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On the basis of the invariant formulation, we find the quantum and classical exact solutions and correspond-
ing total phase for the relativistic charged Klein-Gordon~KG! field in a time-dependent spatially homogeneous
electric field. The total phase includes both the dynamical and geometric phases~Aharonov-Anandan phases!.
The connection between the quantum and classical solutions is then obtained. From this connection we discuss
the condition under which the geometric phase for the KG field can be defined.@S1050-2947~98!03002-9#

PACS number~s!: 03.65.Bz, 03.65.Pm
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I. INTRODUCTION

Since Berry’s discovery of the geometric phase in
quantum adiabatic evolution, there has been a great de
theoretical and experimental works on this quantum
lonomy phenomenon referred to as Berry phase@1#. In a
fundamental generalization of Berry’s idea, Aharonov a
Anandan removed the adiabatic condition and studied
geometric phase for any cyclic evolution@2#. Anandan then
pointed out that, in principle, the study of any noncyc
evolution can reduce to the study of cyclic evolution a
corresponding phases@3#. The Lewis-Riesenfeld invarian
theory @4# was generalized, by introducing a concept of t
basic invariants, and used to show explicitly that the study
the exact solutions corresponding to any noncyclic evolut
of the driven generalized time-dependent oscillator can
duce to the study of the cyclic evolution and correspond
total phase, including both the geometric phase and dyna
cal phase@5#. Then, it became more and more recogniz
that there are actually nothing but different names and
tributes given to various parts of the total phase@6# as long
as the exact solution of the time-dependent Schro¨dinger
equation with a time-dependent Hamiltonian is concern
The invariant formulation~representation! in @4,5# for ob-
taining the exact solutions for systems with time-depend
Hamiltonians is closely related to the study of the phase
may then be referred to as the phase formulation~represen-
tation!.

The invariant theory was further extended for investig
ing the quantum as well as classical systems with n
Hermitian Hamiltonians; for classical ones, the correspo
ing geometric phase is shown to be the nonadiab
generalization of the Hannay angle@7#. Recently, it has be-
come evident that the invariant formulation in@4,5# can also
be applied to the treatment of more than one-dimensio
time-dependent quantum systems~including infinite-
dimensional systems: quantum fields@8,9#! if a complete
set of invariants can be found.

In this paper the invariant formulation or the phase f
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mulation in@4,5,7,9# is used to investigate both the classic
and especially the quantum Klein-Gordon~KG! field. The
classical and quantum exact solutions in the phase form
tion for a particular case of the KG field are obtained. W
the help of the coherent state, we then discuss the clas
correspondence and establish the connection between
classical exact solutions and the quantum ones.

In @10# Anandan and Mazur studied the geometric pha
for the classical KG field equation that is second order
time and reached a conclusion that the condition under wh
the geometric phase can be defined is that the~usual! particle
creation~annihilation! is absent~equivalent to the absence o
the external electric field!. It is important to note that, in
@10#, the condition was obtained without carefully investiga
ing the corresponding quantum theory of the KG field. A
parently, since the creation~annihilation! of KG field-theory-
particles is a quantum concept, the quantum KG field the
should be discussed in order to know more about the co
tion. In the present paper, the quantum KG field theory
studied in detail and the connection between the class
exact solutions and the quantum ones is established.
connection makes it possible to add something to the re
obtained in@10#.

II. EXACT SOLUTIONS FOR THE CLASSICAL
CHARGED KG FIELD

In this section, we study a particular case of the class
KG field in which the homogeneity is assumed for the ext
nal time-dependent electric field. The Lagrangian density
a complex scalar KG field interacting with an external ele
tromagnetic field is given by

L5~]m1 ieAm!f* ~]m2 ieAm!f2m2f* f, ~2.1!

which leads to the following time-dependent Hamiltonian
the Weyl gaugeA050 @8#:
753 © 1998 The American Physical Society
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H~ t !5E d3rW@p* p1~¹W 1 ieAW !f* •~¹W 2 ieAW !f1m2f* f#,

~2.2!

where the canonical momentum densitiesp andp* are de-
fined asp5]L/](]0f) andp* 5]L/](]0f* ). The canoni-
cal Poisson brackets are

$p~rW,t !,f~rW8,t !%52d3~rW2rW8!,

$p* ~rW,t !,f* ~rW8,t !%52d3~rW2rW8!,

$p~rW,t !,p* ~rW8,t !%5$f~rW,t !,f* ~rW8,t !%

5$p~rW,t !,f* ~rW8,t !%

5$p* ~rW,t !,f~rW8,t !%50. ~2.3!

If the homogeneity is assumed for the external tim
dependent electric field, we can employ the ‘‘momentu
representation’’@8#

f~rW,t !5
1

~2p!3/2 E d3kW eikW•rWF~kW ,t !,

f* ~rW,t !5
1

~2p!3/2 E d3kW e2 ikW•rWF* ~kW ,t !,

p~rW,t !5
1

~2p!3/2 E d3kW e2 ikW•rWP~kW ,t !,

p* ~rW,t !5
1

~2p!3/2 E d3k̂ eikW•rWP* ~kW ,t !, ~2.4!

H~ t !5E d3kW$P* ~k,t)P~kW ,t !

1@~kW2eAW !21m2#F* ~kW ,t !F~kW ,t !

5E d3kW H~kW ,t !. ~2.5!

The corresponding canonical Poisson brackets are

$P~kW ,t !,F~kW ,t !%52d3~kW2kW8!,

$P* ~kW ,t !,F* ~kW ,t !%52d3~kW2kW8!,

$P~kW ,t !,P* ~kW8,t !%5$F~kW ,t !,F* ~kW8,t !%

5$P~kW ,t !,F* ~kW8,t !%

5$P* ~kW ,t !,F~kW8,t !%50. ~2.6!

It is then easy to get the canonical equations forF(kW ),
P* (kW ), F* (kW ), andP(kW ):
-

Ḟ~kW ,t !5$F~kW ,t !,H~ t !%5P* ~kW ,t !,

Ḟ* ~kW ,t !5$F* ~kW ,t !,H~ t !%5P~kW ,t !,

Ṗ~kW ,t !5$P~kW ,t !,H~ t !%52a~kW ,t !F* ~kW ,t !,

Ṗ* ~kW ,t !5$P* ~kW ,t !,H~ t !%52a~kW ,t !F~kW ,t !, ~2.7!

wherea(kW ,t)5@kW2eAW (kW ,t)#21m2. This equation can be re
written in the matrix form

i
]

]t S F~kW ,t !

P* ~kW ,t !
D 5S 0

2 ia
i
0D S F~kW ,t !

P* ~kW ,t !
D , ~2.8!

i
]

]t S F* ~kW ,t !

P~kW ,t !
D 5S 0

2 ia
i
0D S F~kW ,t !

P* ~kW ,t !
D . ~2.9!

Apparently, we only have to solve Eq.~2.8! since Eq.
~2.9! is the complex conjugate to Eq.~2.8!. Equation~2.8! is
of Schrödinger type with the non-Hermitian Hamiltonia
(2 ia

0
0
i ). The corresponding invariant can be easily o

tained@7# ~see Appendix B!:

Î ~kW ,t !5S 2r~kW ,t !ṙ~kW ,t ! r2~kW ,t !

2
1

r2~kW ,t !
1r2~kW ,t ! r~kW ,t !ṙ~kW ,t !D ,

~2.10!

wherer(kW ,t) is the real solution of the auxiliary equation

r̈~kW ,t !1a~kW ,t !r~kW ,t !5
1

r3~kW ,t !
. ~2.11!

The eigenkets ofÎ (kW ,t) are

u6,kW ,t&5S r2~kW ,t !

6 i @17 ir~kW ,t !ṙ~kW ,t !#
D ,

I ~kW ,t !u6,kW ,t&57 i u6,kW ,t&. ~2.12!

According to the invariant theory in@7# ~see Appendix B!,
the general solution of Eq.~2.7! is
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S F~kW ,t !

P* ~kW ,t !
D 5S R1r~kW ,t !eiu~kW ,t !1R2r~kW ,t !e2 iu~kW8t !

R1S 2
i

r~kW ,t !
1 ṙ~kW ,t ! D eiu~kW ,t !1R2S 2

i

r~kW ,t !
1 ṙ~kW ,t ! D e2 iu~kW ,t !D , ~2.13!
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whereR1 ,R2 are arbitrary complex constants and hence b
r(kW ,t)eiu(kW ,t) andr(kW ,t)e2 iu(kW ,t) are the particular solution
for F(kW ,t) in Eq. ~2.7!. The expression for the phaseu(kW ,t)
is

u~kW ,t !5E
0

t

dt8
1

r2~kW ,t8!
. ~2.14!

It is important to point out that, in accordance with the i
variant theory in@5,7#, the particular solutions can be mad
cyclic in a chosen time interval@0,T#. The general solution
for F(kW ,t) is the superposition of the two particular cycl
solutions. This is to say that the study of the general solu
for f(rW,t) in Eq. ~2.4! reduces to the study of the cycli
solutions r(kW ,t)eiu(kW ,t) and r(kW ,t)e2 iu(kW ,t) for arbitrary kW

@with 6u(kW ,t) being the phases#. Finally, note that, as
AW (kW ,t)→0, the solutionsr(kW ,t)eiu(kW ,t) andr(kW ,t)e2 iu(kW ,t) re-
duce to the positive-energy and negative-energy solution
the free KG field theory.

III. QUANTUM MOTION OF THE KG FIELD AND
ITS CLASSICAL CORRESPONDENCE

The quantum Hamiltonian for a charged~complex! scalar
field with an external electromagnetic field is given by

Ĥ~ t !5E d3rW@p̂* p̂1~¹W 1 ieAW !f̂* •~¹W 2 ieAW !f̂1m2f̂* f̂#,

where A050. Quantization is performed by imposing th
equal-time commutation relations

@p̂~rW,t !,f̂~rW8,t !#52 id3~rW2rW8!,

@p̂* ~rW,t !,f̂* ~rW8,t !#52 id3~rW2rW8!,

@p̂~rW,t !,p̂* ~rW8,t !#5@f̂~rW,t !,f̂* ~rW8,t !#

5@p̂~rW,t !,f̂* ~rW8,t !#

5@p̂* ~rW,t !,f̂~rW8,t !#50. ~3.1!

We choose to work within the functional Schro¨dinger picture
@8# with substitutions

p̂~rW !→
2 id

df~rW !
, p̂* ~rW !→

2 id

df* ~rW !
. ~3.2!

When the homogeneity is assumed for the external elec
field, we can employ the momentum representation for
operators
h

n

in

ic
e

f̂~rW !5
1

~2p!3/2 E d3kW eikW•rWF̂~kW !,

f̂* ~rW !5
1

~2p!3/2 E d3kW e2 ikW•rWF̂* ~kW !,

d

df~rW !
5

1

~2p!3/2 E d3kW e2 ikW•rW
d

dF~kW !
,

d

df* ~rW,t !
5

1

~2p!3/2 E d3kW eikW•rW
d

dF* ~kW !
. ~3.3!

Then we obtain

Ĥ~ t !5E d3kW H 2
d

dF* ~kW !

d

dF~kW !

1$@kW2eAW ~ t !#21m2%F̂* ~kW !F̂~kW !J , ~3.4!

of which the integrand can be shown to be associated w
the time-dependent oscillators of two modes. Equation~3.4!
leads to the Schro¨dinger equation for the functiona
C@ F̂,F̂* ;t#, which describes the quantum motion of the K
field

i
]

]t
C@ F̂,F̂* ;t#5Ĥ~ t !C@ F̂,F̂* ;t#. ~3.5!

According to the invariant theory@4,5,9#, we can find the
following invariants for the field:

Î ~ t !5E d3kW F Â†~kW ,t !Â~kW ,t !1B̂†~kW ,t !B̂~kW ,t !1
V

~2p!3G ,
N̂A~kW ,t !5Â1~kW ,t !Â~kW ,t !,

N̂B~kW ,t !5B̂1~kW ,t !B̂~kW ,t !, ~3.6!

where
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Â~kW ,t !5
1

&
F S 1

r~kW ,t !
2 i ṙ~kW ,t ! D F̂~kW !1 ir~kW ,t !S 2 id

dF* ~kW !
D G ,

Â†~kW ,t !5
1

&
F S 1

r~kW ,t !
1 i ṙ~kW ,t ! D F̂* ~kW !

2 ir~kW ,t !S 2 id

dF~kW !
D G ,

B̂~kW ,t !5
1

&
F S 1

r~2kW ,t !
2 i ṙ~2kW ,t ! D F̂* ~2kW !

1 ir~2kW ,t !S 2 id

dF~2kW !
D G ,

B̂†~kW ,t !5
1

&
F S 1

r~2kW ,t !
1 i ṙ~2kW ,t ! D F̂~2kW !

2 ir~2kW ,t !S 2 id

dF* ~2kW !
D G , ~3.7!

with r(kW ,t) being a real solution of the auxiliary equation

r̈1$@kW2eAW ~ t !#21m2%r5r23. ~3.8!

Note that the invariance ofÎ (t) is apparently the conse
quence of the invariance ofN̂A and N̂B . It is easy to show
that the operatorsÂ(kW ,t),B̂(kW ,t) satisfy the equal-time com
mutation relations

@Â~kW ,t !,Â†~kW8,t !#5d3~kW2kW8!,

@B̂~kW ,t !,B̂†~kW8,t !#5d3~kW2kW8!. ~3.9!

Â(kW ,t),B̂(kW ,t) may then be referred to as generalized an
hilation operators,Â†(kW ,t),B̂†(kW ,t) as generalized creatio
operators, andN̂A(kW ,t),N̂B(kW ,t) as generalized particle num
bers for the mode-kW A particle and mode-kW B particle, re-
spectively. SinceN̂A(kW ,t) and N̂B(kW ,t) are both invariants,
the generalized particle numbers are conserved.

Now we turn to the problem of exactly solving the fun
tional Schro¨dinger equation~3.5! by means of the invariant
related unitary transformation method in@9#.

We first construct two unitary operators

Q̂A~ t !5expX~ i /4!E d3kW H r ~kW ,t !sin a~kW ,t !F F̂~kW !F̂* ~kW !

2S 2 id

dF~kW !
D S 2 id

dF* ~kW !
D G1r ~kW ,t !cosa~kW ,t !

3F F̂* ~kW !S 2 id

dF~kW !
D 1S 2 id

dF* ~kW !
D F̂~kW !G J C,
i-

Q̂B~ t !5expX~ i /4!E d3kW H r ~2kW ,t !sin a~2kW ,t !

3F F̂~2kW !F̂* ~2kW !2S 2 id

dF~2kW !
D S 2 id

dF* ~2kW !
D G

1r ~2kW ,t !cosa~2kW ,t !F F̂* ~2kW !S 2 id

dF~2kW !
D

1S 2 id

dF* ~2kW !
D F̂~2kW !G J C, ~3.10!

wherer (kW ,t) anda(kW ,t) are defined by

coshr ~kW ,t !5 1
2 $r22~kW ,t !1r2~kW ,t !1 ṙ2~kW ,t !%,

sinh r ~kW ,t !exp@ ia~kW ,t !#5 1
2 $r22~kW ,t !2r2~kW ,t !1 ṙ2~kW ,t !%

1 ir~kW ,t !ṙ~kW ,t !. ~3.11!

With considerable effort, it can be shown that the unita
operators in Eq.~3.10! transformÎ (t) into Î 0 „by noting that
@Q̂A(t),Q̂B(t)#5@Q̂A(t), Î B0#5@Q̂B(t), Î A0#50…:

Î 05QA
†~ t !Q̂B

†~ t !I ~ t !Q̂A~ t !Q̂B~ t !5 Î A01 Î B0 ,

Î A05Q̂A
†~ t ! Î ~ t !Q̂A~ t !5E d3kW Î A0~kW !

5E d3kW F Â0
†~kW !Â0~kW !1

V

2~2p!3G ,
Î B05Q̂B

†~ t ! Î ~ t !Q̂B~ t !5E d3kW Î B0~kW !

5E d3kW F B̂0
†~kW !B̂0~kW !1

V

2~2p!3G , ~3.12!

where

Â0
†~kW !5~221/2!H F̂* ~kW !2 i F 2 id

dF~kW !
G J ,

Â0~kW !5~221/2!H F̂~kW !1 i F 2 id

dF* ~kW !
G J ,

B̂0
†~kW !5~221/2!H F̂~2kW !2 i F 2 id

dF* ~2kW !
G J ,

B̂0~kW !5~221/2!H F̂* ~2kW !1 i F 2 id

dF~2kW !
G J . ~3.13!

By making use of the unitary operators in Eq.~3.10! and the
Backer-Campbell-Hausdorff formula, with lengthy calcul
tions, we obtainĤ0(t) from Ĥ(t) ~see Appendix A!,
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Ĥ0~ t !5Q̂A
†~ t !Q̂B

†~ t !Ĥ~ t !Q̂A~ t !Q̂B~ t !

2 iQ̂A
†~ t !Q̂B

†~ t !
]@Q̂A~ t !Q̂B~ t !#

]t
5E d3kW Ĥ0~kW ,t !

5ĤA0~ t !1ĤB0~ t !, ~3.14!

where

ĤA0~ t !5E d3kW ĤA0~kW ,t !

5Q̂A
†~ t !Ĥ~ t !Q̂A~ t !2 iQ̂A

†~ t !
]Q̂A~ t !

]t
,

ĤB0~ t !5E d3kW ĤB0~kW ,t !

5Q̂B
†~ t !Ĥ~ t !Q̂B~ t !2 iQ̂B

†~ t !
]Q̂B~ t !

]t
,

~3.15a!

ĤA0~kW ,t !5@r22~kW ,t !1 j̇~kW ,t !# Î A0~kW !,

ĤB0~kW ,t !5@r22~kW ,t !1 j̇~kW ,t !# Î B0~kW !, ~3.15b!

with j(kW ,t)52tan21$r(kW,t)ṙ(kW,t)/@11r2(kW,t)#%. It can be seen
from Eq. ~3.15b! that ~i! Î A0(kW ) and Î B0(kW ) in Eq. ~3.12! are
time independent and~ii ! ĤA0(kW ,t),ĤB0(kW ,t) differ respec-
tively from Î A0(kW ), Î B0(kW ) only by multiplyingc-number fac-
tors. In the discrete notation,Î A0 ~or Î B0! in Eq. ~3.12! may
be regarded as the sum of terms of which each has the
of the Hamiltonian for a simple harmonic oscillator wi
frequency 1. The solution to the oscillator eigenvalue pr
lem for k1 ,k2 ,... modes may be characterized by intege
nA1 ,nA2 ,... (nA1 ,nA2 ,...50,1,2,...) and nB1 ,nB2 ,...
(nB1 ,nB2 ,...50,1,2,...). The ground state ofÎ A0(kW ) and
Î B0(kW ) ~the state withnA15nB15nA25nB25...50! is de-
noted byu0& and satisfies

Â0~ k̂!u0&50,B̂0~kW !u0&50.

By making use of the ground stateu0& and the raising opera
tors Â0

†(kW ) and B̂0
†(kW ) in Eq. ~3.12!, we obtain theNA ,NB

particle excited eigenstates ofÎ A0 and Î B0 , respectively:

uNA&[unA1 ,nA2 ,...~nA11nA21•••5NA!&

5H @nA1! #21/2F Â0
†~kW1!S V

~2p!3D 21/2GnA1

@nA2! #21/2

3F Â0
†~kW2!S V

~2p!3D 21/2GnA2

•••J u0&,
rm

-
s

uNB&[unB1 ,nB2 ,...~nB11nB21•••5NB!&

5H @nB1! #21/2F B̂0
†~kW1!F V

~2p!3G21/2GnB1

@nB2! #21/2

3F B̂0
†~kW2!S V

~2p!3D 21/2GnB2

•••J u0

~nA1 ,nA2 ,...50,1,2,...;nB1 ,nB2 ,...50,1,2,...!.

~3.16!

The eigenstate ofÎ 05 Î A01 Î B0 @see Eq.~3.12!# with particle
numberNA1NB is uNA ,NB& I 0

5uNA&uNB&. According to the
invariant related unitary transformation method in@5,9#,
from the eigenstates ofÎ 0 , it is easy to obtain the solutions o
the Schro¨dinger equation@associated withĤ0(t)#

uNA ,NB ;t&S05exp@ iuA~ t !#exp@ iuB~ t !#uNA ,NB& I 0

~NA ,NB50,1,2,...!,

uA~ t !52E
t0

t

dt8^NA ,NB ;tuHA0~ t8!uNA ,NB ;t&

5uA0~ t !1nA1uA~kW1 ,t !1nA2uA~kW2,t !1•••

~nA11nA21•••5NA!,

uB~ t !5E
t0

t

dt8^NA ,NB ;tuHB0~ t8!uNA ,NB ;t&

5uB0~ t !1nB1uB~2kW1,t !1nB2uB~2kW2 ,t !1•••

~nB11nB21•••5NB!, ~3.17!

where

uA~kW ,t !5E
t0

t

dt8r22~kW ,t !1j~kW ,t !2j~kW ,t0!,

uB~2kW ,t !5E
t0

t

dt8r22~2kW ,t !1j~2kW ,t !2j~2kW ,t0!,

uA0~ t !5F2
V

2~2p!G E d3kWuA~kW ,t !,

uB0~ t !5F2
V

2~2p!G E d3kW uB~2kW ,t !, ~3.18!

in which uA(kW ,t) @uB(kW ,t)# is the total phase, including th
dynamical phase and geometrical phase, for the mode-kW A

particle @mode-kW B particle# anduA0(t) @uB0(t)# is the total
phase for the corresponding vacuum. By means of the
tary operators in Eq.~3.10!, the particular exact solution o
the time-dependent Schro¨dinger equation~3.5! @associated
with Ĥ(t)# can be found to be@5,9#



en
-

ro

a

op

e

ts.
of
the

of

uld
e
in

eful
ory

an-

tri-
par-
ted

otal
f
ere
ition
-
gle
ely,

en-
a-
the

or

758 57XIAO-CHUN GAO, JIAN FU, XIN-HUA LI, AND JUN GAO
ucNANB
~ t !&S

5Q̂A~ t !Q̂B~ t !uNA ,NB ;t&S0

5exp@ iuA~ t !#exp@ iuB~ t !#Q̂A~ t !Q̂B~ t !uNA ,NB& I 0

5exp@ iuA~ t !#exp@ iuB~ t !#uNA ,NB ;t& I , ~3.19!

where uNA ,NB ;t& I is the eigenstate ofÎ (t) with particle
number (NA1NB). It is worthwhile to point out that~i! the
cyclic property ofucNA ,NB

(t)&S can be discussed as in@5,9#
and ~ii ! the general exact solution of the time-depend
Schrödinger equation~3.5! is a superposition of the particu
lar solutions in Eq.~3.19!.

Using the exact solutions of the time-dependent Sch¨-
dinger equation~3.5! @associated withĤ(t)#, we can con-
struct the coherent states

ukW ,h;t&A5expS 2
uhu2

2 D(
n

S hn

An!
D exp@2 inuA~kW ,t !#n,t& I A

,

~3.20!

ukW ,h8;t&B5expS 2
uh8u2

2 D(
n

S h8n

An!
D

3exp@2 inuB~2kW ,t !#n,t& I B
, ~3.21!

where

un,t&1A
[uNA5n,NB50;t&1

5Q̂A~ t !@n! #21/2F Â0
†~kW !S V

~2p!3D 21/2Gn

u0&

5@n! #21/2F Â†~kW ,t !S V

~2p!3D 21/2Gn

u0,t& I A
,

~3.22a!

un,t&1B
[uNA50,NB5n;t&1

5Q̂B~ t !@n! #21/2F B̂0
†~kW !S V

~2p!3D 21/2Gn

u0&

5@n! #21/2F B̂†~kW ,t !S V

~2p!3D 21/2Gn

u0,t& I B

~n50,1,2...!, ~3.22b!

and h,h8 are complex constants. It is easy to show th
ukW ,h;t&A and ukW ,h8;t&B are the eigenstates ofÂ(kW ,t) and
B̂(kW ,t), respectively.

Now we can calculate the expectation values of the
eratorF̂(kW ) for the coherent states in Eqs.~3.20! and~3.21!:
t

t

-

^F̂~kW !&A[A^kW ,h;tuF̂~kW !ukW ,h;t&A

5
&

2
r~kW ,t !A^kW ,h;tu@Â~kW ,t !1B̂†~2kW ,t !#ukW ,h;t&A

5
&

2
hr~kW ,t !expH i F E

0

t

dt8r22~kW ,t8!G J , ~3.23!

^F̂~kW !&B[B^2k,h8;tuF̂~kW !u2kW ,h8;t&B5
&

2
r~kW ,t !B

3^2kW ,h8;tu@Â~kW ,t !1B̂†~2kW ,t !#u2kW ,h8;t&B

5
&

2
h8r~kW ,t !expH 2 i F E

0

t

dt8r22~kW ,t8!G J .

~3.24!

Both ^F(kW )&A and ^F(kW )&B can be easily shown to be th
particular solutions of the classical KG equation~2.7! and
are, of course, the same as the solutionsr(kW ,t)eiu(kW ,t) and
r(kW ,t)e2 iu(kW ,t) obtained in Sec. II up to irrelevant constan
Thus Eqs.~3.23! and~3.24!, the classical correspondences
the quantum motion, establish the connection between
classical and quantum exact solutions.

IV. DISCUSSION

In quantum field theory, there are so few systems
physical interest for which the functional Schro¨dinger equa-
tions can be solved exactly that perturbation methods sho
play an important part in the applications of the theory. W
would like to point out that although the case considered
this paper is special, the exact solutions obtained are us
as a starting point for the time-dependent perturbation the
of the scalar field with the additional (ff* )2 term in the
Hamiltonian in Eq.~2.2! by employing the method in@9#.

In Sec. III we indicated two facts:~i! The single general-
ized particle numbersN̂A(kW ,t),N̂B(kW ,t) are invariants or con-
served and defined in terms of generalized creation and
nihilation operators and~ii ! the total phaseuA(kW ,t)

@uB(kW ,t)#, including the dynamical phase and the geome
cal phase, is for the corresponding single generalized
ticle. It is clearly seen that these two facts are closely rela
to each other and it would not be possible to define the t
phaseuA(kW ,t) @uB(kW ,t)# for a single generalized particle i
the corresponding single generalized particle number w
not conserved. Thus we can say that the necessary cond
for the total phaseuA(kW ,t) @uB(kW ,t)# and hence the corre
sponding geometric phase to be defined is that the sin
generalized particle number should be conserved, nam
the single generalized particle creation~annihilation! should
be absent during the time evolution. This condition is ess
tially in agreement with that obtained by Anandan and M
zur in @10#. However, in the case discussed in this paper,
absence of the generalized particle creation~annihilation! is
not equivalent to the absence of the external electric field
to the absence of the usual particle creation~annihilation!. In
this respect, we have generalized the results obtained in@10#,
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though we have only investigated a special case of the Kl
Gordon field in this paper.

Phase formulation is suitable for the study of the fie
theory with time-dependent Hamiltonians@9#. It is interest-
ing to use this formulation to investigate the time-depend
Dirac field. Work in this direction is under investigation.
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APPENDIX A: THE INVARIANT-RELATED UNITARY
TRANSFORMATION METHOD

In this appendix we first briefly outline the invarian
related unitary transformation method and then use it to d
with the relativistic KG field considered in this paper. W
consider a system whose HamiltonianĤ(t) is time depen-
dent. The invariantÎ (t) for the system satisfies

] Î ~ t !/]t2 i @ Î ~ t !,Ĥ~ t !#50. ~A1!

The eigenvalue equation ofÎ (t) can be written as

Î ~ t !uln ,t&5lnuln ,t&,

]ln /]t50 ~A2!

and the time-dependent Schro¨dinger equation for the system
is

i\]uc~ t !&s /]t5Ĥ~ t !uc~ t !&s . ~A3!

According to the Lewis-Riesenfeld quantum invaria
theory, the particular solution of Eq.~A3! is different from
the eigenfunctionuln ,t& of the invariantÎ (t) only by a phase
factor exp@ign(t)#. The general solution of the Schro¨dinger
equation~A3! can be shown to be

uc~ t !&s5(
n

Cn exp@ ign~ t !#uln ,t&,

gn~ t !5E
t0

t

^ln ,t8u i ]/]t82Ĥ~ t8!uln ,t8&dt8,

Cn5^ln,0uc~0!&s , ~A4!

On the basis of the Lewis-Riesenfeld quantum invari
theory, the invariant-related unitary transformation metho
developed. In some cases of physical interest, it is possib
construct a time-dependent unitary transformationQ̂(t) for a
chosen Î (t) such that Î 05Q̂†(t) Î (t)Q̂(t) is a time-
independent operator with

Î 0uln&5lnuln&,

uln&5Q̂21uln ,t&, ~A5!
n-

t

e

-

al

t

t
is
to

and the eigenvalueln the same as that in Eq.~A2!. By mak-
ing use of the unitary transformation, we obtainĤ0(t) from
Ĥ(t),

Ĥ0~ t !5Q̂†~ t !Ĥ~ t !Q̂~ t !2 iQ̂†~ t !]Q̂~ t !/]t. ~A6!

This unitary transformation is easily shown to guarantee t
the particular solutionuln ,t&s0 of the time-dependent Schro¨-
dinger equation, associated withĤ0(t), is different from the
eigenfunctionuln & of the invariant Î 0 only by the same
phase factor exp@iln(t)# in Eq. ~A4!, namely,

uln ,t&s05exp@ ign~ t !#uln&. ~A7!

Substitution ofuln ,t&s0 into the time-dependent Schro¨dinger
equation@associated withĤ0(t)#

i ]uln ,t&s0 /]t5Ĥ0~ t !uln&, ~A8!

yields

2ġn~ t !uln&5Ĥ0~ t !uln&, ~A9!

which means thatĤ0(t) differs from Î 0 by a c-number fac-
tor, depending only on the timet. Thus one is led to the
conclusion that if the unitary transformationQ̂(t) is found,
the problem of solving the complicated time-depend
Schrödinger equation~A3! reduces to that of solving the
much simplified equation~A8!. In terms of the solutions of
Eq. ~A8! and the unitary transformationQ̂(t), the general
solution of the time-dependent Schro¨dinger equation~A3!
for the system can be shown to be

uc~ t !&s5(
n

Cn exp@ ign~ t !#Q̂~ t !uln&,

gn~ t !52E
t0

t

^lnuĤ0~ t8!uln&dt8

5E
t0

t

^ln ,t8u i ]/]t82Ĥ~ t8!uln ,t8&dt8. ~A10!

The statement outlined above is the basic content of
invariant-related unitary transformation method.

In what follows we indicate some steps in using th
method to get the exact solution for the KG field. The ma
steps are the following.~i! Use the quasialgebra@11# associ-
ated with the Hamiltonian in Eq.~3.4! to find the unitary
transformation in Eq.~3.10! @9#. ~ii ! Calculate Î 0 in Eq.
~3.12!. The correctness of the unitary transformation is ve
fied if Î 0 is time independent. Actually, the unitary transfo
mation is found from the calculation ofÎ 0 . ~iii ! Calculate
H0(t)5QA

†QB
†H(t)QAQB2 iQA

†QB
†@](QAQB)/]t#. ~iv! Find

the eigenstates ofÎ 0 . ~v! Calculate the corresponding pha
factor to obtain the solution of the Schro¨dinger equation
~3.5!.

The method for calculatingÎ 0 is the same as that forĤ0 .
Here we only present the calculation ofĤ0 in some detail
since it is more complicated.Ĥ0 is defined in Eq.~3.14! as
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Ĥ0~ t !5Q̂A
†~ t !Q̂B

†~ t !Ĥ~ t !Q̂A~ t !Q̂B~ t !

2 iQ̂A
†~ t !Q̂B

†~ t !
]@Q̂A~ t !Q̂B~ t !#

]t

5E d3kW Ĥ0~kW ,t !5ĤA0~ t !1ĤB0~ t !, ~A11!

ĤA0~ t !5E d3kW ĤA0~kW ,t !

5Q̂A
†~ t !Ĥ~ t !Q̂A~ t !2 iQ̂A

†~ t !
]Q̂A~ t !

]t
,

ĤB0~ t !5E d3kW ĤB0~kW ,t !

5Q̂B
†~ t !Ĥ~ t !Q̂B~ t !2 iQ̂B

†~ t !
]Q̂B~ t !

]t
. ~A12!

By means of the Baker-Campbell-Hausdorff formula, we c
culate the first term in Eq.~A12!,

Q̂A
†Ĥ(t)Q̂A5

1

2 E d3kW H { v2[cosh(r /2)2sinh(r /2)cosa] 2

1sinh2(r /2)sin2 a%F̂~k!F̂* (k)

1$[cosh(r /2)1sinh(r /2)cosa] 2

1v2 sinh2(r /2)sin2 a%
2 id

dF(k)

2 id

dF* (k)

1sinh(r /2)sin a$[cosh(r /2)1sinh(r /2)cosa]

1v2[cosh(r /2)2sinh(r /2)cosa] %

3F F̂* (k)
2 id

dF* (k)
1

2 id

dF(k)
F̂(k) G J , ~A13!

Q̂B
†Ĥ~ t !Q̂B5

1

2 E d3kW H { v2[cosh(r /2)2sinh(r /2)cosa] 2

1sinh2(r /2)sin2 a%F̂(2k)F̂* (2k)

1$[cosh(r /2)1sinh(r /2)cosa] 2

1v2 sinh2(r /2)sin2 a%
2 id

dF(2k)

2 id

dF* (2k)

1sinh(r /2)sin a$[cosh(r /2)1sinh(r /2)cosa]

1v2[cosh(r /2)2sinh(r /2)cosa] %

3F F̂* (2k)
2 id

dF* (2k)
1

2 id

dF(2k)
F̂(2k) G J .

~A14!

By means of the same formula, with length calculations,
get the second term in Eq.~A12!
l-

e

2 iQ̂A
† ]Q̂A

]t
5

1

4 E d3kW H @r sin a2a~coshr 21!~cosa!a#

3@ F̂~kW !F̂* ~kW !#@2r sin a2a~coshr 21!

2sinh r ~cosa!a#F 2 id

dF~kW !

2 id

dF* ~kW !
G

3@r cosa2~sinh r !~sin a!a#

3F F̂* ~kW !
2 id

dF* ~kW !
1

2 id

dF~kW !
F̂~kW !G J , ~A15!

2 iQ̂B
† ]Q̂B

]t
5

1

4 E d3kW H @r sin a2a~coshr 21!~cosa!a#

3@ F̂~2kW !F̂* ~2kW !#

3@2r sin a2a~coshr 21!

2sinh r ~cosa!a#F 2 id

dF~2kW !

2 id

dF* ~2kW !
G

3@r cosa2~sinh r !~sin a!a#

3F F̂* ~2kW !
2 id

dF* ~2kW !
1

2 id

dF~2kW !
F̂~2kW !G J .

~A16!

Finally, using Eqs.~A11!–~A16! and the auxiliary equation
~3.8!, we obtain

ĤA0~kW ,t !5@r22~kW ,t !1 j̇~kW ,t !# Î A0~kW !,

ĤB0~kW ,t !5@r22~2kW ,t !1 j̇~2kW ,t !# Î B0~kW !, ~A17!

wherej(kW ,t)52tan21$r(kW,t)ṙ(kW,t)%/@11r2(kW,t)# andr(kW ,t) is
the solution of the auxiliary equation~3.8!.

APPENDIX B: THE INVARIANT METHOD FOR THE
SYSTEM WITH A NON-HERMITIAN TIME-DEPENDENT

HAMILTONIAN

In Ref. @7# the Lewis-Riesenfeld invariant theory~LRIT!
for Hermitian Hamiltonians was generalized and used
treat the system with a non-Hermitian Hamiltonian in
finite-dimensional Hilbert space. For this system, we can
fine the non-Hermitian invariant with the equation

dÎ

dt
[

] Î

]t
2 i @ Î ,Ĥ#50, ~B1!

whereÎ (t) has complete biorthonormal set of the eigensta
uc̃l(t)& and ucl(t)& (l51,2,...,N) satisfying



the

uch

57 761INVARIANT FORMULATION AND EXACT SOLUTION S . . .
Î ~ t !ucl~ t !&5I lucl~ t !&,

Î †~ t !uc̃l~ t !&5I l* uc̃l~ t !&,

^c̃m~ t !ucv~ t !&5dmv ,

(
l

uc̃l~ t !&^cl~ t !u51. ~B2!

As in the LRIT, it can be shown that

uCl~ t !&S5exp@ ial~ t !#ucl~ t !&,

uC̃m~ t !&S5exp@ ia* m~ t !#uc̃m~ t !&, ~B3!

with

al~ t !5E
0

t K c̃l~ t8!U i ]

]t8
2Ĥ~ t8!Uc̃l~ t8!L dt8, ~B4!

are the particular solutions, respectively, of the Schro¨dinger
equations

i ] tuC~ t !&S5Ĥ~ t !uC~ t !&S ,

i ] tuC̃~ t !&S5Ĥ†~ t !uC̃~ t !&S . ~B5!

Then the general solutions of the Schro¨dinger equations are
ev
uF~ t !&S5(
l

Cl exp@ ial~ t !#ucl~ t !&,

S^F~ t !u5(
m

Cm exp@2 iam~ t !#^cm~ t !u, ~B6!

respectively.
The statement outlined above is the basic content of

generalization of the LRIT in@7#. In @7# a system was studied
with the non-Hermitian Hamiltonian of the form@see Eq.
~30! in Ref. @7##

Ĥ~ t !5S iy~ t !
2 ix~ t !

iz~ t !
2 iy~ t ! D . ~B7!

The corresponding Schro¨dinger equations is

i
]

]t S q~ t !
p~ t ! D5S iy~ t !

2 ix~ t !
iz~ t !

2 iy~ t ! D S q~ t !
p~ t ! D , ~B8!

which is of the same form as Eqs.~2.8! and ~2.9! in the
present paper. Thus the solutions obtained in Ref.@7# can be
used to get the solutions of Eqs.~2.8! and~2.9! in the present
paper by noting that the solutions there in Ref.@7# are re-
quired to be real, while in the present paper there is no s
requirement.
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