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QED theory of the nuclear recoil effect in atoms

V. M. Shabaev
Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, St. Petersburg 198904, Russia

~Received 22 May 1997!

The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders inaZ is formulated.
The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail.
The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.
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I. INTRODUCTION

The completeaZ-dependence expressions for the nucl
recoil corrections to the energy levels of hydrogenlike ato
were derived in@1#. These expressions consist of three co
tributions: the Coulomb contribution, the one-transver
photon contribution, and the two-transverse-photon contri
tion. For a statea the Coulomb contribution is given by~the
relativistic units\5c51 are used in the paper!

DEc5DEc
~1!1DEc

~2! ,

DEc
~1!5 K aU p2

2M UaL , ~1!

DEc
~2!5

2p i

M E
2`

`

dv d1
2 ~v!^au@p,Vc#G~v1«a!@p,Vc#ua&,

~2!

whereua& is the unperturbed state of the Dirac electron in
Coulomb field of the nucleus,Vc52aZ/r is the Coulomb
potential of the nucleus,p is the momentum operator
d1(v)5 i /@2p(v1 i0)#, G(v)5@v2H(12 i0)#21 is the
relativistic Coulomb Green function, andH5a•p1bm
1Vc . The scalar product is implicit in Eq.~2! and below
@Eqs.~4!–~6!#. The one-transverse-photon contribution is

DEtr~1!5DEtr~1!
~1! 1DEtr~1!

~2! ,

DEtr~1!
~1! 52

1

2M
^au@D~0!•p1p•D~0!#ua&, ~3!

DEtr~1!
~2! 52

1

M E
2`

`

dvd1~v!^au$@p,Vc#G~v1«a!D~v!

2D~v!G~v1«a!@p,Vc#%ua&, ~4!

where

Dm~v!524paZa lDlm~v!,

a l ( l 51,2,3) are the Dirac matrices, andDlm(v) is the
transverse part of the photon propagator in the Coulo
gauge. In the coordinate representation it is
571050-2947/98/57~1!/59~9!/$15.00
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Dik~v,r !52
1

4p H exp~ i uvur !

r
d ik1¹ i¹k

exp~ i uvur !21

v2r J .

The two-transverse-photon contribution is

DEtr~2!5
i

2pM E
2`

`

dv^auD~v!G~v1«a!D~v!ua&.

~5!

An attempt to derive the completeaZ-dependence ex
pressions for the nuclear recoil effect was previously und
taken in @2#. Except for the Coulomb contribution, the ex
pressions found in@2# are in disagreement with the one
given above. A dominant part of this disagreement is cau
by technical errors made in@2#. If we remove these errors
from @2#, a discrepancy remains in the one-transverse-pho
contribution and, in addition, appears in the Coulomb con
bution. This discrepancy was discussed in detail in@1#.

Recently, Eqs.~1!–~5! were rederived in@3,4#. In Ref.@3#,
it was noted that the sum of these expressions can be wr
in the following compact form:

DEtot5
i

2pM E
2`

`

dv^au@p2D~v!#G~v1«a!

3@p2D~v!#ua&. ~6!

The termsDEc
(1) andDEtr(1)

(1) can easily be calculated b
using the virial relations for the Dirac equation@5#. Such a
calculation gives@1#

DE~1![DEc
~1!1DEtr~1!

~1! 5
m22«a

2

2M
. ~7!

This simple formula contains all the nuclear recoil corre
tions within the (aZ)4m2/M approximation. The remaining
terms@Eqs.~2!, ~4!, and~5!# taken to the lowest order inaZ
give the Salpeter corrections@6#. Evaluation of these terms to
all orders inaZ in the rangeZ51 – 100 was done in@7#. In
particular, it was found in@7# that the complete~in aZ!
nuclear recoil correction, in addition to the Salpeter one,
the Lamb shift (n52) in hydrogen constitutes
21.32(6) kHz. This value almost coincides with the val
of the (aZ)6m2/M correction found in@4,8–10#.

The completeaZ-dependence expressions for the nucle
recoil corrections for high-Z few-electron atoms were de
59 © 1998 The American Physical Society
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60 57V. M. SHABAEV
rived in @11#. These formulas were used in@7# to calculate
the nuclear recoil corrections to all orders inaZ for high-Z
lithiumlike atoms. As follows from these formulas, withi
the (aZ)4m2/M approximation the nuclear recoil correction
can be obtained by averaging the operator

HM5
1

2M (
s,s8

Fps•ps82
aZ

r s
S as1

~as•r s!r s

r s
2 D •ps8G ~8!

with the Dirac wave functions. An independent derivation
this operator was done in@12#. The operator~8! was em-
ployed in@13# to calculate the (aZ)4m2/M corrections to the
energy levels of two- and three-electron multicharged ion

In the present paper we generalize the theory of
nuclear recoil effect to an arbitrary case of a many-elect
atom. In particular, this generalization allows one to use
the zero approximation a potential that is different from t
pure Coulomb field. In addition, it allows one to use t
formalism in which the closed shells are referred to
vacuum state. In Sec. II we formulate the basic equation
the method. In Sec. III we apply this method to an atom w
one electron over closed shells. In Sec. IV the case of
atom with two electrons over closed shells is considered
Sec. V the problem of the composite nuclear structure
discussed.

II. BASIC FORMALISM

As in Refs.@3, 4#, we will consider the nucleus as a no
relativistic particle. In the Schro¨dinger representation and th
Coulomb gauge, the Hamiltonian of the whole system is

H5E dx c†~x!$a•@2 i¹x2eA~x!#1bm%c~x!

1
e2

8p E dx dy
re~x!re~y!

ux2yu
1

1

2 E dx@Et
2~x!1H2~x!#

1
eueuZ
4p E dx

re~x!

ux2Xnu
1

1

2M
@Pn2ueuZA~Xn!#2

2m•H~Xn!, ~9!

wherem is the electron mass,M is the nucleus mass,e is the
electron charge (e,0), Xn is the radius vector of the
nucleus,Pn52 i¹Xn

, andm is the magnetic moment of th

nucleus. The term2m•H causes the hyperfine splittin
structure of atomic levels and will not be discussed here.
total momentum of the system is given by

P5Pn1Pe1Pf , ~10!

where Pe5*dx c†(x)(2 i¹x)c(x) is the electron-positron
field momentum andPf5*dx@Et(x)3H(x)# is the electro-
magnetic field momentum. Since the total momentum is
integral of the motion, we can restrict our consideration
the center-of-mass system (P50) and so can express th
nuclear momentum in terms of the electron-positron a
electromagnetic-field momenta,
f

.
e
n
s

e
of

n
In
is

e

n
o

d

Pn52Pe2Pf52E dx c†~x!~2 i¹x!c~x!

2E dx@Et~x!3H~x!#. ~11!

Using this equation and the translation invariance, we fin

H5E dx c†~x!$a•@2 i¹x2eA~x!#1bm%c~x!

1
e2

8p E dx dy
re~x!re~y!

ux2yu
1

1

2 E dx@Et
2~x!1H2~x!#

1
eueuZ
4p E dx

re~x!

uxu
1

1

2M F2E dx c†~x!

3~2 i¹x!c~x!2E dx@Et~x!3H~x!#2ueuZA~0!G2

.

~12!

Here we have omitted the hyperfine interaction term. T
sum of the first four terms in Eq.~12! is the standard Hamil-
tonian of the electron-positron field interacting with th
quantized electromagnetic field and with the classical C
lomb field of the nucleusVc52aZ/r @a finite nuclear
charge distribution can be taken into account by replacingVc
with the potential of an extended nucleus~see Sec. V!#. The
last term in Eq.~12! defines the nuclear recoil corrections
the first order inm/M . The part of this term containing th
electromagnetic-field momentum„Pf5*dx@Et(x)3H(x)#…
will contribute only in the first and higher orders ina and, so
will not be discussed here. It follows, to the zeroth order
a, that the nuclear recoil corrections can be calculated
adding to the standard Hamiltonian the following term:

HM5
1

2M E dx c†~x!~2 i¹x!c~x!E dy c†~2 i¹y!c~y!

2
eZ

M E dx c†~x!~2 i¹x!c~x!A~0!1
e2Z2

2M
A2~0!.

~13!

As is known, for a description of a many-electron ato
within QED it is convenient to use the interaction represe
tation in the Furry picture. In such a theory the normal o
dered form ofHM taken in the interaction representatio
must be added to the interaction Hamiltonian. To derive
formal expressions for the energy-level shifts we will use
method developed in@14,15#. It is based on the application
of the Sz-Nagy and Kato technique@16# to the two-time
Green function. This method is briefly formulated below~the
most detailed description of the method is given in@15#!.

We consider that in the zero approximation the electro
interact only with the nuclear Coulomb field or with an e
fective atomic potential~e.g., a local version of the Hartree
Fock potential!. In the last case the corresponding subtra
tion must be done in the interaction Hamiltonian to elimina
double accounting the interelectronic interaction correctio
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57 61QED THEORY OF THE NUCLEAR RECOIL EFFECT IN ATOMS
For a description of anN-electron atom in the framework o
QED we introduce the Fourier transform of the two-tim
Green function by

g~E!d~E2E8!5
1

2p i

1

N! E dx80dx0exp~ iE8x802 iEx0!

3^0uTc~x80,x18!•••c~x80,xN8 !

3c†~x0,xN!•••c†~x0,x1!u0&, ~14!

where c(x) is the electron-positron field operator in th
Heisenberg representation, andT is the time-ordered produc
operator. The bound states of the atom correspond to
poles ofg(E) in the complexE plane. Denoting the unper
turbed wave function of the state under consideration byua ,
we introduce

ga~E!5^uaug~E!uua&. ~15!

The spectral representation ofg(E) gives

ga~E!5
Aa

E2Ea
1~ terms that are regular byE;Ea!,

~16!

whereEa is the exact energy of the level andAa is a con-
stant. Choosing the contourG so that it surrounds the levela
and does not surround other levels, we have

1

2p i R
G
dE Ega~E!5EaAa , ~17!

1

2p i R
G
dE ga~E!5Aa , ~18!

where the contour is assumed to be traversed countercl
wise. Dividing Eq.~17! by Eq. ~18! we obtain

Ea5

1

2p i R
G
dE Ega~E!

1

2p i R
G
dE ga~E!

. ~19!

Taking into account that in the zero approximation

ga
~0!5

1

E2Ea
~0! , ~20!

whereEa
(0) is the unperturbed energy~which is the sum of

the one-electron Dirac energies!, and denotingDga5ga

2ga
(0) , one can obtain for the energy shift

DEa[Ea2Ea
~0!5

1

2p i R
G
dE~E2Ea

~0!!Dga~E!

11
1

2p i R
G
dEDga~E!

. ~21!

In the first order of the perturbation theory we have
he

k-

DEa
~1!5

1

2p i R
G
dE~E2Ea

~0!!Dga
~1!~E!. ~22!

For the practical calculations it is convenient to express
Green functionga(E) in terms of the Fourier transform o
the 2N-time Green function

ga~E!d~E2E8!5
2p

i

1

N! E2`

`

dp1
0•••dpN

0 dp18
0•••dpN8

0

3d~E2p1
02•••2pN

0 !

3d~E82p18
02•••2pN8

0!

3^uauG~p18
0,...,pN8

0;p1
0,...,pN

0 !

3g1
0•••gN

0 uua&, ~23!

where

G~p18
0,...,pN8

0;p1
0,...,pN

0 !

5~2p!22NE
2`

`

dx1
0•••dxN

0 dx18
0•••dxN8

0

3exp~ ip18
0x18

01•••1 ipN8
0xN8

02 ip1
0x1

02•••2 ipN
0 xN

0 !

3^0uTc~x18!•••c~xN8 !c̄~xN!•••c̄~x1!u0&, ~24!

c̄(x)5c†(x)g0. The Green functionG is constructed using
the Wick theorem after the transition in Eq.~24! to the in-
teraction representation. The diagram technique rules forG,
without the termHM in the interaction Hamiltonian, were
considered in detail in@15# and are summarized in the Ap
pendix. IncludingHM in the interaction Hamiltonian gives
the following additional lines and vertices to the diagra
technique rules.

~i! Coulomb contribution.An additional line~‘‘Coulomb-
recoil’’ line! appears to be

This line joins two vertices each of which corresponds to

wherep52 i¹x andk51,2,3.
~ii ! One-transverse-photon contribution.An additional

vertex on an electron line appears to be
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62 57V. M. SHABAEV
The transverse photon line attached to this vertex~at the
point x! is

At the pointy this line is to be attached to a usual vertex
which we have2 ieg0a l2pd(v12v22v3)*dy ~see the
Appendix!, wherea l ( l 51,2,3) are the usual Dirac matrice
@we note here that in the notations of@15# am5(1,a) and
am5(1,2a)#.

~iii ! Two-transverse-photon contribution.An additional
line ~‘‘two-transverse-photon-recoil’’ line! appears to be

This line joins usual vertices~see the previous item!.
An important advantage of the approach considered h

in comparison with the one developed in@1,11#, consists in
the present method being suitable for arbitrary local poten
V(r ) ~e.g., a local version of the Hartree-Fock potenti!
used as the zero approximation. In addition, the transition
the formalism in which the role of the vacuum is played
closed shells can simply be realized by changing the sig
i0 in the electron propagator denominators correspondin
the closed shells.

III. ONE ELECTRON OVER CLOSED SHELLS

Let us consider an atom with one electron over clos
shells. In the zero approximation the electrons of the at
interact with the potentialV(r ), which can be chosen to
include approximately the electron-electron interaction.
the formalism with the closed-shell states as well as
negative-energy states referred to the vacuum, the elec
propagator is given by

S~v,x,y!5(
n

cn~x!c̄n~y!

v2«n1 ihn0
, ~25!

where hn5«n2«F and «F is the Fermi energy, which is
chosen to be higher than the one-electron closed-shell e
e,

al

to

of
to

d
m

n
e
on

er-

gies and lower than the energies of the one-electron st
over the closed shells. In the simplest case of a one-elec
atom,hn5«n .

To find the Coulomb nuclear recoil correction we have
calculate the contribution of the diagram shown in Fig.
According to the diagram technique rules given in the pre
ous section and in the Appendix, we obtain

Dga
~1!5

1

~E2Ea
~0!!2

1

M

i

2p E
2`

`

dv(
n

^aupi un&^nupi ua&
v2en1 ihn0

.

~26!

The formula~22! gives

DEc5
1

M

i

2p E
2`

`

dv(
n

^aupi un&^nupi ua&
v2«n1 ihn0

. ~27!

Using the identities

1

x1 i0
5

p

i
d~x!1P

1

x
, ~28!

1

x2 i0
5p id~x!1P

1

x
, ~29!

one can get

DEc5
1

2M (
n

hn

uhnu
z^aupun& z2

5
1

2M
^aup2ua&2

1

M (
«n,«F

z^aupun& z2. ~30!

The one-transverse-photon nuclear recoil correction co
sponds to the diagrams shown in Fig. 2. A similar calculat
gives

FIG. 1. Coulomb nuclear recoil diagram.

FIG. 2. One-transverse-photon nuclear recoil diagrams.
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DEtr~1!5
4paZ

M

i

2p E
2`

`

dv

3(
n

H ^aupi un&^nuakDik~«a2v!ua&
v2«n1 ihn0

1
^auakDik~«a2v!un&^nupi ua&

v2«n1 ihn0 J . ~31!

By using the identity

1

v2«n1 ihn0
5

1

v2«a1 i0
1

«n2«a

~v2«a1 i0!~v2«n1 ihn0!

and Eq.~28!, the expression~31! can easily be transforme
to the following:

DEtr~1!5DEtr~1!
~1! 1DEtr~1!

~2! ,

DEtr~1!
~1! 5

4paZ

2M
^au@piakDik~0!1akDik~0!pi #ua&,

~32!

DEtr~1!
~2! 5

4paZ

M E
2`

`

dv d1~v2«a!

3(
n

H ^au@pi ,V#un&^nuakDik~«a2v!ua&
v2«n1 ihn0

2
^auakDik~«a2v!un&^nu@pi ,V#ua&

v2«n1 ihn0 J . ~33!

The two-transverse-photon nuclear recoil correction is
fined by the diagram shown in Fig. 3. We find

DEtr~2!5
~4paZ!2

M

i

2p E
2`

`

dv

3(
n

^aua iDil ~«a2v!un&^nuakDlk~«a2v!ua&
v2«n1 ihn0

.

~34!

As follows from the Eqs.~27!, ~31!, and~34!, the sum of all
the contributions can be written in the following compa
form:

DEtot5
1

M

i

2p E
2`

`

dv^au@pi14paZa lDli ~v!#G~v1«a!

3@pi14paZamDmi~v!#ua&, ~35!

FIG. 3. Two-transverse-photon nuclear recoil diagram.
-

t

where G(«)5(n(«2«n1 ihn0)21un&^nu is the electron
Green function. In the case of a hydrogenlike atom, the
pressions derived here coincide with the ones given in Se

IV. TWO ELECTRONS OVER CLOSED SHELLS

Consider now an atom with two electrons over clos
shells~a general case ofN electrons over closed shells can b
considered in the same way!. For simplicity, we take as the
unperturbed wave function the one-determinant wave fu
tion

u5
1

&
(
P

~21!PcPa~x1!cPb~x2!. ~36!

The nuclear recoil correction is the sum of the one-elect
and two-electron contributions. Using the diagram techniq
rules from the Appendix and Sec. II and the formula~22!,
one easily finds that the one-electron contribution is equa
the sum of the expressions~35! for the a andb states. The
two-electron contributions correspond to the diagrams sho
in Figs. 4–6. The two-electron Coulomb contribution is

DEc
~ int!5

1

M

1

2p i R
G
dE~E2E~0!!

3H S i

2p D 2E
2`

`

dp0dp80(
P

~21!P
1

p802«Pa1 i0

3
1

E2p802«Pb1 i0

1

p02«a1 i0

1

E2p02«b1 i0

3^Paupi ua&^Pbupi ub&J . ~37!

Integrating overp0, p80, andE we get

FIG. 4. Two-electron Coulomb nuclear recoil diagram.

FIG. 5. Two-electron one-transverse-photon nuclear recoil d
grams.
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64 57V. M. SHABAEV
DEc
~ int!5

1

M (
P

~21!P^Paupi ua&^Pbupi ub&. ~38!

A similar calculation of the one-transverse-photon contrib
tion gives

DEtr~1!
~int!5

4paZ

M (
P

~21!P@^Paupi ua&

3^PbuakDki~«Pb2«b!ub&

1^PauakDki~«Pa2«a!ua&

3^Pbupi ub&#. ~39!

Finally, for the two-transverse-photon contribution we fin

DEtr~2!
~int!5

~4paZ!2

M (
P

~21!P@^PauakDki~«Pa2«a!ua&

3^PbuamDmi~«Pb2«b!ub&. ~40!

The sum of the two-electron contributions~38!–~40! can be
written in the following compact form:

DEtot
~ int!5

1

M (
P

~21!P^Paupi14paZa lDli ~«Pa2«a!ua&

3^Pbupi14paZamDmi~«Pb2«b!ub&. ~41!

The formulas~38!–~41! coincide with the related expres
sions found for high-Z few-electron atoms in@11# ~see also
@7#!. The only difference is that the present expressio
~38!–~41! are not restricted to the case of the pure Coulo
zero approximation.

V. COMPOSITE NUCLEAR STRUCTURE

The problem of the composite nuclear structure in
nuclear recoil theory was first discussed by Salpeter@6#. In
Ref. @6#, it was shown that the calculations based on
assumption that the nucleus is a point Dirac particle of e
tric chargeueuZ and massM are valid for composite nucle
~independently of the nuclear spin!, if the distance between
the nuclear levels is large compared with the distance
tween the atomic~electrons plus field! levels contributing to
the nuclear recoil effect. In this section we consider how t
result @which is not quite obvious for the term quadratic
A~0!# can be derived within the approach developed in
present paper.

Let us assume, for simplicity, that the nucleus is a bou
state of a two-particle system~e.g., a core with a massm1

FIG. 6. Two-electron two-transverse-photon nuclear recoil d
gram.
-

s
b

e

e
c-

e-

s

e

d

and a chargee1 and a valent nucleon with a massm2 and a
chargee2!. In this case the sum of the last three terms in E
~9! must be replaced byH11H21H3 , where

H15
e

4p E dx re~x!S e1

ux2x1u
1

e2

ux2x2u D , ~42!

H25
1

2m1
@p12e1A~x1!#21

1

2m2
@p22e2A~x2!#2

1U~x12x2!, ~43!

H352ms
~1!

•H~x1!2ms
~2!

•H~x2!. ~44!

Here U(x12x2) describes the interaction between t
nuclear particles~for simplicity, we assume thatU does not
depend on the spins! andms

(1) andms
(2) are the intrinsic mag-

netic moments of the nuclear particles. Introducing t
center-of-nucleus-mass variables

Xn5
m1x11m2x2

m11m2
, xn5x12x2 , ~45!

we have

p15
m1

m11m2
Pn1pn , p25

m2

m11m2
Pn2pn , ~46!

wherePn52¹Xn
andpn52¹xn

. As in the Sec. II, we can
restrict our consideration to the center-of-atom-mass sys
(P5Pn1Pe1Pf50). So, the total nuclear momentumPn is
given by Eq.~11!. In terms of the variablesXn and xn the
operatorH2 can be represented in the form

H25Hm1HM , ~47!

where

Hm5
pn

2

2m
1U~xn!, ~48!

andm5(m1m2)/(m11m2). The HamiltonianHm describes
the intrinsic states of the nucleus. Let us denote the w
function of the nuclear state that is under the considera
by fa(xn). The wave function of the whole system in th
zero approximation is the product offa(xn) and the atomic
wave function calculated using the operator^fauH1ufa& as
the interaction with the nucleus~we assume here and subs
quently that the distance between the nuclear energy leve
large compared with the distance between the atomic leve!.
The operator̂ fauH1ufa& describes the interaction of elec
trons with the extended nucleus charge. Them/M correc-
tions are calculated by perturbation theory. Using the f
that the nuclear size (;uxnu) is much smaller than the atomi
size, we expand the vectorA in powers ofxn . Taking into
account thatfa(xn) is of a definite parity we find to the
lowest orders

-
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^fauHMufa&5^fau H Pn
2

2M
2

~e11e2!

2M
@Pn•A~Xn!

1A~Xn!•Pn#1S e1
2

2m1
1

e2
2

2m2
DA2~Xn!

2
1

2M S e1m2

m1
1

e2m1

m2
D @pn~xn•¹Xn

!A~Xn!

1~xn•¹Xn
!A~Xn!pn#J ufa&. ~49!

The last term in Eq.~49! can be transformed to

2
1

2M S e1m2

m1
1

e2m1

m2
D E dxnfa* ~xn!

3~xn3pn!fa~xn!H~Xn!

52S e1

2m1
^ l1&1

e2

2m2
^ l2& DH~Xn!, ~50!

where l1 and l2 are the orbital moments of the nuclear pa
ticles in the center-of-nucleus-mass system. Adding this te
to the termH3 gives the total operator of the hyperfine in
n

id

cle
a

n
.

m

teraction2m•H(Xn), wherem5ml
(1)1ms

(1)1ml
(2)1ms

(2) is
the total magnetic moment of the nucleus andml

( i )

5(ei /2mi) l i . Since the operatorHM contains the term

HM8 52S e1

m1
2

e2

m2
Dpn•A~Xn!, ~51!

there is a contribution of the orderm/M from the second
order of the perturbation theory. For a statea of the whole
system we have

DEa85S e1

m1
2

e2

m2
D 2

(
nÞa

^aupn•A~Xn!un&^nupn•A~Xn!ua&
Ea2En

.

~52!

Assuming that the energy difference between the nucl
state that is under the consideration and the other nuc
states contributing to the sum in Eq.~52! is large compared
with the corresponding energy differences between
atomic~electrons plus field! states that give a dominant con
tribution to DEa8 , we replaceEa2En in Eq. ~52! with «a

2«n , where«a and «n are the nuclear energies. Using th
identity pn5 im@Hm ,xn#, we find
DEa85S e1

m1
2

e2

m2
D 2

^FauA2~Xn!uFa&
i

2
m (

nÞa

1

«a2«n
@^fau@Hm ,xn#ufn&^fnupnufa&1^faupnufn&^fnu@Hm ,xn#ufa&#

5S e1

m1
2

e2

m2
D 2

^FauA2~Xn!uFa&
i

2
m (

nÞa
@^fauxnufn&^fnupnufa&2^faupnufn&^fnuxnufa&#

5S e1

m1
2

e2

m2
D 2

^FauA2~Xn!uFa&
i

2
m^fau@xn ,pn#ufa&

52
1

2 S e1

m1
2

e2

m2
D 2

m^FauA2~Xn!uFa&, ~53!
to
he
e in
where ufa& is the nuclear wave function anduFa& is the
atomic ~electrons plus field! wave function. Combining this
term with Eq.~49!, we find that the nuclear recoil correctio
of the first order inm/M is defined by the operator

HM5
Pn

2

2M
2

~e11e2!

2M
@Pn•A~Xn!1A~Xn!•Pn#

1
~e11e2!2

2M
A2~Xn!

5
1

2M
@Pn2ueuZA~Xn!#2. ~54!

So, within the approximations made above, we may cons
the nucleus as a structureless particle of massM . The error
due to these approximations depends on the specific nu
structure. In the case of deuterium it was estimated by S
peter@6# to be about 10%.
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APPENDIX: FEYNMAN RULES FOR G

~i! The external electron line

where, in the formalism with the usual vacuum,

cn(x) are the solutions of the Dirac equation
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~ii ! The internal electron line

~iii ! The separate electron line, which is not connec
with others
ts

or
d

~iv! The internal photon line

where

in the Feynman gauge and
ct to
in the Coulomb gauge.
~v! The vertex

wheregm5(b,ba); b, a are Dirac’s matrices.
~vi! The symmetry factor (21)P, whereP is the parity of the permutation of the final electron coordinates with respe

the initial ones. For every closed electron loop a minus sign is added.
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