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Role that separatrices and stochastic webs play in quantum dynamics

Go. Torres-Vega, Klaus B. Mo” ller, and A. Zúñiga-Segundo
Departamento de Fı´sica, Centro de Investigacio´n y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 Me´xico,

Distrito Federal, Mexico
~Received 12 September 1997!

We numerically analyze the influence of separatrices and stochastic webs on the evolution of quantum wave
functions in phase space and we compare our findings with the corresponding classical evolution. We study the
dynamics in regular and nonregular systems, namely, in a quartic, the pendulum, and the kicked harmonic
oscillator potentials. Regardless of the specific potential, there are common features in the dynamics, some of
which are revealed when very small parts of the quantum phase-space densities are analyzed.
@S1050-2947~98!04102-X#
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I. INTRODUCTION

In previous work@1# we have noticed that the ‘‘separa
trix’’ for a discontinuous potential~namely, the step poten
tial! and the stochastic web~for the kicked harmonic oscil-
lator! seem to play an important role in the time evolution
quantum states when the dynamics is analyzed in a quan
phase space. If we define a ‘‘separatrix’’ for a step poten
of height V0 at q50 as the line joining the points (p,q)
5(pc,0) and (p,q)5(2pc,0), where pc5A2mV0 is the
minimum value of the momentum for which a classical p
ticle can cross the step, it was found for short propaga
times that the quantum state actually uses this separatr
its evolution as a road that directs its spread in phase sp
A similar behavior was found for the kicked harmonic osc
lator. Inspired by these observations, we perform in this
per numerical studies of three model systems, two reg
and a nonregular one, in order to find out if the effect
separatrices is a general characteristic of quantum mo
Also, we compare the quantum dynamics with the dynam
of the corresponding classical system. These studies
based on the evolution of classical and quantum phase-s
~quasi! probability densities.

Classical phase space is divided by separatrices and
chastic webs into regions in which different types of moti
are exhibited. Since classical densities can be discontinu
and follow classical trajectories, they find themselves
vided by the separatrix or stochastic web and each of its p
evolves according to the dynamics of the region in ph
space in which they lie. As we shall see, quantum syste
behave in a different way.

For classical systems, we study the evolution of the ini
Gaussian probability density

r~G;0!5
1

p\
e2g2~q2q0!2/\2g22~p2p0!2/\, ~1!

whereG5(p,q) denotes a point in phase space. This den
is centered at (p0 ,q0) and it has a classical width o

Dq5Aq22 q̄25g21(\/2)1/2 in the coordinate direction an

of Dp5Ap22 p̄25g(\/2)1/2 in the momentum direction
wheref (G)5*dG f (G)r(G) for any functionf (G). We have
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usedg and\ as scaling parameters such that the produc
the classical widths isDpDq5\/2 and the ratio between th
widths is controlled byg. In all our numerical investigations
we use dimensionless units, and in these unitsg is chosen in
such a way (g51) that the density has the same width in t
coordinate and the momentum directions.

The classical density evolves on some potentialV(q) ac-
cording to Liouville’s equation

]

]t
r~G;t !52F p

m

]

]q
1F~q!

]

]pGr~G;t !, ~2!

whereF(q)52dV(q)/dq is the force that the ensemble o
particles experiences. We propagate this density using
backwards method for the propagation of classical dens
with reversible equation of motion described in Refs.@2,3#.

For quantum studies, we will make use of a coherent-s
phase-space representation as described in Refs.@1,2,4,5#
and briefly reviewed below. We find this representation p
ticularly useful for our purpose since, on one hand, it allo
the analysis of quantum dynamics in a phase space in te
of wave functions in a similar manner as it is done in, f
instance, coordinate space, and, on the other hand, the sq
magnitude of the phase-space wave function is analogou
the Husimi density@6# which then is a tool for comparing
classical and quantum dynamics—formally as well as
merically. For this comparison the Husimi density see
more appropriate than other quantum phase-space den
such as, for instance, the Wigner density@7# because of its
closer resemblance to a classical phase-space proba
density@8–12#.

The rest of this paper is organized as follows. The pha
space representation that we use is briefly reviewed in S
II. After this review, we explore the role that separatric
play in classical and quantum dynamics for a quartic pot
tial in Sec. III, the pendulum in Sec. IV, and the kicke
harmonic oscillator in Sec. V. We summarize our findings
Sec. VI.

II. A PHASE-SPACE REPRESENTATION
OF QUANTUM MECHANICS

In this paper, we make use of a state-vector phase-sp
representation of nonrelativistic quantum mechan
771 © 1998 The American Physical Society
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772 57TORRES-VEGA, MO” LLER, AND ZÚÑIGA-SEGUNDO
@1,2,4,5# in which the operators associated to momentumP̂,
coordinate Q̂, and inverse coordinateQ̂21 operators are
given by

P̂°
p

2
2 i\

]

]q
, Q̂°

q

2
1 i\

]

]p
,

and

Q̂21°2
i

\
eipq/2\E dpe2 ipq/2\.

These operators do not commute with each other but, in f
satisfy the usual commutation relation@Q̂,P̂#5 i\. Then, the
phase-space Schro¨dinger equation is given by

i\
]

]t
^Guc&5F 1

2mS p

2
2 i\

]

]qD 2

1VS q

2
1 i\

]

]pD G^Guc&,

~3!

where^Guc&5c(G;t) denotes a time-dependent phase-sp
wave function. Within this representation one can analy
formally and numerically, quantum dynamics entirely in
phase space in the same way as it is done in coordinat
abstract representations.

For instance, the finding of eigenvalues and eigenfu
tions of the Hamiltonian operator can be done in a sim
way as it is done in coordinate representation by analytic
solving the eigenvalue problem or by propagating a non
tionary initial phase-space function^Guc0& and utilizing the
standard time-dependent formalism which requires of
Fourier transform limT→`*2T

T dt exp(ivt)^c0uct& from which
the eigenvalues are obtained, and

^GucE&} lim
T→`

1

2TE2T

T

dteiEt/\^Guc t&,

which gives the eigenfunctions.
The numerical propagation of a phase-space functio

carried out by a split-operator method which approxima
the propagator in the form

e2 iDtĤ/\'expF2
iDt

4\mS p

2
2 i\

]

]qD 2GexpF2 i
Dt

\

3VS q

2
1 i\

]

]pD GexpF2
iDt

4\mS p

2
2 i\

]

]qD 2G .
~4!

This is an approximation of orderO(Dt3). Although seem-
ingly difficult to apply, this is actually a very convenien
expression since a fast-Fourier-transform routine can be
lized to evaluate the action of this operator on a function
p andq @1,2#.

The diagonal matrix element of the quantum probabi
conservation equation is
t,

e
,

or

-
r
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a-

e
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s
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]

]t
^Gur̂uG&52

]

]q

1

2m
@^GuP̂r̂uG&1^Gur̂ P̂uG&#

1
]

]pF (
n5M

1

V2n(
l 51

n

^GuQ̂2 l r̂Q̂2n1 l 21uG&

1 (
n51

`

Vn(
l 50

n21

^GuQ̂l r̂Q̂n2 l 21uG&G , ~5!

wherer̂5uc&^cu is the time-dependent density operator a
where we have assumed that the potential function can
written asV(q)5(n52M

` Vnqn, for some positive integerM .
We note that the classical limit of the above equation can
discussed only when we use an explicit solutionr̂. Also, we
note that the above equation is a combination of the co
sponding equations in coordinate,

]

]t
^qur̂uq&52

]

]q

1

2m
@^quP̂r̂uq&1^qur̂ P̂uq&#,

and momentum

]

]t
^pur̂up&5

]

]pF (
n5M

1

V2n(
l 51

n

^puQ̂2 l r̂Q̂2n1 l 21up&

1 (
n51

`

Vn(
l 50

n21

^puQ̂l r̂Q̂n2 l 21up&G
spaces, providing a description of quantum dynamics w
both variables,p andq.

The normalized phase-space densityrc(G)5uc(G)u2 is
proportional to the probability of finding the system in th
stateuG& which is a member of a complete set of~unnormal-
ized! states parametrized byq andp generally characterized
as coherent states@5#. Each set of generalized coherent sta
gives rise to a phase-space representation. However, th
semblance between the resulting phase-space density a
classical probability density strongly depends on the cho
of coherent states. Here we chooseuG& to be proportional to
a minimum-uncertainty stateufp,q&, where q5^Q̂&fp,q

,

p5^P̂&fp,q
, and with equal widths in the coordinate and m

mentum directions~in dimensionless units!.
Hence, we work with a phase-space representation wh

the wave function is defined as

c~G!5
^fp,quc&

A2p\
. ~6!

In this representation the square magnitude of the wave fu
tion has a simple interpretation, namely, as the probabil
divided by 2p\, of finding the system inside a phase-spa
volumedpdq52p\ around the point (p,q). Thus the quan-
tum phase-space density constructed in this way is the
closest to a classical phase-space probability density allo
by the uncertainty principle. Furthermore, by choosing
minimum-uncertainty state to have equal uncertainties in
coordinate and momentum directions, phase space is pro
isotropically. Therefore snapshots of the phase-space de
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57 773ROLE THAT SEPARATRICES AND STOCHASTIC WEBS . . .
at different times give qualitative information about the l
cation of the quantum state in phase space.

Quantitative information can be obtained, for instance
terms of the correlation functionC(t)5 z^fp8,q8uc(t)& z2 by
measuring the height of the phase-space density at the p
(p8,q8) as a function of time. Or, the expectation values a
the uncertainties of the coordinate and momentum can
calculated from the ‘‘classical-like’’ formulas@5#,

^X̂&c5E dGxrc~G!, ~7!

^X̂2&c5E dGx2rc~G!2g72
\

2
, ~8!

whereX̂5Q̂,P̂ andx5q,p.
For our numerical studies we follow the dynamics of

system which initially is in a minimum-uncertainty state ce
tered at (p0 ,q0). Thus

c~G,0!5
1

A2p\
e2l2~q2q0!2/4\2l22~p2p0!2/4\1 i ~qp02pq0!/2\,

~9!

which gives rise to the density

rc~G,0!5
1

2p\
e2l2~q2q0!2/2\2l22~p2p0!2/2\, ~10!

where, again,l is equal to unity in dimensionless units. Th
this density represents a minimum-uncertainty state with
desired properties can easily be verified using Eqs.~7! and
~8!.

To lowest order in\, the probability current for the cente
of this density is@see Eq.~5!#

Jq~p0 ,q0!5
1

2m
@^GuP̂r̂uG&1^Gur̂ P̂uG&#

5
p0

m
rc~p0 ,q0!,

Jp~p0 ,q0!52 (
n51

`

Vn(
l 50

n21

^GuQ̂l r̂Q̂n2 l 21uG&

5FF~q0!2l22
\2

2 (
n50

`

Vn13Jp,n13q0
nGrc~p0 ,q0!,

whereJp,n115( l 50
n22l ( l 11). Thus, for a vanishing\ or in

potentials which are at most quadratic, the center of the d
sity will evolve according to classical dynamics, as o
would expect.

It should be noted that the classical density, Eq.~1!, and
the quantum density, Eq.~10!, are not identical. Neverthe
less, they share the same properties when calculated in
proper phase space and in that sense they represent the
state. In fact, the classical density, Eq.~1!, is identical to the
Wigner density corresponding to a minimum-uncertain
state@13#. However, since the Wigner density cannot, in ge
eral, be given a probabilistic interpretation we prefer to ca
out our numerical investigations and comparisons in a ph
n
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space based on projections onto minimum-uncertainty st
rather than Wigner phase space since it enables us to ex
qualitative information from snapshots of the phase-sp
density as explained above.

Furthermore, we shall see~cf. Figs. 6 and 10! that if we
represent a quantum eigenstate with the energyEn in classi-
cal phase space by a stationary solution of the classical L
ville equation of the form

r~p,q!5N e2@En2H~p,q!#2/s,

which has the classical average value of the energyEn , pre-
cisely, the phase-space density in the coherent-state repre
tation shows a much closer resemblance to this ‘‘class
analog’’ than does the Wigner density. Similar compariso
are found in Ref.@9#.

In the following we present our results of propagating t
function Eq.~9! and the classical Gaussian density Eq.~1! in
time. All results are presented in dimensionless units and
\ equal to unity.

III. QUARTIC POTENTIAL

Let us consider a minimum-uncertainty wave packet, E
~9!, moving on the potentialU(q)5q4/424q2. For this po-
tential, a classical particle can move in any of four regions
can move along the separatrix, or it can move around an
the two minima of the potential atq562A2, or it can move
around the two of them and of the separatrix when its ene
is large enough. The separatrix which separates these t
of motion is given byp21q4/228q250.

In Fig. 1 we show by means of density plots, in whic
darker regions indicate larger values of the density, the qu
tum evolution in phase space of the square magnitude of
minimum-uncertainty function Eq.~9! initially centered on
the separatrix at (p,q)5(3.933,21.5). In all of the density
plots we will show, the heights increase as a power of 1.5
order to show the parts with a small density value, with
lowest of 0.032 of the maximum height. We can see that
probability density moves on the separatrix, and that wh
one part of the density is near another part of itself, so
interference appears, facilitating the passage of probab
through that region~these regions are pointed at with a
rows!. These interferences cause a perturbation on the p
odicity of the motion of the density because, unexpected
some probability can jump back and forth between differ
parts of itself.

In Fig. 2 we show the evolution ofC(t)5 z^fuc(t)& z2
with uf& being the minimum-uncertainty state centered
(p,q)5(6,3), which is shown by the ellipse in Fig. 1~a!. In
that figure, there is a plot of its classical counterpartg(t)
5*g(p,q)r(p,q;t)dpdq, whereg(p,q) is also a Gaussian
function Eq.~1!, centered at (p,q)5(6,3), and which is also
acting as a probe function, but now in classical space. For
classical calculation, the initial densityr(p,q;t50) is a
Gaussian density Eq.~1! centered initially on the same poin
on the separatrix as the quantum one, and the propagati
governed by the classical Liouville equation. The classi
averageg(t) has peaks at regular periods in time and a
proaches a constant value because, with each oscillation
density is slowly spreading around the separatrix~see Fig. 3!.
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In contrast with the quantum evolution, the classical den
is mainly off the separatrix. The quantum overla
z^fuc(t)& z2 shows the effects of interference which brea
the periodic peaks we found in the classical calculati
These peaks can be identified with probability either com
from the original density or from interference. Due to th
interference, quantum dynamics becomes rapidly com
cated.

In Fig. 4 we show the final quantum and classical den
ties after propagation for a time oft52, when both densities
were initially centered at the bottom of the left well,
(p,q)5(0,22A2). This time, even though part of the pha

FIG. 1. Snapshots of the quantum evolution in phase space
minimum-uncertainty function moving in a quartic potential. T
initial density was centered on the separatrix.

FIG. 2. Quantum and classical overlaps with a probe state
the quartic potential. The initial densities were centered on the s
ratrix.
y

.
g

li-

i-

functions lies on and outside the separatrix, the quan
density does not escape from the well@see Fig. 4~a!# and the
motion is almost periodic, as is shown by the plot of t
overlapz^fuc& z2 @see Fig. 4~c!#. The probe function is also a
coherent state centered at the bottom of the well as is i
cated by the ellipse in Fig. 4~a!. In Fig. 4~b! we can see the
final classical density, which was divided by the separa
into three parts. One of the parts evolves inside the left w
another part moves along the separatrix, and a last part t
els outside the separatrix. We observe that the quantum
sity does not break into the pieces as the classical den
does, inhibiting motion outside the well.

Other common quantities used in the analysis of the

namics of quantum systems areDQ̂5A^Q̂2&2^Q̂&2 and^Q̂&
@14#. In Fig. 5 there are plots of these quantities and of th

classical counterpartsDq5Aq22 q̄2, all for the propagation
of Fig. 1, when the initial densities were centered on
separatrix. For short times, these classical and quan
quantities evolve in the same way. Initially, the classical d
sity is localized in the left well and, as it moves, part of

f a

r
a-

FIG. 3. Classical evolution of a Gaussian density moving in
quartic potential. The initial density was centered on the separa

FIG. 4. Snapshots of quantum and classical evolution in
quartic potential.~a! Quantum and~b! classical densities afte
evolving for a timet52. ~c! Quantum and~d! classical overlaps.
The initial densities were centered on the left bottom of the pot
tial.
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57 775ROLE THAT SEPARATRICES AND STOCHASTIC WEBS . . .
separates and is distributed inside and outside the wells
most of it oscillates around the bottom of the left well. F
this reason, we observe that the classical quantities decr
their variations, reaching an almost constant value. T
quantum density interferes with itself trying to avoid th
‘‘stringlike’’ form that the classical density takes. The initia
behavior observed in these quantities is independent of
specific potential in which the evolution takes place, as
will see below.

The eigenvalues closest to the energy of a classical
ticle on the separatrix (E50) are E51.161 677 86 and
E520.843 574 265, to which corresponds the eigenfu
tions shown in Figs. 6~a! and 6~d!, respectively. Most of the
probability is found near (p,q)5(0,0), but a small part~with
values around 0.032 of the maximum value! is found on the
separatrix and on regions of phase space which were id
fied previously as interference regions. For comparison p
poses, in Figs. 6~b! and 6~e! there are density plots of th
corresponding Wigner functions. Besides being negative
some regions in phase space, the Wigner function is not la
at the separatrix but in many other regions not related to i
to other classical orbits. In Figs. 6~c! and 6~f! there are den-
sity plots of the function

r~p,q!5N e2@En2H~p,q!#2/s,

FIG. 5. Evolution ofDQ̂, ^Q̂&, Dq, and of q̄ for the quartic
potential and when the initial density was centered on the sep
trix.

FIG. 6. Eigenfunctions with eigenvalue close to the ene
(E50) of a classical particle on the separatrix for the quartic
tential. ~a! Phase space function,~b! Wigner function, and~c! clas-
sical analog for the eigenenergyEn51.161 677 86 and similar plots
for the eigenenergyE520.843 574 265 in~d!, ~e!, and~f!.
ut
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whereN is a normalization constant,En is one of the quan-
tum eigenvalues, andH(p,q) is the Hamiltonian. It is seen
that the densities in the coherent-state representation, F
6~a! and 6~d!, look more like this ‘‘classical analog’’ than the
Wigner densities do.

IV. THE PENDULUM

In this case, the potential isV(q)5cosq and the separatrix
delimits regions of confined and nonconfined motion. In F
7~a! the initial classical density, centered at (p0 ,q0)5(0,0),
is shown. This density lies mainly inside the separatric
and it will remain inside, redistributing in that region as tim
goes on, as can be seen in Fig. 7~b!, where a snapshot of th
classical density at timet540 can be observed. In Fig. 7~c!,
a snapshot of the initial quantum density, which is also c
tered at the origin, is shown, and in Fig. 7~d!, we can see the
quantum density at timet5500. Even though part of the
quantum density lies outside the separatrices, the den
tends to stay together around the origin, changing its sh
just a little bit. So, the well at the origin and the density its
are attractors for the quantum density not allowing it to
cape.

In another evolution set, in Fig. 8~a!, we can see the initia
classical density centered at (p0 ,q0)5(0,p). In Fig. 8~b!, a
snapshot of the classical density at timet513 is shown. This
time, the separatrix has divided the density at timet50 into
five parts. There are parts of the density which lie on regio
of confined motion and remain in them, redistributing
those regions as time goes on. There is the part which lie
the separatrix, and the rest of the density moves away f
where it initially started to move. In these plots, only th
region of positiveq is shown. In Figs. 8~c! and 8~d!, snap-
shots of the quantum densities at timest50,13 are shown.
We also find something quite different from the classic
densities in Figs. 8~a! and 8~b!. In this case, the quantum

a-

y
-

FIG. 7. Classical and quantum evolution on the pendulum
tential. ~a! Initial classical density centered at (p0 ,q0)5(0,0); ~b!
classical density at timet540. Quantum densities at time~c! t50
and ~d! t5500.
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776 57TORRES-VEGA, MO” LLER, AND ZÚÑIGA-SEGUNDO
density actually moves down the separatrix, reaching reg
of phase space which cannot be explored by the class
analog. In Fig. 8~e! there is a snapshot of the quantum de
sity after a long propagation time oft570. The influence of
the separatrix on the motion of the quantum density is re
strong.

The evolution of the quantumDQ̂, ^Q̂& and classicalDq

and q̄ quantities are shown in Fig. 9 for the cases analyze
Figs. 7, 8. The upper two plots in Fig. 9 show the tim
dependency ofDQ̂ and Dq when the initial densities are
centered at (p0 ,q0)5(0,0), at the bottom of one of the po

FIG. 8. Classical and quantum evolution on the pendulum
tential. ~a! Initial classical density centered at (p0 ,q0)5(0,p); ~b!
classical density at timet513. Quantum density at times~c! t50,
~d! t513, and~e! t570.

FIG. 9. Evolution ofDQ̂, ^Q̂&, Dq, andq̄ for the pendulum. For
the upper plots, the densities were initially centered at (p0 ,q0)
5(0,0), whereas for the lower ones the densities were initially c
tered at (p0 ,q0)5(0,p).
ns
al
-

ly

in

tential wells. From the behavior ofDQ̂, we can say that the
quantum density expands and squeezes in theq direction in a
quasiperiodic way, whereas the classical density redistrib
in the well leading to an almost constant value ofDq. When
the initial densities are initially centered at (p0 ,q0)5(0,p)
~lower two plots in Fig. 9!, the quantum and classical qua

tities DQ̂ and Dq evolve in a very similar manner and, fo
long times, they evolve almost as for a free particle syste
In any case, when the evolution begins, there is a delay in
spreading followed by an increase which resembles a tr
nometric function. This time dependence is similar to the o
found for the quartic potential and in other chaotic syste
@14#.

There is one of the eigenvalues,E51.859 108 91, which
is the closest to the energy of a particle on the separa
E52. The phase-space density for this eigenene
@see Fig. 10~a!#, together with the Wigner function@see
Fig. 10~b!#, and the ‘‘classical analog’’ r(p,q)
5Nexp$2@En2H(p,q)#2/s% @see Fig. 10~c!#, are shown in
Fig. 10. The phase-space density has a large probab
around where the separatrix touches, the hyperbolic po
and in the interference regions which allow the probability
jump between different parts of the density. The classi
analog lies almost on the separatrix and it also has a la
probability around the hyperbolic points. The Wigner fun
tion has no resemblance to any classical trajectory at all

V. THE KICKED HARMONIC OSCILLATOR

So far we have only considered regular systems and
question now is if the same type of behavior is found
nonregular ones. Then, we now turn our attention to
kicked harmonic oscillator model with mapping@15,16#

-

-

FIG. 10. Eigenfunction with eigenvalue closest to the energy
a particle on the separatrix for the pendulum potential.~a! Phase
function, ~b! Wigner function, and~c! classical analog.
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pn115~pn1Ksinqn!cosa2qnsina,

qn115~pn1Ksinqn!sina1qncosa. ~11!

In this system, there is a stochastic web in phase space w
depends upon the values of the constantsK anda.

In Fig. 11, we show the result of a numerical quantu
propagation of the phase-space minimum-uncertainty fu
tion, Eq. ~9! in this system. Parts of the stochastic web a
density plots of the quantum densityuc(G;t)u2 for K50.45
and a5p/2, at different times, are shown. The minimum
uncertainty function, Eq.~9!, was initially centered at
(p0 ,q0)5(0,2p), i.e., at one of the intersections of the we
In the beginning of the evolution, the function spreads rat
quickly on phase space, but due to interference effects
the web, it does not spread that far from the original locat
at which it started to move, and sometimes it almost retu
to its initial form and location@see Figs. 11~b! and 11~c!#.
From these numerical calculations, it is evident that
quantum system uses the stochastic web in order to disp
and redistribute around in phase space faster than its clas
model, but the interference effects inhibits the spreading
regions far away from the original location.

In another propagation set~see Fig. 12!, we had centered
the initial function at (p,q)5(0,0), i.e., in the center of one
of the regular regions. This time, the stochastic web is u
by the quantum density in a different way. The density jum
from a regular region to another through the intersections
the web. The motion was periodic during the propagati
oscillating between states like the one shown in Fig. 12~b!
and the one in Fig. 12~c!. The density jumps four or five
regions away around the original location@see Fig. 12~b!#,
and then it jumps back to the original site, almost recover
its original shape@see Fig. 12~c!#. Even though it seems tha
the phase-space density periodically almost returns to
original shape, the analysis of the small parts of the ph

FIG. 11. Quantum evolution in the kicked harmonic oscilla
map, for K50.45 and a5p/2. ~a! Initial density centered a
(p0 ,q0)5(0,2p). Densities at times~b! 1178.09 and~c! 4099.78.
ich
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density@see Fig. 12~d!# shows that it is actually distributed
on a wider region, similar to that of Fig. 12~b!.

The case of fivefold symmetry is shown in Fig. 13, whe
K50.2 anda52p/5. In the first and second rows of plot
from top to bottom, the initial density was centered on tw

FIG. 12. Quantum evolution in the kicked harmonic oscillat
map, for K50.45 and a5p/2. ~a! Initial density centered at
(p0 ,q0)5(0,0). Densities just after the~b! 21 700th and ~c!
32 300th kicks.~d! is the same as~c! but showing the parts with
very small probability.

FIG. 13. Quantum evolution for the kicked harmonic oscillat
map fora52p/5 andK50.2. In the two upper rows of plots th
densities were initially centered at two different points on the s
chastic web. In the bottom row, the density was initially centered
the center of one of the regular regions.
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FIG. 14. Long time quantum evolution ofDQ̂ and^Q̂& for the kicked harmonic oscillator map for the casesK50.1 ~upper row of plots!
andK51 ~lower row of plots!, with a52p/5.
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points on the stochastic web, whereas in the lower row it w
initially centered in the middle of one of the regular region
The left plot in each row shows the initial density, where
middle and right plots show the final densities but with co
tour levels increasing as the powers 1.7 and 6, respectiv
The smallest heights shown are 0.02 and 1026 of the maxi-
mum height for each density. The conclusions drawn a
looking at the final densities can be very different, depend
on the scheme adopted to choose the heights of the con
levels. When the height of the contour levels increases as
power 1.7~which corresponds to the plots in the middle
each row in Fig. 13! we conclude that when the quantu
density is initially centered on a separatrix, it slowly red
tributes itself on the web, but it does not travel too far fro
the ‘‘ring’’ where it started. Then, as time increases, t
density traces and highlights part of the web. When the d
sity is initially centered in the middle of one of the regul
regions~bottom row of plots in Fig. 13!, the density never
abandons the region. However, when we adopt the schem
which the height of the contour levels increases as a powe
we find that something subtle happens~right plots in Fig.
13!: very small amounts of the density actually fill a wid
region in phase space, even in the case where we though
the density was trapped in a regular region.

With the increase ofK, the thickness and complexity o
the stochastic web increases and the quantum density fin
easier to diffuse in phase space, as we can see in Fig. 1

which we show plots ofDQ̂5A^Q̂2&2^Q̂&2, ^Q̂&, and
uc(q,p;t)u2 after a long propagation time corresponding
the case of the upper row of plots in Fig. 13, with the dens
initially centered at the same point in phase space. In
upper row of plots,K50.1 and, by looking at the behavior o
DQ̂, we see how the width of the wave functions increa
rapidly reaching an oscillatory value around 10. The spre
ing of the wave function is also reflected in the values t

^Q̂& takes; initially the probability density is centered arou
the point (p0 ,q0) and starts to rotate and spread around
s
.
s
-
ly.

r
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hat
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e

origin. As the wave function is redistributed in phase spa
the averagê Q̂& oscillates between smaller values arou
zero. Typically, the probability density in phase space loo
like the one shown in the rightmost upper plot of Fig. 1
The behavior for larger values ofK is the same one, as ca
be observed in the lower row of plots in Fig. 14 in whic
K51; the behavior is the same but ten times faster compa
with the behavior forK50.1. However, the probability den
sity for K51 suggests the same web as for the case
K50.1, even though the web is much wider, with large
gions of chaotic behavior. The widening of the web enhan
the process of redistribution of the wave function but th
does not increase the extension that it covers; the wave f
tion stays together and does not allow for further spread

For the classical system, the evolution ofDq and q̄ is
shown in Fig. 15.Dq also increases very rapidly until i
reaches values around a value which is smaller than
quantum one. The fact that the classical density does not
the separatrix to reach classically unavailable regions
phase space is reflected in the evolution ofDq and of q̄
which oscillates with large amplitudes.

VI. CONCLUDING REMARKS

Separatrices and stochastic webs are traveled in diffe
ways in a quantum and classical phase space. If part
classical system happens to lie on a separatrix or web
regular region, it will travel on it forever, but a quantu
density will use them in order to gain access to classica
unreachable regions of phase space. Thus this is ano
mechanism, similar to that of tunneling, that distinguish
quantum evolution.

We found that, for the kicked harmonic oscillator, due
interference effects, even though the quantum density
more freedom to wander in phase space, it covers jus
region in the vicinity of the initial site, inhibiting the disper
sion away from it, inhibiting chaos in a classical sense.
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FIG. 15. Classical evolution ofDq and q̄ for the kicked harmonic oscillator map for the casesK50.1 ~upper row of plots! andK51
~lower row of plots!, with a52p/5.
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We have found general features which apply to quant
systems, regardless of whether the system is regular or
or the potential is continuous or not. One of these feature
that since the wave function cannot be discontinuous
phase space, it becomes more rounded than its classical
log and it can break apart into pieces before it gets ‘‘t
thin.’’ According to this, the separatrix or stochastic w
does not partition the quantum density as happens in
classical case, instead it is used as a road to classically
available regions in phase space. The amount of the clas
density which lies on the web is fixed at the initial time a
only this amount diffuses through the stochastic web. T
rest of the density moves in regions of regular motion. W
have also found that the quantum density actually is attra
to fixed points and to separatrices and stochastic webs o
corresponding classical system.

Regardless of whether the system is integrable or
classical or quantum, when the density spreads,DQ̂ remains
s

m

ot,
is
n
na-

e
n-

cal

e
e
d

he

t,

constant for a short time and then rises and oscillates, sim
to a cosine function.

Finally, we can say that different information about th
dynamics of quantum systems is obtained by looking at
different heights of the quantum probability density in pha
space. The peaks of the density show some of the clas
features, things like scars@11#, whereas the zeros of th
phase-space densities can be used to determine if a parti
eigenstate is a regular or an irregular one@12#. In this work
we have shown that the parts of probability densities w
small values are also important in the elucidation of the e
lution of quantum systems.
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