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Casimir interaction between a microscopic dipole oscillator and a macroscopic solenoid
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We discuss the interaction between a microscopic electric dipole oscillator and a long solenoid which are
separated by a small distance. The solenoid belongs to a sRipecircuit and the zero point and thermal
current fluctuations within the solenoid coils are taken into account. We describe how they affect the equilib-
rium state and the excited states of the oscillator, thus providing a description of the Casimir interaction of the
system. We calculate the modification in the lifetime of the oscillator excited states as a function of the
parameters of the circuit, the dipole orientation, and the distance between the dipole and the solenoid. The
Casimir force between the solenoid and the electric dipole is calculated, and it is shown that this Casimir
interaction always exists, that is, it occurs even when the macroscopic current in the solensid We
suggest experiments which can exhibit these effects related to the electromagnetic interactions between atoms
or molecules and simple circuitsS1050-29478)00401-§

PACS numbegps): 03.65.Sq, 05.46:j

I. MOTIVATION AND DESCRIPTION large numbeiN of circular coils with radiusa, and that the
OF THE PHYSICAL SYSTEM solenoid extends from-1/2 to /2 in the z direction (L
=472N?a?/c?l). We shall also assume that<l|, that is, the

Two interesting phenomena have motivated us to studgolenoid can be considered thin and very l¢tigfinite” ) as
the electromagnetic interaction between a macroscopic soléar as the interaction with the oscillator is concerriede
noid and a polarizable molecule or atom. The first one is théig. 1).

Casimir force, which manifests itself between macroscopic In order to incorporate the various radiative effects pre-
objects. This force was predicted theoretically by Casjijr ~ sented by the system, our calculation must be based on quan-
in a seminal paper, published in 1948, and entitled “On thetum electrodynamic§QED) or stochastic electrodynamics
Attraction between two Perfectly Conducting Plates.” The(SED) [7,8]. It is well known that, for linear systems, the
experimental confirmation of the Casimir prediction wasresults of SED agree with those of QED-10]. For the sake
made by Sparnaaj?] in 1958. The Casimir force is nowa- of simplicity our approach will be based on SED, which is
days attributed to the existence of fluctuating electromagvery convenient for studying many phenomena associated
netic fields which pervade “empty” space or vacuum. The
second phenomenon is the Aharonov-Bohm eff@¢iwvhich
was also anticipated theoretically in 1959 and confirmed ex
perimentally by Mdlenstedt and Bayh4] in 1962.

We plan to discuss the influence of the current fluctua-
tions on the Aharonov-Bohm effect elsewhere. Nevertheles:
motivated by several controversial approaches related to th
phenomenon5], we have decided to use a bound charge tc
study the dynamical effects of the fluctuating electromag-
netic fields in the exterior region of a long solenoid which is
part of a simpleRLC circuit. It should be noticed, however,
that there is already a very large literature describing the .. ELECTRIC DIPOLE
perturbative coupling of an oscillator to an electromagnetic
cavity [6], but as far as we know, our detailed study of the
Casimir interaction between a dipole oscillator and the in-
ductor of the circuit is an original contribution to this field of : , ;
research. — —

In order to achieve our goal we shall consider, in detail, 2a Bdip
the interaction of a long solenoid with an electric dipole
placed close to ita neutral atom or molecule for instance FIG. 1. Schematic picture of the electric dipole at a distayce
The electric dipole is a microscopic one-dimensional oscillafrom the solenoid axis. The relevant fields generated by the sole-
tor (oscillating chargee, massm, and frequencyw,) which  noig (E,) and the oscillating dipoleHy;,) are indicated. The so-

is oriented along the axis and is placed at the origin of the |enoids used by Mienstedt and Bayh4] are such that 1.5
coordinate system. At a distange(in they axis) there isa  x10* cm<s§,<4x10°* cm, §,=3x10% cm, and a=7

long solenoid(inductancel.) whose axis is oriented parallel x10™* cm. The number of coils isl=10° and the solenoid length
to the z direction. We shall consider that the solenoid has d varies from 0.5 to 0.7 cm.

SOLENOID AXIS
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with electromagnetic fluctuations. 1 9Ay, b(y) .
The nonrelativistic equation of motion for the micro- Eso=—c 7 = =z ', 2.3
scopic oscillator ig7,8]

. where ATSO| is the vector potentialp(y)=2ma?N/ly, and
= —Mmoix+eE(t)+ 1.1 i ithi id coi
mx= —MwgX+eE(t) + m7X, (1.D (1) is the total current within the solenoid coils. We shall

: . . discuss first the case in whigh(t))=(i(t))=0, that is, the
— 2
wherer=2e?/3mc® andE,(t) is the total fluctuating electric circuit is disconnected from a battery.

field Wh'Ch act; on the cha_lrged partlcle_. The last tgrm in Eq. The correlation function associated with the current fluc-
(1'1).'5 the rad|at|_on' reacno_n force Wh'c.h h"?‘S an.'mportamtuations of the circuit(Nyquist-Johnson noisgl2)) is well
role in SED[9]. Within the dipole approximatiofwhich we known in the particular situation in which the electric dipole

s%all u;e tlhroufghogt thisf tpapethedﬁeld %X(t)t V\;”tlhbe co%— is very far from the circui{no interaction. In the case of an
sidered only a function of time, independent of the posion |~ Gircuit we have

of the charge(we are also assuming th&t|<y). In our
example there are two contributions EQ(t) which will be o)

denoted by T(w)=o— (2.9

B =Eve)* Esof ), 2 whereZ(w)=R—i(wL —1/wC) is the impedance, anf{ )
whereE,(t) is thex component of the electric field, gener- and | (w) are, respectively, the Fourier transforms of the
ated by the fluctuating current within the solenoid. In Eg.random voltageg(t) andI(t). Assuming that the character-
(1.2) Eyg(t) is thex component of the electric field associ- istic wavelength of the emitted radiation € 27¢c/LC) is
ated with the free space vacuum fluctuatigsse Ref][9]). larger than the dimensions of the circuit, that is, neglecting

In order to facilitate the exposition of our results we shallretardation, it is possible to show tHdt2,13

give, within Sec. I, a brief description of the fluctuations
associated with the electric circuit and we also introduce the
notation used in our paper. The detailed study of the interac-
tion between the solenoid and the oscillator will be presented
in Sec. lll. This section will be divided into three parts treat- The zero point and thermal fluctuations are included in Eq.
ing, respectively, the properties of the microscopic oscillator(2.5. Moreover, we are assuming that the circuit temperature
the Casimir force which the solenoid exerts on the electricT is equal to the temperature associated with the vacuum
dipole, and the modification in the spectral distribution asso€lectromagnetic fielsee Eq(2.2)]. The result(2.5 follows
ciated with the voltage fluctuations. The possible experimenfrom the fact that theRLC circuit is quite similar{13] to a

tal observation of our predictions and other theoretical impli-harmonic oscillator with frequenc = (LC) ~ */2, that is, the

_ o~ Rhw hw
(5(w)5(w’)>=ﬁcotl’<m> Nw+w'). (2.5

cations will be given in Sec. IV. current obeys the equation:
. 1t
IIl. FLUCTUATIONS ASSOCIATED WITH ELECTRIC Li(t)+RI(t)+ _f (t)dt' =&(1), (2.6)
CIRCUITS AND WITH THE VACUUM C

ELECTROMAGNETIC FIELDS and the average circuit energy at zero temperatuk€lg in

We shall denote the Fourier transform &,(t) by the limit R/LQ}—0.
= i The spectral distribution of the vacuum electromagnetic
Eye(w), that is, ; ' i~
fluctuations[see Eq.(2.2)] will be modified by the presence
© _ of the solenoid. We shall calculate this modification under
EVF(t)EJ dwEyr(w)e 't (2. the assumption that the voltage fluctuations and the vacuum
’°° electromagnetic fluctuatiors,g(t) are statistically indepen-

dent, i.e.(Eye(w)E(w’))=0. In the absence of interaction

According to the SED approagfi,8] Eve(w) is arandom (gjectric dipole removedhe statistical properties @&, can

variable such that its ensemble avergggr(w))=0 and be obtained from Eq¥2.3—(2.5). In this case the Fourier
5 transform of the total fluctuating electric field, namely,
— — hw hw = 7 = ;
(Eve(@)Eve(0))= 5 cot)—( m) wta), Exl0)=Eve(w) +Esol ), Is such that
(2.2

- - 2

(Ex(@)Ex(0" )= p(oy)d(0te’), (27

wheret: is the Planck constant afidis the temperatur&ero

point and thermal fluctuations are taken into accpunt and is characterized by a spectral distributid,y). Using
The electric field x component generated by the sole- Egs.(2.2—(2.5) it is possible to show that

noid at the position of the dipole can be calculated in the

standard manndr1]. The retardation effects will be negli- ® ]

gible because we shall assume that the relevant frequgencies ploy)= 272c3 cotl‘( m) [1+B(wy)], 28

are such thatw<c. Therefore, assuming algo<l, the re-

sult for Eg, acquires a simple familiar expression, namely, where

3
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3 R(27Na?/ly)? The above linearly coupled equatiori3,3) and(3.4), can
Blw,y)= > o2 (2.9  be solved exactly and are the main result of this section. We
c|Z(w)] shall discuss below several new dynamical effects which are

The electromagnetic spectral distributid®.8) is gquite governed by Eqs(3.3) and (3.4).

different from that observed in free spdeee Eq(2.2)] due _ . ) )

to the presence of solenoid . As a matter of fact, the modifi- A. Properties of the microscopic oscillator

cation inp(w,y) is significant for frequencie® which are In order to see the new properties of the oscillator, gen-
close to the circuit frequenc@. This modification will be  erated by the presence of the cloud of electromagnetic radia-

essential in order to understand the Casimir interaction be;qp, surrounding the solenoid, it is necessary to obi%@w).

tween material particles and the solen@@de Milonni[8] for From Egs.(3.3) and(3.4) we get

several other examples of Casimir interactjorghis is one

of the relevant results of our study. It should be stressed, _ (e/m) [Eye—i (wb/c2Z)E]

however, that neither the modification of the spectral density X(w)= D(w) (3.5

nor the role it plays in the radiative interaction is remotely
surprising. This is exactly the essence of the problem as w.
understood by PurceflL4] in 1946, when he proposed alter-
ing the spontaneous radiation rdt radio frequencigsby

coupling magnetic dipoles to a cavity and was abundantly

%Phe functionD (w) introduced above can also be written as

D(w)=wg+ Tw?’A(w,y)— wz—irws[l-l-ﬁ(cu,y)],

expounded by Bartonl5] in his many beautiful papers on (3.6
the subject.
where
lll. STUDY OF THE INTERACTION BETWEEN ol 2
THE SOLENOID AND THE OSCILLATOR Alw,y)= F( 1- —2> B(w,y). 3.7
w

Let us consider now that the electric dipole is in the origin . i ) . .
of the coordinate system at a distancdrom the solenoid. ~ Notice that the functiorB(w.y) is the same function which
The oscillating charge will generate electromagnetic field@PPears in Eq(2.8).

which propagate in space and will reach the solersige In equilibrium, the mean square displacement can t,"? cal-
Fig. 1). Neglecting retardation, thecomponent of the mag- culated from Eq(3.5). We shall first show that the familiar

L= . . . result for(x?) is obtained ifA (w,y) andB(w,y) are smooth
netic field By, at the point (G/,2) will be given by[11] functions ofw and if rwg<1. According to a standard pro-
cedure(see Milonni and the second paper by Boyer in Ref.

3 yexy) [8] for a similar calculatiohit is possible to show that

dip)z= "3 (3.1

2 0
wherer?=y?+z2 andx(t) is the solution of Eq(1.1). This (x)= 4m e_2 do
time dependent magnetic field will produce an additional 3 m“Jo

fluctuating voltage in each coil of the solenoid because of the

fluctuations inx(t). As a consequence, the electromotive X(flw3/277203)00tf(ﬁw/2k'|')[1+ﬁ(w,y)]
force acting in the circuit will be different frong(t) [see (02— 0§22+ P 1+ B(w,y) ]2
Egs.(2.5 and(2.6)]. The resulting total electromotive force
is h hwg 38
. = 2mag M 2kT ) 9
ElD)=E(1)+ Zb(Y)X(D), (32

where we have used Eqg.5), (3.6), and (2.8). It is also

when retardation effects are negligittee Ref[11]). Notice =~ €aSY 10 Show thabg/ wo=1+ 7wl (wo,y)/2=1.

that the geometric factd¥(y) is thesamefactor that appears 1€ result(3.8) is essentially théree spacevalue for an

in Eq. (2.3 which describes the reverse process, that is, thgscillato.r ir_1 equilibrium with zero point and _thermal “’?‘di?"
action of the solenoid on the dipole. tion. This is remarkable because the electric dipole is im-

In terms of the Fourier transform of(t), the Eq.(1.1) me_rsed in the electromagnetic noise geqerated by th_e circuit
which, however, does not appear in the final expression. The

becomes
factor 1+ B in the denominator of the integré8.8) counter-
2 9 . g el— iwb(y)~ balances the factor# 8 which appears in the spectral dis-
(0o~ 0 ~iT0")X(w) = L Evi(0) = —Z—1 (o), tribution p(w,y). A simple consequence of this fact is that

(3.3 the average value of the oscillator energyTatO is pre-
cisely (1/2)i wq coth(rwy/2kT). This is, therefore, a striking
where the last term in Eq(3.3) corresponds tE¢,(w). example of the fluctuation-dissipation mechanism in SED.
Equations(2.6) and(3.2) lead to Another impressive example of this fluctuation-dissipation
mechanism, associated with coupled mechanical oscillators,
was considered by Blanoet al. [16] in their “Classical in-

— - e -
— 2
Z(w) | (0)=&(w) = Z o b(y)X(w). 34 terpretation of the Debye law for the specific heat of solids.”
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We are going to study now the response of the oscillator B. Casimir force

to avoltage excitatiorapplied to the circuit. We shall assume

that it is generated by a deterministic disturbaiMgt) in

the circuit voltage and we shall describe it replaci{g) by

E(w)+Vy(w) in Eq. (3.5. For simplicity we shall assume

thatV4(w) has a constant valuk, /2. This hypothesis cor- . R < 5 . >

responds to generating a deterministic voltage pulse into the F=((p-V)Eso)+ ¢ XBsol/ - (3.10

circuit which has the simple for4(t) = Ayd(t). Therefore

according to Eq(3.5) the average position of the oscillator
will be given by

The electromagnetic forcgonrelativistic Lorentz force
which the solenoid exerts on the microscopic electric dipole

p(t) is given by the ensemble averaggee Ref[19])

The electric dipole has only the componggft) =ex(t) and
X(t) has the Fourier transform given by E®.5. The sole-

e L (Fiwb) (Ag2m) noid electric fieldéso,(t) was obtained before and ifsconl—
<X)—aﬁw —sz(w)D(w) pogenF i; given t?y Eg(2.3). The magnetic fieIcB.SO,=.V
, X Agq IS in the z direction and one can show that it gives a
_2mNa @ e/m _a sin(Qt)exp< B Et) negligible contribution toF despite the fact thatBg|
ly  cLpip- 2L =|Esol-
T The force(3.10 is in they direction and can be written as
+ wosin(wot)ex;< - ?t) , (3.9 ,

IR aN .
where p.=\(Q= wg)2+[(RIZL)—T /21> and I'"=I[1 FE{LPVEsly) =2mpzexD). (313

+ B(wg,y)]. Notice thatI'=2e’w3/3mc’ is the damping
constant in free space. The above result was obtained byhe currenti (t) has a Fourier transform(w) such that
assuming thal’' <w,, R/L<Q and that the poles in the
integrand aret wy—iI''/2 and+ Q—iR/2L. _ wi— w—iTw’_ 3 rwich(y)-

An interesting remark is that the damping constants in Z(®) | (w):TE(w _EWEVF(Q’),
both terms in Eq.(3.9 are different from the free space

3.1
damping constant’ due to the presence of the solenoid. (312

According to Eq.(3.9) we see that the lifetime of the oscil- ;, agreement with the coupled Eq&.3) and (3.4). Taking
lator states can be “controlled” by the experimentalist Whonts account Eqs(3.5), (3.12, (2.2), and(2.5) it is possible
can modify the parameters associated with the circuit. to show thatF can be expressed as the integral

To have a qualitative idea of the lifetime associated with

the first term in Eq(3.9), as compared with the free space 2,4
value, let us assume thaty=10" sec ! and rwe=10"'°.  F=—37(7wy)(Awg)——z (CR)
These two values are characteristic of the oscillations asso- Iy
ciated with a simple molecule such as the NHbr instance.
Therefore, using the numerical values fRrand L consid-
ered in Ref.[4], namely R=4x10 1° sec/cm andL=5
X 10" sed/cm, we getR/LT'=R/L7w3=10' Such a
huge value, obtained in this particular example, implies that
the radiation emitted by the electric dipole will have a broad
spectral distribution in comparison with the free space case.

In our opinion, this theoretical prediction is quite interestingwhere w,o is the maximum frequency compatible with the
and deserves further attention from the experimental point ofong wavelength approximation used within this paper
view. The anisotropy in the radiation emitted by the oscilla-(wmya=c/l).

tor may be experimentally detected. It is also possible to The integral in expressiof8.13 can be calculated for any
show thatI'’/T'=1+10a%/y?. Therefore, the result3.9  value of the temperatur€. We shall comment first on the
shows that we have an enhancement in the spontaneoussult for kT<#( and kT<#Awy which can be obtained
emission by the oscillator. A similar situation is encounteredirom Eq. (3.13 by replacingw® coth@iw/2kT) by |w|3. In
when the oscillator is between two parallel mirr¢is,18. this case the result is

" fwmax o> coth i w/2kT)

w
~ ®max w§|CZ(w)|2|D(w)|2

(w%—wz)-i-TwLFw(Qz—wz) , (3.13

e 3 a’(ch o] c |, m(1— %)
- EE? |_ vern E (1— 9%+ €'%y?

L 27%€/(2= Y )i y+ Ay Ty (1-€12) — (M- 4e'?+2)/2] g (e)

: (3.19
(1_ ’)’2)2+E’2’}/2
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where y(e')=(4—¢€'?)~ Y2 arctan(/d—€'?/¢’). The di- term in Eq.(3.17 has a very sharp peak which is of zero
mensionless parameteese’, andy are defined by order in 7. The possible experimental observation of this
sharp peak will be discussed in the following section.

R Q
e=Twy, €=y, andy= e (3.19 IV. DISCUSSION
_ _ i . _ An experimental test of our prediction for Casimir force,
The result(3.14) is valid up to first order ine and provided  Eqs. (3.14 and (3.16), might be performed measuring the
that wo and() are much less thac/l. See the Appendix for  deviation of an appropriate molecule passing near the sole-
the calculation details. noid. A similar procedure has been used for the measurement

In the particular case’ <1, the expression within the of the Casimir-Polder force on atoms passing through a
curly brackets in Eq(3.14 acquires a very simple form, micrometer-sized parallel-plate cavitg0]. In our case, we
namely, [ 1+ v?/(1+ y)]. It is remarkable that this is true should use a molecule with a characteristic vibration of fre-
for |[1—y|>¢€" and|1—y|=€". qguencyw, smaller tharc/I.

Another interesting case occurs when the temperature is A good candidate is the inversion of the ammonia mol-
such that kT>Awm.,. One can, therefore, replace ecule, whose frequency correspond to a radiation wavelength
hw coth(w/2kT) by kT in Eq. (3.13 and the Casimir force A=1.3 cm. However, t_he Casimir force in these cor)(.ji.tions
will be given by a much simpler expression in comparisoniS extremely small and is probably beyond the capabilities of

with Eq. (3.14), namely, present-day techn_ology. Using BE®.16 for_ room tempera-
ture, we have estimated the angteof deviation of a mol-
3 rca? (3.16 ecule passing closey&a) to the solenoid to be
=—— —=KkT. 3.1
4 ly 7 7C KT £ 1082 41
BT Mz @D

According to this result the force is repulsive, increases lin-
early with the temperature, and is independent of the oscilynere v is the velocity in cm/sec. We have taken

lator frequencyw, provided thatwy < wmay=c/l. =(2/3)(e*/mc®)=10 27 sec because is the proton charge
Finally, if ©o> wmay, the force calculated from E@.13 49 m ‘the reduced mass of the NHmolecule(about three
becomes very small. times the proton magsMoreover,M was assumed to be the
mass of the entire molecul@? times the proton magss
C. Spectral density of the voltage fluctuations It is interesting that Eq(4.1) gives a deviation which is
in the RLC circuit inversely proportional to the mass and does not depend on

According to Eq.(3.2) the spontaneous fluctuation of the the vibration frequency( except thatwo<c/l and fiwg
total electromotive forcé&,y(t) acting in the circuit has two <KkT). This suggests that the Casimir force between a free
main contributions. The first one, indicated Bgt) in Eq.  €lectron and a solenoid might give a measurable deviation,
(3.2), is simply the thermal and zero point noise voltage inMuch bigger than Ed4.1). The experiment would be similar
the resistive circuif12,13. Its spectral density is propor- t© and no more difficult than the standard exp_erlmental test
tional to the resistancR of the circuit[see Eq.2.5]. The ©f the Aharonov-Bohm effecf3-5|. A calculation of the
second one is generated by the fluctuations of the electriggssr”;'srsforce between a solenoid and a free electron is in
d'p%eeaggu'fieﬁ“t’g?{;%?ﬂ tgé‘tto)ttt) has a spectral density . Another prediction that can be tested experimentally de-
Sy(w) which can be written in a standard form, namely rives fro_m Eq.(3.1_7), namely, the measurement of the effect
~ ~ , , Do ' of the dipole oscillator on the voltager the current fluc-

(€ @) Ero(@"))=Sy(w) 8(w+w"). The two contributions  ations in theRLC circuit. Some of these fluctuations have
to Sy(w) can be easily obtained from our previous equationsy|ready been measurft]. As the producte is extremely
t(r215t) (3.2, and(3.5). Therefore it is straightforward to show small, we may write Eq(3.17) in the simplified form

a

how ho
hw hw R (7w)? 3[2ma®N\? S\/(w)zﬁcm 2kT LO
o= o oM a7 | R 2l Ty ,
xl e+ 27 (10 2% so—wg)|, 42
€ 4 TwWo Q|y2 W~ wWo) [, .

4
y w[1+B(w,Y)] ] 617

(05— 02?2+ w1+ B(w,y)]? whereé is Dirac’s delta. We predict a very sharp peak in the
o spectrum atv = wq but the width and height of the peak will
whereS(w,y) is given by Eq.(2.9). be determined by the resolution {) in the measurement of

The second term in E¢3.17) is caused by the fluctuating the frequency. Averaging the terms of E@t.2) that are
magnetic field generated by the random oscillations of theyithin curly brackets, in the intervalwo—(Aw)/2,
charge in the electric dipolsee Eq(3.1)]. This contribution 4+ (Aw)/2] we get
to the spectral densit$,(w) is small, in a wide range of the 5
spectrum, due to the factorrg)?. However, it should be e+ 3_77 wo C a

mentioned that, for frequencies very closeutg, the second 4 (79 (Aw) QI F “.3
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the oscillator to the solenoi.e., y=a) we get for the sec- I=
ond term of Eq(4.3) a value of about 10'* to be compared

dx

if w lies inside the interval. Even in the closest approach of Jclmol P(x)
0 DE(X)

with €’(=1/20) using A w)/wy=10"2, and the parameters clogl [ ex’(x?—y?)+ €' yx3(x?>—1)

of the Mdlenstedt and Bayh solenoid plus an ammonia mol- Ef D.X) , (A2)

ecule. This is too small to be measurable. Nevertheless, we 0 ¢

may consider a large number of molecules by immersing th%1e functionD(x) bein

solenoid in a cylinder of radius and heightl filled with ) g

ammonia gas. In this case, a straightforward calculation

shows that the second term of E¢.3) should be multiplied D(X)=[(x3— 7)) 2+ €' 29X%][(1—x?) %+ €2X°]

by ¢
o +2xex*(1—x2) (x2— y?) + €2(2x ye' + x2)x8. (A3)
?nazl In 5), (4.4)

The parameterg, €', andy were defined in Eq(3.195

wheren is the number of molecules per unit volume (2.7 andX=3a_Zc/2y2|w0. _ _ o
x10° cm 3 at room temperatuje We predict a pro- The ratio P(x)/D_E(x) can bg written in a form which is
nounced peakabout five times bigger than the background convenient for the integration in EA2), namely,

when w approaches the ammonia inversion frequency.

As a final remark we want to suggest that the above re- 4
sults(Secs. lll C and IV may be useful in the study of “sto- P(x)  Ax D @
chastic resonance” effects. These phenoni@ij observed D(x) €x%+p?
in various nonlinear systems including electronic circuits, are
;:h;rac;griﬁed by tf;]e prestﬁncc(ia ?f (?.mtimfb noli(se a_mg]i— . The constant#\, p, «;, andZ; will be calculated only up
ude which can enhance the detection of weak periodic sig-_ .. : A .
nals. Therefore we believe that our analysis mgy also fin%0 first order ine= rwo<1. Notice that we shall assume that

useful application in this wide context. ®max=C/l<1/7. One can show that

(A4)

+0(€%), (A5)
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APPENDIX

We give below a brief description of the method we havewith j=1,2,3,4 and the values &; are
used in order to obtain the res(®.14 for the Casimir force

. . 2 H ’
at zero temperature. The calculation of the mean square dis- _, _  _ _ x(1—v%) I X7V€E 5
placementx?), of the average oscillator energy, and also the Zi=—Zp=lte 2¢ - 2°¢ 1+ 4 +0()
calculation of the Casimir force in the high temperature limit (A7)

(KT/h> wma=cll), are similar.
Introducing the variablex= w/w, the expressior(3.13  and

will be given by 7
€
3 (a\/ ¢ Z3E—Z4=y\/1—7+§e"y+0(e). (A8)
F:_E yg K ha)06|, (Al)

0 The substitution of Eq.A4) into Egs.(A2) and(Al) leads

where to the result(3.14) for the Casimir force.
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