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Superposition-preserving photon-number amplifier
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We analyze a pure-state photon-number ampliffeNA), i.e., a device that performs the actidu;,)
=3¢|)—|¥oup==,c1|Gl), whereG is a positive integer. We derive expressions for the fidelity of a finite
internal state PNA and demonstrate that the amplifier fidelity, i.e., the similarity between the obtained and the
desired output state can be made to approach unity. Finally we outline a systematic procedure to find the
Hamiltonian for any finite Hilbert-space PNA and compute the Hamiltonian for a simple but nontrivial PNA.
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PACS numbsd(s): 42.50.Dv, 42.50-p, 03.65-w

[. INTRODUCTION tion frequency does not change. In order for the PNA to be
representable by a unitary transformation it is necessary to
In conjunction with discussions about quantum informa-assume that the PNA has an auxiliary internal mode. We
tion processindg1-3], interferometry, and Schdinger cat- shall assume that the frequency of the internal mode coin-
state generatiofd], some attention has been devoted to thecides with that frequency of the input mode. A consequence
photon-number amplifier, in the following referred to as aof the rotating-wave assumption is that the state amplifica-
PNA. The concept of the PNA was first brought up by Yuention will lead to entanglement between the PNA internal
[5]. However, it should be pointed out that the term has beemode and the amplified mode. After dissipation of the PNA
used to denote two different devices, carrying out somewhatternal mode energy, the output state will not be pure, as
similar, but in this context distinctly different functions. In desired, but mixed. Hence the amplified state will only be
both classes of devices an input number stdig)=|n) is  close to the desired state, but never exactly equal to it.
transformed to an output staté,)=|Gn), whereG is a To justify the rotating-wave approximation we note that
positive integer=2. However, in first class of PNA’s, which in a typical experiment where a PNA might be used, the
have been experimentally demonstraffé] a pure superpo- input mode is narrow band in frequency. If temporal wave-
sition state at the inpufti,)==,c)|1) is transformed to a packet modes are used, the pulse length is typically longer
mixed state at the output with the density matpy, than & nanosecond. Hence, the interaction time of the PNA
—3,|c,|2|GI)GI|. Hence any phase information in the state Must be of this du_r_atlo_n or longer. Assuming that _both the
is lost rendering the amplifier useless in any scheme wher@Put and the amplifier internal mode have frequencies some-
quantum superpositions play a role. In contrast, Y{&h wher_e in, or near, the visible spectrum, every term in a
and later D’Ariano[7] showed that quantum mechanics al- Hamiltonian that creates or annihilates even a single energy

lows for a device that leaves the output state in a purguantu_m too mu_ch or too little to conserve energy will have
“transformed” superposition state, the transformation of @ transition matrix element on the order of Pasmaller than

such a device being terms that conserve energy exactly. Since typical single-
photon resolution detectors have quantum efficiencies
<90%, the energy nonconserving terms can safely be ne-
|l/fin>=EI CI||>_’|'r/f0ut>:E| c|Gl). 1) glected in the description in comparison to typical measure-
ment errors that are-10" 1.
This is the defining equation for a superposition-preserving Conversely, any term necessary for the proper state am-
photon-number amplifier, and in the following we will re- plification that does not conserve energy in a PNA Hamil-
serve the acronym PNA to describe a device of this type. tonian needs to have a nonlinear coupling strength of the
While Yuen showed the feasibility for such a PNA, only order of 16 larger than the energy-conserving terms. Since a
limited work on specific realizations of PNA's has hitherto long-standing problem in the experimental demonstration of
been done. D’Ariano derived a unitary transformation andeven classical nonlinear optical devices is the small nonlin-
was the first to derive a corresponding Hamilton{@)7]. earity of available nonlinear materials, we believe that any
D’Ariano also pointed out that a device with the same gen{roposal of a PNA that relies on energy non-conserving pro-
eral transformation as the PNA, but wi replaced by the —cesses will be impossible to implement experimentally.
inverse of a positive integer, will work as an ideal phase D’Ariano’s Hamiltonian is only within the rotating-wave
amplifier [3]. In this work we extend the analysis of Yuen approximation if either of two conditions are fulfilled. Either
and D’Ariano and set out to derive a Hamiltonianith a  the input mode must simultaneously be frequency converted
quite straightforward physical interpretatiofior a PNA  and photon number amplified, or a third classi@aid hence
within the rotating-wave approximation and with no “hid- undepletetl mode must be invoked. The action of unitary
den” classical fieldgsee below. We assume that the ampli- transformation D’Ariano derived, on the stafgm), is
fier input mode remains invariant under the amplification R
process; specifically we assume that the input mode oscilla- Ugln,m)=|Gn+G{(m/G),[m/G]+n), (2
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where the amplification gait has been assumed to be abasig {|0),|1)---|n—1)}. To be able to amplify all input
positive integer[x] denotes the integer part af and(x) states byG, the amplifier internal state must be in a state
=x—[x] is the fractional part ok. If we look at the map-

ping we see that for most’s and m's energy is not con- (n—-1(G-1)+m-1
served if the frequency of both modes remain invariant |ha) = > dy/ k), 3
throughout the amplification process. If one restricts oneself k=(n—1)(G-1)

to the case wherm=0, then the total energy of the conver- o
sion process can still be preserved provided that the amplivhere the upper summation limit is chosen so that the am-
fied mode is frequency converted fromto /(G+1) by  Plifier initial state is in am-state superposition if all, co-
the amplifier. However, in most experiments, and in Systemgffluents included in the summation are nonzero. It is quite
experiments in particular, it is highly desirable that the am-0Obvious that the state should be chosen to be pure since the
plifier input and output mode are equivaldetg., same fre- postinteraction input state we are aiming at is pure. The PNA
quency, polarization, and transverse modéderefore we re- input state is written as
strict our interest to such processes.

A different way of making the mappin{®) energy con- n-1
serving is to invoke one or more classical nondepleted |y = >, ci|l), 4)
field(s), which may provide the energy needed to bring the 1=0
unitary transformation of D’Ariano within the rotating-wave ] ] )
approximation. In the Hamiltonian these fields would beand according to our desire to make an input-state-
manifested by rapidly oscillating coupling coefficients. Thisindependent PNA, the joint state of the input mode and the
was suggested as a physical realization of a PNA by Yuen iRreinteraction PNA internal mode must be a product state.
[2]. However, to realize Eq2) above even on a rather re- The output state, in the rotating-wave approximation, will be
stricted two-mode Hilbert space would require a large num-

ber of classical fields with different frequencies and fixed n-1(n-1(C-H+m-1

relative phasessince the input mode superposition should be  |#ou) = 2 E cidy exp(—i6 |Gl k
conservell This would pose significant difficulties for the =0 k=(n-1)(G-1)

experimentalist. In addition, the problem with entanglement ~1(G—1)), (5)

between the amplified mode and the mode providing the en-

ergy needed for the amplification is ignored in such a treaty are we have used the notatiphe |k)=|1,k), and where

ment. However, our analysis suggests that, practical Co”Si%’xp(—ia, J) is the PNA unitary evolution phase factor. The

erations aside, it is in fact permissible to neglect theg i hat'we have mapped every input state to one, and only
e.nt.anglement |rre§pe9tlve of t_he' exact s.ta.te of the mode PI®ne, output state comes from the defining action of the PNA.
viding the energy if this state is in a sufficiently large super-gne immediately sees that the output state becomes en-

position of energy eigenstates. tangled with the amplifier internal state due to energy con-
We note that work related t?] ours has be%” Iperformﬁd Olervation. In addition, it becomes clear that we can assume,
quantum state copying8,9]. These papers delineate how yihoyt loss of generality, that all the unitary evolution phase

well states can be.copie(dw general,' states 'can.no.t be CoDiedfactors are zero, and hence all feomplex d, coefficients
perfectly[10]) and in that respect this work is similar to ours. 014 have the same phase in a polar decomposition. We
We will restrict our attention to devices where the ampliﬁerWiII take this phase to be zero too, making dJI's real and
input state Hilbert space is limited, and derive the explicit, qiie |n fact, our “without loss of generality” statement
Hamiltonian for one S|mple., b.Ut nontnwal,. su_ch device. in the preceding sentence is only true in the operational
However, our algorithm for fmdmg the I_—|am|Iton|an can be sense. As we shall see below there exist many unitary trans-
extendedlt to PNA's og:)erbatlngl_or_lt ?rb|trtary Iargde ngklir,tformations that perform the optimal state mapping, and even
spaces. m?y szer_n do € "’} /imitation 1o (|:_|0n5| er i Safter a one-to-one state mapping is defined, one can still find
accepting only a limited set of input states. However, It We;,aniely many optimal unitary transformatiorwith differ-

nt 6, 's), each corresponding to a specific choicedgf

require that the amplifier internal mode energy, from which
the amplifier draws the necessary energy needed to ampli oefficient phases. Nonetheless, all these unitary transforma-
ons are of the same “difficulty” or “complexity,” where

the state, is bounded, it follows that the amplifier cannot;
we loosely define “difficulty” in terms of the number of

properly amplify a highly excited input state. Hence no
ferms, and the highest power of the creation and annihilation

energy-conserving PNA exist that can operate on an infinit
number-state Hilbert space. Additional justification is pro'operators in these terms, needed to synthesize the Hamil-
onian corresponding to the unitary evolution.

vided by more mundane considerations. Although we cal
easily derive the quantum mechanical equations of motion In his original paper Yuen very briefly discussed the ne-
ssity and the role of the PNA internal mode, but he made

of, e.g., a phase-insensitive linear amplifier and hence €Xsa
B0 attempt to include it in the analysi§]. D’Ariano takes

actly obtain the output state for any input state, the ensuin
equations of motion are still only valid in a finite Hilbert- the analysis a step further and includes the PNA internal state

space since gain saturation is an inherent limitation of anY, the analvsis[7]. However as bointed out above
amplifier for the same reason it is for the PNA. ysis [7] ! P !

D’Ariano’s unitary transformation is not per se energy con-
serving. Energy conservation will entangle the amplified
mode with the PNA internal mode, and as one can guess,
We shall consider a PNA with gai® operating on the getting rid of the unwanted entanglement between the modes
input Hilbert space spanned by the state vedfiora number is the major obstacle in realizing a PNA, both on paper and

Il. STATE TRANSFORMATIONS AND FIDELITY
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TABLE I. A table of the PNA postinteraction state coefficients oh&3, m=4, G=3 PNA. The
preinteraction internal state coefficients are chosen according tdBgTracing over the PNA internal state
will leave the output state density operator terms pertaining to the internal stataad|6) in a (desired
3-state superposition.

Output Postinteraction PNA internal state
state  [0) [1) [2) 38y [4) 5 6 [7) |8 [9) [10
|0) 0 0 0 0 Cod, 0 Cods 0 Codg 0 Codag
|3) 0 0 c,d, 0 c,dg 0 c,dg 0 c,dqg 0 0
|6) c,d, 0 c,dg 0 Cc,dg 0 c,dqg 0 0 0 0

in reality. If the PNA internal state simply is dissipated after output state in the target state. The target funcfiatefined
the interaction the output state density operator becomes agpove has the properties thas®<1, f=1 iff ;Outz,gtarget
- andf is invariant under the permutation between the target
Pout= Tral| Youd Youl}» (6)  and the output mode. Even with this definition it is not pos-

) . sible to get a numerical value déffor given amplifier state
where T{} denotes the partial trace over the amplifier state.qeficientsd, sincef is a function of the coefficients, of
Hilbert space. It is easy to demonstrate that nothing is gaineg,o input state. Since we are interested in a general device

by letting the pos;interahc;tion amplifier mode undergo furt?}‘?rgat should work for any choice of the coefficients, it is rea-
Interaction. To show this, suppose we prepare some third, a6 1o averagk over all possible input states, i.e. over

TOde (not nﬁcessarily bosonidn some plIJre Stat¢l¢au9h the 2nth-dimensional unit radius hypersphere surface. When
=2ejl¢;), where{|£;)} constitutes a complete set of ortho- o0 jating f for some input state, one finds that one gets

normal basis states. If we define some arbitrary unitary evogaymg with two distinct combinations of coefficients, terms
lution U 4y, 0f the joint state a,,) ® [ 0wy, then we find that  with the factor|c|* and terms with the factofc,|?|c;|?,

A - wherel #1’. After a bit of algebra one finds tht 3]
Tra, aux{ U arbl ¢au><> ® | ¢OUI>< lﬂOUTI ® < lﬂaux] U arb}

3
A (Je|H= ©)
=2 2 (@& 080l Yawd @ | Youd{ Youd SNTCES
(Ve 0500 )0 1M = Trol [ o (Waud}, (1 AN
where we have used the fact that since Hothand |¢) are Torle? = 10
complete orthonormal bases €)@ |n) is also a complete T n(n+2)

orthonormal base on the joint Hilbert space. This proof can

be trivially extended to mixed auxiliary states. where the overbar signifies the average over all allowed in-
After carrying out the trace in Eq6) the PNA output put stategi.e., all possible choices @ coefficient$. Using

state is no longer pure, regardless of the choicd,ofoef-  this result in the calculation df one finds that to optimizé

ficients. One sees that it is impossible to make an ideal PNAor a given amplifier moden-state superposition, only thg

if the amplifier internal state is in a finite state superposition coefficients that satisfit= k., +9(G—1), whereq is a posi-

Therefore it is fruitful to define a fidelity measure that givestive integer ky,i,=(n—1)(G—1), and theq’s form an unbro-

an indication of how close to the target output state definegen integer series, should be chosen nonzero. This can be

by Eq. (1) one can get. Fidelity measures have been disseen from Table I. With the choice above all input states can

cussed if11,12, and it appears that a suitable fidelity func- be mapped on the correct output staies, all terms includ-

tion should be defined as ing the state coefficient; will multiply states belonging to
_ o the output state energy manifold}=3 in Table ). In ad-
f=Tra{ VptargePoutV Prarget = Tral PoutPtarget dition one sees that one maximizes the number of proper
. . . superpositions of the output state, which are entangled with a
= (Ptargel Tral Pout | Yrarged (8)  particular PNA internal state manifold. In the table both in-

) . ternal state manifolds 4 and 6 are connected to superposi-
where the second and third equalities are based on the faghs of the correct form, i.e., containing states belonging to
that our target density operator puarget  all three output state manifolds. As>n only the extreme
EEP;(}EP,_:100|C|*,|GI)(GI’| describes a pure state. The fi- PNA internal state energy manifolds will not be connected to
delity function expresses the quantum-mechanical similarityputput state superpositions of the proper form. If these are
between two states. In our specific case, where the targeeglected, leading to a finite but small fidelity penalty, one
state is pure, the fidelity is the diagonal output state densitgees that one can obtain the wanted output state by choosing
matrix element corresponding to the target state, if a basis igll d, coefficients equal.
used in which the target state is one of the basis state vectors. The minimum energy amplifier state fulfilling the condi-
Hence the fidelity expresses the probability to find the PNAtions outlined above is the state
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m—1 1.0
' s & ¢
o) = >, din-1+0 G-l (NTK)(G—1)). (11 , 8 v !
k=0 0.8} *
>\‘ *

However, all amplifier states with coefficients chosen ac- = 06 .
cording to the criteria above will have the same form of the y°§
fidelity function f regardless of the gai® andk,. = 04l

Here it may be beneficial to pause for a moment and
reexamine the arguments leading us to choose the amplifier L
superposition state in a particular “optimal” way. The as-
sumption has been to construct a PNA that is general, i.e., it
should accept all possible input states belonging to the 0 2 4 6 8 10
proper input state Hilbert space. Since some states are more Size of internal state superposition
difficult to photon number amplify than othefhe vacuum
state, for instance, is trivial to “amplify” since it should FIG. 1. The average fidelity of a PNA amplifying a 3-state
simply be mapped onto its¢live have assumed that the number-state superposition by some inteGeras a function of the
word “optimal” is used in the sense that averaged over allnumber of states in the initial amplifier superposition state. The
allowed input states, the amplifier is the optimal device untpper dots are the optimal fidelity, the lower dots are the result if
der the constraint that the amplifier internal state may noth® weights of the amplifier statg are all chosen equal. Note that
include more thamm states in the number-state basis. Tothe figure is independent of the choice of amplifier g@in
guantify this statement, we introduced the fidelity functfon . . . )
and then it is quite straightforward to derive the optimum@nd positive. When we maximize this expression overdhe
values of the coefficients. coefficients we find that the maximum average fidelity of

One may argue that instead of constraining the number gfUch @ PNA isf=(19+ 33%)/30~0.82 for the choiced,

4 - —1/2\ 1125 _ _ —1/2/9\ 12,
orthogonal states in the amplifier mode superposition, ong O_|4_(1+33 %) Y412~0.54, d3—(1/2_— 33" 792)7*~0.64.
should try to minimize the state energy. However, the experi:rh's should be compared to the fidelity between the untrans-

mental challenge to prepare the PNA initial state superposio'med input state and the target stdte,4/15~0.27 and the
tion correctly will be much harder than the challenge to supfidelity of a PNA with the preinteraction internal mode in a
ply sufficient energy to create the state. Therefore it seemufficiently excited single number stzzatérenderlng Zthe out-
very reasonable to try to minimize the size of the amplifierPut _state density  operator [Co||0){0[ +|c4||2){2]

state superposition rather than to try to minimize the ampli-+121?/4)(4]), f=3/5=0.6.
fier state energy. In general, for PNA’s involving larger quantum superpo-

sitions, e.g., largen’s and/orm’s, the exact optimum choice
of coefficients cannot be solved analytically, but has to be
derived by numerical methods. However, we can derive an

To demonstrate the general characteristics of PNA’s it igipproximate result for any choice of m, andG by noting
instructive to look at some simple but nontrivial cases. Wethat if m>n, the optimumd, coefficients can be roughly
shall start by looking at the case whare=3, G=2, andm equal. This can be seen directly from Table I. If 4l
=3. In this case the desired input state transformation is = 1/\/m, the PNA state fidelity becomes

I
o

lll. A SIMPLE PNA

| thin} = C0|0) + 1| 1) +C2| 2) = Co|0) + €4 2) + C54). n’-1
(12) 1- 3(n+—2)m for m=n
L : : f= 2 (14)
If the amplifier initial internal state is chosen according to 3nm+6én+1-m for 1<m<
the criteria (11) above, i.e.,|i,)=0d,|2)+d3|3)+d,|4), 3n(n+2) or lsm=n.

then the fidelity of the PNA is
In Fig. 1 we have plotted the fidelity of a PNA accepting

~3(]d,|?+[da|?+]dy|?) 3-state superpositions € 3) as a function of the number of
f= : e "
5 states in amplifier initial state superposition Both the ex-
. . . act, numerically derived resultipper dots and the approxi-
N 4Rgd,d3} +4Rgd3d; } +2Re(d,dy } mate resul{lower dot$ are plotted. The point fom=0 rep-
15 resents the fidelity between the input state and the target

state. As we can see the fidelity approaches unity asymptoti-
cally, but the convergence is slow, it goes onlyeam. In

Fig. 2 we have plotted the approximate result for a 2-state,
3-state, 4-state, and 5-state PNA as a function of the number
where Réx} signifies the real part ok. The expression is of number states in the amplifier initial state superposition.
invariant with respect to the permutatiah,=d, as ex- Not surprisingly, the qualitative behavior of all the PNA’'s
pected. Furthermore it is seen that to maximize the expresare similar. Finally, in Fig. 3, we have plotted the fidelity for
sion all the coefficients should have the same phase dimgle an optimized 1, 3, and 10 amplifier internal state superposi-
a polar coordinate representatipand as stated above, we tion PNA accepting a 3-state input superposition. The fidelity
can, without loss of generality, choose the coefficients reails independent of the relative phases betweercghe,, and

3 4Rdd,d}}+4Rdd,d} } +2Red,d }
“5" 15 ’

13
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1.0 basis set can be expressed in the originally chosen basis set
by multiplication by the matriE. In the new basis set, since
0.3 the corresponding unitary transformation is diagonal, the ap-

propriate generating Hermitian matrigorresponding to the
Hamiltonian can be diagonal with coefficients,;; such that
exp(—ihg)=A\;. Again no unique solution ofl, exists since

Fidelity
]

0.4 all the diagonal coefficients can be chosen moduio ¥Ve
can subsequently transform the obtained Hermitian matrix to
02} the originally chosen badéyo=(E 1)*H(E ™ 1)T, wherex

denotes the complex conjugate, ahdlenotes transpose. In
i 5 P p 5 0 the following we shall refer to this Hermitian matrix as the
. . " target Hermitian matrix. We note that &N{1)X(N+1)
Size of internal state superposition " . .
perp Hermitian matrix can have N+1)(N+2)/2 independent
complex coefficients.

FIG. 2. The average fidelity of PNA’s amplifying 2- to 5-state . . .
number-state superpositioriéop to bottom. The curves were What we are really seeking is the Hamiltonian operator

drawn using the approximate formula3). Optimization will yield Whose. corresponding matrix in the original basis seéd g -
slightly higher fidelities. For this end we construct the normally ordered Hermitian

operators

c, coefficients. Therefore we have used| and|c,| as our N A N
free coordinates and plotted the fidelity along the third axis. (@h'(bhH™ 'alb™ !+ H.c., (16)
We see that am becomes larger, the figure approaches the
unit fidelity plane. One can see thatrif>1, the input state Where the annihilation operata operates on the input-
with  lowest fidelity is the state [exp(6y)/0) output state mode, the corresponding operhtoperates on
+exp( 02)|2>]/\/§, whered, and 6, are arbitrary. This is not the amplifier internal mode, H.c. denotes Hermitian conjuga-
surprising since these are the states that require the least afi@n and O<i, j<N. We note that every such operator is
most energy, respectively, in the amplification processzero when it operates on a state in an energy maniolil
Therefore they leave the most distinctly different “finger- We also note that there arél¢-1)(N+2)/2 different such
prints” on the amplifier internal state and hence are the twooperators. The Hermitian matrix in the original state basis
states that are the easiest to distinguish using the informatidms only two nonzero coefficients, namell; ;.
left in the postinteraction amplifier state. =hj;1i+1. Both of these are real and positive. In addition
one can construct another set of Hermitian operators
IV. PNA HAMILTONIANS i[(éT)i(BT)NfiéJBNﬂ— Hel. 17
In this section we shall outline a procedure to obtain the
Hamiltonian for any specific PNA. We start by noticing that These operators too are zero when they operate on a state in
within the rotating-wave approximation energy is preservedn energy manifold<N. There are N+ 1)(N+2)/2 differ-
therefore, it is not sufficient that the state transformation ient such operators and again the Hermitian matrix in the
unitary—it must be unitary in each energy manifold. Thisoriginal state basis has only two nonzero coefficients,
means that different energy manifolds do not couple andiamely,h;. ;. 1=h¥,;;,;. In contrast to the previous case
consequently one can solve the manifolds one by one. In anhese are both purely imaginary.
particular energy manifoltN with the corresponding energy Having these N+ 1)(N+2) Hermitian operators, their
fwN and involving two bosonic modes, there &te- 1 basis  corresponding matrices in the original state basis and the
states. In our case it is convenient to take the setarget Hermitian matriH o we are ready to find the correct
{ION),|]1N—1), ... |N,0)} as the basis states. One thencombination of Hermitian operators to describe the needed
writes down the desired unitary matri, in this basis. The Hamiltonian(and the needed interaction tijnéf one is try-
matrix has the dimensionN(+1)X (N+1). As mentioned ing to find the operators for the lowest-energy manifold in-
above the unitary matrix is not unique. Our choice of thevolved a simple inspection of the Hermitian matrices and
amplifier internal mode coefficients as real and positive conHpyo Will do, since every Hermitian matrix corresponds to
strains us to choosing all the matrix coefficigesponsible one, and only one, either real or imaginary part of each co-
for a desired state transformatioi® have the same phase. efficient inHyg. For higher manifolds it is not sufficient to
We shall take this phase as zero, which leaves all these csimply find the operators corresponding to the target Hermit-
efficients to be unity. The rest of the coefficients can belan matrix, one also has to undo the action of the lower
chosen arbitrarily as long as the matrix is unitary. We seeknanifold operators on the manifold in question. To this end
the Hermitian matrix- o, which leads to the desired unitary we compute the Hermitian matrkd,yo corresponding to the
matrix, i.e., sum of these operators in the original basis set. One then
forms the matrixH o, —Hno and proceeds in the same man-
Uno=exp(—iH o). (15 ner outlined above to find the corresponding operators.
To reduce the procedure outlined above to practice we
To find Hyy, one finds the eigenbasis set shall show how to find the Hamiltonian forre=3, m=2,
{ld). b)), ... |édni1)} that diagonalizes,, and the G=2 PNA. The preinteraction PNA state is henag)|Q)
corresponding eigenvalugd N5, ... Ans1). The eigen-  +c4|1)+c,|2))®(d,|2) +d3|3)), whered, andd; are real
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Fide\itg’
Fidellty o

FIG. 3. The fidelity of an=3 PNA for all possible choices of input states.(ld am=1 PNA has been assumed. (lp) and(c) mis 3
and 10, respectively.

and positi\ie, and t.hei. coefficie.nts are arbitrary. The chgice H,r%=m(a’a+b'h). (19)
d,=d;=2"? maximizes the fidelity of the transformation,

but that is irrelevant for what follows. We begin by noting We note in passing that since there are no lower manifolds
that the lowest manifold involved ill=2, and that a basis than the second to worry about, we damd have actually

set in this manifold is{|0,2),|1,1),|2,0)}. Only the first of usdd) annihilation and creation operators of order 1 al-
these basis states is interesting from the point of view of théhough we are dealing with the second manifold.

PNA, and it shall remain invariant under the PNA amplifi- The third manifold is spanned by the states
cation process. Hence a possible unitary evolution matrix ig|0,3),|1,2),|2,1),|3,0)}. Of these states the first should re-

main invariant, and the second should be transformed to
100 |2,2). Hence a permissible unitary transformation is

U20: 0 1 0 . (18) 1 0 0 O
0 0 1
Since this manifoldand its unitary evolutionis trivial, we Ujze= (20)

shall forego the prescription above, and by simple inspection
we see that an appropriate Hermitian operator is

o = O

1
0 0|
0

=
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where we have deliberately chosen a real, positive andransforming this matrix back to the original basis yields the
diagonal-symmetric unitary transformation. The unitaryHermitian matrix
transformation has the eigenvaldes1,1,1,3, hence a pos-

sible corresponding Hermitian matrix in the unitary matrix 4 0 0 O
eigenbase is 0 7/2 12 0
3000 H3o=m o 10 72 0 22
0 4 0O 0 O 0O 4
Hae=m : (21)
0040 The final Hermitian matrix whose corresponding operator we
0O 0 0 4 seek is
|
4 0 0 O 3 0 0 O 1 0 0 O
0 7/2 1/2 0 0 3 0 O 0 12 12 0
HaomHizo=m 1 5 12 712 0/ |0 0 3 o/~ ™o 12 12 0’ 3
0 O 0 4 0 0 0 3 0O O 0 1

whereH, 3, is the Hermitian matrix corresponding to the operdfd). By inspection of Eq(23) we see that the relevant five
operators areg")%a®, (a")?b'a?b, a’(b")?a?b+ (a)?b'ab?, a'(b")2ab?, and 6")%b3. The corresponding matrix elements
(two for each operator sindg; = h}*i areh,,=6, h33=2, h,5=2, h,»=2, andh;;=6. Hence, the total operator performing the
desired unitary transformation up to the third energy manifold becomes

Har/hi=m{aTa+b'b+[(a")%a®+ (b")%b%)/6+[(a")?b'a’h+(a")?b'ab?+a'(b")%a’b+a'(b")%ab?)/4}.  (24)

As noted in[8], the easier notational way to express such Hamiltonian operators is to use a sum over the outer products of the

basis states, i.eH37/4=27(]0,2(0,2+]1,1)(1,1 +|2,0(2,0) +--- . Unfortunately such notation obscures the rather non-
linear interaction needed to obtain the desired unitary evolution. This was specifically pointed ®utDMriano’s Hamil-
tonian, on the other hand, used multiphoton annihilation and creation opef@tloi/e have chosen not to simplify our
Hamiltonians in terms of multiphoton operators but to stick to normally ordered annihilation and creation operators to
explicitly bring out the pertinent physics.

Proceeding through the remaining two manifolds for the PNA yields the following interaction Hamiltonian:

(ah%a®+(b"%* (a")%'a%b+(a")?h'ab?+a'(b")%a%b+a’(b")%ab?

N R PP
Hsr/ii=m{a'a+b'b+ 3 + 7

(éT)?»BTé?»B_(aT)Z(BT)2a36_(éT)SBTéZBZ (éT)Z(BT)ZéZBZ (1+ \/g)[éT(BT)3é262+(éT)Z(BT)ZaBS]
+ + —
4 8 4.6
(éT)5é5+(6T)565 (éT)3(6T)2é362+(5+ 2\/6)[(&T)3(6T)25263+(éT)Z(BT)3é362]+13(a‘r)2(6’r)3é263
* 120 * 48

L 11a")*b'a*b+(12-72)[(a")*b'ad?+ (a")3(b")%a’b]
96

~ 7V2[(ah)*bTa?b3+ (ah)2(bh)3a*b]+ 7[(ah)*bTab*+a'(bT)*a’b]
96

. 72[(a")¥(b")%ab*+a'(b")*a%h?]+ (12— 7V2+4\/6)[ (a")*(b")%ab*+a(b")*a%h%] + 13a"(b")*ab*
96

o (éT)46Té362_ (éT)3(6T)Za46_ (éT)4BTa263+ (éT)Z(BT)3é46
|
48,2
L (éT)3(6T)2é164_ éT(BT)4é_362_ (éT)Z( BT)3&64+ éT(BT)45263
|

48,2

(25
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In principle a proper interaction Hamiltonian for any PNA struct the unitary transform, in the rotating-wave approxima-
operating on any manifold can be obtained using the procetion, for a photon number deamplifig3]. An additional dif-
dure outlined above. However, it is clear from this simple,ficulty with the latter device is that i6 is positive but<1
explicit, but nontrivial example that the real worry is not how thenGn will in general not be an integer. This was discussed
to calculate the needed Hamiltonian, but how to experimenin [3]. However, we assert that the real experimental chal-
tally realize it. Our explicit expression has the advantage thaenge in constructing either an amplifying or deamplifying
one sees what is in principle needed, namely, a series dfevice will be the experimental realization of the Hamil-
different nonlinear interactions between the two modes. Théonian needed to optimize the fidelity of the device. We
problem is that the interaction phase shifts are rather larggghowed that the convergence towards unity fidelity goes as
on the order of unity for field strengths caused by single ofl/m, wherem is the number of orthogonal states in the initial
few photon states. In reality, for a long time to come, weamplifier internal state superposition. Finally we derived a
believe that nonlinear optical materials will lack the neededsystematic procedure to derive a Hamiltonian, expressed in
figure of merit, namely, a sufficiently high ratio between theannihilation and creation operators that implements the PNA.
nonlinear susceptibility and the linear and nonlinear loss. We noted that no unique such Hamiltonian exists, the same
Before closing this section we shall discuss the simpleholds for the PNA unitary evolution. However, to solve the
n=2 PNA’s. Such a PNA could find use in, e.g., weak lightensuing equation systems in higher manifolds, one gen-
interferometry and as a Schfinger cat generator i is  erally needs most of the degrees of freedom given by the
large. Unfortunately this PNA will have Hamiltonians of (N+1)(N+2) different Hermitian operators of ordét in
similar difficulty as the PNA discussed above. Only the annihilation and creation. This means that although one
=2, m=2, G=2 PNA will have a less “difficult’ Hamil-  Hamiltonian can be said to be “simpler,” e.g., by having
tonian than Eq(25) above. For example, a=2, m=2, G fewer terms, than some other that performs the same PNA
=3 PNA will have a Hamiltonian consisting of typically action, the two Hamiltonians will yet have the same “com-
more than twenty Hermitian normally ordered operator termglexity” in terms of the order of the nonlinearity needed.
of which about half will be of order five in annihilation and The fact that a PNA operating up to manifdii needs op-
creation. Therefore even PNA’s whose input state Hilperg€rators of ordeN in annihilation and creation means that it
space has the smallest nontrivial dimension will yield com-is unrealistic to believe that optimized PNA'’s can be realized

plicated interaction Hamiltonians. in the near future possibly except for the very simplest de-
vices. However, if one is willing to sacrifice efficiency
V. DISCUSSION (where efficiency is defined as the success rate of the desired

transformationit should be possible to construct a PNA with

We have demonstrated how to construct a superpositioa much simpler Hamiltonian. By, e.g., measurement condi-
preserving photon-number amplifier if the device is limitedtioning it should be possible to identify those experimental
to operate on a finite Hilbert space. We argued that the conruns where one has obtained the desired transformation so
straint is not as limiting as it seems at first glance, since thenhat the fidelity is close to unity. Obviously there is going to
same constraint actually is imposed on any real-world lineabe a trade-off between the efficiency and the average fidelity
amplifier. The problem one faces when trying to construct af the selected runs. Exactly what this trade-off is will de-
PNA is that due to the energy transfer between the inputpend on the complexity of the conditioning measurement.
output state and the amplifier internal mode, the joint postintThis will be the topic of future work.
eraction state will be entangled. Therefore the PNA output
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[13] Both expressions are independent of the relative polar coordi-
nate phase ot, andc,;,. Hence it is actually sufficient to
average the expressions over onlgoordinates instead ofr2
coordinates. An easy way to parametrize the problem is to let
each possible input state be represented by a point on the unit

radiusn-dimensional hypersphere. The integration measure is
found from the Jacobian of the generalizaedimensional
spherical coordinate system. EquatidBs and(9) can be de-
duced from the three-dimensional result and an induction proof
from n to n+1 dimensions.



