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On the basis of the invariant formulation, we find the quantum and classical exact solutions and correspond-
ing total phase for the relativistic charged Klein-Gord&@) field in a time-dependent spatially homogeneous
electric field. The total phase includes both the dynamical and geometric plAdsesnov-Anandan phases
The connection between the quantum and classical solutions is then obtained. From this connection we discuss
the condition under which the geometric phase for the KG field can be defig2@50-29478)03002-9

PACS numbdps): 03.65.Bz, 03.65.Pm

I. INTRODUCTION mulation in[4,5,7,9 is used to investigate both the classical
and especially the quantum Klein-Gord@K{G) field. The

Since Berry’s discovery of the geometric phase in theclassical and quantum exact solutions in the phase formula-
quantum adiabatic evolution, there has been a great deal &ibn for a particular case of the KG field are obtained. With
theoretical and experimental works on this quantum hothe help of the coherent state, we then discuss the classical
lonomy phenomenon referred to as Berry phsk In a  correspondence and establish the connection between the
fundamental generalization of Berry’s idea, Aharonov andclassical exact solutions and the quantum ones.
Anandan removed the adiabatic condition and studied the In [10] Anandan and Mazur studied the geometric phase
geometric phase for any cyclic evolutip®]. Anandan then for the classical KG field equation that is second order in
pointed out that, in principle, the study of any noncyclic time and reached a conclusion that the condition under which
evolution can reduce to the study of cyclic evolution andthe geometric phase can be defined is thattisea) particle
corresponding phasgs$]. The Lewis-Riesenfeld invariant creation(annihilation is absen{equivalent to the absence of
theory[4] was generalized, by introducing a concept of thethe external electric fie)d It is important to note that, in
basic invariants, and used to show explicitly that the study of10], the condition was obtained without carefully investigat-
the exact solutions corresponding to any noncyclic evolutioring the corresponding quantum theory of the KG field. Ap-
of the driven generalized time-dependent oscillator can reparently, since the creatidannihilatior) of KG field-theory-
duce to the study of the cyclic evolution and correspondingoarticles is a quantum concept, the quantum KG field theory
total phase, including both the geometric phase and dynamphould be discussed in order to know more about the condi-
cal phasg[5]. Then, it became more and more recognizedtion. In the present paper, the quantum KG field theory is
that there are actually nothing but different names and atstudied in detail and the connection between the classical
tributes given to various parts of the total ph@6as long exact solutions and the quantum ones is established. This
as the exact solution of the time-dependent Sdimger connection makes it possible to add something to the result
equation with a time-dependent Hamiltonian is concernedobtained in[10].
The invariant formulation(representationin [4,5] for ob-
taining the exact solutions for systems with time-dependent

Hamiltonians is closely related to the study of the phase; it Il EXACT SOLUTIONS FOR THE CLASSICAL
may then be referred to as the phase formulatiepresen- CHARGED KG FIELD
tation).

. . . . In this section, we study a particular case of the classical

. The invariant theory was further gxtended for myesUgat-KG field in which the homogeneity is assumed for the exter-

Ing the quantum as W_e” as cla}ssmal systems with NONG Al time-dependent electric field. The Lagrangian density for

Hermitian Hamiltonians; for classical ones, the correspondy, complex scalar KG field interacting with an external elec-

ing geometric phase is shown to be the nonad'abat"fromagnetic field is given by

generalization of the Hannay andlé]. Recently, it has be-

come evident that the invariant formulation[i,5] can also

be applied to the treatment of more than one-dimensional |_:((9M+ieAlu)¢*((9M_ieAM)¢_m2¢*¢, (2.0

time-dependent quantum systeméncluding infinite-

dimensional systems: quantum fielgg9]) if a complete

set of invariants can be found. which leads to the following time-dependent Hamiltonian in
In this paper the invariant formulation or the phase for-the Weyl gaugeA®=0 [8]:
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H(t)=f B[ 7* 7w+ (V+ieA) ¢* - (V—ieA)p+mie* ¢],
(2.2

where the canonical momentum densitiesind 7* are de-
fined as7m=dL/d(dpp) andw* =JLI3(dy*). The canoni-
cal Poisson brackets are

{m(F.0, (" D)} =—3(F—1"),
{m* (F,0),¢* (F, 1)} = = 8%(F "),

{m(r,0), 7 (7", )} ={p(F,1),¢* (I, 1)}
={m(r,t),¢* (7", 1)}

={m*(F,1), (7" ,1)}=0. (2.3

If the homogeneity is assumed for the external time- _
dependent electric field, we can employ the “momentum ot

representation’[8]

1

(ﬁ(l?,t): W J’ d3IZ eikﬁ‘r)F(E,t),

1 e
¢*(r”,t)=(zT)3,§ f dk e kK TE* (K, 1),

w(r*,t)=%mfd3lz e KTP(K,t),

1

w*(F,t)=m f d3k €K TP* (K, t), (2.9

H(t):f d3k{P* (k,t) P(K,t)
+[(K—eA)2+m2]F* (K,t)F(K,t)
=f d3k H(K,1). (2.5
The corresponding canonical Poisson brackets are
{P(K,1),F(k,t)}=—8%(k—K),

{P*(Kk,t),F*(k,t)}=—8%(k—Kk"),

{P(K,1),P* (K", )} ={F(K,1),F* (K" ,1)}
={P(k,t),F*(k’,t)}
={P*(k,t),F(K',t)}=0. (2.6)

It is then easy to get the canonical equations Fqk),
P*(K), F*(k), andP(k):
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F(K,t)={F(K,t),H(t)}=P* (K1),
F* (K1) ={F*(K,t),H(t)}=P(K,1),
P(K,t)={P(K,t),H()}= —a(k,H) F* (K1),

P*(K,H)={P*(K,t),H(t)} = —a(k,t)F(K,t), (2.7

wherea(k,t)=[Kk—eA(Kk,t) ]2+ m?2. This equation can be re-
written in the matrix form

9 ( F(lZ,t))
! P*(K,t)

0 i)(F(R,t)) .
_ia 0 P*(Iz,t) ’ ( )

0 i)(F(E,t)) 25
—ia 0/\p*(k,¢t)/ '

.g(F*(IZ,t))
"o\ Pkt

Apparently, we only have to solve E@2.8) since Eg.
(2.9 is the complex conjugate to ER.8). Equation(2.8) is
of Schralinger type with the non-Hermitian Hamiltonian
(gia o). The corresponding invariant can be easily ob-
tained[7] (see Appendix R

—p(k,H)p(k,b) p2(K,t)
1(K,t)= ~
p?(K.1)

+p2(kt)  p(K,t)p(K.t)
(2.10

wherep(E,t) is the real solution of the auxiliary equation

p(K, Kt)p(Kt)= ——=. 2.1
R +ak Dok = s (211
The eigenkets of(K,t) are
-
= ko= Yo
Fi[1Fip(k,t)p(k,t)]
L(k,t)| =,k t)=Fi|+ k,t). (2.12

According to the invariant theory ifi7] (see Appendix B
the general solution of Eq2.7) is
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. R.o(Kk if)(lZ,t)_FR K —i6k't)
FRD | i w(kt)e _ 2p( ,t)(? ‘ o1
P*(kt)) Rl( - — +b(Eat))ei0(k’t)+R2 - +b(l€.t>)e‘”’<k‘> ’ 13
p(k,t) :
|
whereR,,R; are arbltrary complex constants and hence both ~ s e
p(K, t)e"’(k‘) and p(K,t)e 1%k are the particular solutions $(r)= (2m)3? f d°k eF(k),
for F(k,t) in Eq. (2.7). The expression for the phagék,t)
is
- 1 T T
R t ¢*(F):—/‘(2 )32fd3k e TE*(k),
9(k,t)=f dt'————. (2.14 m
o p3kt")
It is important to point out that, in accordance with the in- s _ 1 f 3 amiki 9
variant theory in[5,7], the particular solutions can be made Sp(F) (277)332 5|:(|2)
cyclic in a chosen time intervgl,T]. The general solution
for F(k,t) is the superposition of the two particular cyclic
solutions. This is to say that the study of the general solution 6 1 43K ek 6 33
for ¢(F,t) in Eqg. (2.4) reduces to the study of the cycllc S¢*(F,t)  (2m)%P € SF* (K) 3.3

solutions p(k )&’k and p(k,t)e &V for arbitrary k
[with +6(k,t) being the phasés Finally, note that, as
A(k,t)—0, the solutionp(k,t)e'cD andp(k,t)e™ kD re-
duce to the positive-energy and negative-energy solutions in

the free KG field theory. f 3*’ P 5

Fict) = -
SF* (k) 6F(k)

Then we obtain

Ill. QUANTUM MOTION OF THE KG FIELD AND

ITS CLASSICAL CORRESPONDENCE . A A

+{[k—eAt)]>+mAF*(KF(k)}, (3.9
The quantum Hamiltonian for a chargézbmplex scalar

field with an external electromagnetic field is given by

. . . R . o of which the integrand can be shown to be associated with
t)=J' d3f[7* 7w+ (V+ieA) ¢* - (V—ieA)p+m?¢* ¢],  the time-dependent oscillators of two modes. Equatid)
leads to the Schdinger equation for the functional
W[F,F*;t], which describes the quantum motion of the KG

where A°=0. Quantization is performed by imposing thef eid

equal-time commutation relations

[7(F,t), (P 1) ]=—i8%(F—1"), PR R o
| - W[FF*t]=H(®)WFF*t]. (3.5
[7*(7,0),6* (7", D)]= —i6%(T—1"),
[#(F.0), 7% (Ft)]= [¢(r 1), ¢* ' 0] According to the invariant theor4,5,9, we can find the

following invariants for the field:

=[7(F0),6* (7',)]

=[7*(F,1),$(F',1)]=0. (3.1 Vv
[ (F.), #(F.0] S P J’d3k[AT(kt)A(kt)+BT(kt) B0+ 9]
We choose to work within the functional Schlinger picture
[8] with substitutions
Na(K,t) =A* (K,HA(K,1),
s s Ak D=AT(K,DA(K)

w(F)—
Ng(k,)=B " (K,)B(K,1), (3.6
When the homogeneity is assumed for the external electric
field, we can employ the momentum representation for the
operators where
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A(K,t)= !
)

)ﬁ(lZ)Jrip(lZ,t)

I =
p(K,) SF*(k)) |

AT(K,t)= —
(k,t) v

(p(lz,t) +Ip(k,t)) F* (k)

. —id
_'p(k’t)(aFub”’

1

B(k.t)=—

1 e
<( kt)_lp( k,t))F( k)

. . —ié
+'p(_k’t)(6F<—E)H’

Es*(lZ,t)=i {( 19
V2 [\ p(—kt)

—ip(—lat)(

+i'p(—|2,t)>|3(—|2)

3.7

SF* (— R)) '
with p(IZ,t) being a real solution of the auxiliary equation
pH{[K—eAt) 2+ m?p=p 2. (3.8

Note that the invariance gi‘(t) is apparently the conse-
guence of the invariance ™, andNg. It is easy to show
that the operatora(k,t),B(k,t) satisfy the equal-time com-

mutation relations
[AK),AT(K",1)]= (K=K,

[B(K,1),BT(K",t)]= 63(K—K"). (3.9

A(k t), B(k t) may then be referred to as generalized anni-
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Qg(t) = exr((i/4)j d3|2{ r(—K,t)sin a(—K,t)

—id

5F(—E>)<

ﬁ*(—l@(

t———=|F(=K)|{ ]
SF* (—K)

wherer (k,t) and a(k,t) are defined by

X f:(—lZ)f:*(—lZ)—(

—io )
SF* (—K)

+r(—K,t)cosa( —k,t)

5F(—|2>)

(3.10

coshr (Kk,t)=3{p~2(k,t) + p?(k,t) + p2(K,1)},

sinhr(k,tYexi a(K,t)]1=3{p2(k,t) — p2(k,t) + p3(K,t)}
+ip(k,t)p(k,t). (3.11)

With considerable effort, it can be shown that the unitary
operators in Eq(3.10 transforml (t) into IO (by noting that

[Qa(1),Qp(t)]1=[Qa(1), IBO] [QB(t) |Ao] 0):
1o= QLM QLM () QA)Qa(t) =1 a0+ I 5o,

Ta0=QLDI(H)Qa() = J d%k 1 po(K)
=f d3k| AL(K)A (|Z)+L
0 0 2(271.)3 )

To0= QLT (0051 = [ 8K Too(K)

hilation operatorsAT(k 1), BT(k t) as generalized creation where

operators, andJA(k t), NB(k t) as generallzed particle num-

bers for the moddx—A partlcle and modé- B particle, re-

spectively. Smcd\lA(k t) and NB(k t) are both invariants,
the generalized particle numbers are conserved.

Now we turn to the problem of exactly solving the func-

tional Schralinger equation3.5) by means of the invariant-
related unitary transformation method|i@y].
We first construct two unitary operators

F(K)F*(K)

(gA(t)zexp((iM)f d312| r(k,t)sin a(k,t)
—id

el

X ﬁ*(E)(

+r(k,t)cos a(k,t)

!

—1
5F*(|2))

—|5) ( —ié >A .
— |+ — | F(k)
SF (k) SF* (k)

3 et/ (L \
=f d°k Bo(k)Bo(k)er , (3.12
AR =(2" 1’%{ 0 }
5F(k)
Ao<|2>=<21’2[ 19 }
6F*(k)
é3<|2>=<2—1’2>[ﬁ<—12>—| 4 }
| 5F*(—K) |
. N —is5 |
Bo(k)=(2—1/2)[|:*(—k)+ - } (3.13
SF(—K) |

By making use of the unitary operators in £§.10 and the
Backer-Campbell-Hausdorff formula, with lengthy calcula-

tions, we obtairHy(t) from H(t) (see Appendix A
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ﬁO(t):é;(t)ég(t)ﬁ(t)éA(t)éB(t) |NB>E|I’131,I’132,...(nBl-l-nBz—i----=NB)>
e ~ ~1/2]ng;
—iIQADQL(M) w:f d®k Ho(K,t) ={[n51!]1’2{83(|21) (27)3} } [ngy!] 2
=Hpo(t) +Hgo(t), (3.19

\Vi 1/2nBZ
0("2)(<2>) } '”]'0

Where (nAl,nAz,...20,1,2,...nBl,nBz,...:0,1,2,..).
- o R 3.1
Aro()= | KRkt (318

) The eigenstate dfy=1,¢+ 1o [see Eq(3.12] with particle
- - s - AQa(t) numberNa+Ng is |[Na,Ng); =|Na)|Ng). According to the
—Nt _int 0
Qa(hH QA ~1QA) a invariant related unitary transformation method [i6,9],

from the eigenstates &)5, itis easy to obtain the solutions of

A A the Schrdinger equatioriassociated withH(t) ]

Foo()= | &% Foolk.0) | |
INa,Ng;t)so=exri Oa(t) Jexri f(t)]|Na,Ng),

poaaa9Qp(t)

=QEWH(1Qe(D)— QL) — (NAN5=0,1,2,.),

(3.153

t
Op(t)=— Jt dt’(Na,Ng;t[Hao(t')|Na,Ng;t)
0

~ N _ _o, S ~ >
HAO(k1t) [p (klt)+§(k!t)]lA0(k)' :0A0(t)+nAlaA(El,t)_i,_nAzaA(lzz,t)_'_...

Heo(K.t) =[p~2(K,t) + £(K,)]1go(K),  (3.15H (NaztNazt - =Np),

with &(k,t)= —tan” 1{p(kt)p(kt)/[1+p2(kt)]} It can be seen Og(t)= Jtdt’(NA,NB;tlHBO(t’)|NA,NB;t>
from Eq.(3.150 that (i) IAO(k) andIBO(k) in Eq.(3.12 are fo

time mdependent andi) HAo(k t), HBO(k t) differ respec- = Ogo(t) + Ngy O(— Ky, t) +Ngobg(— Ky, t)+ -+
tively from IAO(k) IBO(k) only by multiplyingc-number fac-
tors. In the discrete notatiot,, (or I o) in Eq. (3.12 may (Ngy+ngy+---=Ng), (3.17

be regarded as the sum of terms of which each has the form
of the Hamiltonian for a simple harmonic oscillator with where
frequency 1. The solution to the oscillator eigenvalue prob-

lem for k{,k»,... modes may be characterized by integers - ft o - -
Oa(k,t)= [ dt’ k,t)+ &(k,t) — &(k,tg),
MarNaz,- (NazNaz,..=0,12,...) and Ngi.Ngy,... a(k,t) o | (k) +&(k,t) = &(k,to)
(nBl,nBz,.. =0,1,2,...). The ground state deo(k) and
1 (k) (the state withny;=ng;=nNa,=ng,=...=0) is de- - vt _ - _
noted by|0) and satisfies 05(—k,t)=ﬁ dt’ p=2(—k,t) + E(—k,H) — E(—K,to),
0

A-(k —0B.(K)|0)= \Y, L
AO(k)|O> OaBO(k)|0> 0. aAO(t):[_Z(Zﬂ.)}J‘ d3k0A(k,t),
By mAaking userf the ground sta® and the raising opera- v

tors Aj(k) and B)(K) in Eq. (3.12, we obtain theN,,Ng gBO(t)z[_ _}f &K 0g(—K),  (3.18
particle excited eigenstates bf, andlg,, respectively: 2(2m)

in which 6(k,t) [6g(k,t)] is the total phase, including the

INAY=INaLMaz, - (Nas+ Nag+ - =Na)) dynamical phase and geometrical phase, for the nkode-
112 ~12)n0p 11-112 particle[modek B particle] and ,0(t) [ 6go(t)] is the total
= [na1! 1" ¥4 Aj(ky) 23 [Naz!] phase for the corresponding vacuum. By means of the uni-

tary operators in Eq(3.10, the particular exact solution of
oA v o\ 1?2 e 0 the time-dependent Schiimger equation(3.5) [associated
oko) 2m)?3 ) with H(t)] can be found to b§5,9]
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|G (D)s (F(R)a=a(k, mtF(K)K, 7:1) 5

— p(K, O AK, 7t [AK D) + BT (=KD ]IK, 7:t)a

= Qa(D)Qa(1)|NA.Ng ;Do
= expfi 6a(1) Jexdli (1) QD) Qa(t)[Na Ng)y

=exfiOa(t)]exdifg(t)]|Na,Ng;t),

V2 . It -
= np(k,t)exq’l fdt'p 2(k,t’)H, (3.23
(3.19 0

where [N ,Ng;t), is the eigenstate of(t) with particle p(IZ,t)B
number N5+ Ng). It is worthwhile to point out thati) the
cyclic property of] ¥, Ng(1))s can be discussed as [i6,9]
and (ii) the general exact solution of the time-dependent
Schralinger equation(3.5) is a superposition of the particu-
lar solutions in Eq(3.19.

Using the exact solutions of the time-dependent Schro

dinger equation(3.5) [associated wittH(t)], we can con-

" -~ . R V2
<F(k)>BEB<_ki77,;t|F(k)|_k177,;t>B:7
X (=K, 7" ;tl[AK D+ BN (—K)][—K 7" ;t)e

jtdt’p_z(lz,t’)“.
0

(3.29

V2 - .
=5 n’p(k,t)exp[ —i

struct the coherent states

|I2,1;;t)A=ex;< |ﬂ|2)§ (

)exq—inGA(IZ,t)]n,U,A,

(3.20
12 m
xex —indg(—K,hInty ,  (3.21

where

|n1t>lAE|NA:n!NB:O;t>l

R . \Vj —1/2]1n
=QA<t>[n!]‘1’2[A$<k)((Zw)g) }l0>

. ' (2”) ATy

|n’t>1BE|NA:0'NB:”?t>1
\V; —1/21n
=Qg(t)[n!]" 1/2[ 0(k)((2 )) } |0)

—1/2]n
_[nl] l/Z[BT(kt)((ZV) ) :| |0,t>|B

(n=0,1,2..), (3.22b

and n,7' are complex constants. It is easy to show that

|k 7 t) and |k, 7';t)g are the eigenstates aﬁ(k t) and
B(k t), respectively.

Both (F(K))» and (F(k))g can be easily shown to be the
particular solutions of the classical KG equati@h?7) and

are, of course, the same as the solutipiik,t)e' *® and

p(k,t)e "?&Y optained in Sec. Il up to irrelevant constants.
Thus Egs(3.23 and(3.24), the classical correspondences of
the quantum motion, establish the connection between the
classical and quantum exact solutions.

IV. DISCUSSION

In quantum field theory, there are so few systems of
physical interest for which the functional Schinger equa-
tions can be solved exactly that perturbation methods should
play an important part in the applications of the theory. We
would like to point out that although the case considered in
this paper is special, the exact solutions obtained are useful
as a starting point for the time-dependent perturbation theory
of the scalar field with the additionalg(*)? term in the
Hamiltonian in Eq.(2.2) by employing the method ifo].

In Sec. Il we indicated two factgi) The single general-
ized particle numberBJA(IZ,t),NB(IZ,t) are invariants or con-
served and defined in terms of generalized creation and an-

nihilation operators and(ii) the total phase 6(k,t)

[BB(IZ,t)], including the dynamical phase and the geometri-
cal phase, is for the corresponding single generalized par-
ticle. It is clearly seen that these two facts are closely related
to each other and it would not be possible to define the total
phaseda(Kk,t) [0g(K,t)] for a single generalized particle if
the corresponding single generalized particle number were
not conserved. Thus we can say that the necessary condition

for the total phasea(k,t) [Ag(k,t)] and hence the corre-

sponding geometric phase to be defined is that the single

generalized particle number should be conserved, namely,

the single generalized patrticle creati@mnihilation should

be absent during the time evolution. This condition is essen-
tially in agreement with that obtained by Anandan and Ma-
zur in[10]. However, in the case discussed in this paper, the

absence of the generalized particle creatiannihilatior is

not equivalent to the absence of the external electric field or

Now we can calculate the expectation values of the opto the absence of the usual particle creat@amnihilation. In

eratorF(k) for the coherent states in Eq8.20 and(3.21):

this respect, we have generalized the results obtaingtDin
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though we have only investigated a special case of the Kleinand the eigenvaluk,, the same as that in E¢A2). By mak-
Gordon field in this paper. ing use of the unitary transformation, we obtaig(t) from
Phase formulation is suitable for the study of the fieldyyy),
theory with time-dependent Hamiltoniaf@]. It is interest-
ing to use this formulation to investigate the time-dependent Ho() =QT()H1) Q1) —iQT(1)aQ(t)/at.  (AB)
Dirac field. Work in this direction is under investigation.
This unitary transformation is easily shown to guarantee that
ACKNOWLEDGMENTS the particular solutiof\ ,,t)o of the time-dependent Schro

. . . i [ i is diff f h
This work was supported by the National Natural Sclencedlnger equation, associated withy(t), is different from the

; . : - igenfunction|\,) of the invariantl, only by the same
Foundation of ChindProject No. 19775040the Foundation eigen n . 0
for Ph.D. Training Program of China, and Zhejiang Provin—phase factor exphy(t)] in Eq. (A4), namely,
cial Natural Science Foundation of China. _
|)\nit>50:eXF{|7n(t)]|7\n>- (A7)

Substitution ofiA, ,t), into the time-dependent Sclitiager
equation[associated withH y(t)]

In this appendix we first briefly outline the invariant-
related unitary transformation method and then use it to deal ~

APPENDIX A: THE INVARIANT-RELATED UNITARY
TRANSFORMATION METHOD

with the relativistic KG field considered in this paper. We 19|Nn, t)so/It=Ho()[Np), (A8)
consider a system whose Hamiltoniéi{t) is time depen- yje|ds
dent. The invariant(t) for the system satisfies ~
“ A ~ _:)’n(t)|}\n>:H0(t)|)\n>r (A9)
al(t)/ot—i[l(t),H(t)]=0. (A1) R R
. which means thaHy(t) differs from 1, by ac-number fac-
The eigenvalue equation oft) can be written as tor, depending only on the time Thus one is led to the
- conclusion that if the unitary transformati@(t) is found,
L[N0ty =Nl N 1), the problem of solving the complicated time-dependent
Schralinger equation(A3) reduces to that of solving the
INnl9t=0 (A2) " mych simplified equatiotA8). In terms of the solutions of

Eqg. (A8) and the unitary transformatio@(t), the general
solution of the time-dependent ScHinger equation(A3)
for the system can be shown to be

and the time-dependent ScHinger equation for the system
is

i3] (1))s/ t=H ()| (t))s. (A3)

According to the Lewis-Riesenfeld quantum invariant
theory, the particular solution of EGA3) is different from
the eigenfunctiof\ ,,t) of the invariant (t) only by a phase t -~ )
factor expiy,(t)]. The general solution of the Schiiager 7n(t)=_ft (Nn[Ho(t")[Np)dt
equation(A3) can be shown to be 0

|w<t>>s=; Cr exlli y(H QD N,

t ~
=S G oD Innt) :jt()\n,t’|i(9/<9t'—H(t’)|)\n,t’)dt’. (A10)

The statement outlined above is the basic content of the
invariant-related unitary transformation method.

In what follows we indicate some steps in using this
method to get the exact solution for the KG field. The main
steps are the followingi) Use the quasialgebfd 1] associ-
Cn=(N\n,04(0))s, (A4)  ated with the Hamiltonian in Eq(3.4) to find the unitary

transformation in Eq.3.10 [9]. (ii) Calculatel, in Eq.

t “
yn(t)zf <)\n,t'|i(9/o7t'—H(t')|)\n,t'>dt’,
to

On the basis of the Lewis-Riesenfeld quantum invarian . S :
; . ) . . (3.12. The correctness of the unitary transformation is veri-

theory, the invariant-related unitary transformation method is” " 7'~ "~ "7~ )

developed. In some cases of physical interest, it is possible t#d if lo is time independent. Actually, the unitary transfor-

construct a time-dependent unitary transformatit) fora ~ mation isTfo#Jnd from the ca}rlcquation dp. (iii) Calculate
chosen I(t) such that I,=Q(t)I()Q(t) is a time- Ho(t) = QaQsH()QaQe ~1QQE[ /(QaQe)/41]. (V) Find

independent operator with the eigenstates df. (v) Calculate the corresponding phase
factor to obtain the solution of the Scliioger equation
R B (3.5. . A
Lol An)=Nn[An), The method for calculating, is the same as that fot .

. Here we only present the calculation Iéh‘o in some detalil
INn)=Q Y \n 1), (A5)  since it is more complicatedd, is defined in Eq(3.14) as
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Ho(t) = QL1 QL H (1) Qat) Qa(t)

Qa1 Qa(1)]

—IQADQEM) ——

:f d%k |:|0(|Z,t):|:|A0(t)+|:|Bo(t)a (A11)

Aro()= | &K k)

A A . IQu(t
= QAH(DQa() —iQAM) %—’}(),
Floo()= | &% Figolk.0)
A A . Qg(t
= QBOAM A -15(0) "2 L a2

By means of the Baker-Campbell-Hausdorff formula, we cal-

culate the first term in EqA12),

Q;ﬁ(t)QA:% f d3IZ( { w?[cosh(/2)—sinh(r/2)cosa]?

+sint(r/2)sirt a}F(k)F* (k)
+{[cosh(/2)+ sinh(r/2)cos a]?

—ié —id
OF (k) 5F*(k)
+sinh(r/2)sin a{[cosh(/2)+ sinh(r/2) cos «]
+ w?[cosh(/2)—sinh(r/2)cosa]}

+ w? sinkf(r/2)sirt a} ——

i
F (K) =7+ () F(k)H (A13)

SFF(K)

QIH(1)Qg=2 jdBE({wZ[COSh(I’/Z)—Sinh(r/Z)COSa]z

+sintA(r/2)sir? a}F(—K)F* (—k)
+{[cosh(/2)+ sinh(r/2)cos a]?

—id —id
SF(—K) oF* (—K)
+sinh(r/2)sin a{[cosh(/2)+ sinh(r/2) cos «]
+ w?[cosh(/2)—sinh(r/2)cosa]}

+ w? sink?(r/2)sir? o}

_is —is . }
S (k) T oF (=K (K }
(A14)

x| F*(—k)

[r sin a— a(coshr—1)(cosa)a]

C0Qa L[ -
“Qh =3 jdsk

X[F(K)F*(K)][—r sin a— a(coshr—1)
—is —is }
SF(K) 8F*(K)

—sinhr(COSa)a]{

X[r cosa—(sinhr)(sin a)a]

X[ﬁ*(ﬁ) iy )“ (A15)

5F*(k) SF(K)

. 1 ool
—|QB—:Zfd K{[r sin a—a(coshr—1)(cosa)a]

X[F(—K)F*(—K)]

X[—r sin a— a(coshr—1)

—sinhr(cosa)a]

—io —id
SF(—K) 6F*(—K)

ﬁ(—E)“.

(Al6)

X[r cosa—(sinhr)(sin a)«a]
—ié —ié

x| F*(—K) _ 4+ _
SF*(—K)  6F(—K)

Finally, using Eqs(A11)—(A16) and the auxiliary equation
(3.8), we obtain

Hao(K,t)=[p~ 2(K,t) + £(K,1) 1l ao(K),

Heo(K,)=[p (K. + & —K,D1lgo(K), (A17)
where&(k,t) = —tan {p(k ) p(k )Y[1+pA(k.t)] andp(K,t) is
the solution of the auxiliary equatioi3.8).

APPENDIX B: THE INVARIANT METHOD FOR THE
SYSTEM WITH A NON-HERMITIAN TIME-DEPENDENT
HAMILTONIAN

In Ref. [7] the Lewis-Riesenfeld invariant theofiRIT)
for Hermitian Hamiltonians was generalized and used to
treat the system with a non-Hermitian Hamiltonian in a
finite-dimensional Hilbert space. For this system, we can de-
fine the non-Hermitian invariant with the equation

al
—=——i[l,A]=0, (B1)

By means of the same formula, with length calculations, wevherel (t) has complete biorthonormal set of the eigenstates

get the second term in E¢AL12)

ln (1)) and]| g, (1)) (N=1,2,...N) satisfying
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1O () =1, (D),

|<1><t>>s=§ C, exfliay ()] (1),
T (D) =15 (D),

(PO (0)=8,,, P(0)]=2 C, ex—ie, (D], (B6)
o
> [ OX (D] =1. (B2)  respectively.
A The statement outlined above is the basic content of the
As in the LRIT. it can be shown that generalization of the LRIT ifi7]. In[7] a system was studied
’ with the non-Hermitian Hamiltonian of the forrsee Eq.
W, (1)) s=exdi a, (D] (1)), (30) in Ref.[7]]
W,(1)s=exdia* ,()][1,(D), (B3) o[y iz
’ S HO= Dk —iy)- ®7)
with
. J The corresponding Schdimger equations is
ax(t)=J <¢>\(t/) I H() ¢x(t')>dt'. (B4) _ _
0 9 (A _( iy iz ) q(t)) 89
are the particular solutions, respectively, of the Sdinger at | p(t) —ix(®)  —iy(©/ip®)
equations L .
which is of the same form as Eq&.8) and (2.9) in the
0| W (t))g= |:|(t)|‘1'(t)>s, present paper. Thus the solutions obtained in R&fcan be
used to get the solutions of E¢2.8) and(2.9) in the present
i&t|‘if(t)>5=ﬁ|T(t)|‘Tf(t)>s. (B5)  baper by noting that the solutions there in Ref] are re-

quired to be real, while in the present paper there is no such
Then the general solutions of the Sdtlirmger equations are requirement.
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