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Reducing decoherence in quantum-computer memory with all quantum bits coupling
to the same environment

Lu-Ming Duan and Guang-Can Guo*
Department of Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei,

Anhui 230026, People’s Republic of China
~Received 8 October 1996!

Decoherence in quantum-computer memory due to the inevitable coupling to the external environment is
examined. We make the assumption that all quantum bits~qubits! interact with the same environment rather
than the assumption of separate environments for different qubits. It is found that the qubits decohere collec-
tively. For some kinds of entangled input states, no decoherence occurs at all in the memory, even if the qubits
are interacting with the environment. Based on this phenomenon, a scheme is proposed for reducing the
collective decoherence. We also discuss possible implications of this decoherence model for quantum mea-
surements.@S1050-2947~98!05701-1#

PACS number~s!: 03.65.Bz, 42.50.Dv, 89.70.1c
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Quantum computers have recently raised a lot of inte
@1,2#. In quantum computers, the contents of the mem
cells are in a superposition of different states, and the c
puter performs deterministic unitary transformations on
quantum states of these memory cells@3#. A two-state
memory cell, which may be a spin-1

2 electron or a two-level
atom, is called a quantum bit, or qubit@4#. It has been argued
that quantum computers can solve certain problems m
more efficiently than classical computers@5–8#. In an im-
pressive example, Shor@8# showed that a quantum comput
could solve the problem of finding factors of a large numb
N in a time which is a polynomial function of the lengthL
~number of bits! of the number. However, it is not yet clea
whether quantum computers are feasible to build. Deco
ence is one of the major obstacles to realizing quantum c
putation. It has been found that decoherence in quant
computer memory cannot be neglected if the qubits inte
with the external environment@9,10#. To reduce this deco
herence, some strategies, such as quantum error corre
@11–17# and the purification of noisy entanglement@18,19#,
have been proposed.

In previous analyses of decoherence@9,10#, an important
assumption was made. That is, qubits were assume
couple independently to separate environments. Indepen
decoherence is an ideal case. As pointed out by Ekert
Lloyd @9#, there is another practical circumstance, in wh
the qubits interact with the same environment. The inter
tion with the same environment will result in cooperati
decoherence for the qubits. Palma, Suominen, and Ekert@20#
provided the first step in studying the cooperative decoh
ence. They started by considering a system of two qub
and extended the result to include a register ofL qubits. In
this paper, we propose an alternative simple approach
studying the collective decoherence, and correct an erro
the calculation of Ref.@20#. We consider a system ofL qu-
bits interacting with the same environment. It is found th
the qubits decohere collectively. This is compared with
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independent decoherence of the qubits when they inte
with separate environments. Because of the collective de
herence, for some kinds of input states~called the coherence
preserving states!, no decoherence occurs at all even if t
qubits are interacting with the environment. Based on t
phenomenon, a simple scheme is proposed for reducing
collective decoherence. The coherence-preserving state
intimately related to the concept of the pointer basis int
duced in the theory of quantum measurements@21#. We also
discuss possible implications of this decoherence model
quantum measurements.

Now we consider the decoherence model—L qubits in the
memory jointly coupled to the same environment. Thel qu-
bit can be described by the Pauli operatorsW l . The environ-
ment is modeled by a bath of oscillators. We consider
decoherence resulting from the dephasing process.
Hamiltonian describing the phase damping has the form@22#

H5\H E dvF(
l 51

L

k~v!~av1av
† !s l

z1vav
† avG J , ~1!

whereL indicates number of the qubits. We supposed t
the coupling constantsk(v) to the environment are the sam
for all the qubits. In Hamiltonian~1!, s l

z ( l 51,2, . . . ,L) are
conservative operators, so the dynamical equations for
operators can be easily solved. The Heisenberg equation
the bath operator is

i ȧv5vav1(
l 51

L

k~v!s l
z . ~2!

It has the solution

av~ t !5av~0!e2 ivt1(
l 51

L

k~v!s l
ze

2 ivt21

v
. ~3!

To determine the magnitude of the decoherence, we n
know the evolution of the reduced density of the qubits. T
problem can be solved by using the operator representa
of the density operator@23#. Let r21,215 1

2 (I 1sz), r1,1
5 1

2 (I 2sz), r21,15s1, r1,215s2, and
737 © 1998 The American Physical Society
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r$ i l , j l %
5r i 1 , j 1

^ r i 2 , j 2
^ ••• ^ r i L , j L

, ~4!

whereI is the unit operator, and possible values fori l and j l
( l 51,2, . . . ,L) are 1 or21. All the operators defined by
Eq. ~4! are expressed by Pauli’s operators. Obviously, th
make a complete set. The initial density operator of the
bits can be expanded into the set of operatorsr$ i l , j l %

. Sup-
pose the environment is initially in thermal equilibrium. Th
total density operatorr(0) is then expressed as

r~0!5rs~0! ^ renv~0!

5 (
$ i l , j l %

c$ i l , j l %
r$ i l , j l %

~0!

^)
v

E d2av

1

p^Nv&
expS 2

uavu2

^Nv& D ~ uav&^avu!0 ,

~5!

where the subscriptss and env denote the system~qubits!
and the environment, respectively.^Nv& is the mean photon
number of the bath modev,

^Nv&5
1

e\v/kBT21
. ~6!

In the Schro¨dinger picture, the density operator obe
Von Neumann’s equation, which differs from Heisenberg
equation by an overall sign. Therefore, the density oper
~in the Schro¨dinger picture! may be treated as an ordina
operator~in the Heisenberg picture! evolving backwards in
time. We thus have

r~ t !5 (
$ i l , j l %

c$ i l , j l %
r$ i l , j l %

~2t ! ^)
v

E d2av

1

p^Nv&

3expS 2
uavu2

^Nv& D ~ uav&^avu!2t , ~7!

wherer$ i l , j l %
anduav&^avu are treated as ordinary operator

From Eq.~3!, we know

~ uav&^avu!2t5Uave2 ivt1(
l 51

L

k~v!s l
ze

2 ivt21

v L
3K ave2 ivt1(

l 51

L

k~v!s l
z e2 ivt21

v U
0

.

~8!

So the reduced density operator of the qubits at timet can be
expressed as

rs~ t !5Trenv@r~ t !#

5 (
$ i l , j l %

c$ i l , j l %
^ E ^$av%ur$ i l , j l %

~2t !u$av%&

3)
v

@Pv~av ,t !d2av#, ~9!

where u$av%&5)v ^ uav& indicates the coeigenstates of a
the bath operatorsav(0) and
y
-

or

.

Pv~av ,t !5
1

p^Nv&
expF2

1

^Nv&Uaveivt

1(
l 51

L

k~v!s l
z eivt21

v U2G . ~10!

Now we need to obtain the diagonal matrix elements
the operatorr$ i l , j l %

(2t) in the bath coherent representatio
From Hamiltonian~1!, the Heisenberg equation for the op
eratorr$ i l , j l %

is

i ṙ $ i l , j l %
5F(

l 51

L

~ i l2 j l !G F E dv k~v!~av1av
† !Gr$ i l , j l %

5F(
l 51

L

~ i l2 j l !G H E dv k~v!@r$ i l , j l %
av~0!e2 ivt

1av
† ~0!eivtr$ i l , j l %

#J 2E dv k2~v!

3H cos~vt !21

v F S (
l 51

L

i l D 2

2S (
l 51

L

j l D 2G
1 i

sin~vt !

v F(
l 51

L

~ i l2 j l !G2J r$ i l , j l %
. ~11!

In the derivation, the following relations are used:

r$ i l , j l %
s l

z52 j lr$ i l , j l %
, ~12!

s l
zr$ i l , j l %

52 i lr$ i l , j l %
. ~13!

The solution of Eq.~11! is

r$ i l , j l %
~ t !5expHi E dvk2~v!H sin~vt !2vt

v2

3F S (
l 51

L

i l D 2

2S (
l 51

L

j l D 2G1 i
12cos~vt !

v2

3F(
l 51

L

~ i l2 j l !G2J JexpH 2F(
l 51

L

~ i l2 j l !G
3E dv k~v!

eivt21

v
av

† ~0!J r$ i l , j l %
~0!

3expH F(
l 51

L

~ i l2 j l !G
3E dv k~v!

e2 ivt21

v
av~0!J . ~14!

The operator r$ i l , j l %
(t), and so r$ i l , j l %

~2t!, have

been expressed byr$ i l , j l %
(0) and av(0). Therefore,

^$av%ur$ i l , j l %
(2t)u$av%& is obtained as a function o

r$ i l , j l %
(0) andav . Substituting this result into Eq.~9!, we

thus have
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57 739REDUCING DECOHERENCE IN QUANTUM-COMPUTER . . .
rs~ t !5 (
$ i l , j l %

c$ i l , j l %
expH 2h~ t !F(

l 51

L

~ i l2 j l !G2J
3expH iDf~ t !F S (

l 51

L

i l D 2

2S (
l 51

L

j l D 2G J r$ i l , j l %
~0!,

~15!

where the Lamb phase shift factorDf(t) is defined as

Df~ t !5E dv k2~v!Fvt2sin~vt !

v2 G , ~16!

and the phase damping factorh(t) is

h~ t !5E dv k2~v!

4 sin2S vt

2 D
v2 S ^Nv&1

1

2D . ~17!

Both the Lamb phase shift and the phase damping contri
to the decoherence of the qubits. The Lamb phase shift
missed in Ref.@20#. By examining the calculation there, w
find a mistake. In Eq.~13! of Ref. @20#, the time evolution
operator U(t) in the interaction picture is expressed
U(t)5exp@2(i/\)*0

t HI(t8)dt8#. But this expression is not cor
rect since there@HI(t),HI(t8)#Þ0. Because of this error,
phase factor was missed in the evolution operatorU(t). This
phase factor finally results in the Lamb phase shift. From
~15!, we see, in the case of collective decoherence, that
Lamb phase shift does not reduce to zero. Equation~17!
shows that the phase damping is directly proportional to
mean photon number. At high temperature, i.e.,kBT@\v,
decoherence is mainly induced by the phase damping. B
low temperature, the Lamb phase shift is of the same orde
magnitude as the phase damping, and it cannot be negle

The state fidelity has been introduced to describe stab
of quantum information@24#. For a pure input stateuC(0)&,
the fidelity is defined as

F5^C~0!urs~ t !uC~0!&5tr@rs~0!rs~ t !#, ~18!

wherers(0)5uC(0)&^C(0)u, andrs(t) indicates the outpu
density operator of the system. Here we use the fidelity
describe the decoherence of the qubits. Suppose the in
state of the qubits is expressed asuC(0)&5($ i l %

c$ i l %
u$ i l%&,

where u$ i l%&5P l ^ u i l& and u i l& with i l561 may represen
the statesu6 1

2 & of a spin-12 electron, or the statesue& andug&
of a two-level atom. From Eq.~15!, we obtain the fidelity

F5 (
$ i l , j l %

uc$ i l %
u2uc$ j l %

u2expH 2h~ t !F(
l 51

L

~ i l2 j l !G2J
3expH iDf~ t !F S (

l 51

L

i l D 2

2S (
l 51

L

j l D 2G J . ~19!

In the derivation, the following relations are used:

tr~r1,21r21,1!5tr~r21,21
2 !5tr~r1,1

2 !51, ~20!
te
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tr~r1,1r1,21!5tr~r1,1r21,1!5tr~r21,21r1,21!

5tr~r21,21r21,1!5tr~r1,1r21,21!50.

~21!

Equations~15! and ~19! suggest that the qubits are dec
hered collectively. This is an interesting phenomenon. T
phase shift and phase damping are directly proportiona
the factor( l 51

L ( i l2 j l). If the input density operator satisfie
( l 51

L ( i l2 j l)50, at any time the fidelityF5@($ i l %
uc$ i l %

u2#2

51, and the reduced density operator of the qubitsrs(t)
5($ i l , j l %

c$ i l , j l %
r$ i l , j l %

(0)5rs(0). So nodecoherence occur
at all even if the qubits interact with the environment. T
states satisfying the condition( l 51

L ( i l2 j l)50 are called the
coherence-preserving states. Consider the states

uCm~0!&5 (
$ i l %PAm

c$ i l %
u$ i l%&, ~22!

where m is a definite number andAm denotes the se
$ i l u( l 51

L i l5m%. Obviously, the relation( l 51
L ( i l2 j l)50 is

satisfied for this kind of states. So all of states~22! are
coherence-preserving states. In these states, the qubit
entangled with each other.

It is interesting to compare the collective decoheren
with the independent decoherence. If the qubits couple in
pendently to separate environments, similar to the deriva
of Eq. ~15!, it is not difficult to obtain that at timet the
reduced densityrs8(t) of the qubits is expressed as

rs8~ t !5 (
$ i l , j l %

c$ i l , j l %
expF2h~ t !(

l 51

L

~ i l2 j l !
2G

3expF iDf~ t !(
l 51

L

~ i l
22 j l

2!Gr$ i l , j l %
~0!

5 (
$ i l , j l %

c$ i l , j l %
expF2h~ t !(

l 51

L

~ i l2 j l !
2Gr$ i l , j l %

~0!.

~23!

The Lamb phase shift reduces to zero for the independ
decoherence, since fori l561 we always havei l

22 j l
250.

Equation~23! shows that the phase damping increases witL
~number of the qubits! monotonically. In general,rs8(t) rap-
idly deviates fromrs8(0) if L is large. This can be clearly
seen from the state fidelity~indicated byF8)

F85 (
$ i l , j l %

uc$ i l %
u2uc$ j l %

u2expF2h~ t !(
l 51

L

~ i l2 j l !
2G . ~24!

The typical behavior ofF8 in the form of Eq.~24!, as dis-
cussed in Ref.@9#, is F8}e2a(t)L, i.e., the fidelity decays
with L exponentially. Its damping is insensitive to the typ
of initial states. This is much different from decoherence
the qubits coupling to the same environment. In the la
case, with some input states, decoherence of the qubits
increase withL more rapidly. But, with some other state
i.e., the coherence-preserving states, no decoherence o
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at all. Sensitivity to the type of input states is an importa
property of the collective decoherence.

To reduce the independent decoherence, many quan
error correction schemes have been proposed@11–17#. The
schemes in Refs.@11–16# were devised to correct single qu
bit errors. In practice, one need repeatedly use these sch
to correct errors. For the independent decoherence, it ca
shown easily that ifN error corrections are performed withi
a time interval@0,T), there is a remaining error probability o
orderO@(T/N)2# after each error correction event@11#. Thus
the accumulated error at timeT is of order O@N(T/N)2#.
This error can be made arbitrarily small by choosing a s
ficient largeN. However, this analysis does not hold for th
collective decoherence, since in the latter case the occurr
of errors for different qubits is correlated. In fact, the err
correction schemes are not very efficient for reducing
collective decoherence, since they do not take into acco
the specific interaction properties between the qubits and
environment. Fortunately, for reducing the collective de
herence, there is a simple and more efficient scheme.
scheme essentially exploits the coherence-preserving st
Before storing a state into memory, we transform it into
coherence-preserving state in the form of Eq.~22!. The trans-
formed state undergoes no decoherence in the noisy mem
and, afterwards, it can be transformed back into the orig
state. In this scheme we should find a one-to-one map f
arbitrary input states onto the coherence-preserving state
a larger Hilbert space. Suppose there are 2L qubits. The
Hilbert space spanned by the coherence-preserving s
~22!, with $ i l%PA0 is indicated byS0. The dimension ofS0

is (L
2L). If all the states in the spaceS0 are efficiently used in

the transformation, the efficiencyhm of this scheme attains

hm5
1

2L
log2S 2L

L D'12
1

4L
log2~pL !. ~25!

The approximation is taken under the conditionL@1. So the
maximum efficiency is near to 1 ifL is large. Of course, to
make use of all the states inS0, we require an involved
encoding. A simple encoding, though it is not the most e
cient, is to use two qubits to encode one qubit. As mentio
in Ref. @20#, the encoding is

u11&→u11,21&,

u21&→u21,11&. ~26!

This encoding makes use of a subset of the cohere
preserving states inS0. Encoding~26! can be easily fulfilled
by using the quantum controlled-NOT gates@25#.
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In this paper, coherence-preserving states are obta
with the assumption that the qubits in the memory unde
no amplitude damping. If the amplitude damping in not ne
ligible, states~22! will not remain unchanged. However, i
Ref. @25#, we developed a general method to set
coherence-preserving states. By a strategy called free Ha
tonian elimination, the coherence-preserving states are fo
to exist both for the phase damping and for the amplitu
damping, though they are not of the same form. Furtherm
we showed there that the coherence-preserving states c
be operated on with quantum gates. These results sug
that transformation to coherence-preserving states is a us
and efficient scheme for reducing the collective decoheren

Hamiltonian ~1! also describes decoherence of a spin1
2

chain. The spin chain can be adopted as a model of
apparatus in some cases. Therefore, the decoherence m
in this paper may also have some implications for quant
measurements. In fact, the coherence-preserving states
cussed above are intimately related to the concept of
pointer basis introduced by Zurek some years ago@21#. It has
been recognized that decoherence plays an essential ro
quantum measurements@26#. Decoherence is induced by th
inevitable interaction between the apparatus and the envi
ment. This decoherence causes the off-diagonal terms o
density operator to decay in the pointer basis of the app
tus, and leads to the wave-packet collapse. The pointer b
consists of the eigenvectors of the operators which comm
with the apparatus-environment interaction Hamiltonian. T
coherence-preserving states have this property, so they m
a pointer basis. It is nice to see how fast the off-diago
terms of the density decay in the pointer basis. To show t
we need to analyze the time behaviors ofh(t) andDf(t). At
high temperature,h(t) is much more important. For the one
dimensional spin chain,k2(v) has the form ofk2(v)5
«2v/\, where« is approximately a constant@9#. In the high-
temperature limit, Eq.~17! gives

h~ t !'
p«2kBT

\2
t. ~27!

The decoherence time is thus\2/p«2kBT. Comparing this
with the decoherence time for harmonic oscillators, we
that for the spin chain, the decoherence time follows a si
lar dependence on various parameters~such as the coupling
constant and temperature of the environment! as is the case
for harmonic oscillators@27,28#.
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