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Theoretical analysis of a bimode laser
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We study analytically the dynamical behaviors of classA andB lasers operating on two transverse modes.
A generalization of the well-known multimode model of Lamb, taking into account the transverse hole burning
effects as well as nonlinear phase couplings, is considered. Taking as a control parameter the difference
between the empty cavity eigenfrequency of the modes, the main developments of this article are the follow-
ing. The existence and stability of stationary patterns related to~i! single-mode stationary states and~ii ! locked
bimode phase-sensitive solutions are analyzed.~iii ! Unlocked periodic behavior and frequency pushing or
pulling effects are characterized in a fully analytical description. Our analysis puts in evidence the qualitative
differences of stationary as well as periodic behaviors for classA andB bimodal lasers. Moreover, we show
that the laser response is strongly dependent on the symmetry properties, or on the relative spatial parity, of the
modes involved: The dynamical properties of opposite or equal parity modes laser are introduced and inves-
tigated here.@S1050-2947~98!06401-4#

PACS number~s!: 42.55.2f
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I. INTRODUCTION

The spatiotemporal dynamics of lasers and the forma
of transverse patterns has been a subject of extensive
retical and experimental@1–5# research for the past te
years. A theoretical approach of these lasers is provided
the Maxwell-Bloch equations~MBE!. In order to describe
the transverse Gaussian profile of the laser beam, the u
plane-wave approximation is released and the transvers
fects are taken into account by a diffraction term in the MB
@6#. In this framework, a lot of theoretical works have be
devoted to the study of pattern formation, defects, and s
tiotemporal chaos@7–9#. On the other hand, for weakly mu
timode lasers or low Fresnel number configuration, a sim
fication of the MBE is provided by the so-called mod
approach and was proved efficient for the investigation
spatiotemporal dynamics in lasers@10–13#.

The study of mode interaction is a rather old problem
laser physics. Indeed, remembering that each mode is an
cillator characterized by its empty cavity eigenfrequen
these lasers exhibit the general properties of coupled osc
tors systems. The laser output intensity oscillate accordin
the modes beat component corresponding to the freque
differences between the modes that come into play. On
other hand, in the nearly degenerate case, i.e., if the ei
frequencies of the modes are close enough, locked beha
leading to a stationary intensity output is observed@14#. This
phenomenon was termed as cooperative frequency loc
by Lugiatoet al. @15#.

Theoretical descriptions of multimode laser oscillato
have been developed since the early 1960s. The well-kn
developments of Lamb@16# for multiple longitudinal modes
lasers lead to a set of equations for modal intensities w
nonlinearities related to self- and cross-saturation effe
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The longitudinal-multimode equations derived by Tanget al.
@17# for the case of a Fabry-Pe´rot cavity takes into accoun
the longitudinal holes burned in the inversion by t
standing-wave field. As pointed out by Mandelet al. @18#,
this model couples the modal intensities to the populat
inversion and neglects phase interaction. A recent gene
zation of the model of Tanget al., which retains phase
sensitive interactions, has been considered in the work
Mandelet al. and shows that nonlinear phase coupling lea
to important effects notably in semiconductor lasers.

The present work reports on theoretical results for las
operating on two transverse modes and is motivated by
cent experimental observations on the so-called bimode o
dimensional~1D! lasers@19#. These lasers are operating o
the transverse Hermite-Gauss TEMmn with n50 modes: As
the structure is forced to be purely Gaussian in one direct
the transverse dynamics is in a sense reduced to only
direction, thus justifying the term 1D~the corresponding ex
perimental setup is obtained by putting an intracavity d
phragm of rectangular shape, the smaller size being roug
equal to the laser waist and has been realized on a CO2 laser
@19#!. The 1D intensity profile has been recorded and a
lyzed taking the cavity lengthL as a control parameter. Apa
from the general behaviors of bimode lasers, i.e., locked
oscillatory states, the system is also characterized by the
lowing qualitative properties. It appears that, when stati
ary, the intensity profile shape changes in a continuous w
while changingL. On the other hand, outside the locke
region, the intensity behaves periodically in time in a w
related not only to beat between the modes but also to
periodic modulation of the modal intensities themselves@5#.

In this article we want to characterize analytically the
dynamical behaviors of bimodal lasers and perform th
critical analysis with respect to laser parameters. With t
aim, we consider here the theoretical developments in
framework of a model developed by Staluniaset al. @10#.
This model describes transverse modes interactions for la
629 © 1998 The American Physical Society
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630 57V. ZEHNLÉ
in a ring cavity configuration and takes account of nonlin
transverse hole-burning effects and of nonlinear phase
plings. The guiding scheme leading to the model of Stalun
et al. is reported in Sec. II. In this framework, and in clo
connection with the experimental findings, a theoreti
analysis is performed by taking the difference between
empty cavity eigenfrequenciesV as a control parameter.

In this article the main developments are the followin
We analyze the stationary intensity states correspondin
phase-dependent bimode stationary states and monomod
lutions in Sec. III. Section IV deals, in the parameter reg
of high V, with the study of the periodic states. The expli
analytical characterization of beating effects associated w
frequency pulling or pushing phenomena and of the osc
tory character of the modal intensities are given. All the
behaviors are shown to be critically related to what is term
by Mandelet al.as ‘‘phase-sensitive’’ effects. Moreover, w
show that the laser response depends on the nature, o
relative spatial parity, of the modes that come into play. T
is one of the main points of our analytical study and leads
the introduction of what we shall define as ‘‘opposite par
modes’’ and ‘‘equal parity modes’’ lasers.

II. THEORETICAL DESCRIPTION

We consider a bimode classA or B laser whose spa
tiotemporal behavior is governed by the mutual interact
of two transverse modes denotedB1(x,y) and B2(x,y),
wherex andy are the Cartesian coordinates in the transve
plane~i.e., perpendicular to the axisz of the cavity!. For the
sake of simplicity, we suppose here that the functionsBi are
real; they correspond, for instance, to the Hermite-Ga
TEMmn modes or to the Laguerre-Gauss modes. The la
field E is

E~x,y,z,t !5F~x,y,t !ei ~kaz2vat !1c.c., ~2.1!

whereF is the slowly varying envelope of the field and is,
the mean-field limit, independent ofz (va is the atomic fre-
quency andka is the related wave vector!. The modal expan-
sion considered here is given in detail in@6#. The envelopeF
is written as

F~x,y,t !5g1~ t !B1~x,y!1g2~ t !B2~x,y!, ~2.2!

whereg1(t) andg2(t) are the complex modal amplitudes
modesB1 and B2 , respectively. The temporal evolution o
these amplitudes is governed by

dgi

dt
52kF ~11 iai !gi2AE E Bi~x,y!P~x,y,t !dx dyG ,

i 51,2, ~2.3!

wherek is the field relaxation rate,A is the pump parameter
and P(x,y,t) is the polarization of the active medium. Th
parameter

ai5
v i2va

k
~2.4!
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is the detuning of theBi cavity mode frequencyv i with
respect with to the atomic frequency. Equation~2.3! is
coupled to the Bloch equations for the active medium. In
case of classA or B lasers, i.e., whenk and the population
inversion decay rateg i are both small quantities compared
the polarization decay rateg' , the adiabatic elimination of
P is performed

P5FD ~2.5!

and the population inversionD obeys

dD

dt
52g i~ uFu2D1D21!. ~2.6!

The population inversionD for classA lasers near threshold
can be adiabatically eliminated and written as

D~x,y,t !512uFu2512 (
i , j 51,2

gi~ t !gj* ~ t !Bi~x,y!Bj~x,y!.

~2.7!

According to Staluniaset al. @10#, Eq. ~2.7! can be general-
ized for classB lasers as:

D~x,y,t !512 (
i< j 51,2

di j ~ t !Bi~x,y!Bj~x,y!, ~2.8!

corresponding to a truncated expansion ofD in terms of real
time-dependent momentsdi j (t). This expansion is valid for
small intensityI 5uFu2, i.e., near threshold, and accounts f
the first-order saturation effects. The modal-like expans
of D leads to a major simplification of the integro
differential equation~2.3!. Inserting Eq.~2.8! into Eqs.~2.3!
and ~2.6! leads to the set of ordinary differential equatio
~the overdot stands for the derivative with respect to tim
where time is ink21 unit andg i is in k unit!

ġi52~11 iai2A!gi2A (
m,k< l

Giklmdklgm ,

ḋi i 5g i~dii 2ugi u2!, i 51,2 ~2.9!

ḋ125g i~d122g1g2* 2g2g1* !,

where

Gi jkl 5E E dx dy BiBjBkBl , i , j ,k,l ,51,2

~2.10!

are overlap integrals that are related to self-saturation
cross-saturation nonlinear coupling terms. Indeed, if over
integrals between two modes vanish, cross-saturation te
disappear in Eq.~2.9! and both modes are decoupled. O
then obtains the usual set of equations describing a si
mode laser. This situation is met, for instance, for a la
operating on a high-order mode together with a low ord
~i.e., for the TEMmn-TEMpq case withm,n low and p,q
high!. On the other hand, if the two modes have a hi
spatial overlap, one recovers the strong-coupling limit wh
they are in competition for the available inversion.
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57 631THEORETICAL ANALYSIS OF A BIMODE LASER
Let us define the complex modal amplitudesGi as

Gi5Aie
if i5A A

A21
gi , ~2.11!

whereAi andf i are the real amplitude and phase of modei .
We also rescale the population inversion as

Di j 5
A

A21
di j ~2.12!

and define the relative phase between the modes as

f5f12f2 . ~2.13!

Equations~2.9! become

Ȧi5~A21!FAi2(
j <k

Gi jki D jkAi

2(
j <k

Gi ī jkD jkA ī cosfG , ī 532 i ,

Ḋ ii 52g i~Dii 2Ai
2!,

~2.14!

Ḋ1252g i~D1222A1A2cosf!,

ḟA1A25VA1A21~A21!~A1
21A2

2!(
j <k

G12jkD jksinf,

where

V5a22a1 ~2.15!

is the empty cavity frequency difference between the mod
This set of six coupled equations for the modal amplitud
inversion moments, and phase explicitly takes into acco
the nonlinear phase couplings. The usual assumptions fo
in Refs.@16,17# amount to neglecting fast oscillations term
such as cosf or sinf in Eqs.~2.14!. One then obtains a set o
equations that couples the modal intensitiesAi and inversion
with no phase interaction. Note that the Lamb model fo
bimode laser can be obtained from this model by adiab
cally eliminating the inversion variables in Eqs.~2.14! ~see
Appendix B!. One can see that phase couplings, though v
ishing in the limit of highV, are non-negligible for interme
diateV values~see Sec. IV! and are indeed important for th
study of the stationary states in the locked region (ḟ50).

One of the main results of this paper is related to
nature of the modes that come into play. A simplification
Eqs.~2.9! or ~2.14! occurs when the two modes involved
the equations have opposite spatial parity~with respect to
space inversion!. To make things clearer, let us consider, f
instance, the case of the 1D transverse lasers. The modBi
( i 51,2) are the Gauss-Hermite TEMmi0

[TEMmi ,n50

modes@20#

Bi~x,y!5A 1

pmi !2
mi21

Hmi
~A2x!e2~x21y2!, ~2.16!
s.
s,
nt
nd

a
i-

n-

e
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corresponding to a Gaussian shape in they direction, the
so-called 1D structure associated with the Hermite poly
mial of ordermi being related to thex direction. The modes
Bi are odd or even inx if the corresponding indexmi is odd
or even. Consequently, overlap integrals such asG1112
(G2221) with m1 odd ~even! and m2 even ~odd! are zero.
More generally, let us also note that the same symme
effect is found in a 2D laser such as the TEMmn-TEMm8n8
bimode laser withm1m8 or n1n8 odd. This type of laser
has its behavior qualitatively modified as a result of vani
ing cross couplings@corresponding to theGiii j , j Þ i , terms
in Eqs. ~2.14!#. The comparison between what we call he
opposite parity modes~OPMs! and equal parity modes
~EPMs! lasers is developed in the following sections.

III. THEORETICAL ANALYSIS
OF THE STATIONARY STATES

The analysis of bimode stationary behavior is hard
handle in the general case. In the first part of this section
consider a simplification of model~2.14! for a particular
‘‘symmetrical’’ OPM case. This case, though simple, can
treated analytically and puts in evidence the generic prop
ties of the general bimode laser. This general case is con
ered next. The stationary OPM and EPM bimode lasers
studied in the limit where the empty cavity mode frequenc
ai are quasidegenerate, i.e., whenV→0. An alternative sta-
tionary state is provided by the single-mode solution (A1 or
A250) and is studied subsequently.

A. Stationary bimode solution: The symmetrical OPM case

The analysis of stationary solutions is performed in t
symmetrical OPM case, i.e., for a laser involving TEMmn-
TEMnm (n1m odd! modes, for instance, for the
TEM01-TEM10 laser. The symmetry property readsG11
5G22 (Gi j stands forGii j j ) and parity properties leads t
G11125G222150. The stationary variables are found fro
Eqs.~2.14!:

G12I s~G1112cos2fs!51,
~3.1!

G12I ssin~2fs!52
V

2~A21!
,

where fs is the stationary phase andI s5A1s
2 5A2s

2 is the
stationary modal intensity equal, for symmetry reason,
both modes andG5G11/G12 (G>1 @21#!. A closed equa-
tion for fs can obtained as

cos~2fs2F!52~21G!cosF, ~3.2!

where

cosF5
V

V214~A21!2
~3.3!

and 0<F<p. The existence of stationary solutions is foun
from Eq. ~3.3! as long as
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632 57V. ZEHNLÉ
uVu<Vmax5
2~A21!

A~21G!221
. ~3.4!

The phasefs can be explicited as

fs5
F

2
6

1

2
arccos@~21G!cosF#6

p

2
, ~3.5!

corresponding to four branches of solution in the inter
@0,2p#. The stationary phase and intensity are shown in F
1. Note that both phase branches (fs ,fs1p) correspond to
the same intensity branch. In the degenerate case (V50),
one gets

fs50,p, I s5I min5G12
21~G13!21,

~3.6!

fs56p/2, I s5I max5G12
21~G11!21.

For V5Vmax, one finds

fs5
1

2
arccosS 1

21GD1
p

2
~modp!, I s5^I &5

I max1I min

2
.

~3.7!

We have developed the stability analysis for classA lasers
~see Appendix A!. The upper intensity branch (^I &<I s
<I max) is a branch of stable nodes, while the lower (I min
<I s<^I &) is a branch of hyperbolic points, both branch
merging into a saddle node bifurcation point at6Vmax.

The analysis for classB lasers has been performed in th
limit g i /(A21)→0 ~see Appendix A!. The lower-intensity
branch remains unstable. The upper branch is stable wh

FIG. 1. Stationary intensities and phase for the symmetr
OPM TEM01-TEM10 laser vsV (G115G2253/4p, G1251/4p, and
A51.2). Full ~dotted! lines are the stable~unstable! branches for
classA lasers.3, h, and1 correspond to Hopf bifurcation point
for g i51023, 0.01, and 0.02, respectively.
l
.

I s>I Hop f5I maxF12
g i

2~A21!

G21

G11G ~3.8!

or

uVu<VHop f52Ag i~A21!
AG21

G11
~3.9!

and destabilizes in a Hopf bifurcation whenV5VHop f ~nu-
merical continuation of the periodic orbit atVHop f shows
that the Hopf bifurcation is subcritical@22#!.

We have explicitly shown that the locking threshold
much smaller in classB than in classA lasers: For classA
lasers the conditions of existence and stability are simu
neously fulfilled. ClassB lasers, on the other hand, exhibit
bimode stable steady state in a small interval aroundV50
that shrinks to zero with@g i(A21)#1/2. Let us note that the
unlocking thresholdVHop f is on the order of the relaxation
frequencies associated with classB lasers. The existence o
such relaxation eigenfrequencies~and the related resonance!
is reponsible for a mechanism of destabilization that ma
the stability properties of locked solutions for classB lasers
qualitatively different from those for classA lasers.

B. Stationary bimode solution: The general case

The bimode stationary solutions in the degenerate~i.e.,
V50) OPM case, denotedfs , A1s , and A2s (A1s ,A2s
Þ0), read, from Eqs.~2.14!,

sin~2fs!50,

G11A1s
2 1G12A2s

2 ~112cos2fs!51, ~3.10!

G22A2s
2 1G12A1s

2 ~112cos2fs!51

(Gi j [Gii j j ). The stationary phasesfs are fs50,p,6p/2.
The linear stability analysis of these stationary solutions
reported in Appendix C. It is shown thatfs50,p are un-
stable solutions, whereasfs56p/2 are simultaneously
stable. For both solutions, the modal intensitiesI i5Ais

2 are
given by

I 15
G222G12

G22G112G12
2

, I 25
G112G12

G22G112G12
2

. ~3.11!

These stationary values are functions of the overlap integ
only. The analogy with the Lamb analysis of a bimode la
is clear from Eqs.~3.11! @assumingfs56p/2 amounts to
neglecting phase couplings in Eqs.~2.14!#.

In the following we label 2 the higher-order mode, i.e
the mode with the wider spatial extension or, equivalen
the lowerG22 value, in contrast to mode 1 which is assum
to have a higher-G11 value.I 1 and I 2 are positive quantities
@23#. Equations~3.11! together with the assumptionG11
>G22 show that the higher-mode intensity is always dom
nant i.e.,I 2>I 1. Let us note here the analogy with the fre
energy approach: Qualitatively speaking, the wider mo
burns more efficiently the spatially distributed inversio
which leads to a minimization of a particular action integ
of the laser@4,24#. Of course, remember the assumptions

l
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57 633THEORETICAL ANALYSIS OF A BIMODE LASER
the model, i.e., no gain or loss effects favoring one of
mode. Note finally that in the limit of small coupling, i.e
whenG12→0, one finds the monomode limitI i51/Gii : The
spatial overlap is weak and the modes do not compete for
population inversion.

When VÞ0, the stationary values cannot be explicit
exactly. The first-order correction to the phase is given b

fs56
p

2
1dfs ,

~3.12!

dfs5
V

2~A21!G12~ I 11I 2!
.

The correction toI 1 and I 2 is O(dfs
2) or, equivalently,

O(V2). The modal intensities are phase dependent@see Eqs.
~3.10!# and are given by expressions~3.11! with G12→G128
5G12(112dfs

2).
Somewhat arbitrarily, we have chosen to illustrate o

results for a laser, with medium coupling integrals, operat
on the TEM00 and TEM70 modes. Figure 2 corresponds to th
analytical values of intensities and phases, respectively.
numerical simulation of Eqs.~2.14! has been performed an
is reported in both figures. The theoretical and numer

FIG. 2. Stationary modal intensities and phase for the O
TEM00-TEM70 laser vsV obtained numerically from Eqs.~2.14!.
The dotted lines correspond to the theoretical results reporte
text. G1151/p, G2250.443/p, and G1250.21/p, where indices 1
and 2 are related to modes TEM00 and TEM70, respectively, and
A51.2. The existence and stability are found whenV<Vmax

50.095 for classA lasers and the Hopf bifurcation (L) related to
classB lasers is shown by the arrow~double arrow! for g i50.1
(g i50.01).
e

he

r
g

he

l

results are in very good agreement. Note that both branc
of stationary phases~branchesfs andfs1p) correspond to
the same modal intensities. The stability analysis of th
branches cannot be performed analytically forVÞ0. Nu-
merically, as for the symmetrical case, it is found that t
existence and stability of steady states are simultaneo
met for classA lasers forV<Vmax and that a Hopf bifurca-
tion occurs for classB lasers in the vicinity ofV50.

The general expression of the intensity profileI (x,y)
5uF(x,y)u2 reads, from Eqs.~2.2! and ~2.11!,

I ~x,y!5
A21

A
@ I 1B1

2~x,y!1I 2B2
2~x,y!

12AI 1I 2B1~x,y!B2~x,y!cosf#. ~3.13!

When V50 both stationary valuesfs56p/2 lead to the
same intensity pattern. In the nondegenerate case, one fin
bistability between two different phase-dependent patte
Indeed, inserting Eq.~3.12! into Eq. ~3.13!, one has

I ~x,y!5
A21

A
@ I 1

2B1
2~x,y!1I 2

2B2
2~x,y!

62AI 1I 2B1~x,y!B2~x,y!sindfs#. ~3.14!

For 1D lasers, the patterns are not symmetric in thex
direction @because of the oddB1(x,y)B2(x,y) term#. Figure
3 is the stationary profile for the TEM00-TEM70 case, which
has been found numerically atV50.085. Due to the sym-
metry of the model, bistability is found with the reverse
~i.e., x→2x) pattern. It is interesting to note that the inte
sity profile changes in a continuous way with parameterV.
This behavior is in qualitative agreement with the expe
ments reported in@19#.

The EPM case is harder to handle analytically and
give just a few results here. From Eqs.~2.14!, one straight-
forwardly finds the following expression for the stationa
phases:

@G1112A1s
2 1G2221A2s

2 12A1A2G12cosfs#sinfs50.
~3.15!

in

FIG. 3. Stationary intensity profile for the TEM00-TEM70 class
B laser. Same parameters as in Fig. 2, butV50.085 andg i50.1.
The stationary phase isfs520.4p and the intensities areI 151.7
and I 256.2
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There are no explicit values of the modal intensities cor
sponding the branchesfs50,p. The other solutions, corre
sponding to the EPM counterpart of Eqs.~3.11!, read

I 15
G228 2G128

G228 G118 2~G128 !2
, I 25

G228 2G128

G228 G118 2~G128 !2
,

~3.16!

cosfs52
G1112I 11G1222I 2

2AI 1I 2G12

,

where G118 5G112G1112
2 /G12, G128 5G122G1112G1222/G12,

andG228 5G222G1222
2 /G12.

The stability analysis of these solutions is difficult
handle analytically and has not been performed. We just g
numerical results in Figs. 4 and 5 for the TEM00-TEM20
laser. The main difference is the loss of symmetryfs↔fs
1np compared to the OPM case. This leads, for instance
intensity bistability, as can be seen from Fig. 4. Howev
here again, the existence and stability for classA lasers and
the Hopf bifurcation occurrence for smallV values in class
B lasers are found.

C. Monomode solution

We now turn our attention to the study of the single-mo
stationary intensity. In this framework, it is worth returnin
back to the set of equations~2.9! with Eqs.~2.11! and~2.12!.
Let us assume that mode 2 is oscillating and there is a v

FIG. 4. Stationary modal intensities for the EPM TEM00-TEM02

laser vsV obtained numerically from Eqs.~2.14!: ~a! TEM00 inten-
sity and~b! TEM02 intensity. Full lines~branches labeled 1 and 2!
and dotted lines~branches 3 and 4! are related to stable and unstab
solutions for the classA laser.L are the Hopf bifurcation points
for the classB laser withg i50.01. G1151/p, G22541/64p, G12

53/8p, G111252A2/4p, andG22215A2/32p, where indices 1 and
2 are related to modes TEM00 and TEM02, respectively (A51.2).
-

e

to
,

e

n-

ishing amplitude for mode 1, i.e.,G150, G2Þ0, anduG2u
stationary. We find the results

G1222uG2u250, ~3.17!

G22uG2u251. ~3.18!

It is interesting to note that these equations are meaning
if G1222Þ0 and the EPM laser cannot have a monomo
response~unless near threshold, where the model is valid!. In
the OPM case, one hasG1222[0 and the stationary state i
characterized by

uG2u25
1

G22
, ~3.19!

Di j 5uG2u2d i ,2d j ,2 . ~3.20!

The stability analysis of this solution is reported in Append
D and has been developed for arbitraryV. The monomode
state remains stable above threshold (A>1) and as long as
the following conditions are simultaneously fulfilled:

g<
1

2
,

~2g23g2!<F V

~A21!G
2

<g2S 1

g
22D1g~3g21!2g2,

~3.21!

where the parameterg5g i /(A21). The parameterg (0
<g<1), defined as

g512
G12

G22
, ~3.22!

is related to the strength of the interaction between
modes.

In the weak-coupling limit, i.e., whenG12!G22 or g→1,
the laser cannot display a stable monomode behavior.
laser with TEM01 and TEM10 modes with the parameterg
52/3 is an example of such a case. Indeed, in this limit
modes do not share the same inversion and oscillate sim
taneously above threshold.

Note that classB lasers area priori unable to sustain a
monomode behavior@see Eq.~3.21! with g→0#. This result
might be surprising since monomode classB lasers are very

FIG. 5. Stationary phases for the EPM TEM00-TEM02 laser vs
V. Same parameters as in Fig. 4. AtV50, fs50,p and fs'
63p/8 ~mod 2p).
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57 635THEORETICAL ANALYSIS OF A BIMODE LASER
common. However, remember that gain and loss are
sumed to be equal for both modes. One could release
symmetry and introduce, for instance, mode-depend
lossesk i and in this way favor one of the modes. This wou
obviously lead to stable monomode solutions~in the same
way, an intracavity diaphragm can force the laser to ope
on the TEM00 mode only!.

For a classA laser, on the other hand, taking the limitg
@1, one finds that the monomode solution is stable provi
2g23g2<V2/(A21)2<g2(1/g22), i.e., for almost all pa-
rameter values, providedg<1/2: For strong coupling or for
high spatial overlap one of the modes is built with all t
available inversion at the expense of the other. Let us rem
that this limit is found for high-order ‘‘neighbor’’ modes, fo
instance, the 1D TEMn,0-TEMn11,0 case withn@1.

As a final comment let us point out that whenV50, it is
not possible to find a parameter region in the plane (g,g i)
fulfilling simultaneously the conditions~3.21!. The mono-
mode is always unstable in this limit and the laser has
bimode behavior characterized in Sec. III B.

Consider, for instance, the 1D TEM00-TEM10 mode
(G1151/p, G2253/4p, G1251/2p, and, for instance,A
51.2 andg i51). The TEM00 mode (g51/2) is stable for
0.01<V2<0.09 and the TEM10 mode (g51/3) is stable in a
wider interval, i.e., for 1.3331022<V2<0.995.

D. Quasimonomode solution: The EPM case

In the EPM case, it is possible to find solutions with
small amplitude for one mode, the other one having a fin
amplitude value. We mention here briefly the existence
these stationary ‘‘monomodelike’’ solutions in the high-V
limit. Let us consider Eqs.~2.14! and introduce the param
etere5(A21)/V, e!1. One looks for a solution with sma
amplitude, say,A1s5O(e) and A2s5O(1) for mode 2. To
leading order this stationary amplitude reads

A1s5
uG2221u

G22
3/2

e1O~e2!,

~3.23!

A2s5
1

G22
1/2

1O~e!

and the stationary phase is given byfs56p/2 ~where the
sign 6 depends on the sign of parameterG1112/G2221).
These solutions, corresponding to the EPM monomode
counterpart of the OPM monomode solutions, were fou
numerically to be stable for classA lasers ~for the
TEM00-TEM02 case, for instance!.

E. Summary

In this section we proved the existence and stability
stationary states of both single mode and bimode types
showed their deep dependence on the parameterV. Bimode
solutions exist and are always stable in the degenerate
V50. The analysis of the so-called symmetrical OPM cla
A laser showed the existence and stability of steady state
V<Vmax together with a saddle-node bifurcation atVmax.
Destabilization of this steady-state branch or unlock
threshold, via a Hopf bifurcation atVHop f;g i

1/2, has been
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evidenced for classB lasers. These results are generic fe
tures of bimode lasers that are also met in the general O
or EPM case: The unlocking threshold is much smaller
classB than in classA lasers.

We also note that the intensity pattern varies in a conti
ous way with the parameterV. This behavior is clearly re-
lated to intermode phase effects and shows the importanc
phase-sensitive interactions.

On the other hand, single-mode behavior is found for
OPM lasers. Stability is discussed explicitly with respect
the laser parametersg i , V, and coupling strengthg: It is
shown that single-mode oscillations are behavior for stron
coupled classA lasers in a wideV interval. However, for
V50, this single-mode state is always unstable and the la
behavior is bimodal. We also noted the existence of EP
‘‘quasimonomode’’ steady states for highV.

IV. PERIODIC SOLUTIONS

In the opposite limit of high-V values, the modes are we
separated in frequency and have a natural tendency to
lock. Moreover, both modes tend to behave as free osc
tors ~in phase! of pulsationsa1 anda2, respectively, but still
interact since they share the same population inversion.
laser output intensity exhibits a mode beat component co
sponding to the frequency differenceV. As pointed out in
Sec. II, the high-V periodic state can be obtained to dom
nant order by neglecting the fast oscillating term in cosf and
sinf ~where, in this limit, f5Vt) in Eqs. ~2.14!. In the
following, we consider the first-order corrections to th
asymptotic behavior and display the analytical description
the following points:~i! the intensity oscillations are relate
not only to beating but also to the oscillatory character of
modal amplitudes themselves and~ii ! the beat frequency is
pushed or pulled depending on the laser parameters. T
effects are analyzed for the OPM and EPM cases. Due
their different time scales, the cases of classB andA lasers
will be considered successively.

A. ClassB lasers

Let us consider first the classB laser. We assume her
that bothA21 andg i are small quantities with respect toV
and define

A21

V
5e, ~4.1!

g i

A21
5g, ~4.2!

wheree is a small parameter andg is assumed to beO(1).
Note that the limite→0 in Eq. ~4.1! is valid whenV is
O(1) since A21 is assumed to be small in the nea
threshold derivation of the model~see Sec. II!. In the follow-
ing, what we call highV means high with respect to th
parameterA21. In physical units and according to Eq
~2.4! and ~2.15!, this condition is fulfilled for lasers with
O(k) intermode frequency detuning.

Dividing the set of equations~2.14! by V one has
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Ȧi5eFAi2(
j <k

Gii jk D jkAi2(
j <k

Gi ī jkD jkA ī cosfG ,
ī 532 i ,

Ḋ ii 52ge~Dii 2Ai
2!,

~4.3!

Ḋ1252ge~D1222A1A2cosf!,

ḟ511e
~A1

21A2
2!

A1A2
(
j <k

G12jkD jksinf,

where the overdots stand for derivatives with respect to t
t5kVt. This form is suitable for a perturbative analysis,
which we now turn our attention.

Whene!1, the phase behaves asf(t)5t and the modal
amplitudesAi and momentsDi j are independent of time, a
can be seen from Eqs.~4.3!. The intensityI (x,y,t) behaves
periodically in time with a pulsationv51 ~in kV units!
corresponding to the empty cavity beat frequency betw
the modes.

In order to take into account the interaction between
modes and look for the first-order corrections to this ‘‘free
behavior, we emphasize that the phase is given byf(t)
5v(e)t, where the pulsation is expanded as

v~e!511ae1be21O~e3!, ~4.4!

wherea andb are unknown coefficients. We look for solu
tions depending on timeT, where

T5v~e!t5~11ae1be21••• !t. ~4.5!

Expanding the variables in Eqs.~2.14! in power series ofe,

f ~T!5 f ~0!~T!1e f ~1!~T!1e2f ~2!~T!1•••, f 5Ai ,Di j ,f,

~4.6!

one obtains to dominant order

Di j
~0!~T!5Di j

~0! , Ai
~0!~T!5Ai

~0! , ~4.7!

and

f~0!~T!5T, ~4.8!

where we have assumed, without loss of generality,
f(T50)50. The higher-order expansion is given in det
in Appendix E.

For the EPM case, the solutions of Eqs.~4.3! are given to
ordere by

Ai~T!5Ai
~0!2ebA ī

~0!sinT,

Dii ~T!5I i
~0!1O~e2!,

~4.9!

D12~T!52egA1
~0!A2

~0!sinT,

f~T!5T2eb
I 1

~0!1I 2
~0!

AI 1
~0!I 2

~0!
~cosT21!,
e

n

e

at
l

whereb5( jG12j j I j
(0) and theO(e0) intensities are given by

I 1
~0!5@A1

~0!#25
G222G12

G22G112G12
2

,

I 2
~0!5@A2

~0!#25
G112G12

G22G112G12
2

. ~4.10!

For the OPM,b50 and the expansion must be developed
higher order. To ordere2 one gets the results

Ai~T!5@Ai
~0!1e2Ai

~2!#1
1

2
e2gG12I ī

~0!Ai
~0!cos2T,

Dii ~T!5I i
~0!1e2I i

~2! ,

~4.11!

D12~T!52egA1
~0!A2

~0!sinT12e2g2A1
~0!A2

~0!cosT,

f~T!5T2
1

2
e2g@ I 1

01I 2
0#sin~2T!.

The time-independent amplitudesAi
(0) and intensitiesI i

(0) are
defined by Eqs.~4.10! and the relatedO(e2) corrections are
reported in Eqs.~E9! of Appendix E.

As can be seen from these results, the dynamical beha
is extremely sensitive to the relative parity of the two mod
involved. Indeed, the mean values of solutions~4.9! and
~4.11! are almost the same, but the time dependence is c
pletely different in both cases. Considering the intensiti
for instance, one has for the EPM and OPM cases, res
tively,

I i~T!5I i
~0!22ebA1A2sinT1O~e2! ~4.12!

and

I i~T!5I i
~0!1e2@2Ai

~0!Ai
~2!1gI 1

~0!I 2
~0!cos2T#1O~e3!.

~4.13!

The modulation is stronger~of ordere or V21) in the EPM
than in the OPM case~of ordere2 or V22). Moreover, as a
result of vanishing cross couplings~corresponding to
G1112,G222150 or b50), all frequency components at th
beat frequencyv(e) vanish in the OPM case and the inte
sity oscillates with the first harmonic 2v(e). Note that the
modal intensitiesI i

0 are given the OPM stationary value
found in Sec. III B. Equations~4.12! and ~4.13! show that
oscillations are in phase. This last point is related to
symmetry in gains and losses for both modes.

The beat frequencyv(e) is obtained in Appendix E on
the basis of a solvability condition and is given by

v~e!511e2@gG12~ I 1
01I 2

0!22b2# ~4.14!

or, in k units,v5v(e)V,

v5V1
A21

V
@g iG12~ I 1

~0!1I 2
~0!!22~A21!b2#.

~4.15!
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57 637THEORETICAL ANALYSIS OF A BIMODE LASER
We explicitly show that the OPM laser (b50) is character-
ized by frequency pushing phenomena (v.V). Moreover,
this effect is shown to grow withV21 ~all other parameters
constant!. The frequency pushing effect has also been
served numerically well above threshold in a TEM10-TEM01
laser@25#. On the other hand, the EPM laser may have f
quency pulling or pushing effects depending on the para
eter values. Varying the relative weight ofg i andA21, for
instance, the laser exhibits frequency pushing and pul
regimes, though the latter is rather difficult to obtain@for
instance, the occurrence of frequency pulling for the TEM00-
TEM20 case is found forg i /(A21)&0.05#.

We illustrate our results in the case of the OPM TEM00-
TEM70 case. The theoretical values of the functionv2V are
plotted in Fig. 6 versusV and compared fruitfully with the
data obtained by numerical integration of Eqs.~2.14!. The
characterization of the modal intensities, given in Fig. 7, h
been obtained by extracting the maximum and minimum
the periodic signalsI 1(t) andI 2(t) for a givenV value and
by reporting them versusV. Our asymptotic theoretical re
sults, obtained in theV5O(1) limit, are shown to be in very
good agreement with the numerical data.

According to the results~4.11!, the OPM intensity profile

FIG. 6. Values ofv2V vs V for the TEM00-TEM70 classB
showing frequency pushing effects.L are the numerical result
@Eqs. ~2.14!# and the dotted line is the theoretical results@Eq.
~4.15!#. Same parameters as in Fig. 2 andg i50.1.

FIG. 7. Maximum and minimum of the periodic modal intens
ties I 1 and I 2 vs V for the TEM00-TEM70 classB laser.L and1
are numerical results forI 1 andI 2, respectively, and the dotted line
are the theoretical results corresponding to Eq.~4.13!.
-

-
-

g

s
f

is characterized by a periodT related to twice the beat fre
quency i.e.,T5p/v. Figures 8 and 9 correspond to the i
tensity profile snapshots taken at different times. Numer
integration atV51 is typical of a ‘‘far from locking re-
gime’’ @19# with almost constant modal amplitudes, the on
temporal variation being related to mode beating. The int
sity profile varies in time according to

I ~x,y,t !'
A21

A
@ I 1

~0!B1
2~x,y!1I 2

~0!B2
2~x,y!

12AI 1
~0!I 2

~0!B1~x,y!B2~x,y!cos~vt !#.

~4.16!

It is worth noting here that the temporal variations
I (x,y,t) are related to the last term in Eq.~4.16! and are
proportional toB1(x,y)B2(x,y). For the TEM00-TEM07 case
one hasB1(x,y)B2(x,y)→0 at x50, where the TEM70

mode vanishes and also atx' x̄ ~corresponding to the maxi
mum of the TEM70 mode! where the fundamental TEM00
mode shrinks to zero. The intensity at these two points
proportional to the modal intensities and is independent~or

FIG. 8. Intensity profile sampled at different times within perio

T. At positionsx50 and x5 x̄ , the interference term shrinks t
zero and the intensities are stationary. Same parameters as in F
but V51 andg i50.1.

FIG. 9. Intensity profile sampled at different times within perio
T. The parameters are the same as in Fig. 3. At positionsx50 and

x5 x̄ , the interference term shrinks to zero, but the correspond
intensities are oscillatory functions proportional toI 1(t) andI 2(t),
respectively.
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638 57V. ZEHNLÉ
almost! of time, as can be seen from Fig. 8. On the oth
hand, atV50.085, the modal intensities given in Eq.~4.13!
have a significant temporal oscillation. The temporal evo
tion of the intensity profile is related not only to mode be
ing but also to the oscillating character of the modal inten
ties @5#. This state, called a prelocking state in t
experimental work reported in@19#, is shown in Fig. 9.

Figure 10 is a blowup of Figs. 7 and 2 in the interv
@0.07,0.11# and clearly evidences bistability between statio
ary and periodic states~the analysis of bifurcations occurrin
in Fig. 10 will be considered elsewhere!. The periodic solu-
tion, which is always stable for highV, loses its stability
whenV is lowered~this occurs forV'0.08) and the system
jumps on the bimode stationary branches, which have b
analyzed in Sec. III B. Bistability is illustrated by Figs. 3 an
9, which correspond respectively to a stationary and a p
odic intensity profile atV50.085 ~all parameters are th
same in both figures!.

B. ClassA lasers

As usual, the equations for a classA laser are obtained in
the limit g i@1 and the population inversion variablesDi j
can be adiabatically eliminated. In this limit, the set of equ
tions ~2.14! becomes

Ȧi5eS Ai2(
j

Gi j I jAi2(
j

G12j j I jA ī cosf

22Giii ī I iA ī cosf22G12AiI ī cos2f D , ~4.17!

ḟ511e
I 11I 2

AI 1I 2

sinfS (
j

G12j j I j12G12A1A2cosf D ,

wheree is defined in Eq.~4.1!. It is worth noting here that in
the OPM case these equations simplify into

I i̇52eI i@12Gii I i2G12I ī ~cos~2f!12!#,

~4.18!
ḟ511eG12~ I 11I 2!sin~2f!,

FIG. 10. Extrema of the modal intensities vsV for the TEM00-
TEM70 classB laser.h, stationary TEM00; 3, oscillatory TEM00;
L, stationary TEM70; 1, oscillatory TEM70 results forI 1 and I 2,
respectively. Bistability between periodic and stationary state
found for Ve@0.08,0.09#.
r
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whereI i5Ai
2 . As was pointed out in Sec. IV A, this expres

sion shows that the OPM laser’s dynamics is governed
the variable 2f and modal intensities oscillate at twice th
beat frequency.

Repeating the expansion in the same way as in Sec. I
@see Eqs.~4.4!–~4.6!#, one finds from Eqs.~4.17! the solu-
tions

Ai~T!5Ai
~0!2eF2Giii ī I i

~0!A ī
~0!sinT1bA ī sinT

1
G12

2
Ai

~0!I ī
~0!sin~2T!G ,

f~T!5T2eFb
I 1

~0!1I 2
~0!

AI 1
~0!I 2

~0!
~12cosT!1

G12~ I 1
~0!1I 2

~0!!

2

3@12cos~2T!#G , ~4.19!

where b5( jG12j j I j
(0) and the (Oe0) intensities I i

(0)

5@Ai
(0)#2 are found as

I 1
~0!5

G2222G12

G22G1124G12
2

, I 2
~0!5

G1122G12

G22G1124G12
2

. ~4.20!

The beat frequency is given by

v~e!512e2F4b212(
j

G12j j
2 I j

~0!~ I 1
~0!1I 2

~0!!

1G12
2 ~ I 1

~0!21I 2
~0!214I 1

~0!I 2
~0!!G , ~4.21!

or in k units

v5V2
~A21!2

V F4b212(
j

G12j j
2 I j

~0!~ I 1
~0!1I 2

~0!!

1G12
2 ~ I 1

~0!21I 2
~0!214I 1

~0!I 2
~0!!G . ~4.22!

These results show that the modal amplitudes hav
modulation of ordere and the EPM case is characterized
both harmonicsv and 2v, whereas the former vanishes
the case of the OPM laser. On the other hand, the beat
quency is always pulled (v,V). From Eq.~4.22! one sees
that this pulling effect grows with (A21)2/V21. Pulling ef-
fects, inherent to classA lasers, makes the mode locking
some way more natural in classA than in classB lasers@10#.

Our results are illustrated in the case of the OPM TEM00-
TEM70 laser. The functionv2V and the modal intensities
are plotted in Figs. 11 and 12, respectively, and show
very good agreement of the theoretical results with the
merical values.

It is interesting to note that, for decreasingV, the periodic
orbit has larger and larger period@one finds for the OPM
casev50 when V/(A21)5G12(I 1

21I 2
214I 1I 2)1/2 if Eq.

~4.22! is still valid#. It has been checked numerically that th
classA periodic solutions, stable for highV, tends for de-
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57 639THEORETICAL ANALYSIS OF A BIMODE LASER
creasingV to an infinite period orbit homoclinic to the un
stable saddle node at detuning valueVho5Vmax @see, for
instance, Eq.~3.4! and Fig. 1#. In contrast to classB lasers,
there is no bistability with a locked steady state. A detai
analysis will be given elsewhere.

Let us finally mention here that the present developme
are not systematically valid. AssumingG22,2G12,G11 in
Eqs. ~4.20! leads to negative intensities and the develo
ments considered here become irrelevant@26#. If not station-
ary, numerical simulations show that the behavior of su
lasers corresponds to antiphase periodic dynamics@27#. This
type of regime is beyond the scope of this paper and will
considered in a future work.

C. Summary

We have analyzed the periodic intensity state in theV
@A21 limit. The explicit dependence of beat frequency

FIG. 11. Plot of v2V for the TEM00-TEM70 class A laser
showing frequency pulling effects.L, numerical values; dotted
line, theoretical result. The pump parameter is set toA51.2.

FIG. 12. Maxima ofI 1(t) vs V for the TEM00-TEM70 classA
laser.L, numerical values; dotted line, theoretical result.
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lasers parameters has been obtained. In particular, we fo
the analytical expressions for frequency pushing and pul
effects for classB and A lasers, respectively, and showe
that these effects grow, for decreasingV, asV21.

The modal intensities are sinusoidal functions of time a
appear to be very different in the OPM and the EPM ca
We first demonstrated that spectral components are diffe
in both cases: The latter~EPM! is related to beat frequenc
v, while the former~OPM! is shown to oscillate with pulsa
tion 2v. On the other hand, the modulation amplitude
shown to be critically different for classA or B, OPM or
EPM lasers~ordersV2 andV, respectively!. In this frame-
work we differentiated the ‘‘far from locking regime’’ or
‘‘far from degeneracy dynamics,’’ where the intensity pa
tern is governed by beat effects only, and the ‘‘prelocki
state’’ where the intensity pattern is related to the beat ef
and also to the oscillatory behavior of both modal intensiti

V. CONCLUSION

The laser operating on two transverse modes was a
lyzed in the framework of a theoretical model valid ne
threshold and with respect to the detuning between the em
cavity eigenfrequenciesV ~scaled tok). The dynamics is
shown to be extremely sensitive to the laser type, i.e., clasA
or B laser. We also evidenced the crucial importance pla
by the relative spatial parity of the modes involved and
troduced a clear distinction between what we called the O
and the EPM laser.

The existence and stability of the locked state have b
analyzed. It is shown that the locking threshold is mu
smaller in the classB than in the classA laser. On the other
hand, OPM and EPM lasers are characterized by an op
phase differencefs5fs(V) and byV-dependent intensity
patterns.

The single-mode state has also been analyzed an
shown to exist for the OPM case only, while its stability
preferably fulfilled for strongly coupled classA lasers. The
EPM counterpart of these states has been mentioned
termed a ‘‘quasimonomode.’’

Periodic intensity patterns have been studied in theV
5O(1) limit @or intermode frequency detuningO(k)#. Fre-
quency pushing or pulling effects related to classB and A
lasers, respectively, were characterized analytically. T
study of the periodic behavior of modal intensities and ph
has also been performed and evidences the qualitative
tinction between classA or B as well as OPM or EPM lasers

In the present work, we have used real modal eigenfu
tions such as the Hermite-Gauss basis. Indeed, our s
could be extended to the ‘‘doughnut’’ family of modes.
that case, an analytical description of traveling waves as
ciated with rotating patterns and restless vortices@12,13#
could be performed.

Further work could also be devoted to the generalizat
of the present description in a multimodal approach. In t
way, such an extension, if analytically performed, could g
a better understanding of the laser dynamics and its de
dence with respect to the parameters as well as to the na
of the modes that come into play.
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APPENDIX A: STATIONARY SOLUTION
OF THE SYMMETRICAL OPM LASER

1. ClassA laser

The adiabatic elimination of the inversion variables
Eqs.~2.14! leads, for the OPM laser, to

İ i52I i@12GIi2I ī ~cos~2f!12!#, ī 532 i ,

ḟ5V/~A21!1~ I 11I 2!sin~2f!, ~A1!

where time is rescaled with respect to the parameterA21
and the modal intensities have been defined byI i5G12Ai

2 .
We denote bydI i anddf the perturbation to the stationar
solution and defineX5dI 11dI 2 andY5dI 12dI 2. We ob-
tain the linearized system

Ẋ52@2X18I s
2sin~2fs!dfs#,

ḋf5Xsin~2fs!18I scos~2fs!df, ~A2!

and

Ẏ5224GIsY. ~A3!

The analysis of eigenvalues show that stability is fulfilled
I s>^I &, i.e., for the upper intensity branch.

2. ClassB laser

Let us denote byX5dA11dA2, Y5dA12dA2, D
5dD111dD22, and Z5dD112dD22,dD12,df the devia-
tion with respect to the stationary solution
(Xs ,Ys ,Ds ,Zs ,D12s ,fs). Time is rescaled with respect t
the parameterA21 and g5g i /(A21). One obtains from
Eqs.~2.14! a set of equations for the variables (Y,Z):

Ẏ52~12G11I s2G12I s!Y1~G122G11!AsZ,

Ż52g~Z22AsY! ~A4!

(As5AI s). Stability is fulfilled for I s>1/2G11,(1
2g)/(G111G12). The linearized equation fo
(X,D,dD12,df) reads

Ẋ52As~G121G11!D22G12AscosfdD12

12I sAsG12sin~2fs!df,

Ḋ52g~D22AsX!,
~A5!

dḊ1252g~dD1212I ssinfs22AscosfsX!,

dḟ52G12sinfdD1212Xdf.
-

r

The general discussion of the second set of equations is
to handle analytically, but, from the characteristic equati
the following results have been obtained.

~i! The Routh Hurwitz criterion leads to a necessary co
dition for stability: I s>(G12)/@(G12)221#. In other
words, the lower intensity branch is always unstable.

~ii ! At V50 and forI s5I max, fs56p/2, Eq. ~A5! de-
couples in a set for (X,D) and for (dD12,df). The follow-
ing complex eigenvalues, leading to stability@Re~l!,0#, are
obtained:

l52
g i

2
62iAg i~A21!/~G11!, ~A6!

related to variables (dD12,df),

l52
g i

2
6 iA2g i~A21!

G21

G11
, ~A7!

related to (Y,Z), and

l52
g i

2
6 iA2g i~A21! ~A8!

for the set (X,D).
~iii ! When VÞ0, the analysis can be performed in th

limit g5g i /(A21)→0. The characteristic equation is ex
panded ing and, from the Routh-Hurwitz criterion, it can b
shown that the eigenvalues~A8! lead to a Hopf bifurcation
when

V5VHop f56
2~A21!Ag~G21!

G11
. ~A9!

APPENDIX B: LAMB ANALYSIS OF A BIMODE LASER

Lamb equations for a bimode laser are given by

İ 15I 1~a12b11I 12b12I 2!,

İ 25I 2~a22b22I 22b21I 1!, ~B1!

whereI 1 andI 2 are the modal intensities,ai is the linear gain
of modei , andbi j (bi j .0) are the self- and cross-saturatio
coefficients. Neglecting phase interactions in Eqs.~2.14! ~set
cosf50 and sinf50) and performing the adiabatic elimina
tion of momentsDi j , one gets Eqs.~B1! with a15a251
andbi j 5Gi j , b125b21. In this framework, it can be shown
that the laser has a monomode response, (I 150, I 2
51/G22) or (I 250, I 151/G11) in the strong-coupling limit,
i.e., whenC5G12

2 /G11G22.1. The bimode solution is given
by Eqs.~3.11! and is stable in the weak-coupling limit, i.e
for C,1. It is worth noting here that according to the de
nition of the overlap integral@see Eq.~2.10!# and from
Schwarz inequalities, one hasG12

2 ,G11G22 or C,1 and the
bimode study considered here always corresponds, follow
Lamb criteria, to a weak-coupling situation.

APPENDIX C: OPM STATIONARY STATES

The linear stability analysis of the stationary solutio
corresponding to Eqs.~3.10! is performed here. In the cas
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fs50,p, writing f5fs1f̃ and inserting in Eqs.~2.14!, one
finds

df̃

dt
52~A21!G12~ I 11I 2!f̃,

which shows that these solutions are unstable. In the c
fs56p/2, defining byf̃, ã i , d̃ i j the perturbation associate
with the stationary valuesf, Ai , andDi j , respectively, the
linearized counterparts of Eqs.~2.14! read

df̃

dt
5G12~A21!

I 11I 2

A1A2
sinfsd̃12,

d d̃12

dt
5g i~2 d̃1212A1A2sinfsf̃ !,

and

d ã1

dt
52~A21!~G11A1d̃112G12A1d̃22!,

d ã2

dt
52~A21!~G22A2d̃222G12A2d̃11!,

d d̃ii

dt
5g i~2 d̃ i i 12Ai ã i !, i 51,2.

The first set of equations givesf̃, d̃12;elt, where the eigen-
valuesl are given by

l52
g i

2
6

g i

2
A128

A21

g i
G12~ I 11I 2!

and correspond, as is well known, to aperiodic damped
laxations for classA lasers and to damped oscillations
frequencyv r ,

v r5A2g iG12~A21!~ I 11I 2!, ~C1!

for classB lasers. The second set of equations leads to
eigenvalues

l52
g i

2
6

1

2
Ag i

214X6,

X652g i~A21!@~ I 1G111I 2G22!

6A~ I 1G111I 2G22!
224I 1I 2~G11G222G12

2 !#.

It is easily verified thatX6 is real and negative and therefo
the real part ofl remains negative providedA>1.

APPENDIX D: MONOMODE STATIONARY SOLUTIONS

Using Eqs.~2.9! with the variables defined in Eq.~2.11!
one has for the OPM case
se

e-

e

Ġ15~A211 iV!G12~A21!@G11D11G11G12D22G1

1G12D12G2#,

Ġ25~A21!G22~A21!@G22D22G21G12D11G2

1G12D12G1#,

~D1!

Ḋ ii 52g i~Dii 2uGi u2!,

Ḋ1252g i~D122G1G2* 2G2G1* !,

where, without loss of generality, we have seta250 and
a152V @of course performing the transformatio
Gi→Giexp(2ia2t) in Eq. ~2.9! leads to Eq.~D1!#. The sta-
tionary solutions are given by Eq.~3.19!. The linearization of
Eq. ~D1! leads to a set of equations for the perturbations
the variablesG1 ,D12,

Ġ̃15~A21!@12G12~D22!s#G̃11 iVG̃1

2~A21!G12~G2!sD̃12,

Ḋ̃125g i@D̃122~G2!s* G̃12~G2!sG̃1* #, ~D2!

which are decoupled from the remaining variables

Ġ̃252~A21!~G2!s@G22D̃221G12D̃11#,

Ḋ̃2252g i@D̃222~G2!s* G̃22~G2!sG̃2* #, ~D3!

Ḋ̃1152g iD̃11

~the labels refers to the stationary values and the tilde ref
to the perturbations!. The analysis of Eqs.~D2! is easily per-
formed and leads to the stability conditions reported in E
~3.21!. The second set of equations corresponds to the u
monomode stability analysis. Introducing the intensityI 2

5(G2)s* G21(G2)sG2* , one finds the monomodelike equa
tions

İ 2522~A21!D22,

Ḋ2252g i~D222I 2! ~D4!

whose stability is fulfilled above threshold, i.e., whenA>1.
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APPENDIX E: ASYMPTOTIC SOLUTIONS
FOR CLASS B LASERS IN THE e˜0 LIMIT

To ordere, Eqs.~2.14! read

df~1!

dT
52a1aG12jkD jk

~0!sinf~0!,

dDii
~1!

dT
52g~Dii

~0!2I i
~0!!,

~E1!
dD12

~1!

dT
52g~D12

~0!22A1
~0!A2

~0!cosf~0!!,

dAi
~1!

dT
5~Ai

~0!2Gii jk D jk
~0!Ai

~0!2cosf~0!G12jkD jk
~0!A ī

~0!
!

~summation over repeated indicesj and k is assumed and
ī 532 i ). The parametera is defined by

a5
I 1

~0!1I 2
~0!

AI 1
~0!I 2

~0!
. ~E2!

Of course, the solutions of Eqs.~E1! must remain finite in
time. One then has to apply solvability conditions, whi
read, from Eqs.~E1!,

a50, ~E3!

D11
~0!5I 1

~0!5
G222G12

G11G222G12
2

,

D22
~0!5I 2

~0!5
G112G12

G11G222G12
2

, ~E4!

D12
~0!50.

The solution of Eqs.~E1! reads

D11
~1!~T!5D11

~1! ,

D12
~1!~T!5D12

~1!12gA1
~0!A2

~0!sinT,

f~1!~T!52ab~cosT21!, ~E5!

A1
~1!~T!5A1

~1!2bA2
~0!sinT,

A2
~1!~T!5A2

~1!2bA1
~0!sinT,

where we have defined the parameterb as
an

ti,
b5(
j

G12j j I j
~0! . ~E6!

Repeating the development to ordere2, one finds the solv-
ability conditions

Di j
~1!5Ai

~1!50, i , j 51,2

b522b21g~ I 1
~0!1I 2

~0!!G12. ~E7!

Note that the set of equations~E5!–~E7! gives the first cor-
rections to theO(e0) EPM solution. In the OPM case, on
hasb50 and the expansion must be developed further. T
O(e2) solution reads

f~2!~T!52
g

2
@ I 1

~0!1I 2
~0!#G12sin~2T!,

Ai
~2!~T!5Ai

~2!1
g

2
I ī

~0!Ai
~0!G12cos~2T!,

~E8!

Dii
~2!~T!5Dii

~2! ,

D12
~2!~T!5D12

~2!12g2A1
~0!A2

~0!cos~T!.

To ordere3, the solvability condition leads to

D12
~2!50,

Dii
~2!52Ai

~0!Ai
~2!5I i

~2!5
g2G12~2G12I i

~0!21!

G11G222G12
2

, ~E9!

Dii
~3!~T!5Dii

~3!1
g2

2
I 1

~0!I 2
~0!G12sin~2T!.
d
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