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Theoretical analysis of a bimode laser
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We study analytically the dynamical behaviors of clasandB lasers operating on two transverse modes.
A generalization of the well-known multimode model of Lamb, taking into account the transverse hole burning
effects as well as nonlinear phase couplings, is considered. Taking as a control parameter the difference
between the empty cavity eigenfrequency of the modes, the main developments of this article are the follow-
ing. The existence and stability of stationary patterns relatéid single-mode stationary states afiid locked
bimode phase-sensitive solutions are analyZi&d. Unlocked periodic behavior and frequency pushing or
pulling effects are characterized in a fully analytical description. Our analysis puts in evidence the qualitative
differences of stationary as well as periodic behaviors for classid B bimodal lasers. Moreover, we show
that the laser response is strongly dependent on the symmetry properties, or on the relative spatial parity, of the
modes involved: The dynamical properties of opposite or equal parity modes laser are introduced and inves-
tigated here[S1050-294®8)06401-4

PACS numbds): 42.55~f

[. INTRODUCTION The longitudinal-multimode equations derived by Tatgl.
[17] for the case of a Fabry-Ra cavity takes into account
The spatiotemporal dynamics of lasers and the formatiothe longitudinal holes burned in the inversion by the
of transverse patterns has been a subject of extensive thestanding-wave field. As pointed out by Mandstlal. [18],
retical and experimenta]1-5] research for the past ten this model couples the modal intensities to the population
years. A theoretical approach of these lasers is provided biywversion and neglects phase interaction. A recent generali-
the Maxwell-Bloch equation$MBE). In order to describe zation of the model of Tanget al, which retains phase-
the transverse Gaussian profile of the laser beam, the ususgnsitive interactions, has been considered in the work of
plane-wave approximation is released and the transverse dfandelet al. and shows that nonlinear phase coupling leads
fects are taken into account by a diffraction term in the MBEto important effects notably in semiconductor lasers.
[6]. In this framework, a lot of theoretical works have been The present work reports on theoretical results for lasers
devoted to the study of pattern formation, defects, and spasperating on two transverse modes and is motivated by re-
tiotemporal chaof7—9]. On the other hand, for weakly mul- cent experimental observations on the so-called bimode one-
timode lasers or low Fresnel number configuration, a simplidimensional(1D) lasers[19]. These lasers are operating on
fication of the MBE is provided by the so-called modal the transverse Hermite-Gauss TEMwith n=0 modes: As
approach and was proved efficient for the investigation othe structure is forced to be purely Gaussian in one direction,
spatiotemporal dynamics in lasdgrf0—13. the transverse dynamics is in a sense reduced to only one
The study of mode interaction is a rather old problem indirection, thus justifying the term 1@he corresponding ex-
laser physics. Indeed, remembering that each mode is an ogerimental setup is obtained by putting an intracavity dia-
cillator characterized by its empty cavity eigenfrequency,phragm of rectangular shape, the smaller size being roughly
these lasers exhibit the general properties of coupled oscillaqual to the laser waist and has been realized on al&xer
tors systems. The laser output intensity oscillate according tfl9]). The 1D intensity profile has been recorded and ana-
the modes beat component corresponding to the frequendyzed taking the cavity length as a control parameter. Apart
differences between the modes that come into play. On th&fom the general behaviors of bimode lasers, i.e., locked and
other hand, in the nearly degenerate case, i.e., if the eigewscillatory states, the system is also characterized by the fol-
frequencies of the modes are close enough, locked behavitowing qualitative properties. It appears that, when station-
leading to a stationary intensity output is obser{/ed]. This  ary, the intensity profile shape changes in a continuous way
phenomenon was termed as cooperative frequency lockinghile changingL. On the other hand, outside the locked
by Lugiatoet al.[15]. region, the intensity behaves periodically in time in a way
Theoretical descriptions of multimode laser oscillatorsrelated not only to beat between the modes but also to the
have been developed since the early 1960s. The well-knowperiodic modulation of the modal intensities themselM&s
developments of Lamfl6] for multiple longitudinal modes In this article we want to characterize analytically these
lasers lead to a set of equations for modal intensities witldynamical behaviors of bimodal lasers and perform their
nonlinearities related to self- and cross-saturation effectscritical analysis with respect to laser parameters. With this
aim, we consider here the theoretical developments in the
framework of a model developed by Staluniessal. [10].
*Electronic address: zehnle@Ish.univ-lillel.fr This model describes transverse modes interactions for lasers
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in a ring cavity configuration and takes account of nonlinealis the detuning of theB; cavity mode frequencyw; with
transverse hole-burning effects and of nonlinear phase couespect with to the atomic frequency. Equatiéh3) is
plings. The guiding scheme leading to the model of Staluniagoupled to the Bloch equations for the active medium. In the
et al. is reported in Sec. Il. In this framework, and in close case of clas#\ or B lasers, i.e., wher and the population
connection with the experimental findings, a theoreticalinversion decay ratg are both small quantities compared to
analysis is performed by taking the difference between thehe polarization decay ratg, , the adiabatic elimination of
empty cavity eigenfrequenci€3 as a control parameter. P is performed

In this article the main developments are the following.
We analyze the stationary intensity states corresponding to P=FD (2.5
phase-dependent bimode stationary states and monomode so- o )
lutions in Sec. IIl. Section IV deals, in the parameter region@nd the population inversiod obeys
of high ), with the study of the periodic states. The explicit dD
analytical characterization of beating effects associated with I 7H(|F|2D +D—-1). (2.6)
frequency pulling or pushing phenomena and of the oscilla- dt
tory character of the modal intensities are given. All thes
behaviors are shown to be critically related to what is terme
by Mandelet al. as “phase-sensitive” effects. Moreover, we
show that the laser response depends on the nature, or the
relative spatial parity, of the modes that come into play. This D(x,y,t)= 1-|F]2=1— Z gi(H gl (DBi(X,y)Bj(x,y).
is one of the main points of our analytical study and leads to hi=12
the introduction of what we shall define as “opposite parity 27

modes” and “equal parity modes” lasers. According to Staluniagt al.[10], Eq. (2.7) can be general-
ized for classB lasers as:

he population inversio® for classA lasers near threshold
can be adiabatically eliminated and written as

Il. THEORETICAL DESCRIPTION

We consider a bimode class or B laser whose spa- D(x,y,t)=1— 2 dij(Bi(X,y)Bj(xy), (2.8
tiotemporal behavior is governed by the mutual interaction I=1=12
of two transverse modes denot&j(x,y) and B,(X,y),
wherex andy are the Cartesian coordinates in the transvers
plane(i.e., perpendicular to the axisof the cavity. For the g5y intensityl =|F|?, i.e., near threshold, and accounts for

sake of simplicity, we suppose here that the functiBnare ¢ firstorder saturation effects. The modal-like expansion
real; they correspond, for instance, to the Hermite-Gaus§; p |eads to a major simplification of the integro-
TEM;;, modes or to the Laguerre-Gauss modes. The lasjjtterential equatior(2.3). Inserting Eq.(2.8) into Egs.(2.3)
field E is and (2.6) leads to the set of ordinary differential equations
B (2 oot) (the overdot stands for the derivative with respect to time,
E(xy,z)=F(x,y,t)e’"a"“a’+c.c., (20 where time is ink~ ! unit andy is in « unit)

corresponding to a truncated expansiorDoin terms of real
fime-dependent moment; (t). This expansion is valid for

whereF is the slowly varying envelope of the field and is, in . _
the mean-field limit, independent af(w, is the atomic fre- gi=—(1+ia—A)g —Am%I GikimdkGm
guency and, is the related wave vectpThe modal expan- ’
sion considered here is given in detailB1. The envelopd&

is written as dii= y(di—lgi?), =12 (2.9
0 _ * *
F(XY.0)=01(0B1(Xy) + G(DBy(xy), (2.2 d12= (012~ 0207 ~0201),
) where
whereg,(t) andg,(t) are the complex modal amplitudes of
modesB; and B, , respectively. The temporal evolution of o
these amplitudes is governed by GijkI:f f dx dy BB;BB,, i,j,kl,=1.2
(2.10
dg; .
d—tlz—K (1+|ai)gi_AJ J’ Bi(x,y)P(x,y,t)dx dy]|, are overlap integrals that are related to self-saturation and

cross-saturation nonlinear coupling terms. Indeed, if overlap
integrals between two modes vanish, cross-saturation terms
disappear in Eq(2.9) and both modes are decoupled. One
) i ) ) then obtains the usual set of equations describing a single
wherex is the field relaxation raté) is the pump parameter, mode |aser. This situation is met, for instance, for a laser
and P(x,y,t) is the polarization of the active medium. The operating on a high-order mode together with a low order
parameter (i.e., for the TEM,TEM,, case withm,n low and p,q
high). On the other hand, if the two modes have a high
W™ Wy 2.4 spatial overlap, one recovers the strong-coupling limit where
K ' they are in competition for the available inversion.

i=1,2, (2.3

aj=
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Let us define the complex modal amplitudésas

. [ A
Gi=Aie'¢i= m&h ,

(2.10)

whereA; and ¢; are the real amplitude and phase of mode

We also rescale the population inversion as

A

PiTa-1

d; (2.12

and define the relative phase between the modes as

b=d1— ¢2. (2.13
Equations(2.9) become
Ai=(A—-1) Ai—;k Giji DA
_J,Zk GiijkDjkAicossp |, i =3-i,
Dii=—/(D;i—A), 214

Dy,=— ¥|(D 12— 2A1A,C08p),

corresponding to a Gaussian shape in yhdirection, the
so-called 1D structure associated with the Hermite polyno-
mial of orderm; being related to th& direction. The modes

B; are odd or even ix if the corresponding inder; is odd

or even. Consequently, overlap integrals such &g,
(G229 With m; odd (ever) and m, even (odd) are zero.
More generally, let us also note that the same symmetry
effect is found in a 2D laser such as the TEMIEM,,/
bimode laser withm+m’ or n+n’ odd. This type of laser
has its behavior qualitatively modified as a result of vanish-
ing cross coupling$corresponding to th&;;;; , j#i, terms

in Egs.(2.14]. The comparison between what we call here
opposite parity modesOPMs and equal parity modes
(EPMs lasers is developed in the following sections.

Ill. THEORETICAL ANALYSIS
OF THE STATIONARY STATES

The analysis of bimode stationary behavior is hard to
handle in the general case. In the first part of this section we
consider a simplification of model2.14) for a particular
“symmetrical” OPM case. This case, though simple, can be
treated analytically and puts in evidence the generic proper-
ties of the general bimode laser. This general case is consid-
ered next. The stationary OPM and EPM bimode lasers are
studied in the limit where the empty cavity mode frequencies
a; are quasidegenerate, i.e., wh@n-0. An alternative sta-

tionary state is provided by the single-mode solutiég 6r

£¢>A1A2=QA1A2+(A—1)(A§+A§)E G jising, A,=0) and is studied subsequently.
J<k

h A. Stationary bimode solution: The symmetrical OPM case
where . . . . .
The analysis of stationary solutions is performed in the

(2.15  symmetrical OPM case, i.e., for a laser involving TigM
TEM,,, (n+m odd modes, for instance, for the
is the empty cavity frequency difference between the modeslEMor-TEMy, laser. The symmetry property reads;;
This set of six coupled equations for the modal amplitudes=G2, (Gj; stands forG;;;;) and parity properties leads to
inversion moments, and phase explicitly takes into accoun1112=G222;=0. The stationary variables are found from
the nonlinear phase couplings. The usual assumptions fourfgds. (2.14:
in Refs.[16,17] amount to neglecting fast oscillations terms
such as cag or sing in Egs.(2.14. One then obtains a set of Gl (G+1+2c08¢s) =1, 3.1)
equations that couples the modal intensiflesnd inversion
with no phase interaction. Note that the Lamb model for a
bimode laser can be obtained from this model by adiabati-
cally eliminating the inversion variables in Eq®.14 (see
Appendix B. One can see that phase couplings, though van- . . a2 a2
ishing in the limit of highQ), are non-negligible for interme- vx;here s 15 tr;je IsFattlongry phasle fanq_Als_tAZS Is the ;
diate() values(see Sec. IYand are indeed important for the Stationary modal intensity equal, for symmetry reason, for

i ) - both modes an@G=G;;/G;, (G=1 [21]). A closed equa-
study of the stationary states in the locked regign=(Q). tion for ¢ can obtained as
One of the main results of this paper is related to the
nature of the modes that come into play. A simplification of
Egs. (2.9 or (2.14 occurs when the two modes involved in
the equations have opposite spatial pafijth respect to
space inversion To make things clearer, let us consider, for Where
instance, the case of the 1D transverse lasers. The nides
(i=1,2) are the Gauss-Hermite TEN=TEMn, n-o Q

modes[20] b= 02+ 4(A— 1)2

1
Bi(xY) =\~ Zm,_leimx)e*Xz*yz% (2.16
mm;! L

Q:az_al

G2l SiN(2¢ps) = — 2A-1)

cog2¢p—P)=—(2+G)cosd, (3.2

(3.3

and 0= ® <. The existence of stationary solutions is found
from Eq. (3.3 as long as
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’y” G-1

|s>|Hopf:|max{1—mm (3.8

or

Modal intensities

JG-1

|Q|SQHopf:2\/')’||(A_1) G+1 (3.9

1
-0.1 -0.05 0 0.05 0.1 and destabilizes in a Hopf bifurcation whébh= Q¢ (Nu-
0 merical continuation of the periodic orbit &,,; Shows

o T T T - that the Hopf bifurcation is subcritici22]).
, //”_ﬁ/z’// We have explicitly shown that the locking threshold is
much smaller in clas8 than in classA lasers: For class
j“ - lasers the conditions of existence and stability are simulta-
i //W,/ ] neously fulfilled. Clas® lasers, on the other hand, exhibit a
1 § 7 bimode stable steady state in a small interval aroQre0

0 s s that shrinks to zero witfiy(A—1)]"2 Let us note that the
1k ! L L unlocking threshold,p¢ is on the order of the relaxation
01 -005 0 0.05 0.1 frequencies associated with claBdasers. The existence of
0 such relaxation eigenfrequenci@sd the related resonanges

is reponsible for a mechanism of destabilization that makes

OP';/IIC';I'.Ei/.IO STtaét'i\;na}ry intesr;)Si?(ess a’g phg/ie f‘g thi/zmmztricaihe stability properties of locked solutions for cl&dasers
r [EVyo laserv 117 B2 34, L515= /4, an ualitatively different from those for clags lasers.
A=1.2). Full (dotted lines are the stabléunstabl¢ branches for q y

classA lasers.x, [0, and + correspond to Hopf bifurcation points

Stationary phases (rad)
[

for yH=10’3, 0.01, and 0.02, respectively. B. Stationary bimode solution: The general case
The bimode stationary solutions in the degenefate,
=0 2(A—1) 34 0=0) OdPM case, ?enc;)tedﬁs, Ais, and Ayg (Aqs,Agg
< —_— 34 #0), read, from Eqs(2.14),
sin(2¢5) =0,

The phasep can be explicited as
GuATs+ GAS(1+2c0g )

1, (3.10
b 1 T
¢S=Et§arcc0§(2+G)cosI>]i§, (3.5 G22A§S+GlefS(1+2co§¢s)=l

|(GijEGiijj)- The stationary phaseg; are ¢= 0,7, = 7/2.
The linear stability analysis of these stationary solutions is
feported in Appendix C. It is shown thai;=0,7 are un-
stable solutions, whereags==* 7/2 are simultaneously
stable. For both solutions, the modal intensitigs A% are
given by

corresponding to four branches of solution in the interval
[0,27]. The stationary phase and intensity are shown in Fig
1. Note that both phase branches;(¢s+ 7) correspond to
the same intensity branch. In the degenerate cése (),
one gets

_ _ o -1 -1
¢s=0,m, l=Inin GlZ(G+3) ! (3.6) Gy~ Gy G11— G

1 2T L~ 2
G22G11— G,

" GGy G2, (343
ps=Eml2, Iszlmax:GIZl(G_l_l)_l' zzmi 12

These stationary values are functions of the overlap integrals
only. The analogy with the Lamb analysis of a bimode laser
1 1 — is clear from Eqs(3.11) [assumingg,= = 7/2 amounts to
_= I _ /1y max’ 'min neglecting phase couplings in Ed2.14)].
$s= ZarCCO%ZﬂLG) + 5 (modm), l=(1)= 2 In the following we label 2 the higher-order mode, i.e.,
(3.7  the mode with the wider spatial extension or, equivalently,
the lowerG,, value, in contrast to mode 1 which is assumed
We have developed the stability analysis for cladasers to have a highefs,; value.l; andl, are positive quantities
(see Appendix A The upper intensity branch(l)<I; [23]. Equations(3.11) together with the assumptios,,
<l a0 IS a branch of stable nodes, while the lowéf,, =G,, show that the higher-mode intensity is always domi-
<I4<(l)) is a branch of hyperbolic points, both branchesnant i.e.,|,=1;. Let us note here the analogy with the free-
merging into a saddle node bifurcation pointzaf) .- energy approach: Qualitatively speaking, the wider mode
The analysis for clasB lasers has been performed in the burns more efficiently the spatially distributed inversion,
limit v /(A—1)—0 (see Appendix A The lower-intensity ~which leads to a minimization of a particular action integral
branch remains unstable. The upper branch is stable whenof the lasef{4,24]. Of course, remember the assumptions of

For Q= One finds
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Modal Intensities
Intensity profile

FIG. 3. Stationary intensity profile for the TEMTEM, class
B laser. Same parameters as in Fig. 2, Qut 0.085 andy;=0.1.
The stationary phase ;= —0.47 and the intensities arg =1.7
andl,=6.2

results are in very good agreement. Note that both branches
of stationary phasedranchesp, and ¢s+ ) correspond to
the same modal intensities. The stability analysis of these
branches cannot be performed analytically fos 0. Nu-
: merically, as for the symmetrical case, it is found that the
o1 .08 005 o1 existence and stability of steady states are simultaneously
met for classA lasers forQQ=<Q ., and that a Hopf bifurca-
tion occurs for clas8 lasers in the vicinity o) =0.

FIG. 2. Stationary modal intensities and phase for the OPM The general expression of the intensity profilex,y)
TEMog- TEMy, laser vsQ obtained numerically from Eqg2.14.  =|F(x,y)|? reads, from Eqs(2.2) and(2.11),
The dotted lines correspond to the theoretical results reported in

Stationary phases (rad)

text. G;=1/7, G,,=0.443kr, and G,,=0.214r, where indices 1 A-1 5 5

and 2 are related to modes TEdand TEM,, respectively, and (xy)= T[IlBl(X'y)HZBZ(va)

A=1.2. The existence and stability are found wh&n<() .,

=0.095 for classA lasers and the Hopf bifurcatiork() related to + ZEBl(x,y)Bz(x,y)co&j;]. (3.13
classB lasers is shown by the arrogdouble arrow for y=0.1

(7=0.01). When Q=0 both stationary valuegs= =+ /2 lead to the

) _ ) same intensity pattern. In the nondegenerate case, one finds a
the model, i.e., no gain or loss effects favoring one of theyistability between two different phase-dependent patterns.

mode. Note finally that in the limit of small coupling, i.e., |ngeed, inserting Eq:3.12 into Eq.(3.13, one has
whenG,,—0, one finds the monomode linit=1/G;; : The

spatial overlap is weak and the modes do not compete for the

A-1
population inversion. l(x,y)=——I 2B3(x,y) +15B3(X,y)
When Q1 #0, the stationary values cannot be explicited
exactly. The first-order correction to the phase is given by +2\111,B1(X,y)By(X,y)sindc].  (3.14
b= ig+5¢3, For 1D lasers, the patterns are not symmetric in xhe

(3.12 direction[be_cause of the odB;(x,y)By(x,y) term|. Figu.re
3 is the stationary profile for the TE TEMq case, which
Shy= has been found numerically & =0.085. Due to the sym-

S 2(A-1)G(l1+15)° metry of the model, bistability is found with the reversed
(i.e., x— —Xx) pattern. It is interesting to note that the inten-
The correction tol; and I, is O(8432) or, equivalently, sity profile changes in a continuous way with paraméler
0(Q?). The modal intensities are phase depen@iee¢ Eqs. This behavior is in qualitative agreement with the experi-
(3.10] and are given by expressiof3.11) with G,,—~G;,  ments reported if19].
=G(1+2642). The EPM case is harder to handle analytically and we

Somewhat arbitrarily, we have chosen to illustrate ourgive just a few results here. From Ed&.14, one straight-
results for a laser, with medium coupling integrals, operatindorwardly finds the following expression for the stationary
on the TEM, and TEM,, modes. Figure 2 corresponds to the phases:
analytical values of intensities and phases, respectively. The
numerical simulation of Eq$2.14) has been performed and [GlmAfSwL 62221A§s+ 2A1A,G1,C0sp¢[sings= 0.
is reported in both figures. The theoretical and numerical (3.195
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FIG. 5. Stationary phases for the EPM TEMEM,, laser vs

2 ). Same parameters as in Fig. 4. 8t=0, ¢,=0,7 and ¢~
.;E i +37/8 (mod 27r).
3 . ishing amplitude for mode 1, i.eG;=0, G,#0, and|G,|
3 i stationary. We find the results
0 i G1224G,|*=0, (3.17
-0.1 0 0.1
@ G2)lG,|*=1. (3.1

FIG. 4. Stationary modal intensities for the EPM TRMEM,, It iS interesting to note that these equations are meaningless
laser vsQ) obtained numerically from Eq€2.14: (a) TEMyinten-  if G1225#0 and the EPM laser cannot have a monomode
sity and (b) TEMy, intensity. Full lines(branches labeled 1 and 2 responsgunless near threshold, where the model is valid
and dotted linegbranches 3 and)4re related to stable and unstable the OPM case, one hd&3,,,,=0 and the stationary state is
solutions for the clas# laser. ¢ are the Hopf bifurcation points characterized by
for the classB laser with yy=0.01. Gy,=1/m, G,,=41/64m, Gy,
=38, Gy115= — \2/4m, andG 1= \2/321, where indices 1 and G |2_i (3.19
2 are related to modes TEjyland TEM,,, respectively A=1.2). 2l — Gy, '

There are no explicit values of the modal intensities corre- Dij=1G2|%8 26 ».- (3.20
sponding the branches,=0,7. The other solutions, corre-

sponding to the EPM counterpart of Eq8.11), read The stability analysis of this solution is reported in Appendix

D and has been developed for arbitrddy The monomode
) ) ) , state remains stable above threshodd=(1) and as long as
G~ Gy G2~ Gy the following conditions are simultaneously fulfilled:

I 1= ’ ’ ’ ’ 2= ' ’ ' ’
GZZC511_(GIZ)2 GZZGll_(GlZ)Z

(3.16 1
g$2,
COSh.= Gi11d1+Gi22d 2 ,
s— T 1
212Gz (29—392){%_1)} Syz(a—Z +¥(3g-1)-¢°,
(3.2)

where G1,= Gy~ G11,/G1p, Giy=Gio— G11151222/G1o,
and Gh,= Gy— G3,,/G 5. where the parametey=y /(A—1). The parameteg (0
The stability analysis of these solutions is difficult to <g<1), defined as

handle analytically and has not been performed. We just give

numerical results in Figs. 4 and 5 for the TEMEMyg G (3.22
laser. The main difference is the loss of symmetny— ¢ ’
+nar compared to the OPM case. This leads, for instance, to ) )
intensity bistability, as can be seen from Fig. 4. However,S related to the strength of the interaction between the
here again, the existence and stability for clasksers and modes.

the Hopf bifurcation occurrence for smaM values in class In the weak-coupling limit, i.e., wheG,,<Gz, org—1,
B lasers are found. the laser cannot display a stable monomode behavior. The

laser with TEMy; and TEMy modes with the parametey

=2/3 is an example of such a case. Indeed, in this limit the

modes do not share the same inversion and oscillate simul-
We now turn our attention to the study of the single-modetaneously above threshold.

stationary intensity. In this framework, it is worth returning  Note that clasB lasers area priori unable to sustain a

back to the set of equatiori®.9) with Egs.(2.11) and(2.12. monomode behavidisee Eq(3.21) with y—0]. This result

Let us assume that mode 2 is oscillating and there is a varmight be surprising since monomode cl&s$asers are very

C. Monomode solution
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common. However, remember that gain and loss are asvidenced for clas8 lasers. These results are generic fea-
sumed to be equal for both modes. One could release thisires of bimode lasers that are also met in the general OPM

symmetry and introduce, for instance, mode-dependerdr EPM case: The unlocking threshold is much smaller in
lossesk; and in this way favor one of the modes. This would classB than in classA lasers.

obviously lead to stable monomode solutigjirs the same We also note that the intensity pattern varies in a continu-
way, an intracavity diaphragm can force the laser to operateus way with the parametéd. This behavior is clearly re-
on the TEM,g mode only. lated to intermode phase effects and shows the importance of

For a classA laser, on the other hand, taking the limit  phase-sensitive interactions.
>1, one finds that the monomode solution is stable provided On the other hand, single-mode behavior is found for the
20— 309°<0?/(A—1)’<+*(1lg—2), i.e., for almost all pa- OPM lasers. Stability is discussed explicitly with respect to
rameter values, providegi< 1/2: For strong coupling or for the laser parameterg, (), and coupling strengtig: It is
high spatial overlap one of the modes is built with all the shown that single-mode oscillations are behavior for strongly
available inversion at the expense of the other. Let us remarkoupled clasA lasers in a wide) interval. However, for
that this limit is found for high-order “neighbor” modes, for =0, this single-mode state is always unstable and the laser
instance, the 1D TEN,-TEM, . ; o case withn>1. behavior is bimodal. We also noted the existence of EPM
As a final comment let us point out that when=0, itis  “quasimonomode” steady states for high.
not possible to find a parameter region in the plagey()

fulfilling simultaneously the condition$3.21). The mono- IV. PERIODIC SOLUTIONS
mode is always unstable in this limit and the laser has the o ]
bimode behavior characterized in Sec. 11l B. In the opposite limit of high) values, the modes are well

Consider, for instance, the 1D TEMTEM,, mode separated in frequency and have a natural tendency to un-
(Gyy=1lm, G,p="3l4m, Gi=1/2m, and, for instanceA lock. Moreover, both modes tend to behave as free oscilla-
=1.2 andy;=1). The TEMy, mode @=1/2) is stable for tors (in phase of pulsationsa; anda,, respectively, but still

0.01=02<0.09 and the TEN}, mode @=1/3) is stable in a interact since they share the same population inversion. The
wider interval. i.e.. for 1.3% 10 2<2<0.995. laser output intensity exhibits a mode beat component corre-

sponding to the frequency differené®. As pointed out in
Sec. Il, the high®) periodic state can be obtained to domi-
nant order by neglecting the fast oscillating term ingesd

In the EPM case, it is possible to find solutions with asing (where, in this limit, =Qt) in Egs. (2.14). In the
small amplitude for one mode, the other one having a finitefollowing, we consider the first-order corrections to this
amplitude value. We mention here briefly the existence olsymptotic behavior and display the analytical description of
these stationary “monomodelike” solutions in the high- the following points:(i) the intensity oscillations are related
limit. Let us consider Egs(2.14) and introduce the param- not only to beating but also to the oscillatory character of the
etere=(A—1)/Q, e<1. One looks for a solution with small modal amplitudes themselves afi) the beat frequency is
amplitude, sayA;s=0(e) andA,=0(1) for mode 2. To pushed or pulled depending on the laser parameters. These
leading order this stationary amplitude reads effects are analyzed for the OPM and EPM cases. Due to

their different time scales, the cases of clBsandA lasers

D. Quasimonomode solution: The EPM case

|G2221 will be considered successively.
Ars=—35 €t 0O(€?), y
22
3.23 A. ClassB lasers
AZS:_1/2+Q(€) Let us consider first the cla®® laser. We assume here
G35 that bothA—1 andy, are small quantities with respect &
) o and define
and the stationary phase is given By= = /2 (where the
sign = depends on the sign of paramet@n;,/G,s59). A-1
These solutions, corresponding to the EPM monomodelike qQ © 4.9

counterpart of the OPM monomode solutions, were found
numerically to be stable for clas#\ lasers (for the
TEMgo-TEM,, case, for instange 04
00 02 A—le% 4.2)

E. Summary

In this section we proved the existence and stability ofwheree is a small parameter ang is assumed to b®(1).
stationary states of both single mode and bimode types andote that the limite—0 in Eq. (4.1) is valid whenQ is
showed their deep dependence on the paranfet@imode O(1) since A—1 is assumed to be small in the near-
solutions exist and are always stable in the degenerate cafi@eshold derivation of the modé&ee Sec. )l In the follow-

0 =0. The analysis of the so-called symmetrical OPM classng, what we call high) means high with respect to the
A laser showed the existence and stability of steady states fgrarameterA— 1. In physical units and according to Egs.
O =<Q,,ax together with a saddle-node bifurcation@t, . (2.4 and (2.15, this condition is fulfilled for lasers with
Destabilization of this steady-state branch or unlockingO(«) intermode frequency detuning.

threshold, via a Hopf bifurcation d@,,,¢~ yﬁ’z, has been Dividing the set of equation€.14) by ) one has
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. where=3,G;1{? and theO(€°) intensities are given by
Ai=e€ Ai_;k GiijijkAi_]Z:k GiijkDjAiTosp|, .

B 10 = [AL]2= ﬂ
3 GG~ G,
N A2 _
Dii=—ye(Dii—A}), » |<20>:[A<20>]2:ﬁ. (4.10
4.3 G2:G11— G,

D= — ye(D1p,— 2A.A , .
12= ~ v€(D1z~ 2A1A7C08p) For the OPM,8=0 and the expansion must be developed to

. (A2+A2) higher order. To ordee? one gets the results
¢=1+6Wj2k Gk Djising, .
A(T)=[A?+ e2A?] +5€yGod DA cosar,
where the overdots stand for derivatives with respect to time
7= kQt. This form is suitable for a perturbative analysis, to (0, 2((2)
which we now turn our attention. Di(M =17+,

Whene<1, the phase behaves a$t)=t and the modal (4.17
amplitudesA; and moment®;; are independent of time, as _ (0) A (0) s 2 2A(0) A(0)
can be seen from Eq&4.3). The intensityl (x,y,t) behaves D1a(T)=2€yAy Ay sINT+2€%y"A1 Ay COST,
periodically in time with a pulsationo=1 (in «{ units) 1
::r?errrensgggsdlng to the empty cavity beat frequency between H(T)=T— Eezy[ngrlg]sin(ZT).

In order to take into account the interaction between the o ] 0) . L 0)
modes and look for the first-order corrections to this “free” The time-independent amplitudes” and Intensities; ™ are
behavior, we emphasize that the phase is givendify) defined by Eqs(4.10 and the relate®(e“) corrections are

= w(€)t, where the pulsation is expanded as reported in Eqs(E9) of Appendix E. _ _
As can be seen from these results, the dynamical behavior
w(e)=1+ae+be’+0(ed), (4.4  is extremely sensitive to the relative parity of the two modes

o involved. Indeed, the mean values of solutio@s9 and
wherea andb are unknown coefficients. We look for solu- (4,11) are almost the same, but the time dependence is com-

tions depending on tim&, where pletely different in both cases. Considering the intensities,
T=w(e)t=(1+ae+be+- ). 4.5 Iic\J/re:;stance, one has for the EPM and OPM cases, respec-

Expanding the variables in Eq&.14) in power series ok, |i(T)=|i(0)—26,8A1A28inT+O(62) 4.12

f(T)=fO(T)+efD(T)+ 2D (T)+---, f=A Dy, ¢, g
an
(4.6
one obtains to dominant order (T =194 e[ 2AP AP + Y1 1P cos2T]+ O(€°).
DIP(M)=D{,  AP(T)=A, (47 (413
The modulation is strongepf ordere or Q1) in the EPM
and than in the OPM caséf ordere? or Q~2). Moreover, as a
O(T)=T, 4.9 result of vanishing cross couplingscorresponding to

G1112,G2207=0 or 8=0), all frequency components at the

where we have assumed, without loss of generality, thapeat frequencys(e) vanish in the OPM case and the inten-
#(T=0)=0. The higher-order expansion is given in detail SIY oscillates with the first harmonic«d{ €). Note that the

in Appendix E. modal intensities? are given the OPM stationary values
For the EPM case, the solutions of E¢4.3) are givento  found in Sec. Ill B. Equationg4.19 and (4.13 show that
order e by oscillations are in phase. This last point is related to the
symmetry in gains and losses for both modes.
Ai(T)=Ai(°)—eBA(TmsinT, The beat frequencw(e) is obtained in Appendix E on

the basis of a solvability condition and is given by

(T)=1© 2
Dii(T)=1;""+0(€%), .9 w(5)=1+62[’)/G12(|8+|2)_232] (4.19

D1AT)=2eyAL A sinT, or, in «k units, w=w(e€)(},

160 11O

1 2 w=Q+E[76 (|(0)+|(0))_2(A_1)B2]-
¢(T)=T—EEW(cosT—1), q NSl Tl

(4.1
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FIG. 6. Values ofw—Q vs Q for the TEMyy TEMy, classB FIG. 8. Intensity profile sampled at different times within period

showing frequency pushing effect$: are the numerical results T. At positionsx=0 and x=x, the interference term shrinks to
[Egs. (2.14] and the dotted line is the theoretical resuliq. zero and the intensities are stationary. Same parameters as in Fig. 2,
(4.19]. Same parameters as in Fig. 2 ape=0.1. but =1 andy=0.1.

We explicitly show that the OPM laseBE& 0) is character-  is characterized by a perioH related to twice the beat fre-
ized by frequency pushing phenomena>(). Moreover, duency i.e..T=m/w. Figures 8 and 9 correspond to the in-
this effect is shown to grow witl) ~* (all other parameters tensity profile snapshots taken at different times. Numerical
constant The frequency pushing effect has also been obintegration atQ=1 is typical of a “far from locking re-
served numerically well above threshold in a TRMEM,,  gime” [19] with almost constant modal amplitudes, the only
laser[25]. On the other hand, the EPM laser may have fretemporal variation being related to mode beating. The inten-
quency pulling or pushing effects depending on the paramsity profile varies in time according to
eter values. Varying the relative weight ¢f andA—1, for
instance, the laser exhibits frequency pushing and pulling
regimes, though the latter is rather difficult to obtafor
instance, the occurrence of frequency pulling for the TEM ORO,
TEMy, case is found fory)/(A—1)=<0.05]. +2V177157Ba(X,y)Ba(Xy)cog wt) ].

We illustrate our results in the case of the OPM TgM (4.16
TEM-q case. The theoretical values of the functior () are
plotted in Fig. 6 versu$) and compared fruitfully with the It is worth noting here that the temporal variations of
data obtained by numerical integration of EG®.14. The I(x,y,t) are related to the last term in E¢4.16 and are
characterization of the modal intensities, given in Fig. 7, haproportional toB;(x,y)B,(x,y). For the TEM;TEM,; case
been obtained by extracting the maximum and minimum obne hasB;(x,y)B,(x,y)—0 at x=0, where the TEM,
the periodic signals,(7) andl () for a given{) value and  mode vanishes and alsoxat x (corresponding to the maxi-
by reporting them versu. Our asymptotic theoretical re- mym of the TEM, mode where the fundamental TE}
sults, obtained in th€ = O(1) limit, are shown to be invery mode shrinks to zero. The intensity at these two points is

good agreement with the numerical data. . ~ proportional to the modal intensities and is independent
According to the result¢4.11), the OPM intensity profile

A-1
L(x.y.t)~ —— (11" Bi(x.y) +15”B3(xy)

-1

8 [ T T T T 3
\ 6 =
S, 5| -
o 6 4 T 2
fa R =
El + g 4t .
S 4 ;
- / ey
S =
= 4k m é 3 —
g I
3 5 | _
4
A -
2 920 RSB0 o S| 1+ ]
QOQQ’
00/ 0
o L 1 1 1 1 4 4
0.2 0.4 0.6 0.8 1

FIG. 9. Intensity profile sampled at different times within period
FIG. 7. Maximum and minimum of the periodic modal intensi- T. The parameters are the same as in Fig. 3. At positicné and
tiesl, andl, vs Q for the TEMy;-TEMq classB laser. & and + x= X, the interference term shrinks to zero, but the corresponding
are numerical results fdg andl ,, respectively, and the dotted lines intensities are oscillatory functions proportionalli§r) andl(7),
are the theoretical results corresponding to @ql3. respectively.
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wherel; =Ai2. As was pointed out in Sec. IV A, this expres-
sion shows that the OPM laser’'s dynamics is governed by

. IS the variable 26 and modal intensities oscillate at twice the

T
++++l+++++++++++++++++++«

- | beat frequency.
3 o Repeating the expansion in the same way as in Sec. IV A
< 4L i [see Eqgs(4.4—(4.6)], one finds from Eqs(4.17) the solu-
g tions
&
= 2 |-

E><><><><x><><><><><><><><><><><><><><><* A(T) :Ai(O)_ € 2Gmrti(°>A(T0)sinT+,8Ai—sinT

>§é<><><><><><><><>|<><><><><><><><><><><><><><><><><><><><
0 G
0.07 0.09 0.11 12 7 (0),(0) s
' + TAE )Ii—sm(ZT)},

FIG. 10. Extrema of the modal intensities &sfor the TEMyy-
TEM,, classB laser.[d, stationary TENy; X, oscillatory TEM,; H(T)=T—€
¢, stationary TEM,; +, oscillatory TEM, results forl, andl,,
respectively. Bistability between periodic and stationary states is
found for (€[ 0.08,0.09.

P41 G118

—————=(1—cosl)+

X[1—cog2T)]

, (4.19

almos) of time, as can be seen from Fig. 8. On the other

hand, at)=0.085, the modal intensities given in B¢.13  where S=3;G,1{® and the Q&) intensities 1{*
have a significant temporal oscillation. The temporal evolu-z[Ai(O)]2 are found as
tion of the intensity profile is related not only to mode beat-

ing but also to the oscillating character of the modal intensi- Gy~ 2G,
ties [5]. This state, called a prelocking state in the 199 =
experimental work reported if19], is shown in Fig. 9.

Figure 10 is a blowup of Figs. 7 and 2 in the interval
[0.07,0.17 and clearly evidences bistability between station-
ary and periodic statdshe analysis of bifurcations occurring
in Fig. 10 will be considered elsewherd@he periodic solu- w(e)=1—¢
tion, which is always stable for higke, loses its stability
when ) is lowered(this occurs fo)~0.08) and the system 2 1 (0)2.4 1(0)2 0 (0)
jumps on the bimode stationary branches, which have been TGl T+ A1 )}, (4.21
analyzed in Sec. Il B. Bistability is illustrated by Figs. 3 and
9, which correspond respectively to a stationary and a perig; in « units
odic intensity profile at(=0.085 (all parameters are the
same in both figures —1)2

gure w=Q—(Aﬂl) [4,32+2; Gizj'jlj(o)“(lo)ﬂ(zo))

) _ Gll_ 2G12

== V== """ (4.20
GGy~ 4G, GGy~ 4G,

The beat frequency is given by

482+22 G2, 110010 +19)
J

B. ClassA lasers

As usual, the equations for a cla&daser are obtained in + G102+ 1024 410 (0
the limit y>1 and the population inversion variabl&x;

can be adiabatically eliminated. In this limit, the set of equa- ,
tions (2.14 becomes These results show that the modal amplitudes have a

modulation of ordete and the EPM case is characterized by
. both harmonicaw and 2w, whereas the former vanishes in
Ai:f<Ai_z. Gijl A= 2, Gyl jATCoSH the case of the OPM laser. On the other hand, the beat fre-
. . quency is always pulledf<). From Eq.(4.22 one sees
that this pulling effect grows withA—1)%/Q 1. Pulling ef-
fects, inherent to clasA lasers, makes the mode locking in
some way more natural in clagsthan in clas8 laserg10].
Our results are illustrated in the case of the OPM &M

. (4.22

—2G;j;ii1jATcosp— 2G12Ai|i75052¢> , (417

. [1+1, : : vl
p=1+e€ smqb(E Gyl +2GAA 00&]5), TEMyo laser. The functiono— () and the modal intensities
Viils i 1 e are plotted in Figs. 11 and 12, respectively, and show the

very good agreement of the theoretical results with the nu-
wheree is defined in Eq(4.1). It is worth noting here thatin  merical values.

the OPM case these equations simplify into It is interesting to note that, for decreasifig the periodic
) orbit has larger and larger periddne finds for the OPM
li=2€l;[1-G;l;— Gyl 7(cog2¢) +2)], casew=0 when Q/(A—1)=G(12+13+4I,1,)*? if Eq.

_ (4.189  (4.22 is still valid]. It has been checked numerically that the
d=1+€G11+1,)siN(2¢), classA periodic solutions, stable for higf, tends for de-
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lasers parameters has been obtained. In particular, we found
the analytical expressions for frequency pushing and pulling
. effects for clasB and A lasers, respectively, and showed
that these effects grow, for decreasifig asQ 1.
. The modal intensities are sinusoidal functions of time and
appear to be very different in the OPM and the EPM case.
7 We first demonstrated that spectral components are different
in both cases: The lattdEPM) is related to beat frequency
T w, while the formerlOPM) is shown to oscillate with pulsa-
tion 2w. On the other hand, the modulation amplitude is
1 9 3 4 5 shown to be critically different for clasa or B, OPM or
o EPM lasers(ordersQ? and ), respectively. In this frame-
work we differentiated the “far from locking regime” or
FIG. 11. Plot of w—Q for the TEMyy TEMy, classA laser  “far from degeneracy dynamics,” where the intensity pat-
showing frequency pulling effects®>, numerical values; dotted tern is governed by beat effects only, and the “prelocking
line, theoretical result. The pump parameter is sehtol.2. state” where the intensity pattern is related to the beat effect
and also to the oscillatory behavior of both modal intensities.
creasing() to an infinite period orbit homoclinic to the un-
stable saddle node at detuning valg,=Q .« [See, for V. CONCLUSION
instance, Eq(3.4) and Fig. 1. In contrast to clas8 lasers, ,
there is no bistability with a locked steady state. A detailed The_ laser operating on two transyerse modes was ana-
analysis will be given elsewhere. lyzed in the framework of a theoretical model valid near
Let us finally mention here that the present developmentéreshold and with respect to the detuning between the empty
are not systematically valid. Assumirn®,,<2G,,<G,; in  cavity eigenfrequencie§) (scaled tox). The dynamics is
Egs. (4.20 leads to negative intensities and the develop-shown to be extremely sensitive to the laser type, i.e., dass
ments considered here become irrelej@@l. If not station-  or B laser. We also evidenced the crucial importance played
ary, numerical simulations show that the behavior of suchby the relative spatial parity of the modes involved and in-
lasers corresponds to antiphase periodic dynaf@i¢k This  troduced a clear distinction between what we called the OPM
type of regime is beyond the scope of this paper and will beand the EPM laser.

-0.01 |-

[w—-9]
T

-0.04

FF——F—3T-—___

-0.05

considered in a future work. The existence and stability of the locked state have been
analyzed. It is shown that the locking threshold is much
C. Summary smaller in the clas8 than in the clas# laser. On the other

hand, OPM and EPM lasers are characterized by an optical
phase differencep;= ¢4({2) and by -dependent intensity
patterns.
The single-mode state has also been analyzed and is
T T T T shown to exist for the OPM case only, while its stability is
preferably fulfilled for strongly coupled clags lasers. The
¢ | EPM counterpart of these states has been mentioned and
termed a “quasimonomode.”
IRRRReBEe0e08 Periodic intensity patterns have been studied in ghe
025 = (O . =0(1) limit [or intermode frequency detunir@(«)]. Fre-
quency pushing or pulling effects related to cl&sand A
) ! lasers, respectively, were characterized analytically. The
study of the periodic behavior of modal intensities and phase
0 has also been performed and evidences the qualitative dis-
T . I I I tinction between clasa or B as well as OPM or EPM lasers.
& In the present work, we have used real modal eigenfunc-
6.9 - 7 tions such as the Hermite-Gauss basis. Indeed, our study
ROBOCeeooasesaness could be extended to the “doughnut” family of modes. In
68 &W‘” T that case, an analytical description of traveling waves asso-
2 ciated with rotating patterns and restless vorti¢&g,13
oTr il could be performed.
o6 ' | . . . Further work coul_d r_:tlso_ be devo_ted to the generalization
‘ 1 2 3 1 5 of the present description in a multimodal approach. In that
0 way, such an extension, if analytically performed, could give
a better understanding of the laser dynamics and its depen-
FIG. 12. Maxima ofl ;(t) vs Q for the TEMy,- TEM;, classA dence with respect to the parameters as well as to the nature
laser. ¢, numerical values; dotted line, theoretical result. of the modes that come into play.

We have analyzed the periodic intensity state in fhe
>A—1 limit. The explicit dependence of beat frequency on
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APPENDIX A: STATIONARY SOLUTION
OF THE SYMMETRICAL OPM LASER

1. ClassA laser

Y .
The adiabatic elimination of the inversion variables in )\=—§”i2| VY(A=D/(G+1), (A6)
Egs.(2.14) leads, for the OPM laser, to

| =21, [1-Gl,— I7(cos2¢)+2)], T=3i, related to variablesdD1,,d¢),

. v G-1
d=Q/(A—1)+(1,+1,)sin(2¢), (A1) >\=—§"il \/27”(A—1)m, (AT)

where time is rescaled with respect to the paraméterl  (g|ated to {,Z), and
and the modal intensities have been definedibyGleiz.
We denote bysl; and 8¢ the perturbation to the stationary Y.
solution and defin&X= 61+ 81, andY= 6l ,— 6l,. We ob- )‘:_Ei' V2y(A=1) (A8)
tain the linearized system
for the set ¥,D).

X=2[—-X+ 8I§sin(2q§s) S¢sl, (i) When Q#0, the analysis can be performed in the
_ limit y=1,/(A—1)—0. The characteristic equation is ex-
Sp=Xsin(2¢s) + 81,02 ¢) 5, (A2)  panded iny and, from the Routh-Hurwitz criterion, it can be
shown that the eigenvalué8) lead to a Hopf bifurcation
and when
Y=2-4GlI,Y. (A3) 2(A-1)\Jy(G-1)
Q:QHopfz__'_ G+1 . (Ag)

The analysis of eigenvalues show that stability is fulfilled for

Is=(l), i.e., for the upper intensity branch.
APPENDIX B: LAMB ANALYSIS OF A BIMODE LASER

2. ClassB laser Lamb equations for a bimode laser are given by
Let us denote byX=G5A;+56A,, Y=6A—56A, D .
=68D 1+ 6D,,, and Z= 6Dy~ 6D,y,8D1,,8¢ the devia- I1=11(a3—bysl 1= byl ),
tion with respect to the stationary solutions .
(Xs,Ys,Dg,Zs,D1ss, bs). Time is rescaled with respect to l2=12(az=baol = b1l 1), (B1)

the parameteA—1 and y=y|/(A—1). One obtains from

Egs.(2.14 a set of equations for the variable¥,?): wherel ; andl, are the modal intensitieg; is the linear gain

of modei, andb;; (b;;>0) are the self- and cross-saturation

Y=2(1- Gyl ¢~ Gyl )Y+ (Go— G11)ALZ, coefficients. Neglecting phase interactions in Egsl4) (set
cosp=0 and sirp=0) and performing the adiabatic elimina-
7—_ YZ—2AY) (A4) tion of momentsD;;, one gets Eqs(B1l) with a;=a,=1

andb;;=G;j;, byp=by;. In this framework, it can be shown
(As=\l1y). Stability is fulfiled for 1>1/2G,;,(1 that the laser has a monomode responsg=0, I,
—NI(G;;+Gyp). The linearized  equation  for =1/Gy) or (1,=0, 1;=1/Gy,) in the strong-coupling limit,

(X,D,5D,,,54) reads i.e., whenC=G2,/G,;,G,,>1. The bimode solution is given
. by Egs.(3.11) and is stable in the weak-coupling limit, i.e.,
X==A,(G15+G11)D —2G15Ac056 6D 15 for C<1. It is worth noting here that according to the defi-
) nition of the overlap integra[see Eq.(2.10] and from
+ 21 AG1,8IN(2 ps) 5, Schwarz inequalities, one h&,<G;,G,, or C<1 and the
. bimode study considered here always corresponds, following
D=—y(D—2AX), (A5) Lamb criteria, to a weak-coupling situation.

5D12: — (8D 1+ 21 Singps— 2ALCOSPX), APPENDIX C: OPM STATIONARY STATES

_ The linear stability analysis of the stationary solutions
6¢p=2G4,5INp D 1+ 2X 5. corresponding to Eqg3.10 is performed here. In the case
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$s=0,m, writing ¢= s+ ¢ and inserting in Eqg2.14), one G;=(A—1+i0)G;— (A—1)[G1;D1,G1+ G1,D 2,6,

finds
+G12D15Go],
deé ~
gi 2ATDGudla+ 1) ¢, .
G2=(A-1)Gy—(A—1)[G2D 2G>+ G1:D 131G,

which shows that these solutions are unstable. In the case +G1D 1G],
b=+ w/2, defining by, a; ,dj; the perturbation associated
with the stationary valueg, A;, andD;;, respectively, the (b1

linearized counterparts of EqR.14) read

Dii=—(Dii —|Gil?),

dé PRSP

D12: - YH(Dlz_ Gng - GZGI),

ddy ~ o
a9t y)(— diat2A1A:8INds ),
where, without loss of generality, we have set=0 and
and a;=—Q [of course performing the transformation
G,— G;exp(—ia,t) in Eg. (2.9 leads to Eq(D1)]. The sta-
43 tionary solutions are given by E3.19. The linearization of
ek S T i~ Eqg. (D1) leads to a set of equations for the perturbations of
=—(A-1)(G;A;d11—G d,y), ;
dt ( )(G11A1d 11— G 1A d5)) the variablesG,,D s,
da, ~ ~ - - =
i = (AT D(G2Azd2— G1Axd1), G1=(A-1)[1-G1iD2)s]G1 +iQG,
- ~(A=1)G1AG2)D1o,
d—t“:y”(—'a”+2Ai'5i), i=1,2.

o D1=7[D12(G2):G1—(G)Gil, (D2
The first set of equations gives, d;,~ e, where the eigen-

values\ are given b . . :
9 y which are decoupled from the remaining variables

Y A-1
)\:_EiE 1_8_G12(|1+|2) s —_ —
Y Go=—(A—=1)(Gy) G2D 2+ G1D 4],

and correspond, as is well known, to aperiodic damped re-
laxations for classA lasers and to damped oscillations at

frequencyw, , D= — 7||[522_ (G2)¥G,—(Gy)G3 1, (D3)

©; =2y G A=1)(I1+1y), (Cy = ~
Dy=— 7HD11
for classB lasers. The second set of equations leads to the

eigenvalues (the labels refers to the stationary values and the tilde refers

1 to the perturbations The analysis of EqgD?2) is easily per-
= A= /7f+4xi, formed and leads to the stability conditions reported in Eqg.
2 2 (3.21). The second set of equations corresponds to the usual
monomode stability analysis. Introducing the intendity
Xo==y(A=D)[(1;G11+1,G5)) =(G,)5G,+(G,)G5 , one finds the monomodelike equa-

> > tions
* (11,6114 1,G59)?— 4111 ,5(G1,G— G, 1.
It is easily verified thaX.. is real and negative and therefore i2: —2(A—1)Dyy,,
the real part o\ remains negative provideti=1.
APPENDIX D: MONOMODE STATIONARY SOLUTIONS Dao=—¥(Dao— 1) (D4)

Using Egs.(2.9) with the variables defined in E¢2.11)
one has for the OPM case whose stability is fulfilled above threshold, i.e., whaes1.



642 V. ZEHNLE 57

APPENDIX E: ASYMPTOTIC SOLUTIONS

FOR CLASS B LASERS IN THE €—0 LIMIT B=§j: Gigjl§”. (E6)
To ordere, Egs.(2.14 read
do® . .
——a+ aGlzjkD(-E)SiWﬁ(o), Repeating the development to orde, one finds the solv-
dT J ability conditions
(1)
R~ YD1,
dT DP=AY=0, i,j=1,2
dD{) Y
12
g7 =~ v(DE-2AL AP cosp?), -
b=—2p2+ (1" +15")G1,. (E7)
(1)
A (0)

—=(A —GiijkD](g)Ai(o)_COS(ZS(O)GlzjkDJ(E)A(i_O))
Note that the set of equatioriE5)—(E7) gives the first cor-
(summation over repeated indicgsand k is assumed and rections to theO(e%) EPM solution. In the OPM case, one
7 =3—i). The parametex is defined by hasg=0 and the expansion must be developed further. The
O(€?) solution reads
1(0) 41 (0)
-t 2 (E2)
1015 2 Y0 (0) -
$2(T) == S[117+1571Gyzsin(2T),
Of course, the solutions of Eq&EL) must remain finite in

time. One then has to apply solvability conditions, which
read, from Eqs(E1),

AY)
a=0, (E3 AP(T)=AP+ ST A G 042T),
D(ﬁ)=l(10)= G2o— Gy (E8)
G116~ Giz Di(iz)(T): Di(iz) ,
G11— G
Dy =1 = (E4)

) 2 _ 2 0 0
G11G22— Giz D(lZ)(T)_D(12)+272A(l )A(Z )COST)

D{Y=0.
To ordere®, the solvability condition leads to
The solution of Eqs(E1) reads
D{Y(T)=D{Y, D@ =0,
DY(T)=D{5+2yAYAD sinT,

W(T)= - ap(cosT—1 E5 Y°G12(2G 1l {7~ 1)
¢ H(T)=—apB( ), (E9 D@ = A0 AP = (D= — IGZ . (E9)
A(ll)(T):A(ll)_BA(ZO)SinT, 11922 12
AD(T) =AY — AL sinT, 2
, D(T)=D{F+ S 110G ysin(2T).
where we have defined the paramefeas i (D=0 S 1712 GsinE2T)
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