quencies, and are due to breaking of the continuougypically, this means that the lowest levels remain harmonic
symmetries that characterize such problems. Such symmetpy character and spectral fluctuations are then progressively
breaking has a strong effect on the behavior of the traceuppressed as energy increases. In this paper we offer an
formula [1,2], which relates fluctuations in the density of analysis of this transition and investigate in detail its behav-
states to periodic orbits in the corresponding classical sysior for the Henon-Heiles potentidl3] and some variants of it.
tem. Calculation of the effect on the trace formula of the break-

Suppose we start with a harmonic Hamiltonian that has ang of continuous symmetries was first performed[#],
set of frequenciesd, .. .,w,) with respective degenera- where the perturbation of generically integrable systems is
cies kq, ... k), so that the frequency, occurs with mul-  treated. Related results have been applied to the calculation
tiplicity k, and so on. Such might be the case for the vibra-of magnetic susceptibilities of two-dimensional electron
tional spectrum of a molecule, for example. Trace formulagyases if5], where a small magnetic field breaks the integra-
relate spectral oscillations to the classical periodic orbits obility of certain billiard potentials. The breaking of arbitrarily
this system which, if we assume the frequenciesdegenerate symmetry, of which the harmonic oscillator is an
(wq, . ..,0,) to be mutually nonresonant, consist of trajec-example, was treated [i6]. Applications of this general cal-
tories in which motion is confined to the degrees of free- culation to the shell structure in metal clusters and in semi-
dom corresponding to a single frequensy, all other coor-  conductor quantum dots in external magnetic fields can be
dinates being fixed. In this way the problem decouplesfound in[7,8]. The underlying idea in all of these calcula-
naturally into consideration of isotropic harmonic oscillators.tions is that a calculation to first order in perturbation theory
The orbits for each one occur in K2-1)-fold degenerate of the actions entering in the trace formula should be suffi-
families, filling each energy shell in the restricted phaseciently accurate to capture the transition to a regime where
space corresponding to; . The effect of anharmonicity is to the periodic orbits are effectively isolated and the standard
break the degeneracy of these families, so that genericallyace formula for isolated orbits can take over. As pointed

out in[9], it is often of great value in practical situations to

use a uniform calculation that is valid for arbitrarily large
*Present address: Service de Physiquéoiigee, CEA Saclay, Values of the perturbation parameter. In that calculation, a
France. resonance in a two-degree-of-freedom near-integrable sys-
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tem is treated in such a way that the usual Gutzwiller expresthe degeneracy of levels of the two-dimensional system,
sion is recovered exactly in the limit of moderate to largewhich grows with energy according th,=n+1~E/f w.
perturbations. Related calculations in the uniform treatment Similar trace formulas are available for arbitrary oscilla-
of bifurcations can be found ifL0]. A different extension is tors with distinct frequencies; with respective degenera-
considered here—to cases where perturbation theory yieldsaesk; . Explicit examples in two and three dimensions with
null result at first order. It is then necessary at least to pass tearious symmetries are given jal]. Some elements of the
second order in order to capture the essential features of thealculation are described in Appendix A. In addition to the
transition. The second-order calculation is considerably mor&@homas-Fermi density of states, there is a contribution com-
complex, but can be shown in the case where the first-ordéng from each orbit family, labeled by the frequeney at
result is systematically zero to result in an explicit, canoni-which motion takes place. Each additional degree of degen-
cally invariant expression for the action shifts relevant to theeracy leads to a factor /A w;, resulting eventually in a
trace formula. term proportional toEX~Y/(%w;)% in the amplitude. The

We concentrate on the problem of a single isotropic hartransverse degrees of freedom are accounted for by a mono-
monic oscillator in two degrees of freedom—higher- dromy matrix term+/—det (M’—I)=Hj¢i[2isinr7rwj /wi]kj
dimensional systems bring increased complexity of notationn the denominator for theth repetition of the primitive
but are not fundamentally different. It is also not difficult to orbit. It just remains to clear up numerical factors and
include later the effect of decoupled degrees of freedomphases, and this is done in Appendix A. In the following, the
Explicit exact trace formulas for two- and three-dimensionaleffect of perturbation on each orbit contribution in this most
harmonic oscillators have been given[il]. The treatment general case is similar to the calculation for an isotropic har-
of anharmonic deformations in the two-dimensional casemonic oscillator of the same degeneracy, except that the
within the first order of classical perturbation theory has beemnonodromy terms must be carried along and expressions for
explicitly discussed if6]. We review that calculation in Sec. phase shifts must be extended somewhat. Little is lost, there-
Il and in Sec. lll we examine in detail the application of this fore, in restricting the discussion to the isotropic case, as we
treatment to a problem in which there is a quartic anharmodo in the main text. Furthermore, degeneracies greater than
nicity resulting in a potential that is a fourfold analog of the two are different only in the degree of complexity of orbit
Henon-Heiles potential. We find that the analysis successiabeling and the essential idea is captured by the two-
fully predicts the level density oscillations up to energiesdimensional calculation, so that we may concentrate on that
where orbits are effectively isolated and the usual trace forcgse particularly.
mulas for generic systems works. A semiclassical calculation of E¢L) from first principles

For many problems, symmetry considerations lead to g complicated13] due to the fact that periodic orbits are
null result at first order in perturbation theory and it is nec-highly degenerate in the harmonic oscillator, filling all of
essary to pass to higher order. Such is the case for thghase space. An evaluation of the trace of the Green’s func-
Henon-Heiles potential, for example, where the anharmonigion using the stationary phase approximation leads to a sum
part of the potential is odd under spatial inversion. We offerover orbit repetitions as above. Each contributes an integral
in Sec. IV a calculation of action perturbations to secondover the degenerate orbit family filling the energy shell
order. For systems in which a systematic symmetry is reH=E [6,14], resulting in the amplitude proportional
sponsible for a vanishing first-order effect, the second-ordegeen in Eq(1). Despite the comparative complexity of this
shift can be put in a form that is explicitly canonically in- calculation, however, it is necessary to keep it in mind if we
variant and derives from a calculation in which perturbationswish to treat symmetry breaking perturbations_ This is be-
of the trajectories themselves are needed only to first ordetause every orbit is affected differently by the perturbation
In Sec. V we apply this calculation to the case of the originaland the manner in which each contributes individually is of
Henon-Heiles potential, finding good agreement up to a rerelevance, not just the collective final result.

gime where the shortest periodic orbits are sufficiently iso- |n order to proceed, we will discuss in detail the labeling
lated and the Gutzwiller trace formula reproduces the coarsesf individual orbits in the harmonic oscillator and its rel-

grained level density very weftL2]. evance for constructing the trace formula. This labeling is
achieved using the symmetry group rj(of the isotropic
Il. TRACES FOR PERTURBED harmonic oscillator im dimensions. Assume that a canoni-
HARMONIC OSCILLATORS cal change of coordinates has been performed so that the

Hamiltonian is2,w(QZ+ P?)/2. Then the symmetry is sim-
The trace formula for a two-dimensional isotropic har- ply understood if we identify each point in phase space with
monic oscillatoH :(p)2(+ pf,)/2ﬂL w?(x?+y?)/2 can be writ-  an n-dimensional complex vectdey) whoselth component
ten as a simple modification of a one-dimensional version ag Q,+iP,. The Hamiltonian is then
follows:

_ w
. H=5(vlv), @

p(E):—E 2| 1+2 ReD, 2o (1)
(hw) r=1 which is clearly invariant under unitary rotations of
|)—hence the Uf) symmetry. Under time evolution, the
The term in brackets is proportional to the decomposition ofvector| ) is simply multiplied by the phase facter '“*. If
the density of states for a one-dimensional oscillator withwe fix the energy, we can therefore make a one-to-one cor-
energiesE,=(n+1)%w. The energy factor outside reflects respondence between orbits in phase space and ¢ayg|
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in the proje.ctive vector space. Points in the proje_ctive spac@here the perturbed Hamiltonian is=Hqy+ aH; and y(n)
are conveniently labeled by elements U(n)—we fix some is the orbit defined by the unit vector. This expression is

reference statey) and define|y(u))=uliyo). The only  inqenandent of the choice of initial condition along the orbit,
problem with this is that the labeling is not unique since if 504 of the representation in which the trace is computed. We
we precedeu with any unitary matrixv such thatv|yo) always expect the dominant contribution to the trace formula

—ala ; i
=€'“|¢po), thenuv defines the same orbit as Therefore, 1, 1o 5 canonical invariant in this way, but with higher-order
for a one-to-one labeling of periodic orbits of fixed energy, .o rections. this situation might change.

we use the space dJ/Fix(y,) of left cosets of the subgroup |, generic perturbations of the harmonic oscillator, use of
Fix(yo) of transformations leavingiy) invariant up to & gq (4) should capture the essential behavior of the trace
phase. This subgroup has the structure W(UYn—1)—the  ynj| the perturbation is large enough that any surviving iso-
first component corresponding to multiplication|gh) by @ |ated periodic orbits can be successfully treated by the usual
phase and the second to unitary rotation in the space ogtzwiller formula. There are cases, however, thendte
thogonal to| ¢). _ _ Heiles potential among them, where some discrete symmetry
In two degrees of freedom, this procedure results in they the perturbation results in a vanishing first-order perturba-
construction of the Poincargphere. Phase-space points aregon, |n such cases, it is necessary to use second-order per-
identified with two-component spinors in this case. Choosingy,rpation theory to predict the leading behaviorAds. This
for a reference spinor the spin-up stgte), we find that the  cajculation is considerably more complex because trajecto-
corresponding reference orbit is invariant under the applicayies in the perturbed system must be calculated explicitly and
tion of unitary matrices of the forre'“*'%”s (we denote by  the representation in which the action is defined plays a more
(01,02,073) the Pauli sigma matricesRemoving this de-  prevalent role. We defer this discussion to a later section and
generacy, distinct orbits are obtained from transformations ojystead illustrate the generic first-order calculation with a
the form|n)y=e~(#273e=1(92)72| 1) |n this way every or- Henon-Heiles-type perturbation for which this complication
bit of a given energy is uniquely labeled by a veatoon the IS unnecessary.
unit sphere, for which ¢, ¢) are the polar coordinates. For ~ Finally, we note that if the dimension of the isotropic
concrete calculations, we will take the initial conditions of 0scillator is greater, one still modulates the contribution of
the orbit from the real and imaginary parts of the compo-an orbit family with a function of the form given in E¢3),
nents of|n). This convention is discontinuous along the me-€XCePt that now the integration measure is that of the larger
ridian ¢=0 because the initial coordinates depend on halfProjective space UO/F'_X(%) discussed earher._ The pres-
angle trigonometric functions. However, when we deal withence of other frequencies is accounted for by including the

quantities that depend only on the orbits themselves, thi'onodromy terms of Appendix A.

discontinuity disappears and we will be left with whole- ,

angle trigonometric functions defining single-valued func- !ll. A FOURFOLD HE NON-HEILES DEFORMATION
tions on the sphere.

In the trace formula, summation over the degenerate famﬂo
ily of orbits at each energk is achieved by integrating over
this sphere of orbits with a solid angle as a measure. For th
unperturbed system, this integration is done trivially and is 3 1 1
no longer evident in the result quoted in Hd). However, V(Xx,y)= Exzyz— Z(x4+y4)= - Zr4cos46. (5)
this aspect of the calculation is important for the treatment of
systems with a symmetry-breaking perturbation. Then th

contributing orbits violate the condltlon_of per|_0d|C|ty_to_ —1. The potential resembles that of rm-Heiles, but with a
some small degree and as a result a slight action varlaltlo]l%urfold instead of a threefold s !

~ . ) i ) . ymmetry. Before applying
AS(n) is introduced in the integration over the orbit family. the perturbative analysis, we describe the isolated periodic
This is taken approximately into account by including agpits that dominate spectral fluctuations at larger energies.
modulation factor They are shown in Fig. 1 for the energy at the saddle points
of the potential, which equalE* = w*/(4a). A, denotes a
straight-line oscillation along a symmetry axis connecting
two saddle points. It is stable up to energy=0.8* and
then undergoes a sequence of increasingly frequent bifurca-
{ions, alternating between being stable and unstable, until it
vanishes atE=E*. A, is another straight-line oscillation,
this time along the diagonals; this orbit is stable up to ener-
gies aboveE=2E*. The third orbitC is a rotation and is

We illustrate the general discussion of the previous sec-
n with an application to a harmonic oscillator perturbed by
eédding a potentiatrV(x,y), where

n Fig. 1 we show a contour plot in they) plane fora

1 L
M= EJ’ dQe‘AS(“W‘, (3)

with the unperturbed phase of the contribution of each orbi
family, as described fully ii6]. The strict definition of the
action variationA S depends on the representation in which

one computes the trace. We will give a more complete dis ;
b 9 P always unstable. Each of these three orbits has a twofold

cussion of this in Sec. IV. For the moment, we will just stated - the straight-line librati b f the choi
that a simple calculation to first order in classical perturba- egeneracy: the straight-ine fibrations because ot the choice

tion theory gives the following approximation: of their orientation in theX,y) plane, and orbi€ because of
' its two distinct versions connected by time reversal. When

these isolated orbits are sufficiently separated from each
AS(R) = % —H,dt+0(a?), 4 other in phase_ space, the standard Gutzw_|ller trace formula
S(n)=e ¥(n) ! (a) @ [1] for the oscillating part of the level density applies:
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FIG. 1. Equipotential contours of the quartic HH potent&)l

for a=1. Also shown(by heavy line} are the three shortest types St qm
of periodic orbits in this potentialA;, A,, andC (evaluated at the
saddle-point energg=E*). 0 10 20 30 40
E
5P(E):E Apoco{%_apoi ] (6) FIG. 3. Oscillating part of level density of the quartic HH po-
po h 2 tential with «=0.0064, Gaussian averaged with=0.2% w. En-

ergy units aréi w. Top: semiclassical result of the Gutzwiller trace

The amplitudesAy,, and the action§, of the periodic orbits  formula for isolated orbitgsolid line), compared to the quantum
must be evaluated numerically at each endtgyhe Maslov  resuilt(dotted ling; the semiclassical result diverges for small ener-
indices have been found to hey =5 (below the bifurca-  gies and is not shown belof=9%w. Bottom: semiclassical first-

tions), 0A2:3, andoc=4. order perturbative resu(tLl) (solid line), compared to the quantum

The dynamics of this system has a significant chaoti¢eSult(dotted ling.
component near the saddle point enekgy. Figure 2 shows
some trajectories in a surface of section for this energyof the harmonic oscillator will play an important role and it
Regular and chaotic domains coexist; the circles in thewill be necessary to apply the analysis of the previous sec-
middle of the regular regions are elliptic fixed points and thetion.
crosses are hyperbolic fixed points. Most of phase space is The quantum-mechanical eigenvalue spectrum was calcu-
chaotic at this critical energy, though to a lesser extent thatated, as if12], by diagonalization of Eq5) in the basis of
in the equivalent picture for the regular kten-Heiles poten- the unperturbed harmonic oscillator. Some typical results for
tial. For such moderate to large energies, the dynamics ithe level density are shown in Fig. 3 far=0.0064 where
generic and the trace formula involves summation over isothe critical energy i€* =3% w. Since our focus is not on
lated orbits and narrow resonances corresponding to rationghe semiclassical quantization nor on the short-range corre-
tori. At lower energies, however, the approximate symmetrylations in the quantum spectrum, but on the long-range fluc-
tuations of the coarse-grained spectrum, we have averaged
the level density by convoluting it with a Gaussian over the
energy rangey=0.2% w. In the top part of the figure, the
result of the Gutzwiller trace formulé6), using only the
lowest harmonicsr(=1) of the orbitsA;, A,, and C, is
shown as a solid line. The guantum-mechanical result is
shown as a dotted line. In the regionfild<E< 304 w, the
agreement is very good, including details of the beating pat-
tern that comes about through the interference of the three
periodic orbitst The growing discrepancies whé>30% o
arise because some other orbits with comparable actions
arise aboveE=0.8FE* =334 w, which are not taken into
account. For low energies, the Gutzwiller result diverges

057

Py 00

-1.0 -0.5 0.0 y 0.5 1.0

IWe should point out that the amplitude of ortA formally
FIG. 2. Poincaresurface of section of the quartic HH potential diverges at the bifurcations points of ori{ at E>0.8%*. It was

at the saddle-point enerdy*. The small circles and crosses indi- simply smoothly interpolated through these points, as shown in Fig.

cate elliptic and hyperbolic fix points, respectively, corresponding4 below. Errors introduced by skipping over the singularities are not

to periodic orbits. evident after the energy averaging used to obtain the figure.
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is not shown in the figure foOE<94 w) as a result of the
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used to reproduce correctly the asymmetry of the quantum

approaching symmetry of the unperturbed harmonic oscillaresult belowE~12% w. (For larger energies, the contribu-

tor.

tions fromr=2 are negligible. Above E=14/ w, the per-

Here we must apply the perturbative analysis described iturbative result starts differing from the exact one; it repro-
the previous section. It is a straightforward matter to evaluateluces some of the beat structure but with incorrect

the action shift in Eq(4) for the rth repetition of an orbit
with initial conditions defined by the spind)f\). One gets

27r\3E% ,
Now define the dimensionless variabiey
3mraE? 37'rr/ E?
X= = . (8)
4h w° 16 \hwE*
The resulting modulation factor is
1 2 2
M(x)= —f dQeX(Mi—n3), 9
4

amplitudes E=14% » corresponds tx=23.0 for the lowest
harmonig.

It is instructive to investigate the asymptotic behavior of
the modulation factor ag—. This is done by evaluating
the solid angle integration using the stationary phase ap-
proximation. The three isolated orbit-typds, A,, andC
then emerge as critical points of the phaﬁe ng. The har-
monic orbits labeled by these critical points on the sphere
approximate the isolated orbits in the perturbed system. For
example, the pair of saddle points;(n,,n3)=(0,+=1,0) la-
bel circular orbits with maximal angular momentum and cor-
respond to the orbit-typ€. Similarly, the two saddle points
at (ny,n,,n3)=(0,0,+1) correspond to the two librating or-
bits A; and those atr{;,n,,n3)=(*1,0,0) to the orbitA,.

The asymptotic amplitudes far=1 are predicted from the
stationary phase evaluation to vary as

It is a real function since the integration measure is symmet-

ric with respect to interchange of, andn; while the phase
is odd. The harmonic case is recovered in the lirit0,
which givesM(0)=1. This limit corresponds tec—0 or
E—0 (or both. As x increasesM(x) decreases and decays
to zero in an oscillating manner as-o. Whenx is large

the formula for isolated orbits should be recovered in an

approximate way, but for moderate valuesaf is necessary
to use Eq(9) fully. In evaluating this integral, we are free to

E 1 8 E*
Ac(E)~ (hw)22x  3m(hw) E’
Ap (B~ A (B~ —— = 8 B
(B A O 2 3vzmhe) E
(12

rotate the coordmate system on the sphere at will. If werhe resulting oscillations are valid only wheis neither too

rotate n{—n3 into 2n,n;, the integral can be evaluated as
follows:

1 ” 1(m_ _
—f dQe M= —J sinf Jo(x sin26)d 6
T 2 0

_om 3 x)J (
2\/5 —1/4 2 1/4)

The last line is obtained from an identity on p. 150[%6]

M(X)=

X

5] (10)

small (so that the underlying stationary phase approximation
is valid) nor too large(so that the perturbative procedure is
still good. In this intermediate regime the results are close to
those of the usual Gutzwiller formula. Whenis small and
the perturbative expansion valid, the expressiti® cor-
rectly reproduce the diverging Gutzwiller amplitudes of Eq.
(6) determined numerically, as shown in Fig. 4.

IV. HIGHER-ORDER THEORY

following a rescaling of the integration variable and some For the standard Hm®n-Heiles potentialtreated in the

cancellation.
Modifying Eq. (1) by including this modulation factor, we

following section), the basic first-order calculation used in
the previous section gives a null result and it is necessary to

obtain the perturbative trace formula for the oscillating partpass to second order to calculate the dominant effect. In this

of the level density:

rmax

Sp(E)=
p(E) (ha)2 S

). (11

Note that sincex must be of order unity or less for the
perturbation theory to apply, the sum over the repetition in-
dexr has to be cut at a maximum valug,,, which is not
too large.

The numerical result obtained from EdJ1) is shown as a
solid line in the bottom part of Fig. 3. It is compared with the
the gquantum-mechanical result shown as a dotted(la¢h
averaged over the same energy range0.2% w). The

section, we outline the calculation of action perturbations at
higher order. Much of this discussion applies to problems
other than the harmonic oscillator, so we will keep the nota-
tion general as long as there is no additional cost.

For first-order shifts of the action, it was sufficient to
evaluate a simple integral around the unperturbed orbit. At
higher orders, it is necessary to evaluate perturbations of the
orbit itself. Therefore, let us develop a perturbation expan-
sion

y(t; @)= yo(t) + ayi(t) + @y () + - - - (13

for the orbit y that replaces the periodic orbit, in the

agreement in the low-energy limit is very good. Note thatperturbed system. For an arbitrary functiefa,p) on phase

both of the two lowest harmonics £ 1 andr=2) had to be

space, it is convenient to denote By = (dF/dp,— dF/9q)
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perturbed dynamics. For the harmonic oscillator it is simply
M(t,t")=e~“Xt"t) whered is the unit symplectic matrix.
The second part of the solution is

t
E(t)zfodt’M(t,t’)XHl(t’), (17)

which is likewise a vector in the tangent spaceyg(t). This
contribution reflects the fact thad (t,t’) acts as a Green’s
function for the linearized equations of motion. This second
part is independent of the boundary conditions placed on
v(t) and will turn out to dominate the second-order action
perturbations for the Hen-Heiles potential.

Before we proceed, it is necessary to specify the boundary
conditions placed on the orbits so thgi(0) may be com-
puted. These boundary conditions arise from the stationary
phase calculation of the trace of the Green’s function and
depend on the representation used for that purpose, so we
00 02 04 06 08 1.0 must examine that calculation more carefully. In a system

EE" such as the harmonic oscillator where periodic orbits are
very degenerate, one must be careful with the choice of rep-

FIG. 4. Amplitudes in the trace formula of the three leading resentation so that the Green’s function is well defined. An
classical orbitsA;, A,, andC in the quartic HH potential. The thin  acceptable choice is to evaluate the trace in a mixed repre-

!ines are thg numerical result using thg Gutzwillgr trace formula forsentation, using 'fB(E) :fdpdxleipx'/h<p|é(E)|X/>. This
isolated orbits(The values for the orhif\; are given by crosses; lead ) . dinates: (x' f orbi
they diverge at the bifurcation points f&r>0.85* and have been €2dS 10 an integration over coor inates:(x’,p) of orbits

smoothly interpolated by the long-dashed thin [inhe heavy &t €NergyE that start at position” and end with momentum
dashed and dotted lines are the asymptotic predictid@isfor the  P- [We will keep the initial coordinates’ = (x",p") primed
C orbit (dashedland theA; and A, orbits (dotted. and the final coordinates= (x,p) unprimed] These contrib-
ute with a phase dominated by the acti8fp,x’,E)=(p
the corresponding Hamiltonian flow vector in phase space-p’)x’ — fxdp whose derivativeV5S(z,E)=J(z—2') re-
Then, insertion of the expansion for in the equations of sults in the stationary phase condition selecting periodic or-
motion bits z=2z'. For the unperturbed harmonic oscillator, one in-
, i ) tegration can be done using stationary phase and the
Yo(t) + ayy(t) +a®y () + - - - remaining 21— 1 result in the integration over the orbit fam-
ily with the measure discussed in the previous section. In the
perturbed system, we retain this sequence, the difference be-
ing that the integration over the orbit family is nontrivial,
FaXy, (ot ayt ) a4 leading to a modulation factor of the type shown in Eg).

The boundary conditions foyp(t) arise from a choice of
integration direction in the first stationary phase integral.
:Y1(t):')’1(t)'VXHO(t)+XH1(t)- (15) Thi_s amognts to making a choice, fgr each pm’@ton the

orbit manifold, of a vecto along which we require the®

Here, and in the future, we use the notation that when phasé’-e stationary. It leads to the condition

space functions are to be evaluatedg(t), we simply usd

as an argum_ent. At higher orders, we obta}in identical equa- O=§-Vﬁ(z_,E)z§~J(z—z’)=Q(§,z—z’), (18)
tions of motion fory,(t), except that the inhomogeneous

term Xy, is replaced by more complicated expressions de- ) ]
! \fvhere QO(&,7)=¢"Jy is the symplectic form T denotes

pending on the solutions at lower orders. A good geometrica[ P F " ther than the h . ilat
account of the systematic expansion is givefliél. We will ransposk For systems other than the harmonic osciiator,
we would choose a set of vectotg whose number is the

concentrate on the first-order calculation. . . . o .
The homogeneous part of EAQL5) is the usual linearized codlmenslon of the orbit fam[ly in phase space. It is reason-
able to impose the condition that these vectors trans-

equation of motion for unperturbed dynamics around the pe i
riodic orbit yo(t). This fact explains the first term in the (oM under the symmetry group according &(g-Z)
solution =g- {(zo)—for example,{(zy) =z, is a sensible choice for
' the harmonic oscillator. The resulting equations define a sur-
y1()=M(t,0)y1(0) + E(1). (1)  face in phase space of the same dimension as the periodic
orbit family and coinciding with it wherw=0. Stationary

We denote byM (t,t") the symplectic matrix linearizing mo- phase integration of the trace along the direction defined by
tion from a neighborhood ofy(t’) to one of yy(t) in un-  leaves an integral over this surface, which we choose to

Gutzwiller amplitudes

=Xu,(votayita®y,t- )

yields, at first order iny,
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evaluate using the measure defined by the group as in Egonsiderations result i&,=0 and Eq.(21) then givesT;
(3). It should be noted, however, that the surface is not in=0. Furthermore,Z,=0 is equivalent to the fact thaf
variant under the symmetry dfl;, and so there is some —dH;(M(t,0)6)dt=0 for arbitrary constant vectors.
ambiguity in labeling points on it with elements of the sym- Therefore we find thaR,=0 and the second-order action
metry group. This will present itself in our calculation as ashift is given by the representation-independent expression
freedom in the choice ofy;(0) after the condition in Eq. for S, in Eq. (23). This confirms our expectation that the
(18) has been imposed. This freedom can be removed bgominant action shift should never depend on representation.
explicit reference to the representation used for the calcula- We also note that there is a straightforward generalization
tion, but the dominant contributions to which we confine ourto the case where there are additional degrees of freedom
attention, being independent of representation, should ultiuncoupled to the harmonic oscillator before perturbation.
mately not depend on this choice. Finally, we point out thatThe problem of findingy,(t) decouples into the one above
variation in amplitude is ignored here, but should be in-for the central harmonic degrees of freedom and a separate
cluded for a consistent treatment of corrections beyond thealculation in the remaining degrees of freedom for which
dominant term(see[9], for examplg. the corresponding components 9f(0) vanish. The action

Let us now return to the imposition of boundary condi- shift is then accounted for simply by including the additional
tions ony,(t), for which we once again confine our attention components oE(t) in Eq. (23).
to the harmonic oscillator. It is necessary to take into account
the fact that the time of the contributing orbit might also vary  \, e STANDARD HE NON-HEILES POTENTIAL
with @. So let us develop a perturbation expansion for it:

We will now apply the second-order theory developed in

T(a)=To+aTi+a’To+ . (19 the previous section to the standardnide-Heiles potential.
_ ) ) . At low energies this is a perturbation of the harmonic oscil-
The first-order estimate fa@—z' is then given by lator by the potentiakeV(x,y), where
¥1(To) +T1 Xy (0) = y1(0)=Eo+ T1 Xy (0), (20 -

V(x,y)=x?y— 5y*=— 5 r3cos3. (25)
where we used the fact thddl(T,,0)=1 for the harmonic . _ _
oscillator. With this, and making use of the identity As mentioned before, the average of this potential around

Q(Xy .2)=dH =¢.VH,), the stationary phase condi- @Y orbit of the harmonic oscillator is zero and as a result
. ( Ho & od) (=¢ o yp there are no first-order action shifts according to &g. We
tion in Eq. (18) becomes

will therefore apply the analysis of the previous section to
calculate action shifts at second order.

21 X . . .
@D Let us write the phase-space gradient of this potential as

T1dHo($)=Q(Z,Eo),

whereE =2 (T,). This determined; uniquely. the column vector
We are now ready to develop the expansion for action.
Equation(4) results in an expressiofS/da=¢—H,dt for 2Xy
the first derivative of the action that is valid for any value of \AY; x2—y?
« as long as we deal with boundary conditions corregityd VH,;= ol o (26)
we will). Taking one further derivative we then get
0

2

—HOT+ § —dHya)at (22

da?

Then the second-order action shift in E&3) is given in
coordinates by

As suspected, there is some ambiguity in this result corre-

sponding to the choice of4(0). In anycase the second-
order action shift in the expansiohS=aS;+ a?(S,+R))

+ ...
independent part,

1
S=5 315 —dHy(E(1)dt, (23
and a possibly representation-dependent part,
1 1
Rp==5H1(0)Ty+ 5 ffi ~dHy(M(1,0)71(0))dt.
(24)

can be written as the sum of a representation-

S,= —% 3@ dtﬂdt’[e"”“VHl(t)]T~J~[e""Jt'VHl(t’)],
(27)

whereT denotes transpose here. Evaluation of these integrals
is tedious but straightforward. The result for an orbit whose

initial conditions are defined bjn) is

s

E2
oo (5-7n), (28

s
sz=§(552—7w2|_2)=

wherelL is the angular momentum of the unperturbed orbit.
We denote

A significant simplification occurs for systems, such as

the standard Heon-Heiles potential, for which the first-order

action shift vanishes systematically due to some discrete
symmetry. One finds in such cases that the same symmetry

E2
howE*

X= , (29

ar a’E? o
ho’ "6




57 LEVEL-DENSITY FLUCTUATIONS AT THE BOTTOM CF . .. 795

where in this sectiofE* = 0%/ (6«?) is the saddle energy for 20
the potential in Eq(25). The modulation factor is theninte- Wy e, 7 am
grated in terms of Fresnel functions as follows: 10
)
M(x) = ij dQeix(5—7n§)/6: flduéx(f”mz)’a E( 0
47T 0
-10 i
o1 ) 7X }
=eMEZ[CO-is®)] =z, (0 20 Gute
30 40 50 60 70
Since this modulation factor is complex, we have to write the
perturbed trace formula for the oscillating part of the level 200 e qm
density as ‘
10
2E & . o
— 2mirElhow =
Sp(E) —(hw)zRe;:)l M(x)e . (31) I 0
A striking feature of the phase function in E@8) is that, -10
depending only on the energy and angular momentum, it is 20 scl-pert
invariant with respect to spatial rotations. This continuous 0 o 20 " 20 0

symmetry is not shared by the potential itself. It is an ap- E
proximate symmetry that emerges in the first few terms of

the perturbation expansion but which will disappear at higher F|G. 5. Same as Fig. 3 for the standard cubic HH pote2al
order. In fact, an examination of the terms following sug-with a=0.04. In the lower part, we show the semiclassical second-
gests that the third-order action sH#§ retains circular sym-  order perturbative result of E¢31).

metry before it is finally broken at fourth order 8 (which

is propprtional toE®). Here we will _satisfy ourselves with a 3E 1 18 E*

truncation at second order, for which the symmetry remains. Ac(E)~ kv —.

As for the first-order calculation considered in Sec. lll, (hw)? 7% Tm(ho) E
critical points of the phase function on the sphere should o ) o ] ]
correspond to the isolated periodic orbits that replace th&S Shown in Fig. 6, this prediction agrees with the numeri-
orbit family under perturbation. For the Hen-Heiles poten- Cally evaluated Gutzwiller amplitudes from Refl2] ex-
tial (25) the shortest isolated orbits can be labeledapys,  tremely well, even up to the critical enerdy=E*. This
andC; a detailed description of these orbits is giveri 12].
As in Sec. lll,C is a rotation and is twofold degenerate,

(32

corresponding to the two senses of rotation. In the phase 8
function these orbits correspond to the minima at
(nq,n5,n3)=(0,=£1,0). OrbitsA and B are each threefold 7

degenerate librations. In the linit— O, they approach linear
orbits with zero angular momentum passing through the ori-
gin. In the phase functio®, there is actually a continuous
circle of critical points on the two meridians defined by

=0. The isolated orbité\ andB approach orbits that lie on
this circle. When the higher-order correcti®y is included,

this circle will be replaced by an alternating sequence of 3
maxima and 3 saddles corresponding to these isolated orbits.

numerical (Gutz)

AAAAAAAAAAAAAA pert (2. order)

Gutzwiller amplitude A

In Fig. 5 we compare the result of the perturbative trace 3
formula (31) with exact quantum-mechanical results and
with those obtained from the Gutzwiller trace formul 2
including orbitsA, B, and C [12]. The agreement of the
present perturbative treatment with the exact quantum calcu- 1
lation is good at low energies, where the Gutzwiller formula
fails, successfully capturing the suppression of shell oscilla- 0
tions for the first couple of beats. Before the perturbative 00 02 04 06 08 10
treatment starts to fail, it has reached the Gutzwiller result; E/E

there is a reasonable overlap of both semiclassical results in

the rangeE~ (35— 40)fiw. (Note that the critical energy in FIG. 6. Amplitude of the circulating orbfE in the trace formula

this example is aE* =104 w.) for the standard HH potential. Solid line: numerical result using the
The stationary phase integration of the modulation factoGutzwiller trace formula; dashed line: asymptotic predictid?) in

(30) around €1,n,,n3)=(0,%£1,0) predicts the amplitude of the present second-order perturbation theory by stationary phase

the orbitC contribution to the trace formula to go like integration of the modulation factor.
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shows us that the breakdown of the present second-ordéator in which several nonresonafite., incommensuraje
perturbation treatment found already at lower energies irfrequenciesw; occur with the degeneraciés. The periodic
Fig. 5 is mainly due to the fact that it does not yield the orbits are labeled by the indéxof the frequency to which

isolated orbitsA andB. their motion is constrained, and the numibeof repetitions
of the primitive orbit. Summing over repetitions of a primi-
VI. CONCLUSION tive orbit family i, we obtain the following contribution at

) . lowest ordef in % to the density of states:
We have shown that the suppression of level density fluc-

tuations as energy increases from the bottom of potential .

wells can be modeled by perturbative treatment of harmonic 2 2w o
potentials. This suppression arises from the breaking of pi(E):h_widi(E)Reer A e B (A1)
SU(n) symmetries characterizing multidimensional har-

monic oscillators, which appears because of the increased

importance of anharmonicities at higher energies. Here,
For most systems a perturbative analysis of the classical
dynamics to first order is sufficient to capture the essential 1 E Tki—1
behavior. This has been demonstrated by explicit calculation di(E)= k=Dl 7o (A2)
1 . I

for a fourfold version of the Heon-Heiles potential. In cer-
tain problems with a discrete symmetry, such as the usual
Henon-Heiles potential, it is necessary to compute perturbais a classical approximation to the quantum mechanical de-
tions of the classical action to second order. This is considgeneracy (+k—1)!/nl(k—1)! of a state with energy
erably more complex but was seen to yield a straightforward= (n+k/2)i w; in a k-fold degenerate harmonic oscillator.
canonically invariant result. Explicit comparison with nu- We note in passing thak (E)/% w; is the Thomas-Fermi den-
merical calculations for the Hwn-Heiles potential has sity of stateq2] for an isotropic harmonic oscillator of di-
shown that the second-order calculation captures the mostensionk; and frequencyw;. The amplitudes4;, in Eqg.
important features in such cases. (A1) are given by

We finally note that the Heon-Heiles potentia{25) and
potentials of the form(5) or similar were originally used in
an astrophysical context as simple models for flat galaxies A =(—1D™]] [2isin(r 7w, lw)]7X; (A3)
[3,17]. But there may actually also be use for this type of j#i
potential for modeling the confinement potential in a semi-

conductor quantum dot of appropriate shape 8. they come from the amplitude ter det (M;"—1) asso-

ciated with the monodromy matricéd; for the motion in
the degrees of freedom transverse to the orbit fafdiily.

We would like to thank Niall Whelan and other friends 10 account for perturbations of this system, each such
for useful discussions. This work was partially supported b)pontnbunon is multiplied by a modulation factor obtained by

the Commission of the European Communities under Con@veraging the phase shift over the corresponding orbit family
tract No. CHRX-CT94-0612. in phase space, as described in the main text.
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APPENDIX: ARBITRARY HARMONIC OSCILLATORS
2Correction terms of higher order f, both to the Thomas-Fermi

In this Appendix we give the leading-order terms in thelevel density and its oscillating part, may be found in some ex-
semiclassical trace formula for an arbitrary harmonic oscil-amples given irf2,11].
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