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Reducing decoherence in quantum-computer memory with all quantum bits coupling
to the same environment
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Decoherence in quantum-computer memory due to the inevitable coupling to the external environment is
examined. We make the assumption that all quantum(qiibity interact with the same environment rather
than the assumption of separate environments for different qubits. It is found that the qubits decohere collec-
tively. For some kinds of entangled input states, no decoherence occurs at all in the memory, even if the qubits
are interacting with the environment. Based on this phenomenon, a scheme is proposed for reducing the
collective decoherence. We also discuss possible implications of this decoherence model for quantum mea-
surements[S1050-294{08)05701-]

PACS numbes): 03.65.Bz, 42.50.Dv, 89.78c

Quantum computers have recently raised a lot of interesndependent decoherence of the qubits when they interact
[1,2]. In guantum computers, the contents of the memorywith separate environments. Because of the collective deco-
cells are in a superposition of different states, and the comherence, for some kinds of input stafealled the coherence-
puter performs deterministic unitary transformations on thepreserving statgsno decoherence occurs at all even if the
quantum states of these memory celB]. A two-state qubits are interacting with the environment. Based on this
memory cell, which may be a spihelectron or a two-level Phenomenon, a simple scheme is proposed for reducing the
atom, is called a quantum bit, or qupé]. It has been argued _co!lective decoherence. The coherence-pre_serving states are
that quantum computers can solve certain problems mucwtlmat(_ely related to the concept of the pointer basis intro-
more efficiently than classical computes—g]. In an im-  duced in the theory of quantum measurem¢aty. We also

pressive example, Sh{@] showed that a quantum computer dlscutss possible |mpI|c5[at|0ns of this decoherence model for
could solve the problem of finding factors of a large numberdUantum measurements. L
Now we consider the decoherence modelgubits in the

N in a time which is a polynomial function of the length L .
. L memory jointly coupled to the same environment. Tho-
(number of bit$ of the number. However, it is not yet clear bi be d ived by th i - h .
whether quantum computers are feasible to build Decoher—It can be described by the Pauli Operaigt The environ-
) ment is modeled by a bath of oscillators. We consider the

MHecoherence resulting from the dephasing process. The

putation. It has been found that decoherence in quantun)yamitonian describing the phase damping has the {@2}
computer memory cannot be neglected if the qubits interact

with the external environmer®,10]. To reduce this deco- L

herence, some strategies, such as quantum error correction H=ﬁ{ f dw{z k(w)(a,+al)of+wala, ] (1)
[11-17 and the purification of noisy entanglemen8,19, =1

have been proposed. _ whereL indicates number of the qubits. We supposed that
In previous analyses of decohereri®l0], an important  the coupling constants(w) to the environment are the same
assumption was made. That is, qubits were assumed Q. il the qubits. In Hamiltoniaril), o (I1=1,2, . . .

o X ) : the bath operator is
the qubits interact with the same environment. The interac-

tion with the same environment will result in cooperative .

decoherence for the qubits. Palma, Suominen, and ER@ft ia,=wa,+ |21 k(w)of. 2

provided the first step in studying the cooperative decoher- -

ence. They started by considering a system of two qubitdt has the solution

and extended the result to include a registet ajubits. In

this paper, we propose an alternative simple approach for

studying the collective decoherence, and correct an error in

the calculation of Ref[20]. We consider a system &f qu-

bits interacting with the same environment. It is found that To determine the magnitude of the decoherence, we need

the qubits decohere collectively. This is compared with theknow the evolution of the reduced density of the qubits. This
problem can be solved by using the operator representation
of the density operatof23]. Let p_; 1=3(1+0%), p11

*Electronic address: gcguo@sunlx06.nsc.ustc.edu.cn =3(1—-0%,p_11=0", p1-1=0", and

_ L e iot_1
aw(t)=aw(0)e*'w‘+|2l K<w)afT. 3
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p{i,,j,}zpil,jl®Pi2,j2®"'®pi|_,j|_’ 4) P,(a,t)= . ;{_NL aweiwt
wherel is the unit operator, and possible valuesifoandj, 7T< “’> (No)
(I1=2,2,...L) are 1 or—1. All the operators defined by L giot_ 1|2
Eq. (4) are expressed by Pauli's operators. Obviously, they 2 (w)of (10
make a complete set. The initial density operator of the qu- =

bits can be expanded into the set of operajgys;,. Sup-

pose the environment is initially in thermal equilibrium. The
total density operatop(0) is then expressed as

Now we need to obtain the diagonal matrix elements of
the operatop; 'J|}(_t) in the bath coherent representation.
From Hamiltonian(1), the Heisenberg equation for the op-
p(0)=ps(0)® peni 0) eratorpy; j,; is

Z{%} Ciiy i i3 (0)

o1 g Bt

L
ib{il,jl}:[zl (il_jl)Hf dw K(w)(aw+az)) Py i

L .
= ;1 (h‘h)“jdw k(@) pyi, 1200

5
where the subscripts and env denote the systefqubit9 +afu(0)ei‘“‘p{i i }]] _f do X o)
and the environment, respectivelN,,) is the mean photon o
number of the bath mode, cos{wt) 1 2 L _ 2
1 X z - 2 J
(No)= Zoar—1- (6)

sm(wt)

Z =)

In the Schrdinger picture, the density operator obeys
Von Neumann’s equation, which differs from Heisenberg’s
equation by an overall sign. Therefore, the density operatof, the derivation, the following relations are used:

(in the Schrdinger pictur¢ may be treated as an ordinary
operator(in the Heisenberg pictuyeevolving backwards in PG, 3o =~ PG, g (12
time. We thus have

2
}P{i| Qe (13)

1 atpg, iy = ~ P iy - (13
t) = Cri (=D ® de o 11 [}
p(O= 2 cpyep y(~Vell | dan T

The solution of Eq(11) is

><exp( |<Nw|>2)(|aw>(aw| (7

wherep{iI ih and|a,){a,| are treated as ordinary operators.

sin( wt) — wt
P{i,,j,}(t)=exp[if dwkz(w)[ln(w#

w

From Eq.(3), we know - 2 2 ~1-coq wt)
elet-1 . |=21 ) (2 ]') w?
(o)) - “’“+2 k(W) of——— ) , ]
St x| 2 (=) HepoZ (i.—j.)}
><< _""t—i-E k(w)of——— € o o
0 iwt_l
® % [ do k(== aL<0>]p{i|,j|}<0>
So the reduced density operator of the qubits at tircan be L
expressed as P{ 21 (h‘h)}
ps(1)=Tren[p(1)] y j . ( )efiwt_l (0)] s
o K(w)—/a, .
Z{i%& C{il,j|}®f ({autlpg, jp(—OHau}) @

The operator p; ji(t), and so pg j,(=t), have
XH [P,(a,,.t)d?%a,], 9) been expressed byp{i|,j|}(0) and a,(0). Therefore,
@ <{aw}|p{i|'jl}(—t)|{aw}> is obtained as a function of

where|{a,})=11,®|a,) indicates the coeigenstates of all Py, j}(0) anda, . Substituting this result into Eq9), we
the bath operatora,(0) and thus have
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2] tr(py1p1,-1) =tr(pr1p 1) =tr(p_1,-1p1-1)

=tr(p_1,-1p-1)=tr(p11p_1,-1)=0.
(21)

L
ps(t) = 2 C{i,,jl}eXP{ — (0] 2 (=)
{iyn =1
L 2 L 2
xexp{iﬁd)(t)[(z i|) —(E j|) }P{i,,jl}(o), _ _
=1 =1 Equations(15) and(19) suggest that the qubits are deco-
(15) hered collectively. This is an interesting phenomenon. The
phase shift and phase damping are directly proportional to
where the Lamb phase shift factarp(t) is defined as the factorS[_, (i, —j;). If the input density operator satisfies
E:‘Zl(i|—j|)=0, at any time the ﬁdelit}F:[Z{i|}|C{il}|2]2

B ) wt—sin( wt) =1, and the reduced density operator of the qupiis)
Ad’(t)—f do (o) 7 | (16) =34, iy, iy, i1 (0)=ps(0). So nodecoherence occurs
at all even if the qubits interact with the environment. The
and the phase damping factg(t) is states satisfying the conditic}_,(i,—j;) =0 are called the
coherence-preserving states. Consider the states
ot
4 sir?(—)
2 1 T .,(0))= cinl{ii}), 22
0= [ do lo—H (e 5] ap a0, &, el @
w

) ) _ where m is a definite number and\, denotes the set
Both the Lamb phase shift and the phase damping contr|butﬁl|2|L:1i|: m}. Obviously, the relationElel(h—h) =0 is

to the decoherence of the qubits. The Lamb phase shift wagyisfied for this kind of states. So all of staté2?) are
missed in Ref[20]. By examining the calculation there, we ¢qherence-preserving states. In these states, the qubits are
find a mistake. In Eq(13) of Ref.[20], the time evolution entangled with each other.

operator U(t) in the interaction picture is expressed as  js interesting to compare the collective decoherence
U (t) =exr — (i/%) [oH(t')dt']. But this expression is not cor- ith the independent decoherence. If the qubits couple inde-
rect since ther¢H, (t),H,(t")]#0. Because of this error, a pendently to separate environments, similar to the derivation
phase factor was missed in the evolution operk@r). This  of Eq. (15), it is not difficult to obtain that at time the

phase factor finally results in the Lamb phase shift. From Egrequced density.(t) of the qubits is expressed as
(15), we see, in the case of collective decoherence, that the

Lamb phase shift does not reduce to zero. Equatibh L
shows that the phase damping is directly proportional to the p!(t)= >, ci, ,j|}eXF{ — 1) (i|—j|)2}
mean photon number. At high temperature, ilgT>% w, iy =1
decoherence is mainly induced by the phase damping. But at

L
low temperature, the Lamb phase shift is of the same order of X ex iAqS(t)E (i|2—j|2) pii 4(0)
magnitude as the phase damping, and it cannot be neglected. =1 R
The state fidelity has been introduced to describe stability L
of quantum informatiori24]. For a pure input statgl’(0)), _ . _ RV
the fidelity is defined as (2 G 702 (=102 |y, 1(0)
F=(¥(0)|ps(H)|¥(0)) =t ps(0)ps(t)],  (18) 23

B - The Lamb phase shift reduces to zero for the independent
wherep(0)=|¥(0)){¥(0)], andp(t) indicates the output decoherence, since for=+1 we always have?—j2=0.

density operator of the system. Here we use the fidelity t%quation(ZS) shows that the phase damping increases With

describe the decoherence of the qubits. Suppose the init ber of th bi icall ,
state of the qubits is expressed [a8(0)) ==y ,cih[{if}), (number of the qu ibsmo_notoplca y. In generap(t) rap-
o idly deviates fromp(0) if L is large. This can be clearly

where [{i })=1II,®|i,) and|i;) with i;==*1 may represent L ,
the state$= 1) of a spin electron, or the statdg) and|g) oo from the state fidelityndicated byF’)

of a two-level atom. From Eq15), we obtain the fidelity L
L ) F,:{i%d |C{i|}|2|C{j|}|zeXF{ - W(I)Zl (i|—i|)2] (24

2, (i.—j.)} ]

-1 The typical behavior of' in the form of Eq.(24), as dis-
} cussed in Ref[9], is F'xce ML je. the fidelity decays

F=2 |C{i|}|2|c{i|}|2eXp| —7(t)
{iyan
L 2 L 2
(Z i|) —( j,) (1990  with L exponentially. Its damping is insensitive to the type
=1 =1 of initial states. This is much different from decoherence of
o ) ) the qubits coupling to the same environment. In the latter
In the derivation, the following relations are used: case, with some input states, decoherence of the qubits may
increase withL more rapidly. But, with some other states,
tr(p1—1p_10)=tr(p% 1) =tr(p3 =1, (200 j.e., the coherence-preserving states, no decoherence occurs

xexp{ iAg(t)
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at all. Sensitivity to the type of input states is an important In this paper, coherence-preserving states are obtained
property of the collective decoherence. with the assumption that the qubits in the memory undergo
To reduce the independent decoherence, many quantuno amplitude damping. If the amplitude damping in not neg-
error correction schemes have been propdddd-17]. The ligible, states(22) will not remain unchanged. However, in
schemes in Ref§11-16 were devised to correct single qu- Ref. [25], we developed a general method to set up
bit errors. In practice, one need repeatedly use these schemasherence-preserving states. By a strategy called free Hamil-
to correct errors. For the independent decoherence, it can lienian elimination, the coherence-preserving states are found
shown easily that iN error corrections are performed within to exist both for the phase damping and for the amplitude
a time interva[ 0,T), there is a remaining error probability of damping, though they are not of the same form. Furthermore,
orderO[ (T/N)?] after each error correction evdrtl]. Thus  we showed there that the coherence-preserving states could
the accumulated error at timE is of order O[N(T/N)?].  be operated on with quantum gates. These results suggest
This error can be made arbitrarily small by choosing a sufthat transformation to coherence-preserving states is a useful
ficient largeN. However, this analysis does not hold for the and efficient scheme for reducing the collective decoherence.
collective decoherence, since in the latter case the occurrence Hamiltonian (1) also describes decoherence of a spin-
of errors for different qubits is correlated. In fact, the errorchain. The spin chain can be adopted as a model of the
correction schemes are not very efficient for reducing theapparatus in some cases. Therefore, the decoherence model
collective decoherence, since they do not take into accourit this paper may also have some implications for quantum
the specific interaction properties between the qubits and theeasurements. In fact, the coherence-preserving states dis-
environment. Fortunately, for reducing the collective deco-cussed above are intimately related to the concept of the
herence, there is a simple and more efficient scheme. Thigointer basis introduced by Zurek some years[&49. It has
scheme essentially exploits the coherence-preserving statd¥en recognized that decoherence plays an essential role in
Before storing a state into memory, we transform it into aquantum measuremeri86]. Decoherence is induced by the
coherence-preserving state in the form of &g). The trans-  inevitable interaction between the apparatus and the environ-
formed state undergoes no decoherence in the noisy memomgent. This decoherence causes the off-diagonal terms of the
and, afterwards, it can be transformed back into the originatlensity operator to decay in the pointer basis of the appara-
state. In this scheme we should find a one-to-one map frortus, and leads to the wave-packet collapse. The pointer basis
arbitrary input states onto the coherence-preserving states @ionsists of the eigenvectors of the operators which commute
a larger Hilbert space. Suppose there ate qubits. The with the apparatus-environment interaction Hamiltonian. The
Hilbert space spanned by the coherence-preserving statésherence-preserving states have this property, so they make
(22), with {i,} € A, is indicated byS,. The dimension o,  a pointer basis. It is nice to see how fast the off-diagonal
is (°1). If all the states in the spa are efficiently used in terms of the density decay in the pointer basis. To show this,
the transformation, the efficiency,, of this scheme attains We need to analyze the time behaviorsggf) andA ¢(t). At
high temperaturep(t) is much more important. For the one-
1 L 1 dimensional spin chaink?(w) has the form ofk?(w)=
m=5 100 L ~1-l0g(7L). (25 ¢24/#, wheree is approximately a constaf@]. In the high-
temperature limit, Eq(17) gives
The approximation is taken under the conditlor 1. So the
. .. . . 2
maximum efficiency is near to 1 If is large. Of course, to e kgT
make use of all the states i,, we require an involved ()~ 52 t
encoding. A simple encoding, though it is not the most effi-
cient, is to use two qubits to encode one qubit. As mentioned@he decoherence time is théig/ 7s?kgT. Comparing this

(27)

in Ref.[20], the encoding is with the decoherence time for harmonic oscillators, we see
that for the spin chain, the decoherence time follows a simi-
|+1)—[+1,-1), lar dependence on various parametetsch as the coupling
constant and temperature of the environmest is the case
|-1)—[-1,+1). (260 for harmonic oscillator§27,28.
This encoding makes use of a subset of the coherence-
preserving states ify. Encoding(26) can be easily fulfilled This project was supported by the National Natural Sci-
by using the quantum controlled-NOT ga{@s]. ence Foundation of China.
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