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Superposition-preserving photon-number amplifier

Gunnar Björk, Jonas So¨derholm, and Anders Karlsson
Department of Electronics, Royal Institute of Technology, Electrum 229, S-164 40 Kista, Sweden

~Received 10 February 1997!

We analyze a pure-state photon-number amplifier~PNA!, i.e., a device that performs the actionuc in&
5( lcl u l &→ucout&5( lcl uGl&, whereG is a positive integer. We derive expressions for the fidelity of a finite
internal state PNA and demonstrate that the amplifier fidelity, i.e., the similarity between the obtained and the
desired output state can be made to approach unity. Finally we outline a systematic procedure to find the
Hamiltonian for any finite Hilbert-space PNA and compute the Hamiltonian for a simple but nontrivial PNA.
@S1050-2947~98!07301-6#

PACS number~s!: 42.50.Dv, 42.50.2p, 03.65.2w
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I. INTRODUCTION

In conjunction with discussions about quantum inform
tion processing@1–3#, interferometry, and Schro¨dinger cat-
state generation@4#, some attention has been devoted to
photon-number amplifier, in the following referred to as
PNA. The concept of the PNA was first brought up by Yu
@5#. However, it should be pointed out that the term has b
used to denote two different devices, carrying out somew
similar, but in this context distinctly different functions. I
both classes of devices an input number stateuc in&5un& is
transformed to an output stateucout&5uGn&, whereG is a
positive integer>2. However, in first class of PNA’s, which
have been experimentally demonstrated@6#, a pure superpo-
sition state at the inputuc in&5( lcl u l & is transformed to a
mixed state at the output with the density matrixr̂out
5( l ucl u2uGl&^Glu. Hence any phase information in the sta
is lost rendering the amplifier useless in any scheme wh
quantum superpositions play a role. In contrast, Yuen@5#,
and later D’Ariano@7# showed that quantum mechanics a
lows for a device that leaves the output state in a p
‘‘transformed’’ superposition state, the transformation
such a device being

uc in&5(
l

cl u l &→ucout&5(
l

cl uGl&. ~1!

This is the defining equation for a superposition-preserv
photon-number amplifier, and in the following we will re
serve the acronym PNA to describe a device of this type

While Yuen showed the feasibility for such a PNA, on
limited work on specific realizations of PNA’s has hither
been done. D’Ariano derived a unitary transformation a
was the first to derive a corresponding Hamiltonian@3,7#.
D’Ariano also pointed out that a device with the same g
eral transformation as the PNA, but withG replaced by the
inverse of a positive integer, will work as an ideal pha
amplifier @3#. In this work we extend the analysis of Yue
and D’Ariano and set out to derive a Hamiltonian~with a
quite straightforward physical interpretation! for a PNA
within the rotating-wave approximation and with no ‘‘hid
den’’ classical fields~see below!. We assume that the ampl
fier input mode remains invariant under the amplificati
process; specifically we assume that the input mode osc
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tion frequency does not change. In order for the PNA to
representable by a unitary transformation it is necessar
assume that the PNA has an auxiliary internal mode.
shall assume that the frequency of the internal mode c
cides with that frequency of the input mode. A conseque
of the rotating-wave assumption is that the state amplifi
tion will lead to entanglement between the PNA intern
mode and the amplified mode. After dissipation of the PN
internal mode energy, the output state will not be pure,
desired, but mixed. Hence the amplified state will only
close to the desired state, but never exactly equal to it.

To justify the rotating-wave approximation we note th
in a typical experiment where a PNA might be used, t
input mode is narrow band in frequency. If temporal wav
packet modes are used, the pulse length is typically lon
than a nanosecond. Hence, the interaction time of the P
must be of this duration or longer. Assuming that both t
input and the amplifier internal mode have frequencies so
where in, or near, the visible spectrum, every term in
Hamiltonian that creates or annihilates even a single ene
quantum too much or too little to conserve energy will ha
a transition matrix element on the order of 1026 smaller than
terms that conserve energy exactly. Since typical sing
photon resolution detectors have quantum efficienc
,90%, the energy nonconserving terms can safely be
glected in the description in comparison to typical measu
ment errors that are.1021.

Conversely, any term necessary for the proper state
plification that does not conserve energy in a PNA Ham
tonian needs to have a nonlinear coupling strength of
order of 106 larger than the energy-conserving terms. Sinc
long-standing problem in the experimental demonstration
even classical nonlinear optical devices is the small non
earity of available nonlinear materials, we believe that a
proposal of a PNA that relies on energy non-conserving p
cesses will be impossible to implement experimentally.

D’Ariano’s Hamiltonian is only within the rotating-wave
approximation if either of two conditions are fulfilled. Eithe
the input mode must simultaneously be frequency conve
and photon number amplified, or a third classical~and hence
undepleted! mode must be invoked. The action of unita
transformation D’Ariano derived, on the stateun,m&, is

ÛGun,m&5uGn1G^m/G&,@m/G#1n&, ~2!
650 © 1998 The American Physical Society
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57 651SUPERPOSITION-PRESERVING PHOTON-NUMBER AMPLIFIER
where the amplification gainG has been assumed to be
positive integer,@x# denotes the integer part ofx, and ^x&
5x2@x# is the fractional part ofx. If we look at the map-
ping we see that for mostn’s and m’s energy is not con-
served if the frequency of both modes remain invari
throughout the amplification process. If one restricts one
to the case wherem50, then the total energy of the conve
sion process can still be preserved provided that the am
fied mode is frequency converted fromv to v/(G11) by
the amplifier. However, in most experiments, and in syste
experiments in particular, it is highly desirable that the a
plifier input and output mode are equivalent~e.g., same fre-
quency, polarization, and transverse mode!. Therefore we re-
strict our interest to such processes.

A different way of making the mapping~2! energy con-
serving is to invoke one or more classical nondeple
field~s!, which may provide the energy needed to bring t
unitary transformation of D’Ariano within the rotating-wav
approximation. In the Hamiltonian these fields would
manifested by rapidly oscillating coupling coefficients. Th
was suggested as a physical realization of a PNA by Yue
@2#. However, to realize Eq.~2! above even on a rather re
stricted two-mode Hilbert space would require a large nu
ber of classical fields with different frequencies and fix
relative phases~since the input mode superposition should
conserved!. This would pose significant difficulties for th
experimentalist. In addition, the problem with entanglem
between the amplified mode and the mode providing the
ergy needed for the amplification is ignored in such a tre
ment. However, our analysis suggests that, practical con
erations aside, it is in fact permissible to neglect t
entanglement irrespective of the exact state of the mode
viding the energy if this state is in a sufficiently large sup
position of energy eigenstates.

We note that work related to ours has been performed
quantum state copying@8,9#. These papers delineate ho
well states can be copied~in general, states cannot be copi
perfectly@10#! and in that respect this work is similar to our
We will restrict our attention to devices where the amplifi
input state Hilbert space is limited, and derive the expl
Hamiltonian for one simple, but nontrivial, such devic
However, our algorithm for finding the Hamiltonian can b
extended to PNA’s operating on arbitrary large Hilbe
spaces. It may seem to be a limitation to consider PN
accepting only a limited set of input states. However, if
require that the amplifier internal mode energy, from wh
the amplifier draws the necessary energy needed to am
the state, is bounded, it follows that the amplifier can
properly amplify a highly excited input state. Hence
energy-conserving PNA exist that can operate on an infi
number-state Hilbert space. Additional justification is pr
vided by more mundane considerations. Although we
easily derive the quantum mechanical equations of mo
of, e.g., a phase-insensitive linear amplifier and hence
actly obtain the output state for any input state, the ensu
equations of motion are still only valid in a finite Hilber
space since gain saturation is an inherent limitation of
amplifier for the same reason it is for the PNA.

II. STATE TRANSFORMATIONS AND FIDELITY

We shall consider a PNA with gainG operating on the
input Hilbert space spanned by the state vectors~in a number
t
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basis! $u0&,u1&•••un21&%. To be able to amplify all input
states byG, the amplifier internal state must be in a state

uca&5 (
k5~n21!~G21!

~n21!~G21!1m21

dkuk&, ~3!

where the upper summation limit is chosen so that the a
plifier initial state is in am-state superposition if alldk co-
efficients included in the summation are nonzero. It is qu
obvious that the state should be chosen to be pure since
postinteraction input state we are aiming at is pure. The P
input state is written as

uc in&5 (
l 50

n21

cl u l &, ~4!

and according to our desire to make an input-sta
independent PNA, the joint state of the input mode and
preinteraction PNA internal mode must be a product sta
The output state, in the rotating-wave approximation, will

ucout&5 (
l 50

n21

(
k5~n21!~G21!

~n21!~G21!1m21

cldk exp~2 iu l ,k!uGl,k

2 l ~G21!&, ~5!

where we have used the notationu l & ^ uk&[u l ,k&, and where
exp(2iul,k) is the PNA unitary evolution phase factor. Th
fact that we have mapped every input state to one, and o
one, output state comes from the defining action of the PN
One immediately sees that the output state becomes
tangled with the amplifier internal state due to energy c
servation. In addition, it becomes clear that we can assu
without loss of generality, that all the unitary evolution pha
factors are zero, and hence all the~complex! dk coefficients
should have the same phase in a polar decomposition.
will take this phase to be zero too, making alldk ’s real and
positive. In fact, our ‘‘without loss of generality’’ statemen
in the preceding sentence is only true in the operatio
sense. As we shall see below there exist many unitary tra
formations that perform the optimal state mapping, and e
after a one-to-one state mapping is defined, one can still
infinitely many optimal unitary transformations~with differ-
ent u l ,k ’s!, each corresponding to a specific choice ofdk
coefficient phases. Nonetheless, all these unitary transfor
tions are of the same ‘‘difficulty’’ or ‘‘complexity,’’ where
we loosely define ‘‘difficulty’’ in terms of the number o
terms, and the highest power of the creation and annihila
operators in these terms, needed to synthesize the Ha
tonian corresponding to the unitary evolution.

In his original paper Yuen very briefly discussed the n
cessity and the role of the PNA internal mode, but he ma
no attempt to include it in the analysis@5#. D’Ariano takes
the analysis a step further and includes the PNA internal s
in the analysis @7#. However, as pointed out above
D’Ariano’s unitary transformation is not per se energy co
serving. Energy conservation will entangle the amplifi
mode with the PNA internal mode, and as one can gu
getting rid of the unwanted entanglement between the mo
is the major obstacle in realizing a PNA, both on paper a
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TABLE I. A table of the PNA postinteraction state coefficients of an53, m54, G53 PNA. The
preinteraction internal state coefficients are chosen according to Eq.~11!. Tracing over the PNA internal stat
will leave the output state density operator terms pertaining to the internal statesu4& and u6& in a ~desired!
3-state superposition.

Output Postinteraction PNA internal state

state u0& u1& u2& u3& u4& u5& u6& u7& u8& u9& u10&

u0& 0 0 0 0 c0d4 0 c0d6 0 c0d8 0 c0d10

u3& 0 0 c1d4 0 c1d6 0 c1d8 0 c1d10 0 0
u6& c2d4 0 c2d6 0 c2d8 0 c2d10 0 0 0 0
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in reality. If the PNA internal state simply is dissipated aft
the interaction the output state density operator become

r̂out5Tra$ucout&^coutu%, ~6!

where Tra$% denotes the partial trace over the amplifier st
Hilbert space. It is easy to demonstrate that nothing is gai
by letting the postinteraction amplifier mode undergo furth
interaction. To show this, suppose we prepare some t
mode ~not necessarily bosonic! in some pure stateucaux&
5(ej uj j&, where$uj j&% constitutes a complete set of orth
normal basis states. If we define some arbitrary unitary e
lution Ûarb of the joint stateucaux& ^ ucout&, then we find that

Tra,aux$Ûarbucaux& ^ ucout&^coutu ^ ^cauxuÛarb
† %

5( ( ^nu ^ ^juÛarb
† Ûarbucaux& ^ ucout&^coutu

^ ^cauxuÛarb
† Ûarbuj& ^ un&5Tra$ucout&^coutu%, ~7!

where we have used the fact that since bothun& and uj& are
complete orthonormal bases,Ûarbuj& ^ un& is also a complete
orthonormal base on the joint Hilbert space. This proof c
be trivially extended to mixed auxiliary states.

After carrying out the trace in Eq.~6! the PNA output
state is no longer pure, regardless of the choice ofdk coef-
ficients. One sees that it is impossible to make an ideal P
if the amplifier internal state is in a finite state superpositi
Therefore it is fruitful to define a fidelity measure that giv
an indication of how close to the target output state defi
by Eq. ~1! one can get. Fidelity measures have been d
cussed in@11,12#, and it appears that a suitable fidelity fun
tion should be defined as

f 5Tra$Ar̂ targetr̂outAr̂ target%5Tra$r̂outr̂ target%

5^ĉ targetuTra$r̂out%uĉ target&, ~8!

where the second and third equalities are based on the
that our target density operator r̂ target

[( l 50
n21( l 850

n21 clcl 8
* uGl&^Gl8u describes a pure state. The

delity function expresses the quantum-mechanical simila
between two states. In our specific case, where the ta
state is pure, the fidelity is the diagonal output state den
matrix element corresponding to the target state, if a bas
used in which the target state is one of the basis state vec
Hence the fidelity expresses the probability to find the P
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output state in the target state. The target functionf defined
above has the properties that 0< f <1, f 51 iff r̂out[r̂ target
and f is invariant under the permutation between the tar
and the output mode. Even with this definition it is not po
sible to get a numerical value off for given amplifier state
coefficientsdk since f is a function of the coefficientscl of
the input state. Since we are interested in a general de
that should work for any choice of the coefficients, it is re
sonable to averagef over all possible input states, i.e. ove
the 2nth-dimensional unit radius hypersphere surface. Wh
calculating f for some input state, one finds that one ge
terms with two distinct combinations ofcl coefficients, terms
with the factor ucl u4 and terms with the factorucl u2ucl 8u

2,
wherelÞ l 8. After a bit of algebra one finds that@13#

~ ucl u4!5
3

n~n12!
~9!

and

~ ucl u2ucl 8u
2!5

1

n~n12!
, ~10!

where the overbar signifies the average over all allowed
put states~i.e., all possible choices ofcl coefficients!. Using
this result in the calculation off one finds that to optimizef
for a given amplifier modem-state superposition, only thedk
coefficients that satisfyk5kmin1q(G21), whereq is a posi-
tive integer,kmin>(n21)(G21), and theq’s form an unbro-
ken integer series, should be chosen nonzero. This ca
seen from Table I. With the choice above all input states
be mapped on the correct output states~i.e., all terms includ-
ing the state coefficientc1 will multiply states belonging to
the output state energy manifold 1G53 in Table I!. In ad-
dition one sees that one maximizes the number of pro
superpositions of the output state, which are entangled wi
particular PNA internal state manifold. In the table both i
ternal state manifolds 4 and 6 are connected to superp
tions of the correct form, i.e., containing states belonging
all three output state manifolds. Asm@n only the extreme
PNA internal state energy manifolds will not be connected
output state superpositions of the proper form. If these
neglected, leading to a finite but small fidelity penalty, o
sees that one can obtain the wanted output state by choo
all dk coefficients equal.

The minimum energy amplifier state fulfilling the cond
tions outlined above is the state
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uca&5 (
k50

m21

d~n211k!~G21!u~n1k!~G21!&. ~11!

However, all amplifier states with coefficients chosen
cording to the criteria above will have the same form of t
fidelity function f regardless of the gainG andkmin .

Here it may be beneficial to pause for a moment a
reexamine the arguments leading us to choose the amp
superposition state in a particular ‘‘optimal’’ way. The a
sumption has been to construct a PNA that is general, i.e
should accept all possible input states belonging to
proper input state Hilbert space. Since some states are m
difficult to photon number amplify than others~the vacuum
state, for instance, is trivial to ‘‘amplify’’ since it should
simply be mapped onto itself! we have assumed that th
word ‘‘optimal’’ is used in the sense that averaged over
allowed input states, the amplifier is the optimal device u
der the constraint that the amplifier internal state may
include more thanm states in the number-state basis.
quantify this statement, we introduced the fidelity functionf ,
and then it is quite straightforward to derive the optimu
values of the coefficients.

One may argue that instead of constraining the numbe
orthogonal states in the amplifier mode superposition,
should try to minimize the state energy. However, the exp
mental challenge to prepare the PNA initial state superp
tion correctly will be much harder than the challenge to s
ply sufficient energy to create the state. Therefore it see
very reasonable to try to minimize the size of the amplifi
state superposition rather than to try to minimize the am
fier state energy.

III. A SIMPLE PNA

To demonstrate the general characteristics of PNA’s i
instructive to look at some simple but nontrivial cases. W
shall start by looking at the case wheren53, G52, andm
53. In this case the desired input state transformation is

uc in&5c0u0&1c1u1&1c2u2&→c0u0&1c1u2&1c2u4&.
~12!

If the amplifier initial internal state is chosen according
the criteria ~11! above, i.e., uca&5d2u2&1d3u3&1d4u4&,
then the fidelity of the PNA is

f 5
3~ ud2u21ud3u21ud4u2!

5

1
4Re$d2d3* %14Re$d3d4* %12Re$d2d4* %

15

5
3

5
1

4Re$d2d3* %14Re$d3d4* %12Re$d2d4* %

15
, ~13!

where Re$x% signifies the real part ofx. The expression is
invariant with respect to the permutationd2
d4 as ex-
pected. Furthermore it is seen that to maximize the exp
sion all the coefficients should have the same phase angl~in
a polar coordinate representation!, and as stated above, w
can, without loss of generality, choose the coefficients r
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and positive. When we maximize this expression over thd
coefficients we find that the maximum average fidelity
such a PNA isf 5(191331/2)/30'0.82 for the choiced2
5d45(113321/2)1/2/2'0.54, d35(1/223321/2/2)1/2'0.64.
This should be compared to the fidelity between the untra
formed input state and the target state,f 54/15'0.27 and the
fidelity of a PNA with the preinteraction internal mode in
~sufficiently excited! single number state~rendering the out-
put state density operator uc0u2u0&^0u1uc1u2u2&^2u
1uc2u2u4&^4u), f 53/550.6.

In general, for PNA’s involving larger quantum superp
sitions, e.g., largern’s and/orm’s, the exact optimum choice
of coefficients cannot be solved analytically, but has to
derived by numerical methods. However, we can derive
approximate result for any choice ofn, m, andG by noting
that if m@n, the optimumdk coefficients can be roughly
equal. This can be seen directly from Table I. If alldk

51/Am, the PNA state fidelity becomes

f 5H 12
n221

3~n12!m
for m>n

3nm16n112m2

3n~n12!
for 1<m,n.

~14!

In Fig. 1 we have plotted the fidelity of a PNA acceptin
3-state superpositions (n53) as a function of the number o
states in amplifier initial state superpositionm. Both the ex-
act, numerically derived result~upper dots! and the approxi-
mate result~lower dots! are plotted. The point form50 rep-
resents the fidelity between the input state and the ta
state. As we can see the fidelity approaches unity asymp
cally, but the convergence is slow, it goes only as}1/m. In
Fig. 2 we have plotted the approximate result for a 2-sta
3-state, 4-state, and 5-state PNA as a function of the num
of number states in the amplifier initial state superpositi
Not surprisingly, the qualitative behavior of all the PNA
are similar. Finally, in Fig. 3, we have plotted the fidelity fo
an optimized 1, 3, and 10 amplifier internal state superp
tion PNA accepting a 3-state input superposition. The fide
is independent of the relative phases between thec0 , c1 , and

FIG. 1. The average fidelity of a PNA amplifying a 3-sta
number-state superposition by some integerG, as a function of the
number of states in the initial amplifier superposition state. T
upper dots are the optimal fidelity, the lower dots are the resu
the weights of the amplifier statedk are all chosen equal. Note tha
the figure is independent of the choice of amplifier gainG.
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c2 coefficients. Therefore we have useduc0u and uc1u as our
free coordinates and plotted the fidelity along the third ax
We see that asm becomes larger, the figure approaches
unit fidelity plane. One can see that ifm.1, the input state
with lowest fidelity is the state @exp(iu0)u0&
1exp(iu2)u2&]/A2, whereu0 andu2 are arbitrary. This is not
surprising since these are the states that require the leas
most energy, respectively, in the amplification proce
Therefore they leave the most distinctly different ‘‘finge
prints’’ on the amplifier internal state and hence are the t
states that are the easiest to distinguish using the informa
left in the postinteraction amplifier state.

IV. PNA HAMILTONIANS

In this section we shall outline a procedure to obtain
Hamiltonian for any specific PNA. We start by noticing th
within the rotating-wave approximation energy is preserv
therefore, it is not sufficient that the state transformation
unitary—it must be unitary in each energy manifold. Th
means that different energy manifolds do not couple a
consequently one can solve the manifolds one by one. In
particular energy manifoldN with the corresponding energ
\vN and involving two bosonic modes, there areN11 basis
states. In our case it is convenient to take the
$u0,N&,u1,N21&, . . . ,uN,0&% as the basis states. One th
writes down the desired unitary matrixU0 in this basis. The
matrix has the dimension (N11)3(N11). As mentioned
above the unitary matrix is not unique. Our choice of t
amplifier internal mode coefficients as real and positive c
strains us to choosing all the matrix coefficientresponsible
for a desired state transformationto have the same phas
We shall take this phase as zero, which leaves all these
efficients to be unity. The rest of the coefficients can
chosen arbitrarily as long as the matrix is unitary. We se
the Hermitian matrixHN0 , which leads to the desired unitar
matrix, i.e.,

UN05exp~2 iH N0!. ~15!

To find HN0 one finds the eigenbasis s
$uf1&,uf2&, . . . ,ufN11&% that diagonalizesU0 , and the
corresponding eigenvalues$l1 ,l2 , . . . ,lN11%. The eigen-

FIG. 2. The average fidelity of PNA’s amplifying 2- to 5-sta
number-state superpositions~top to bottom!. The curves were
drawn using the approximate formula~13!. Optimization will yield
slightly higher fidelities.
.
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basis set can be expressed in the originally chosen basi
by multiplication by the matrixE. In the new basis set, sinc
the corresponding unitary transformation is diagonal, the
propriate generating Hermitian matrix~corresponding to the
Hamiltonian! can be diagonal with coefficientsheii such that
exp(2iheii)5li . Again no unique solution ofHe exists since
all the diagonal coefficients can be chosen modulo 2p. We
can subsequently transform the obtained Hermitian matri
the originally chosen baseHN05(E21)* He(E

21)T, where*
denotes the complex conjugate, andT denotes transpose. I
the following we shall refer to this Hermitian matrix as th
target Hermitian matrix. We note that a (N11)3(N11)
Hermitian matrix can have (N11)(N12)/2 independent
complex coefficients.

What we are really seeking is the Hamiltonian opera
whose corresponding matrix in the original basis set isHN0 .
For this end we construct the normally ordered Hermit
operators

~ â†! i~ b̂†!N2 i â j b̂N2 j1H.c., ~16!

where the annihilation operatorâ operates on the input
output state mode, the corresponding operatorb̂ operates on
the amplifier internal mode, H.c. denotes Hermitian conju
tion and 0< i , j <N. We note that every such operator
zero when it operates on a state in an energy manifold,N.
We also note that there are (N11)(N12)/2 different such
operators. The Hermitian matrix in the original state ba
has only two nonzero coefficients, namelyhi 11,j 11
5hj 11,i 11 . Both of these are real and positive. In additio
one can construct another set of Hermitian operators

i @~ â†! i~ b̂†!N2 i â j b̂N2 j2H.c.#. ~17!

These operators too are zero when they operate on a sta
an energy manifold,N. There are (N11)(N12)/2 differ-
ent such operators and again the Hermitian matrix in
original state basis has only two nonzero coefficien
namely,hi 11,j 115hj 11,i 11* . In contrast to the previous cas
these are both purely imaginary.

Having these (N11)(N12) Hermitian operators, thei
corresponding matrices in the original state basis and
target Hermitian matrixHN0 we are ready to find the correc
combination of Hermitian operators to describe the nee
Hamiltonian~and the needed interaction time!. If one is try-
ing to find the operators for the lowest-energy manifold
volved a simple inspection of the Hermitian matrices a
HN0 will do, since every Hermitian matrix corresponds
one, and only one, either real or imaginary part of each
efficient in HN0 . For higher manifolds it is not sufficient to
simply find the operators corresponding to the target Herm
ian matrix, one also has to undo the action of the low
manifold operators on the manifold in question. To this e
we compute the Hermitian matrixHlN0 corresponding to the
sum of these operators in the original basis set. One t
forms the matrixHN02HlN0 and proceeds in the same ma
ner outlined above to find the corresponding operators.

To reduce the procedure outlined above to practice
shall show how to find the Hamiltonian for an53, m52,
G52 PNA. The preinteraction PNA state is hence (c0u0&
1c1u1&1c2u2&) ^ (d2u2&1d3u3&), whered2 andd3 are real
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FIG. 3. The fidelity of an53 PNA for all possible choices of input states. In~a! a m51 PNA has been assumed. In~b! and~c! m is 3
and 10, respectively.
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and positive, and theci coefficients are arbitrary. The choic
d25d35221/2 maximizes the fidelity of the transformation
but that is irrelevant for what follows. We begin by notin
that the lowest manifold involved isN52, and that a basis
set in this manifold is$u0,2&,u1,1&,u2,0&%. Only the first of
these basis states is interesting from the point of view of
PNA, and it shall remain invariant under the PNA ampli
cation process. Hence a possible unitary evolution matri

U2o5F 1 0 0

0 1 0

0 0 1
G . ~18!

Since this manifold~and its unitary evolution! is trivial, we
shall forego the prescription above, and by simple inspec
we see that an appropriate Hermitian operator is
e

is

n

Ĥ2t/\5p~ â†â1b̂†b̂!. ~19!

We note in passing that since there are no lower manifo
than the second to worry about, we can~and have! actually
use~d! annihilation and creation operators of order 1
though we are dealing with the second manifold.

The third manifold is spanned by the stat
$u0,3&,u1,2&,u2,1&,u3,0&%. Of these states the first should r
main invariant, and the second should be transformed
u2,1&. Hence a permissible unitary transformation is

U3o5F 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

G , ~20!
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where we have deliberately chosen a real, positive
diagonal-symmetric unitary transformation. The unita
transformation has the eigenvalues$21,1,1,1%, hence a pos-
sible corresponding Hermitian matrix in the unitary mat
eigenbase is

H3e5pF 3 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

G . ~21!
dTransforming this matrix back to the original basis yields t
Hermitian matrix

H3o5pF 4 0 0 0

0 7/2 1/2 0

0 1/2 7/2 0

0 0 0 4

G . ~22!

The final Hermitian matrix whose corresponding operator
seek is
e
ts
e

ts of the
on-

r
tors to
H3o2Hl3o5p5 F 4 0 0 0

0 7/2 1/2 0

0 1/2 7/2 0

0 0 0 4

G2F 3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

G 6 5pF 1 0 0 0

0 1/2 1/2 0

0 1/2 1/2 0

0 0 0 1

G , ~23!

whereHl3o is the Hermitian matrix corresponding to the operator~19!. By inspection of Eq.~23! we see that the relevant fiv
operators are (â†)3â3, (â†)2b̂†â2b̂, â†(b̂†)2â2b̂1(â†)2b̂†âb̂2, â†(b̂†)2âb̂2, and (b̂†)3b̂3. The corresponding matrix elemen
~two for each operator sincehi j 5hji* areh4456, h3352, h2352, h2252, andh1156. Hence, the total operator performing th
desired unitary transformation up to the third energy manifold becomes

Ĥ3t/\5p$â†â1b̂†b̂1@~ â†!3â31~ b̂†!3b̂3#/61@~ â†!2b̂†â2b̂1~ â†!2b̂†âb̂21â†~ b̂†!2â2b̂1â†~ b̂†!2âb̂2#/4%. ~24!

As noted in@8#, the easier notational way to express such Hamiltonian operators is to use a sum over the outer produc
basis states, i.e.,Ĥ3t/\52p(u0,2&^0,2u1u1,1&^1,1u1u2,0&^2,0u)1••• . Unfortunately such notation obscures the rather n
linear interaction needed to obtain the desired unitary evolution. This was specifically pointed out in@8#. D’Ariano’s Hamil-
tonian, on the other hand, used multiphoton annihilation and creation operators@7#. We have chosen not to simplify ou
Hamiltonians in terms of multiphoton operators but to stick to normally ordered annihilation and creation opera
explicitly bring out the pertinent physics.

Proceeding through the remaining two manifolds for the PNA yields the following interaction Hamiltonian:

Ĥ5t/\5pH â†â1b̂†b̂1
~ â†!3â31~ b̂†!3b̂3

6
1

~ â†!2b̂†â2b̂1~ â†!2b̂†âb̂21â†~ b̂†!2â2b̂1â†~ b̂†!2âb̂2

4

1
~ â†!3b̂†â3b̂2~ â†!2~ b̂†!2â3b̂2~ â†!3b̂†â2b̂2

4
1

~ â†!2~ b̂†!2â2b̂2

8
2

~11A6!@ â†~ b̂†!3â2b̂21~ â†!2~ b̂†!2âb̂3#

4A6

1
~ â†!5â51~ b̂†!5b̂5

120
1

~ â†!3~ b̂†!2â3b̂21~512A6!@~ â†!3~ b̂†!2â2b̂31~ â†!2~ b̂†!3â3b̂2#113~ â†!2~ b̂†!3â2b̂3

48

1
211~ â†!4b̂†â4b̂1~1227A2!@~ â†!4b̂†â3b̂21~ â†!3~ b̂†!2â4b̂#

96

2
7A2@~ â†!4b̂†â2b̂31~ â†!2~ b̂†!3â4b̂#17@~ â†!4b̂†âb̂41â†~ b̂†!4â4b̂#

96

1
27A2@~ â†!3~ b̂†!2âb̂41â†~ b̂†!4â3b̂2#1~1227A214A6!@~ â†!2~ b̂†!3âb̂41â†~ b̂†!4â2b̂3#113â†~ b̂†!4âb̂4

96

1 i
~ â†!4b̂†â3b̂22~ â†!3~ b̂†!2â4b̂2~ â†!4b̂†â2b̂31~ â†!2~ b̂†!3â4b̂

48A2

1 i
~ â†!3~ b̂†!2â1b̂42â†~ b̂†!4â3b̂22~ â†!2~ b̂†!3âb̂41â†~ b̂†!4â2b̂3

48A2
J . ~25!
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In principle a proper interaction Hamiltonian for any PN
operating on any manifold can be obtained using the pro
dure outlined above. However, it is clear from this simp
explicit, but nontrivial example that the real worry is not ho
to calculate the needed Hamiltonian, but how to experim
tally realize it. Our explicit expression has the advantage
one sees what is in principle needed, namely, a serie
different nonlinear interactions between the two modes. T
problem is that the interaction phase shifts are rather la
on the order of unity for field strengths caused by single
few photon states. In reality, for a long time to come, w
believe that nonlinear optical materials will lack the need
figure of merit, namely, a sufficiently high ratio between t
nonlinear susceptibility and the linear and nonlinear loss

Before closing this section we shall discuss the simp
n52 PNA’s. Such a PNA could find use in, e.g., weak lig
interferometry and as a Schro¨dinger cat generator ifG is
large. Unfortunately this PNA will have Hamiltonians o
similar difficulty as the PNA discussed above. Only then
52, m52, G52 PNA will have a less ‘‘difficult’’ Hamil-
tonian than Eq.~25! above. For example, an52, m52, G
53 PNA will have a Hamiltonian consisting of typicall
more than twenty Hermitian normally ordered operator ter
of which about half will be of order five in annihilation an
creation. Therefore even PNA’s whose input state Hilb
space has the smallest nontrivial dimension will yield co
plicated interaction Hamiltonians.

V. DISCUSSION

We have demonstrated how to construct a superpos
preserving photon-number amplifier if the device is limit
to operate on a finite Hilbert space. We argued that the c
straint is not as limiting as it seems at first glance, since
same constraint actually is imposed on any real-world lin
amplifier. The problem one faces when trying to construc
PNA is that due to the energy transfer between the inp
output state and the amplifier internal mode, the joint post
eraction state will be entangled. Therefore the PNA out
state will no longer be pure if the amplifier internal state
e.g., dissipated to reset the amplifier. To classify the fide
of the output state after tracing over the amplifier mode,
used a fidelity measure introduced in@11#. We then derived a
systematic way of preparing the amplifier internal mode a
choosing a proper state mapping so that the fidelity of
PNA was maximized when averaged over all allowed in
states. We note that the same procedure can be used to
n,
e-
,

-
at
of
e
e,
r

d

r
t

s

rt
-

n

n-
e
r

a
t-
t-
t

,
y
e

d
e
t
on-

struct the unitary transform, in the rotating-wave approxim
tion, for a photon number deamplifier@3#. An additional dif-
ficulty with the latter device is that ifG is positive but,1
thenGn will in general not be an integer. This was discuss
in @3#. However, we assert that the real experimental ch
lenge in constructing either an amplifying or deamplifyin
device will be the experimental realization of the Ham
tonian needed to optimize the fidelity of the device. W
showed that the convergence towards unity fidelity goes
1/m, wherem is the number of orthogonal states in the initi
amplifier internal state superposition. Finally we derived
systematic procedure to derive a Hamiltonian, expresse
annihilation and creation operators that implements the PN
We noted that no unique such Hamiltonian exists, the sa
holds for the PNA unitary evolution. However, to solve th
ensuing equation systems in higher manifolds, one g
erally needs most of the degrees of freedom given by
(N11)(N12) different Hermitian operators of orderN in
annihilation and creation. This means that although o
Hamiltonian can be said to be ‘‘simpler,’’ e.g., by havin
fewer terms, than some other that performs the same P
action, the two Hamiltonians will yet have the same ‘‘com
plexity’’ in terms of the order of the nonlinearity neede
The fact that a PNA operating up to manifoldN needs op-
erators of orderN in annihilation and creation means that
is unrealistic to believe that optimized PNA’s can be realiz
in the near future possibly except for the very simplest
vices. However, if one is willing to sacrifice efficienc
~where efficiency is defined as the success rate of the des
transformation! it should be possible to construct a PNA wi
a much simpler Hamiltonian. By, e.g., measurement con
tioning it should be possible to identify those experimen
runs where one has obtained the desired transformatio
that the fidelity is close to unity. Obviously there is going
be a trade-off between the efficiency and the average fide
of the selected runs. Exactly what this trade-off is will d
pend on the complexity of the conditioning measureme
This will be the topic of future work.
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@13# Both expressions are independent of the relative polar coo
nate phase ofcl and cl 8 . Hence it is actually sufficient to
average the expressions over onlyn coordinates instead of 2n
coordinates. An easy way to parametrize the problem is to
each possible input state be represented by a point on the
i-

t
nit

radiusn-dimensional hypersphere. The integration measur
found from the Jacobian of the generalizedn-dimensional
spherical coordinate system. Equations~8! and ~9! can be de-
duced from the three-dimensional result and an induction pr
from n to n11 dimensions.


