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Few-cycle pulses in two-level media

Lee W. Casperson*
The Institute of Optics, University of Rochester, Rochester, New York 14627-0186

~Received 4 August 1997!

Techniques for producing, measuring, and applying ever shorter electromagnetic pulses are being developed
for incorporation in a variety of modern high-speed systems. In many cases these pulses are at most a few
cycles in length, and so-called half-cycle electromagnetic pulses are also widely employed. The interaction of
such pulses with two-level media is considered here in detail, and these media are basic to many of the
absorbing and amplifying configurations of optics and laser studies. Significant delays and distortion of the
resulting polarization and population pulses can occur, and nonlinear optical effects are also revealed. The
limitations of the parity, rate-equation, and rotating-wave approximations for the characterization of such
few-cycle interactions are also explored.@S1050-2947~98!03201-6#

PACS number~s!: 42.55.Ah, 42.60.Lh, 42.50.Gy
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I. INTRODUCTION

Some of the most basic problems in physics involve
interaction of electromagnetic fields with atoms or m
ecules. One fundamental starting point for such studies
ploys the Maxwell-Heaviside equations for the electrom
netic fields in combination with the Schro¨dinger or Dirac
equation for the atoms. For the high-frequency fields ass
ated with transitions between atomic levels, it is usually p
sible to treat the fields as harmonic in time and space, w
an envelope that may vary slowly in time compared to
optical cycle or slowly in space compared to a waveleng
In these cases it has generally been possible to employ
rotating-wave approximation in the atom equations and
slowly-varying-envelope approximations in the field equ
tions. Sometimes the rate-equation approximation is also
plicable. These approximations dramatically simplify mo
calculations of practical relevance. Recently, however, th
has been increasing interest in a class of field variations
does not fit so conveniently with these established appr
mations.

One of the persistent trends in laser studies has been
development of systems capable of producing ever sho
optical pulses. Thus it has been possible, with colliding-pu
mode-locked dye lasers, to directly obtain pulses that ar
short as 27 fs in duration at a wavelength of about 630
@1#. Using pulse compression external to a colliding-pu
mode-locked dye laser cavity, it has been possible to sho
pulses centered at about 620 nm to a length of only abo
fs @2#. With the invention of the self-mode-locked titanium
sapphire laser@3#, it became possible to obtain pulses shor
than 10 fs without external pulse compression. Pulses
about 7.5 fs length have now been obtained directly fr
these lasers at a wavelength of about 800 nm@4#. For still
shorter pulses, fiber-optic pulse compressors are useful,
have led to the generation of pulses that are about 4.5 f
duration at 780 nm@5,6#. For direct titanium:sapphire lase
systems, it is anticipated that a further shortening by abo
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factor of 2 will be possible with the development of im
proved dispersion-compensation schemes@7#, and improve-
ments in the pulse compression results may also be expe

Techniques for producing, measuring, and applying
trashort electromagnetic pulses are being developed for
corporation in a variety of modern high-speed systems.
an example of a fundamental application, short pulses
sometimes used to manipulate atomic wave functions in t
ing the predictions of quantum mechanics@8#. At a more
practical level, fs pulses such as those described above
been employed in the measurement and characterizatio
the electronic properties of materials and devices@9#. How-
ever, at the optical frequencies used, these pulses are s
times only a few cycles in length; and it is not always cle
how to interpret experimental data. Thus the period of a si
soidal wave is related to its wavelength by the formu

t0 ~fs!'10
3 l ~mm!, and this is 2.6 fs for a wavelength of 78

nm. Comparing this result to the recent pulse-length d
summarized above, one finds that the shortest optical pu
are only about two or three cycles in length. In such cases
fields cannot readily be described as almost sinusoidal,
the validity of standard approximations may be in doubt. T
slowly-varying-envelope derivative approximations, for e
ample, require that the bandwidth associated with a transi
be small compared to the optical frequency. This condition
not well satisfied for wide-band dye and titanium:sapph
lasers, and one should expect significant discrepancies
tween experimental results and the approximate theories
several amplifier@10,11# and oscillator@12# configurations.
The basic rotating-wave approximation would also fail
such systems@13#. Even the typical nonlinear techniques em
ployed to measure the pulse length may not always beh
as one would expect. Looked at more optimistically, the
may in these cases be new physical effects which would h
been overlooked in conventional analyses.

Once a source for optical pulses of a few fs length h
been developed, nonlinear techniques can be employe
obtain pulses of similar length but having either a higher
lower carrier frequency. Clearly, the carrier frequency do
not have to be lowered far below the optical range before
resulting pulses would appear to be less than one c
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610 57LEE W. CASPERSON
in length. Thus, a 5-fs pulse at a wavelength of 1.5mm
would be about one cycle in duration, and at a wavelengt
3.0 mm would qualify as a so-called half-cycle pulse with n
significant field reversals during the pulse period. In su
cases some of the standard approximations have no val
at all, and more fundamental methods are required for
treatment of the interaction of fields with atoms. One of t
most popular examples of such pulse down-shifting empl
few-fs pulses for the transient introduction of free carrie
into a biased semiconductor. The resulting current pulse
radiate sub-single-cycle THz/or mm wave pulses@14#. Such
pulses have recently found many applications, particula
again in the manipulation of atomic wave functions@15#.

An emphasis in this study is on the resonant and ne
resonant interaction of fs pulses with two-level media. To
extent that an interaction involves only a single transition
real atom may be approximated as having only two lev
and this approximation has been widely employed in int
preting and predicting observable phenomena@16–18#. How-
ever, it is important to remark at least briefly on possib
limitations of the two-level model for representing sho
pulse electromagnetic interactions with practical med
While there may be some intrinsic mathematical interes
models like those to be developed here, we would also
to believe that these models can correspond at least app
mately to actual physical systems. Thus, for example
might be possible to find a system with two electromagn
cally coupled energy levels that are far removed from
other states, but in practice energy levels are often more
less uniformly distributed. Also, the spectrum associa
with very short pulses may have a width that is compara
to the underlying carrier frequency. For such cases one
ask whether two-level models might still sometimes be re
istic.

There are some specific circumstances that are to
avoided if one wishes to use a two-level approximation i
multilevel system. First, it is important that all of the fre
quency content of the input pulse be close to~or less than if
there are no intermediate states! the energy spacing betwee
the two levels in the model. If this is not the case, then i
possible that other levels will also be interacting with t
field. In most of the examples given here the carrier f
quency is at or below the transition frequency, and the sp
tral broadening due to the pulse envelope is smaller than
carrier frequency. In this respect, then, these examples
not inconsistent with the idea of a two-level model.

Another likely constraint on use of a two-level model
that the field amplitude must not be too large. In a syst
approximated as a two-level absorber, for example, abs
tion of the field brings the atoms or molecules from t
ground state into the upper state. These excited-state a
might then be available for secondary excitation by so
coherent or incoherent process to other higher-lying lev
or to ionization. The efficiency of such processes depend
the amplitude of the field, and would be a serious concer
a significant fraction of the atoms in the model were brou
into the upper state and remained there in the continu
presence of the field. However, in most of our examples
pulse field will be kept weak enough that only at most ab
20% of the population is brought to the upper level. Wh
of
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these arguments can only be qualitative, it does seem tha
others have concluded, there may be significant region
practical parameter space where the two-level model wo
be sufficient for the treatment of short-pulse interactions.

In addition to the two-level assumption, most previo
treatments employ further approximations in calculating
response of an atomic medium to an applied field. The
lidity of these approximations is not always assured when
field is in the form of a pulse only a few cycles in duratio
For example, one almost universally employed simplificat
is known as the rotating-wave approximation, and the us
reason for employing this approximation is to achie
greater analytical simplicity. The resulting models have m
slowly evolving variables, and the solution methods are
ways more straightforward. Thus it is a matter of consid
able practical importance to know the conditions und
which the rotating-wave approximation may be sufficien
accurate for a particular application.

Recently, some effects of few-cycle electromagne
pulses on the populations of two-level absorbing syste
have been considered@19,20#. Here we will be treating gen-
eral dipole moment configurations, and we will establish
framework for the description of two-level media with arb
trary inhomogeneous broadening. In addition to investigat
the evolution of the level populations, it will be of interest
observe the development of the oscillating polarization d
ing and after the short excitation pulse, and the validity a
consequences of the rotating-wave-approximation for
characterization of few-cycle interactions is explored. Inco
sistent with that approximation, we find that there can
significant delays and distortion of the polarization a
population pulses that result from such interactions, and n
linear optical effects are found. Other approximations exa
ined include the parity approximation and the rate-equat
approximation.

A general semiclassical model is briefly developed in S
II for the dynamics of a laser medium having arbitrary leve
of homogeneous and inhomogeneous line broadening. Us
this starting point provides a common basis for this analy
and previous investigations of laser instabilities@21#, space
@10,11# and time @12# derivative approximations, and th
rotating-wave approximation@13#. The reduction of the gen
eral model to a simpler and more specific set of equations
a homogeneously broadened medium interacting with fe
cycle pulses is discussed in Sec. III. Numerical solutions
the model are described in Sec. IV, and the delays and
tortions of the polarization response in comparison to
applied field are discussed. The limitations of the parity a
proximation in short-pulse systems is also discussed in S
IV. Under some conditions a rate-equation-like approxim
tion may be applicable even when the rotating-wave appro
mation is not, and this situation is discussed in Sec. V. T
rotating-wave approximation is generally not valid for few
cycle pulses, as considered in Sec. VI, and the physica
fects of several parameter variations are briefly treated
Sec. VII.

II. GENERAL MODEL

In investigating the interaction of very short pulses w
material systems, it is necessary at an early stage to res
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57 611FEW-CYCLE PULSES IN TWO-LEVEL MEDIA
the classes of interaction to be considered. The reason
such a restriction is, of course, the excessively vast and
verse array of possible physical effects that one would n
to include for a truly complete model. As suggested by
title, our main emphasis will be on interactions with med
possessing two distinct energy states. When the frequenc
incident radiation is near resonance with a transition in
localized ensemble of atoms or molecules, absorptions
emissions may be induced between the corresponding st
The resulting redistribution of population can in turn chan
the dipole moment of the ensemble, and this time-depen
dipole moment can contribute to the overall electromagn
field in the region of interest. On a larger scale this effect c
lead to a time dependence of the macroscopic polarizat
including changes in the index of refraction and the loss
gain. Behavior of this sort is well known in solids, liquid
and gases, and one purpose here will be to develop met
for treating such resonant interactions when the electrom
netic pulses are only a few cycles in length.

Our starting point for this semiclassical study will be t
usual density-matrix equation@22#

]r̃

]t
52

i

\
@H̃,r̃ #, ~1!

where the right-hand side includes the commutator of
matrix form of the Hamiltonian operatorH ~between eigen-
functions of the unperturbed system! with the density matrix
r. As mentioned above, near-resonant interactions can o
be treated including only two strongly coupled energy sta
Transitions involving other states are regarded as being
far from resonance with the incident field that the inclusi
of simple phenomenological relaxation terms provides an
equate description of their effects. In this familiar case E
~1! represents four equations for the elements of the 232
density matrix, and these equations can be written in
panded form as

]r21

]t
52

i

\
@H21r111H22r212r21H112r22H21#, ~2!

]r22

]t
52

i

\
@H21r122r21H12#, ~3!

]r11

]t
52

i

\
@H12r212r12H21#, ~4!

r125r21* , ~5!

where the subscripts 2 and 1 refer, respectively, to
higher- and lower-energy states of the transition. Equa
~5! is written using the fact that the density matrix is He
mitian.

The Hamiltonian operator will now be separated into
partH0 , which depends only on the static background fie
experienced by an electron, and a partH8, which represents
the effects of the applied electromagnetic field. For the s
tems of interest here, the interaction with the applied fi
can be written in the form

H852m•E, ~6!
for
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where m5er is the dipole moment operator, andE is the
electric field, assumed constant over the dimensions of
atom. With these substitutions Eqs.~2!–~4! become

]r21

]t
52

i

\
@~H01H8!21r111~H01H8!22r21

2r21~H01H8!112r22~H01H8!21#

52
i

\
@~E22E1!r211m21•E~r222r11!

2~m222m11!•Er21#, ~7!

]r22

]t
52

i

\
@~H01H8!21r122r21~H01H8!12#

52
i

\
E•~m12r212m21r12!, ~8!

]r11

]t
52

i

\
@~H01H8!12r212r12~H01H8!21#

52
i

\
E•~m21r122m12r21!. ~9!

In these resultsE2 and E1 are the energy eigenvalues, an
we have used the fact that the eigenfunctions of the ba
ground HamiltonianH0 are an orthogonal set. It is usual t
replace the energy difference by its frequency equival
\v0 , where v0 is the center frequency of the transitio
With this substitution, Eq.~7! can be written

]r21

]t
52 i Fv01

1

\
~m222m11!•EGr212

i

\
m21•E~r222r11!.

~10!

Equations~5! and ~8!–~10! describe the behavior of th
density matrix in terms of the applied electromagnetic fie
From the density matrix it is possible to derive the polariz
tion of an ensemble of atoms. The dipole moment~or the
ensemble average of the expectation value of the dipole
ment operator! for an atom can be written

p5tr~ r̃m̃!5r11m111r12m211r21m121r22m22. ~11!

If this result for a single atom is integrated over a mac
scopic ensemble of atoms, one obtains an expression fo
polarization of the resonant medium. This polarization
turn will contribute to the behavior of the overall electroma
netic field.

As noted previously, focusing this semiclassical analy
on transitions between only two energy states would gen
ally require some phenomenological method of incorporat
transitions to and from other states of the system. A gen
alization to include inhomogeneous broadening might som
times be useful as well. Thus, we rewrite Eqs.~5! and ~8!–
~10! in the more complete forms
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612 57LEE W. CASPERSON
S ]

]t
1v

]

]zD r21~v,va ,u,f,z,t !

52F iva1
i

\
~m222m11!•E~z,t !1gGr21~v,va ,u,f,z,t !

2
i

\
m21•E~z,t !@r22~v,va ,u,f,z,t !

2r11~v,va ,u,f,z,t !#, ~12!

S ]

]t
1v

]

]zD r22~v,va ,u,f,z,t !

5l2~v,va ,u,f,z,t !2g2r22~v,va ,u,f,z,t !

2
i

\
E~z,t !•@m12r21~v,va ,u,f,z,t !

2m21r12~v,va ,u,f,z,t !#, ~13!

S ]

]t
1v

]

]zD r11~v,va ,u,f,z,t !

5l1~v,va ,u,f,z,t !2g1r11~v,va ,u,f,z,t !

1g21r22~v,va ,u,f,z,t !

1
i

\
E~z,t !•@m12r21~v,va ,u,f,z,t !

2m21r12~v,va ,u,f,z,t !#, ~14!

r12~v,va ,u,f,z,t !5r21* ~v,va ,u,f,z,t !], ~15!

whereg2 and g1 are the total decay rates of the upper a
lower levels, respectively,g21 is the rate of direct decay
from level 2 to level 1,g is the decay rate of the off-diagona
elements,l2 andl1 are the pumping rates, and the notati
c.c. means the complex conjugate of the preceding ter
The laser medium is assumed to have both Doppler and
Doppler inhomogeneous broadening mechanisms, withv be-
ing thez component of the velocity, andva the center fre-
quency of the laser transition for members of an atomic
molecular classa. The medium is also assumed to have
orientational distribution of transition moments, with th
spherical coordinatesu andf distinguishing the orientationa
classes.

To the density-matrix equations for the atomic or molec
lar populations and polarizations must be added an equa
for the electric field. The wave equation for the electric fie
of a linearly polarized wave in a laser medium can be writ

]2E~z,t !

]z2 2m1s
]E~z,t !

]t
2m1«1

]2E~z,t !

]t2 5m1

]2P~z,t !

]t2 .

~16!

The permeabilitym1 and permittivity «1 should be under-
stood to include all of the magnetic and dielectric propert
of the laser medium except for the polarizationP(z,t),
which is due to the lasing atoms or molecules. From Eq.~11!
s.
n-

r
n

-
on

n

s

the polarization driving this equation can be related back
the off-diagonal density matrix elements by

P~z,t !5E
0

2pE
0

pE
0

`E
2`

`

n~v,va ,u,f,z,t !

3@m11r11~v,va ,u,f,z,t !1m21r12~v,va ,u,f,z,t !

1m12r21~v,va ,u,f,z,t !

1m22r22~v,va ,u,f,z,t !#dv dvadV, ~17!

where n(v,va ,u,f,z,t)dv dvadV is the number of mol-
ecules per unit volume at positionz and timet having theirz
component of velocity betweenv andv1dv, their intrinsic
transition frequency betweenva and va1dva , and their
orientation within the solid angledV about the~u,f! direc-
tion. Equations~12!–~17! are a complete set from which th
time and space dependences of the electric field and of
atomic or molecular parameters can be determined, sub
to all applicable boundary conditions.

The formalism that has been summarized above is so
what more complicated than we will need for this particu
investigation, but it may also find use as a reference point
related studies. Our central purpose here will be to study
response of a resonant medium in the case that the ele
magnetic pulse envelope varies significantly on a time sc
of an optical cycle. Complications of the model which do n
elucidate that particular topic will be set aside in the follo
ing sections.

III. SPECIFIC MODEL

One important feature of the model described in Sec. I
its inclusion of an arbitrary orientational distribution of th
transition dipoles. With this formalism one can calculate t
anisotropic gain distribution that results for arbitrary pola
izations of the pump and signal fields@23#. On the other
hand, pending some particular application for such polari
tion effects, they are not required for an initial investigati
of few-cycle pulse interactions. Thus it will now be assum
that the medium is orientationally homogeneous, or m
specifically that all of the matrix elements of the dipole m
ment operator are parallel to the linearly polarized elect
field vector.

If the dipole matrix elements of all of the atoms are pa
allel to the field Eqs.~12!–~17! reduce to the scalar set

S ]

]t
1v

]

]zD r21~v,va ,z,t !

52F iva1
i

\
~m222m11!E~z,t !1gGr21~v,va ,z,t !

2
i

\
m21E~z,t !@r22~v,va ,z,t !2r11~v,va ,z,t !#,

~18!
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S ]

]t
1v

]

]zD r22~v,va ,z,t !

5l2~v,va ,z,t !2g2r22~v,va ,z,t !2
i

\
E~z,t !

3@m12r21~v,va ,z,t !2m21r12~v,va ,z,t !#, ~19!

S ]

]t
1v

]

]zD r11~v,va ,z,t !

5l1~v,va ,z,t !2g1r11~v,va ,z,t !1g21r22~v,va ,z,t !

1
i

\
E~z,t !@m12r21~v,va ,z,t !2m21r12~v,va ,z,t !#,

~20!

r12~v,va ,z,t !5r21* ~v,va ,z,t !, ~21!

]2E~z,t !

]z2 2m1s
]E~z,t !

]t
2m1«1

]2E~z,t !

]t2 5m1

]2P~z,t !

]t2 ,

~22!

P~z,t !5E
0

`E
2`

`

n~v,va,z,t !@m11r11~v,va ,z,t !

1m21r12~v,va ,z,t !1m12r21~v,va ,z,t !

1m22r22~v,va ,z,t !#dv dva . ~23!

Formally, this reduction has been achieved by requiring t
the density distributionn(v,va ,u,f,z,t) include a d-
function angular factor. This factor has been multiplied
each of the four density-matrix equations. The result
equations have been integrated over all angles, and
pump and density matrix variables have been introduced
flecting the integrated form of the old variables. Equatio
~18!–~23! are still a complete set from which the time an
space dependences of the electric field and of the atom
molecular parameters can in principle be determined.

As a next simplification, it will be assumed that the m
dium is spectrally homogeneous. If all of the atoms have
same intrinsic center frequency (va5v0), and Doppler ef-
fects are unimportant (v50), then Eqs.~18!–~21! and ~23!
reduce to

]

]t
r21~z,t !52F iv01

i

\
~m222m11!E~z,t !1gGr21~z,t !

2
i

\
m21E~z,t !@r22~z,t !2r11~z,t !#, ~24!

]

]t
r22~z,t !5l2~z,t !2g2r22~z,t !2

i

\
E~z,t !

3@m12r21~z,t !2m21r12~z,t !#, ~25!

]

]t
r11~z,t !5l1~z,t !2g1r11~z,t !1g21r22~z,t !1

i

\
E~z,t !

3@m12r21~z,t !2m21r12~z,t !#, ~26!
at

g
w

e-
s

or

-
e

r12~z,t !5r21* ~z,t !, ~27!

P~z,t !5n~z,t !@m11r11~z,t !1m21r12~z,t !1m12r21~z,t !

1m22r22~z,t !#. ~28!

This reduction has been achieved by requiring that the d
sity distributionn(v,va ,z,t) include ad-function factor in
the intrinsic center frequency and the velocity. This fac
has been multiplied by each of the four density-matrix eq
tions. The resulting equations have been integrated ove
frequencies and velocities, and new pump and density-ma
variables have been introduced reflecting the integrated f
of the old variables.

It would be usual in a calculation of this type to postula
that the wave functions have parity. In this case the dip
matrix elementsm22 andm11 would vanish in Eqs.~24! and
~28! and their predecessors. In fact if the rotating-wave
proximation were valid, one finds that the terms involvin
m22 andm11 in Eq. ~24! would average to zero even withou
a parity assumption, and the corresponding terms in Eq.~28!
could introduce only a slowly varying~nonoptical frequency!
polarization component. Then, with suitable restrictions
the pumping and decay processes, special cases of this m
would be compatible with standard homogeneous
broadened-medium density-matrix formulations@24,25#.
However, one purpose of this study is to explore the
sponse of a laser medium in cases where the electromag
fields vary too quickly for the rotating-wave approximatio
to be applicable. Thus, it is of interest here to see what s
of effects usually neglected terms likem22 and m11 might
imply.

One of the simplest and most relevant applications of t
formalism is to a two-level medium which, prior to the a
rival of the electromagnetic pulse, is resting peacefully in
ground state. To explore this case, we will turn off the pum
ing rates (l15l250) and specialize the relaxation rates a
cording tog150, g215g2 . In this case Eqs.~25! and ~26!
reduce to

]

]t
r22~z,t !52g2r22~z,t !2

i

\
E~z,t !@m12r21~z,t !

2m21r12~z,t !#, ~29!

]

]t
r11~z,t !51g2r22~z,t !1

i

\
E~z,t !@m12r21~z,t !

2m21r12~z,t !#. ~30!

It is now helpful to introduce a new parameter whic
combines the off-diagonal density matrix elements with
off-diagonal dipole moment matrix elementsh5m12r21
@26#. With this substitution Eqs.~24! and ~28!–~30! become

]

]t
h~z,t !52F iv01

i

\
~m222m11!E~z,t !1gGh~z,t !

2
i

\
m12m21E~z,t !@r22~z,t !2r11~z,t !#,

~31!
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]

]t
r22~z,t !52g2r22~z,t !2

i

\
E~z,t !@h~z,t !2h* ~z,t !#,

~32!

]

]t
r11~z,t !51g2r22~z,t !1

i

\
E~z,t !@h~z,t !2h* ~z,t !#,

~33!

P~z,t !5n~z,t !@m11r11~z,t !1m22r22~z,t !1h~z,t !

1h* ~z,t !#, ~34!

where use has been made of the Hermitian character o
density and dipole moment matrices. An immediate impli
tion of Eqs.~31!–~34! is that the polarization is independe
of the phase angle of the dipole moment matrix elementm12,
since this element only appears in a product with its comp
conjugate. This must at least be true after any effects
initial conditions on the wave functions have died away, a
as noted above the medium is assumed to have been u
turbed before the arrival of the electromagnetic pulse.

It is also convenient to introduce the magnitude of t
off-diagonal dipole moment matrix elementm5um12u, a nor-
malized off-diagonal density matrix elementp52h/m, a
normalized electric fieldA52mE/g\, a probability differ-
enced5r222r11, a probability summ5r221r11, and a
normalized timet5gt. With these definitions Eqs.~31!–
~34! become

]

]t
p~z,t !52F11 i

v0

g
1 i

m222m11

2m
A~z,t!Gp~z,t!

2 id~z,t!A~z,t!. ~35!

]

]t
d~z,t!52

g2

g
@d~z,t!1m~z,t!#1A~z,t!pi~z,t!,

~36!

P~z,t!5n~z,t!mH m11

2m
@m~z,t!2d~z,t!#1

m22

2m
@m~z,t!

1d~z,t!#1pr~z,t!J , ~37!

where the subscriptsr and i refer, respectively, to the rea
and imaginary parts. It may be noted that for a true two-le
system in this notation the summ is always equal to unity.
These equations can now be simplified a little further a
replaced by the real set

]

]t
pi~z,t!52pi~z,t!2@v081mdA~z,t!#pr~z,t!

2A~z,t!d~z,t!, ~38!

]

]t
pr~z,t!52pr~z,t!1@v081mdA~z,t!#pi~z,t!,

~39!

]

]t
d~z,t!52r@11d~z,t!#1A~z,t!pi~z,t!, ~40!
he
-

x
of
d
er-

l

d

P8~z,t!5msp1md@11d~z,t!#1pr~z,t!, ~41!

where we have introduced the normalized line-center
quencyv085v0 /g @12#, the normalized dipole moment dif
ferencemd5(m222m11)/(2m), the normalized lower-state
dipole momentmsp5m11/m, the normalized decay rate rati
r5ga /g, and the normalized polarizationP85P/(nm).
The symbolspr andpi represent the real and imaginary pa
of the normalized off-diagonal density matrix element.

In Eq. ~41! the static lower state dipole moment is repr
sented by the symbolmsp. The subscript sp here is intende
to stand for spontaneous polarization, and thusmsp is the
normalized static polarization that remains even when
atom or molecule is in its ground state. In our two-lev
system this ground-state occupation is represented by
conditionsd(z,t)521 and pr(z,t)50. Whenmsp is non-
zero, the inevitable temperature dependence of this resi
spontaneous polarization is called pyroelectricity@27#, and in
cases where the polarization exhibits hysteresis it has b
termed ferroelectricity in analogy with the corresponding b
havior of ferromagnetic media@28#. For purposes of this dis
cussion a static dipole moment is not essential, and thus
term msp will be dropped in our further discussions.

IV. PARITY APPROXIMATION

A significant mathematical complication of the mode
developed here is that the dependent variables are func
of both space and time. As the various frequency com
nents that result from any nonlinear interactions will in ge
eral have different phase velocities, the rigorous solution
this model would seem to require the detailed specificat
of boundary conditions followed by complicated numeric
solutions of the governing partial differential equations. T
results of such calculations might be too specific to yie
general insights into the underlying physics. Fortunate
however, there may be some justification for focusing i
tially on a much simpler problem.

As discussed above, the shortest pulses in an abso
sense have been obtained at wavelengths around 800 n
the near-infrared region of the spectrum, and those pulses
several cycles in length. The more interesting cases of pu
that are less than a cycle in length have all occurred in
THz or mm region of the spectrum, where the pulses h
been obtained by down shifting from the visible or near
frared. The coherence length, which governs the dista
over which harmonics might propagate with the same eff
tive phase velocity as the fundamental frequency com
nents, scales as the wavelength and becomes quite larg
far-infrared or submillimeter wavelength experiments. Th
means that phase matching usually does not present a se
problem in such studies, and nonlinear interactions are lik
to be limited by absorption rather than by phase misma
@29#. As in previous studies, we will focus our interest on
thin slab of material and disregard possible effects ofz varia-
tions @19,20#.

The response of a two-level medium to an arbitrar
varying electromagnetic field is governed by Eqs.~38!–~41!.
For a localized medium, these equations become



en
in

e

e
pel-
ore
ian
ome

been
ical
es

and
an.

ith
y
oxi-
lse
rs

on

tion
-
i-

ve

rply
axi-
he
-

e-

val-

e
f a

re-

u

s

n

the

nics

57 615FEW-CYCLE PULSES IN TWO-LEVEL MEDIA
d

dt
pi~t!52pi~t!2@v081mdA~t!#pr~t!2A~t!d~t!,

~42!

d

dt
pr~t!52pr~t!1@v081mdA~t!#pi~t!, ~43!

d

dt
d~t!52r@11d~t!#1A~t!pi~t!, ~44!

P8~t!5md@11d~t!#1pr~t!, ~45!

where the static lower state dipole momentmsp has been
dropped.

To explore the implications of Eqs.~42!–~45!, it is now
necessary to specify the mathematical form of the incid
few-cycle electromagnetic pulse. We begin by consider
symmetric sinusoidal-Gaussian pulses of the form

A~t!5A0 exp~2t2/t0
2!cos~v8t!, ~46!

whereA0 is the normalized pulse-envelope amplitude,t0 is
the normalized 1/e half-width in time of the electric-field
pulse envelope, andv8 is the normalized frequency of th

FIG. 1. Solutions of the density-matrix equations that res
when a cosinusoidal-Gaussian pulse of widtht0851.0, amplitude
A0510.0, and frequencyv855.0 is incident on a system of atom
or molecules characterized by the population decay rater51.0,
transition frequencyv08510.0, and dipole moment differencemd

50.0. The solutions include~a! the amplitudeA/A0 , ~b! the real
part of the polarizationpr , ~c! the imaginary part of the polarizatio
pi , and~d! the population differenced.
t
g

underlying field oscillations. This Gaussian form for th
pulse envelope function is not chosen here for any com
ling physical reason, and other pulse shapes might be m
appropriate for specific practical applications. The Gauss
envelope does, however, resemble the pulses seen in s
systems, and this is one of several shapes that have
employed in pulse propagation studies. The mathemat
form of Eq. ~46! does not, of course, mean that the puls
actually look like modulated sine waves. Forv8,1/t0 , little
oscillation occurs during the Gaussian pulse envelope,
the pulse would look more like a simple half-cycle Gaussi

With suitable parameter choices, Eqs.~42!–~46! may be
solved for the interaction of a range of very short pulses w
two-level media. As a first step, we will consider briefl
some of the consequences of not making the parity appr
mation. A typical input cosinusoidal-Gaussian laser pu
A(t) is shown in Fig. 1~a!. In this case the pulse paramete
include the normalized amplitudeA0510.0, the normalized
width t051.0, and the normalized frequencyv855.0. Fig-
ure 1~b! shows the real part of the normalized polarizati
pr , that results when the pulse of Fig. 1~a! is incident on a
system of atoms characterized by the normalized popula
decay rater51.0 and the normalized intrinsic transition fre
quencyv08510.0. The corresponding values of the imag
nary part of the polarizationpi and the population difference
d(t) are shown in Figs. 1~c! and 1~d!, respectively. In this
example the normalized dipole moment differencemd is set
equal to zero, which is the appropriate value if the wa
functions have parity~or if m225m11!. We see that for these
values the population of the upper state is increased sha
whenever the field has either a positive or a negative m
mum, and this fact will be discussed further below. T
slight general asymmetry in Fig. 1~d! indicates some longer
term upper-state population accumulation.

If the wave functions lack parity, the response of the m
dium becomes more complex. Figure 2~a! shows the time-
dependent population difference for the same parameter
ues as Fig. 1~d!, except that in Fig. 2~a! the dipole moment
difference ismd50.2. In this case the population differenc
has more structure, including the gradual development o
higher harmonic of the underlying electromagnetic field f

lt

FIG. 2. Population difference solutions for nonzero values of
dipole moment differencemd including ~a! md50.2 and ~b! md

50.5. In these cases the population difference has higher harmo
of the underlying field frequency.



re

.
re
le

m
ity
is
r

-

u

s
av
si

p
n
w
. I
la

n
s

er
w
a

ha

e

is

ic
lly

u-
re

ncy

ar
uite
gi-
me
g

me
de-

on-
di-
of
in
ms
ly
dy
ns,

n
f an
he
for

lse

are

the
fer-
ases

616 57LEE W. CASPERSON
quency. This behavior should probably not be conside
unexpected, since in both Eqs.~42! and~43! the factormd is
seen to introduce additional nonlinearities to the model
the dipole moment difference is increased further, the
sponse becomes still more complicated, and an examp
shown in Fig. 2~b! for the valuemd50.5. It is clear that one
area of potential interest relating to the parametermd would
be nonlinear optics with few-cycle pulses.

As noted above, most studies of two-level atoms assu
that the wave functions do have parity. Thus, for simplic
we will now setmd equal to zero for the remainder of th
study. In this limit Eqs.~42!–~45! reduce to the simple
model

d

dt
pi~t!52pi~t!2v08pr~t!2A~t!d~t!, ~47!

d

dt
pr~t!52pr~t!1v08pi~t!, ~48!

d

dt
d~t!52r@11dt#1A~t!pi~t!, ~49!

P8~t!5pr~t!. ~50!

This model will be the basis for all of the following consid
erations.

V. RATE-EQUATION-LIKE APPROXIMATION

An interesting feature of the results noted in the previo
section is that ifmd is equal to zero (m225m11), the upper-
state population tends to increase whenever the field ha
ther a positive or a negative maximum. This curious beh
ior is not a consequence of the particular cosine-Gaus
pulse shape that was adopted for Fig. 1~a!. To show this, the
corresponding results with a sine-Gaussian pulse are
sented in Fig. 3. The sine-Gaussian input pulse is show
Fig. 3~a! and the associated population difference is sho
in Fig. 3~d! using all of same parameter values as in Fig. 1
is clear from this comparison that, independent of the re
tive phases of the wave and its envelope, the populatio
enhanced by both the positive and negative polarity pha
of the input pulse.

The polarity independence can have a fairly simple int
pretation for certain operating conditions. For example,
may suppose that the incident field pulse has a carrier w
that, like Eq. ~46!, is cosinusoidal in form. If the field is
intense~as in Fig. 1, whereA0510.0!, and the transition
frequency is large~as in Fig. 1, wherev08510.0!, it is helpful
to first guess that the real polarization will also be somew
cosinusoidal@which Fig. 1~b! shows is the case#. It then fol-
lows from Eq.~47! that the imaginary polarization must b
somewhat sinusoidal@which Fig. 1~c! shows it is#. Then it is
clear from Eq.~48! that, as postulated, the real polarization
indeed somewhat cosinusoidal. The driving term in Eq.~49!
must now be in the form of a cosine times a sine, wh
corresponds to a sine at twice the original frequency. Fina
Eq. ~49! implies that the population difference will be mod
lated according to a cosine function at twice the input f
quency, and this is exactly what is seen in Fig. 1~d!. Similar
d
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arguments provide an explanation for the double-freque
oscillations of the population difference in Fig. 3~d!.

The above interpretation relied on the fact that bothA0

andv08 are large in this example. Interestingly, very simil
results are also obtained under what would seem to be q
different conditions. We first observe that the real and ima
nary polarization components tend to relax to zero in a ti
on the order of unity in these normalized units. If the drivin
terms in these equations vary slowly enough on this ti
scale, it becomes a good approximation to set the time
rivatives in the polarization equations equal to zero. For c
ventional longer-wavelength pulses, for example, this con
tion might sometimes be well satisfied. This type
simplification is often known as adiabatic elimination, and
conventional rotating-wave-approximated optical syste
the elimination of polarization variables is more common
called the rate-equation approximation. A systematic stu
of this type of approximation, and its more accurate versio
has recently been reported@30#.

The applicability of the rate-equation-like approximatio
that has just been described may be shown by means o
example. In Fig. 4 is a plot of the equation solutions for t
same conditions as for Fig. 1, except that the input pulse
Fig. 4 is much longer and weaker. In particular, the pu
amplitude is here reduced toA051.0, the pulse width ist0
510.0, and the frequency isv850.5. It may be seen that in
this case the real and imaginary polarization components

FIG. 3. Solutions for a sinusoidal-Gaussian input pulse with
same parameter values as Fig. 1. As in Fig. 1 the population dif
ence is enhanced by both the positive and negative polarity ph
of the input pulse.
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57 617FEW-CYCLE PULSES IN TWO-LEVEL MEDIA
both approximately in phase with the driving field, and this
characteristic of adiabatic following behavior. Interesting
the population difference is still modulated at twice the inp
frequency, even though the conditions here are very dif
ent.

If the left-hand sides of Eqs.~47! and~48! are set equal to
zero, the resulting algebraic equations can be solved for
polarization components. The results are

pi~t!52
A~t!d~t!

11v08
2 , ~51!

pr~t!52
v08A~t!d~t!

11v08
2 . ~52!

When Eq.~51! is substituted into Eq.~49!, one obtains the
differential equation

d

dt
d~t!1S A2~t!

11v08
2 1r Dd~t!52r. ~53!

The formal integral of this equation can be written as@31#

FIG. 4. Solutions for a cosinusoidal-Gaussian input pulse w
the same parameter values as Fig. 1, except that the pulse amp
is here reduced fromA0510.0 toA051.0, the width is increased
from t051.0 to t0510.0, and the frequency is reduced fromv8
55 to v850.5. In contrast to Fig. 1, the polarization compone
are both in phase with the field.
,
t
r-

he

d~t!52r expF2E tS A2~t8!

11v08
2 1r Ddt8G

3E t

expF E t8S A2~t9!

11v08
2 1r Ddt9Gdt8

1C expF2E tS A2~t8!

11v08
2 1r Ddt8G , ~54!

whereC is an integration constant.
For some forms for the input pulse it would be possible

simplify Eq. ~54! analytically. However, the important aspe
of this equation for our present purposes is that the pop
tion difference depends only on the square of the elect
field amplitude rather than on the amplitude itself. In partic
lar, the population difference is still driven upward durin
both phases of the input field, in agreement with the pl
shown in Fig. 4~d!. This result is analogous to the mor
conventional rate-equation approximations in which t
populations are driven by the electromagnetic intensi
rather than the fields. The distinction between these sh
pulse results and the conventional rate-equation approxi
tion is, however, very significant. The intensity is not pr
portional to the field squared, but only to the time average
that quantity. This distinction has arisen in the present d
cussion because we have not yet considered the rota
wave approximation. In contrast to all previous treatme
we are making~or at least considering making! the rate-
equation-like approximation before the rotating-wave a
proximation. Thus we wish to emphasize that these two
proximations rest on different assumptions, and, at leas
principle, they are independent of each other. The ra
equation~-like! approximation requires that the field amp
tude envelope~or just the instantaneous field! and the popu-
lations vary slowly compared to the coherence decay tim
On the other hand, the rotating-wave approximation, as
be discussed below, requires that the fields not be too str
and that the polarization and population components v
slowly compared to an optical cycle. With very short puls
the coherence decay time may be greater than or less tha
optical cycle, and thus these two approximations may
come valid or invalid independently of each other.

VI. ROTATING-WAVE APPROXIMATION

One of the most basic approximations in dealing with t
interaction of light with atoms is, for historical reason
known as the rotating-wave approximation, and this appro
mation has long been recognized@32#. The rotating-wave
approximation is generally found to be valid as long as
optical fields are not too intense, and the polarization a
population components do not vary significantly within
optical cycle. Thus, especially in cases of very high inten
ties @13# or very short pulses@19,20#, the validity of the
approximation may be in doubt. Our emphasis here is
electromagnetic pulses that are at most a few cycles
length, and it is appropriate to consider the adaptations of
model that might be necessary to test this approximation

As a starting point, we rewrite Eqs.~47!–~49! in the form

h
ude
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d

dt
p~t!52p~t!2 iv08p~t!2 iA~t!d~t!, ~55!

d

dt
d~t!52r@11d~t!#1A~t!pi~t!, ~56!

As noted above, we could begin here instead with Eqs.~42!–
~44!, in which the parity approximation has not been ma
but the rotating-wave approximation as generalized to
non-parity-approximated model is readily seen to elimin
the effects of the nonzero diagonal dipole matrix eleme
Thus, the inclusion of these dipole terms would obsc
other fundamental questions about the effects of the appr
mation, and for brevity we start with the parity-approximat
model.

To be specific, we assume that the field and polariza
can be written in the forms

A~t!5A0~t!cos~v8t!

5
A0~t!

2
@exp~ iv8t!1exp~2 iv8t!#, ~57!

p~t!5p0~t!exp~2 iv8t!. ~58!

With these substitutions, and division by the negative ex
nential, Eqs.~55! and ~56! take the forms

d

dt
p0~t!52p0~t!1 i ~v82v08!p0~t!

2 i
A0~t!d~t!

2
@exp~2iv8t!11#, ~59!

d

dt
d~t!52r@11d~t!#1

A0~t!p0i~t!

4
@21exp~2iv8t!

1exp~22iv8t!#1 i
A0~t!p0r~t!

4
@exp~2iv8t!

2exp~22iv8t!#, ~60!

where the subscriptsr and i on the polarization amplitude
again denote the real and imaginary parts.

The rotating-wave approximation now consists of tim
averaging and thus dropping all the oscillating exponen
terms. Within this approximation Eqs.~59! and ~60! can be
written in the real forms

d

dt
p0i~t!52p0i~t!1~v82v08!p0r~t!2

A0~t!d~t!

2
,

~61!

d

dt
p0r~t!52p0r~t!2~v82v08!p0i~t!, ~62!

d

dt
d~t!52r@11d~t!#1

A0~t!p0i~t!

2
. ~63!

The advantage of the rotating-wave approximation for lo
pulse or cw electromagnetic waves is, of course, that
rapidly varying functions have all been eliminated from t
,
r

e
s.
e
i-

n

-

l

-
e

equations, and in seeking either analytical or numerical
lutions one need only be concerned in these equations
the envelope functions for the electric field and polarizatio
For the very short pulse envelopes of interest here, the
lidity of the rotating-wave approximation is not always a
sured.

It is interesting to note the very close resemblance in fo
between Eqs.~47!–~49! ~before the approximation! and Eqs.
~61!–~63! ~after the approximation!. The most fundamenta
difference is that in the general set one is dealing with
absolute frequency of the transitionv08 , whereas in the ap-
proximate set only the difference between that frequency
the assumed carrier frequency (v82v08) appears. Because o
this similarity the solution methods for the two sets are ide
tical. To obtain a rigorous comparison between the pred
tions of the two models, it is only necessary in the appro
mate set to transform the results back to the original fi
variables.

A set of solutions to Eqs.~61!–~63! are given in Fig. 5. In
this figure the plotted variables again include~a! the input
field amplitudeA(t), ~b! the real part of the polarization
pr(t), ~c! the imaginary part of the polarizationpi(t), and
~d! the population differenced(t). The parameters used i
these plots include the peak amplitudeA0510.0, the width
t051.0, the population decay rater51.0, the frequency
v855.0, and the transition frequencyv08510.0. Since these
parameter values are the same as those employed in ob
ing Fig. 1, the two sets of results may be compared direc

FIG. 5. Solutions for the same parameter values as Fig. 1
with the rotating-wave-approximation. This approximation elim
nates frequency harmonics from the variables.
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57 619FEW-CYCLE PULSES IN TWO-LEVEL MEDIA
It is clear from this comparison that the rotating-wave a
proximation eliminates frequency harmonics from the va
ables, and its simplifying effects on the population differen
are particularly conspicuous. Interestingly, the rate-equat
like approximation discussed above can retain this fa
structure. However, for many values of the governing para
eters in few-cycle interactions neither of these approxim
tions permits an accurate representation of the actual p
lation and polarization dynamics.

VII. OTHER PARAMETER VARIATIONS

For any potentially realistic model for the interaction
light with atoms, there must be many parameters to ma
with experimental conditions. That is true in the present ca
but except for the diagonal dipole matrix elements we h
not focused on the consequences of different values for th
parameters. In this section we will consider some of th
parameters very briefly, and for the most part it will b
straightforward to interpret their implications physically.

One parameter that can be understood almost inde
dently from other aspects of the model is the decay rate r
r5g2 /g. To illustrate the effects ofr, we compare typical
solutions of Eqs.~47!–~49! that differ only in the adopted
value for that parameter. The normalized amplitude pu
and other parameters used in Fig. 1 are also the basis fo
results given in Fig. 6. The decay rate ratior51 was used in
obtaining the population difference curve in Fig. 1~d!, and
the corresponding population difference results for sma
values ofr including r50.5, 0.2, 0.1, and 0.0 are plotted
Fig. 6. These results have the straightforward interpreta
that with smaller values of the decay rate ratio the popula
collects in the upper state for a longer period of time.
many practical media the population decay lifetime is mu
longer than the phase-coherence time, so this simplest
sible requirementr50 would often be very realistic fo
short-pulse applications. Ifr50, Eq. ~49! may be replaced
by

d

dt
d~t!5A~t!pi~t!. ~64!

Another parameter of interest is the transition frequen
To illustrate the effects ofv08 , we compare typical solution
of Eqs.~47!–~49! that differ mainly in the adopted value fo
that parameter. The normalized amplitude pulse and o
parameters used in Fig. 1 are retained. The transition
quencyv08510.0 was used in obtaining the results shown
Fig. 1, and the corresponding population difference res
for the smaller valuev0855.0 are plotted in Fig. 7. In this
case the driving field is essentially at the resonance for
transition, and to obtain a comparable vertical scale the fi
amplitude has been reduced from 10.0 to 2.0. We see th
resonance there is a longer delay in the development
decay of the polarization oscillations, and also a mu
greater sensitivity to the input field.

Another parameter of particular interest is the pulse a
plitude. This is one of the parameters that bears on the
lidity of using a two-level model for a real optical medium
To illustrate the effects ofA0 , we compare typical solution
of Eqs. ~47!–~49! that differ in the adopted value for tha
-
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parameter. The other parameters used in Fig. 1 are reta
The amplitudeA0510.0 was used in obtaining the resul
shown in Fig. 1, and the corresponding population differen
results for the smaller valuesA055.0 and 2.0 are plotted in
Fig. 8. It is clear from the figure that, as one would expe
smaller values of the amplitude leave the upper state wi
lower population.

VIII. DISCUSSION

In this work we have undertaken a systematic investi
tion of the interaction of very short electromagnetic puls
with two-level media. The pulses under consideration
only a few cycles in length, or may even be less than a sin
cycle. For pulses of such lengths many of the standard te
niques and approximations are of doubtful validity. As
foundation for this work and possible future studies, a form
semiclassical model was briefly developed including mos
the line broadening and decay processes that one would
likely be interested in for amplifier or absorber investig
tions.

For the detailed results discussed here, we have focu
on the special case of a two-level absorber in which
lower level of the transition is the ground state. With th
example together with the more general models, it would
straightforward to compute and sometimes intuit the beh

FIG. 6. Solutions for the population difference using the sa
parameter values as Fig. 1, except that the decay rate ratio take
the values~a! r50.5, ~b! r50.2, ~c! r50.1, andr50.0. With
smaller values of the decay rate ratio, the population collects in
upper state.
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ior of other cases of potential interest. Among the resu
presented here are a semiclassical formalism for interact
with media in which the diagonal elements of the dipo
moment matrix are not equal to zero. For very short pul
these elements may have a strong effect on the polariza
and population response of a two-level medium, while
longer pulses describable with the rotating-wave approxim
tion these matrix elements have no effect on the interac
dynamics.

One of the most common approximations in studying
interaction of electromagnetic fields with atoms is commo
referred to as the rate-equation approximation. In this
proximation, polarization variables are adiabatically elim
nated from the overall governing model. Always in the p
this approximation has been made subsequent to the
more universally employed rotating-wave approximatio
However, in the context of interactions with very sho

FIG. 7. Solutions for the population difference using the sa
parameter values as Fig. 1, except that the transition frequency
been reduced fromv08510.0 tov0855.0 ~near a resonance with th
pulse!, and the pulse amplitude has been reduced fromA0510.0 to
A052.0. The development and decay of the variables is slower
resonance, and sensitivity to the input field is increased.
s
ns

s
on
r
-
n

e
y
-

-
t
en
.

pulses, both of these approximations may fail to give a s
isfactory description of the interactions. We have sugges
that a rate-equation-like approximation may sometimes
applicable even when the rotating-wave approximation
not. The standard rate-equation approximation requires
the field envelope and populations vary negligibly within th
phase-coherence time, while the rotating-wave approxim
tion requires that the polarization amplitudes and populatio
vary negligibly within an optical cycle. In very short-puls
interactions the coherence time might be greater than a
riod of the electromagnetic field as in typical optical cases,
it might in principle be less than the period for THz or oth
very low-frequency waves. Our rate-equation-like appro
mation involves the elimination of the polarization variabl
in a model which retains the absolute amplitude and phas
the optical pulse.

We have also reported solutions for the problem of t
interaction of electromagnetic pulses with atoms for case
which the rotating-wave approximation is and is not applie
Without this approximation the population difference typ
cally has substantial variations at twice the frequency of
driving field, and such extra harmonic content also appe
in the polarization components. With the application of t
rotating-wave approximation the fine structure necessa
vanishes, and this discrepancy confirms the invalidity of t
rotating-wave approximation for seemingly reasonable
rameter values in very short-pulse systems.
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FIG. 8. Solutions for the population difference using the sa
parameter values as Fig. 1, except that the input pulse amplitud
reduced to~a! A055.0 and~b! A052.0. As expected, smaller pulse
lead to lower populations with little other consequence.



n

pt

a

u,

a
n

p

et

el

-

ppl.

57 621FEW-CYCLE PULSES IN TWO-LEVEL MEDIA
@1# J. A. Valdmanis and R. L. Fork, IEEE J. Quantum Electro
QE-22, 112 ~1986!.

@2# R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, O
Lett. 12, 483 ~1987!.

@3# D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett.16, 42
~1991!.

@4# L. Xu, C. Spielmann, and F. Krausz, Opt. Lett.21, 1259
~1996!.

@5# A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersm
Opt. Lett.22, 102 ~1997!.

@6# M. Nisoli, S. De Silvestri, O. Svelto, R. Scipo¨cs, K. Ferencz,
C. Spielmann, S. Sartania, and F. Krausz, Opt. Lett.22, 522
~1997!.

@7# M. M. Murnane, H. C. Kapteyn, I. Christov, G. Taft, J. Zho
A. Rundquist, and C.-P. Huang, Proc. SPIE2524, 2 ~1995!.

@8# J. A. Yeazell and C. R. Stroud, Jr., Phys. Rev. Lett.60, 1494
~1988!.

@9# See, for example, D. H. Auston, K. P. Cheung, J. A. Valdm
nis, and P. R. Smith,Proceedings of the Topical Meeting o
Picosecond Electronics and Optoelectronics, edited by G. A.
Mourou, D. M. Bloom, and C.-H. Lee~Springer-Verlag, Ber-
lin, 1985!, pp. 2–8.

@10# L. W. Casperson, Phys. Rev. A44, 3291~1991!.
@11# L. W. Casperson, Phys. Rev. A44, 3305~1991!.
@12# L. W. Casperson, Phys. Rev. A43, 5057~1991!.
@13# L. W. Casperson, Phys. Rev. A46, 401 ~1992!.
@14# D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, O

Lett. 18, 290 ~1993!.
@15# R. R. Jones, D. You, and P. H. Bucksbaum, Phys. Rev. L

70, 1236~1993!.
@16# M. Sargent III, M. O. Scully, and W. E. Lamb, Jr.,Laser
.

.

,

-

t.

t.

Physics~Addison-Wesley, Reading, MA, 1974!.
@17# L. Allen and J. H. Eberly,Optical Resonance and Two-Lev

Atoms~Wiley, New York, 1975!.
@18# C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,Atom-

Photon Interactions~Wiley, New York, 1992!.
@19# M. Kaluza and J. T. Muckerman, Phys. Rev. A51, 1694

~1995!.
@20# R. B. Watkins, W. M. Griffith, M. A. Gatzke, and T. F. Gal

lagher, Phys. Rev. Lett.77, 2424~1996!.
@21# L. W. Casperson, J. Opt. Soc. Am. B5, 958 ~1988!, and ref-

erences therein.
@22# See, for example, A. Yariv,Quantum Electronics, 3rd ed.

~Wiley, New York, 1989!, Eq. ~3.16-5!.
@23# See, for example, S. H. Jiang and L. W. Casperson, J. A

Phys.69, 1866~1991!.
@24# W. E. Lamb, Jr., inLectures in Theoretical Physics, edited by

W. E. Brittin and B. W. Downs~Interscience, New York,
1960!, Vol. II, pp. 435–483.

@25# C. L. Tang, J. Appl. Phys.34, 2935~1963!.
@26# K. C. Reyzer and L. W. Casperson, J. Appl. Phys.51, 6075

~1980!.
@27# H. D. Megaw,Ferroelectricity in Crystals~Methuen, London,

1957!, pp. 6–9.
@28# H. Mueller, Phys. Rev.47, 175 ~1935!, and private communi-

cation.
@29# A. Mayer and F. Keilmann, Phys. Rev. B33, 6954~1986!.
@30# L. W. Casperson, Phys. Rev. A55, 3073~1997!.
@31# W. Kaplan,Ordinary Differential Equations~Addison-Wesley,

Palo Alto, CA, 1962!, Eq. ~2-58!.
@32# See, for example, W. W. Lamb, Jr., Phys. Rev.134, A1429

~1964!.


