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The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orde is formulated.
The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail.
The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.
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I. INTRODUCTION

The completexZ-dependence expressions for the nuclear
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recoil corrections to the energy levels of hydrogenlike atomsthe two-transverse-photon contribution is
were derived if1]. These expressions consist of three con-

tributions: the Coulomb contribution, the one-transverse-
photon contribution, and the two-transverse-photon contribu-

tion. For a statea the Coulomb contribution is given byhe
relativistic unitsh =c=1 are used in the paper
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An attempt to derive the completeZ-dependence ex-
pressions for the nuclear recoil effect was previously under-
taken in[2]. Except for the Coulomb contribution, the ex-
pressions found if2] are in disagreement with the ones
given above. A dominant part of this disagreement is caused
by technical errors made if2]. If we remove these errors
from [2], a discrepancy remains in the one-transverse-photon
contribution and, in addition, appears in the Coulomb contri-
bution. This discrepancy was discussed in detalllih

Recently, Eqs(1)—(5) were rederived if3,4]. In Ref.[3],
it was noted that the sum of these expressions can be written

where|a) is the unperturbed state of the Dirac electron in thein the following compact form:

Coulomb field of the nucleus/.= — aZ/r is the Coulomb
potential of the nucleusp is the momentum operator,

S (w)=i27(w+i0)], G(w)=[w—H(1-i0)]"! is the
relativistic Coulomb Green function, anti=a-p+Bm
+V.. The scalar product is implicit in Eq2) and below
[Egs.(4)—(6)]. The one-transverse-photon contribution is
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AEtru):_m<a|[D(0)'p+p'D(0)]|a>, ©)
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where
Dy(w)=—4maZaD,(w),

a; (1=1,2,3) are the Dirac matrices, ard,(w) is the

AEtot=27TI—M jicdw<a|[p—D(w)]G(w+sa)

X[p—D(w)]la). (6)

The termsAE(Y and AE{{), can easily be calculated by
using the virial relations for the Dirac equatips]. Such a
calculation giveg1]
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This simple formula contains all the nuclear recoil correc-
tions within the @Z)*m?/M approximation. The remaining
terms[Egs.(2), (4), and(5)] taken to the lowest order iaZ
give the Salpeter correctiofi§]. Evaluation of these terms to
all orders inaZ in the rangeZ=1-100 was done ifi7]. In
particular, it was found inf7] that the completdin aZ)
nuclear recoil correction, in addition to the Salpeter one, to
the Lamb shift 6=2) in hydrogen constitutes
—1.32(6) kHz. This value almost coincides with the value
of the (@Z)®m?/M correction found if4,8—-10.

transverse part of the photon propagator in the Coulomb The completexZ-dependence expressions for the nuclear

gauge. In the coordinate representation it is
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recoil corrections for higlZz few-electron atoms were de-
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rived in [11]. These formulas were used |[iii] to calculate
the nuclear recoil corrections to all ordersd for high-Z Ph=—Pe—Pf= —f dx ¢ (X) (=1 V) ¢(x)
lithiumlike atoms. As follows from these formulas, within
the (@Z)*m?/M approximation the nuclear recoil corrections

can be obtained by averaging the operator _f X & (X)X H(X)]- (12)

1 aZ (ag rg)rsg Using this equation and the translation invariance, we find
HM:mz{ps'ps’__<as r2 ) s’} 8
s,s’ s s
— t _iv
with the Dirac wave functions. An independent derivation of : f dx g0t @[TV, = eAD) I+ fmy(x)
this operator was done ifil2]. The operator(8) was em- ) ( )
ployed in[13] to calculate the ¢Z)*m?/M corrections to the f dx dy PeX)pely) f dx[ E2(x) + H2(X) ]
energy levels of two- and three-electron multicharged ions. 8 2
In the present paper we generalize the theory of the ele|z p (x)
nuclear recoil effect to an arbitrary case of a many-electron  + f dx — [ J dx ¢'(x)
atom. In particular, this generalization allows one to use as 4 |X|
the zero approximation a potential that is different from the 2
pure Coulomb field. In addition, it allows one to use the X(—iVX)zp(x)—f dx[St(x)XH(x)]—|e|ZA(0)} .
formalism in which the closed shells are referred to the
vacuum state. In Sec. Il we formulate the basic equations of (12
the method. In Sec. Il we apply this method to an atom with
one electron over closed shells. In Sec. IV the case of aplere we have omitted the hyperfine interaction term. The
atom with two electrons over closed shells is considered. Igum of the first four terms in Eq12) is the standard Hamil-
Sec. V the problem of the composite nuclear structure igonian of the electron-positron field interacting with the
discussed. quantized electromagnetic field and with the classical Cou-
lomb field of the nucleusV.=—aZ/r [a finite nuclear
charge distribution can be taken into account by replaving
with the potential of an extended nucle(see Sec. Y. The
As in Refs.[3, 4], we will consider the nucleus as a non- last term in Eq(12) defines the nuclear recoil corrections of
relativistic particle. In the Schrbinger representation and the the first order inm/M. The part of this term containing the
Coulomb gauge, the Hamiltonian of the whole system is  electromagnetic-field momenturdP;= [dx[ & (x) X H(x)])
will contribute only in the first and higher orders énand, so
will not be discussed here. It follows, to the zeroth order in
H=f dx T () {a-[—iV,—eA(x)]+ Bm}y(x) «, that the nuclear recoil corrections can be calculated by
adding to the standard Hamiltonian the following term:

Il. BASIC FORMALISM

Pe(X)pely) E 2 2
8 jd dy |x v 2fdx[&(x)+’H x)]

e|e|Z j dx pe(X)
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z
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(13

wherem is the electron mas$/ is the nucleus mass,is the _ o
electron charge §<0), X, is the radius vector of the As is known, for a description of a many-electron atom
nucleus,P,= —|VX , and u is the magnetic moment of the Wwithin QED it is convenient to use the interaction represen-

nucleus. The term—;u ‘H causes the hyperfine splitting tation in the Furry picture. In such a theory the normal or-

structure of atomic levels and will not be discussed here. Th@ered form ofHy taken in the interaction representation
total momentum of the system is given by must be added to the interaction Hamiltonian. To derive the

formal expressions for the energy-level shifts we will use the
method developed ifl4,15. It is based on the application
of the Sz-Nagy and Kato techniqyd6] to the two-time
Green function. This method is briefly formulated beltihe
where P.= fdx ¢"(x)(—iV,) #(x) is the electron-positron most detailed description of the method is giver]15]).

field momentum andP;= [dx[ &(x) X H(x)] is the electro- We consider that in the zero approximation the electrons
magnetic field momentum. Since the total momentum is arinteract only with the nuclear Coulomb field or with an ef-
integral of the motion, we can restrict our consideration tofective atomic potentiale.g., a local version of the Hartree-
the center-of-mass systenP£0) and so can express the Fock potentigl In the last case the corresponding subtrac-
nuclear momentum in terms of the electron-positron andion must be done in the interaction Hamiltonian to eliminate
electromagnetic-field momenta, double accounting the interelectronic interaction corrections.

P=P,+P.+P;, (10)
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For a description of ah-electron atom in the framework of
QED we introduce the Fourier transform of the two-time
Green function by

2 N!
X(O|Toh(x"®, %)+ (X" %, x)
Xt xn) ¢ (x°,1)[0),

g(E)8(E—E')= dx'%dxPexp(iE'x'°—iEx?)
(14)

where #(x) is the electron-positron field operator in the
Heisenberg representation, ahds the time-ordered product

operator. The bound states of the atom correspond to the

poles ofg(E) in the complexE plane. Denoting the unper-
turbed wave function of the state under consideration py
we introduce

ga(E):<ua|g(E)|ua>- (15

The spectral representation ofE) gives

+(terms that are regular b¥~E,),
(16)

. a
0:(E)= £ £

whereE, is the exact energy of the level arg, is a con-
stant. Choosing the contolirso that it surrounds the leval
and does not surround other levels, we have

5.7 §.9E EG(E)=EA,,

7

l p—
ﬁ %FdE ga( E)_Aaa (18)
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1
(1) — _ (0) (1)
AEQ=o— ngdE(E EP)AgM(E). (22)

For the practical calculations it is convenient to express the
Green functiong,(E) in terms of the Fourier transform of
the 2N-time Green function

27 1 (=
9a(E)8(E-E")=— 17 fﬁwdpi’---dpﬁdpic’“-dp&o

X S(E=pi—---—py)
X O —py = —py’
oY)

X(Ua G(p:%,....pr2%pY,..

X 92 ylug), (23

where
Pipd,...p%)

=(27T)—2Nf dx®- - dxdxC- - - dx)

— oo

G(pi°,...

10,0

10,70
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Xexpipy X1

X(O| TW(Xy) -+ ) P Xn) - h(x1)| O},

. 0,0 £ 0,0
ipXy— - —IPRXN)

(24)

+---+ip

#(x)="(x)y°. The Green functiois is constructed using
the Wick theorem after the transition in E@4) to the in-
teraction representation. The diagram technique rule§for
without the termH,, in the interaction Hamiltonian, were
considered in detail in15] and are summarized in the Ap-
pendix. IncludingHy, in the interaction Hamiltonian gives
the following additional lines and vertices to the diagram
technique rules.

where the contour is assumed to be traversed counterclock- (i) Coulomb contributionAn additional line(“Coulomb-

wise. Dividing Eq.(17) by Eqg. (18) we obtain

1
ﬁ %FdE Ega(E)

E.=

(19

Taking into account that in the zero approximation

1

= ©
E—E

a

(20

whereE{?) is the unperturbed energyvhich is the sum of

the one-electron Dirac energjesand denotingAg,=0,
(0)

—g; ., one can obtain for the energy shift
_— N ={()
5 fﬁrd E(E—E)AgL(E)
AE,=E,—EQ = I . (2D
1+ om0 %FdEAga(E)

In the first order of the perturbation theory we have

recoil” line) appears to be

w

@ressccccsscecc®

X Yy

£ by oo
oty J2, dw.

This line joins two vertices each of which corresponds to

w3

X

IR I RY NS

w2

—127 Y00 (w1 — wg — w3) [ dXp ,

wherep=—iV, andk=1,2,3.
(i) One-transverse-photon contributioAn additional
vertex on an electron line appears to be
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w3

w1

. Z
—12mypd (w1 — wy — W3)eﬁ Sdxp, FIG. 1. Coulomb nuclear recoil diagram.

The transverse photon line attached to this vertaixthe gies and lower than the energies of the one-electron states
point x) is over the closed shells. In the simplest case of a one-electron
atom, n,=¢y.
To find the Coulomb nuclear recoil correction we have to
calculate the contribution of the diagram shown in Fig. 1.
________ i foo According to the diagram technique rules given in the previ-
* 27 J2% dwDyi(w,y) ous section and in the Appendix, we obtain

1 11 (- (alpiin)(n|pi|a)
(E-Ey))*M 27 J_ n w—€e,t+in,0

At the pointy this line is to be attached to a usual vertex in (26)
which we have—ieyya27(w,— wy— w3)[dy (see the
Appendi¥, whereq, (1=1,2,3) are the usual Dirac matrices

Agg=

The formula(22) gives

\ . P _
[we_nots here that in the notations [df5] «*=(1,@) and 1 i " (alp;In¥(n|pi|a)
a’/,,—(l, a)] AECZMZ— dwE —0 (27)
(iii) Two-transverse-photon contributiosn additional mJ-w W @=&pting
line (“two-transverse-photon-recoil” lineappears to be Using the identities
LT 4P 28
w . 2 — = = X -,
LS 22 4Dy Du(,y). x+i0 1 TPy (28
X Yy
! =mié(x)+P ! 29
x—io ™ 0 X' (29

This line joins usual vertice&ee the previous item

An important advantage of the approach considered herefjne can get
in comparison with the one developed[ih11], consists in
the present method being suitable for arbitrary local potential 1 7
V(r) (e.g., a local version of the Hartree-Fock potential AEC:W En: BX [(alp|n)[?

used as the zero approximation. In addition, the transition to
the formalism in which the role of the vacuum is played by 1 1
closed shells can simply be realized by changing the sign of =——(alp¥a)—— > |(a|p|n)]?. (30
S . : 2M M .=
i0 in the electron propagator denominators corresponding to n=eF

the closed shells. The one-transverse-photon nuclear recoil correction corre-

sponds to the diagrams shown in Fig. 2. A similar calculation
IIl. ONE ELECTRON OVER CLOSED SHELLS gives

Let us consider an atom with one electron over closed
shells. In the zero approximation the electrons of the atom
interact with the potentiaM(r), which can be chosen to
include approximately the electron-electron interaction. In
the formalism with the closed-shell states as well as the - -
negative-energy states referred to the vacuum, the electron - -
propagator is given by - -

Yn(X) Pl Y)

w—entin,0’ (25)

S(w,x,y)zg
a b

where 7,=¢,— &g and ¢ is the Fermi energy, which is
chosen to be higher than the one-electron closed-shell ener- FIG. 2. One-transverse-photon nuclear recoil diagrams.



FIG. 3. Two-transverse-photon nuclear recoil diagram.
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(alpi|n)(n|ayDix(e,— w)|a)
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1 B 1 N &n—€a
w—entin,0 w—g,+i0 (0—e,+i0)(w—e,+i7,0)

Aoal i
AEtr(l):— Z

M
(alaDik(e,— w)|n)(n|pi|a)
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w—¢e,+in,0

dow

X2

n

(31

By using the identity

and Eq.(28), the expressioli31) can easily be transformed
to the following:

1) Aral
AEtr(l)ZW<a|[piakDik(0)+akDik(o)pi]|a>a
(32
2) draZ (=
AEyy)= M ﬂodw 01 (w—¢4)

(al[pi,VIIn){n|ayDix(ea— w)|a)
w—en+in0

X2

n

|

_ (alayDik(e,— w)|n)(n|[p;,V]|a)
w—g,+in,0 '

(33

The two-transverse-photon nuclear recoil correction is de-

fined by the diagram shown in Fig. 3. We find

(AmaZ)? i (=
AEtr(Z):T E f,wdw
«S <a|aiDil(8a_w)|n><n_|a'lek(8a_w)|a>'
n w—ent+in,0
(34)

As follows from the Eqgs(27), (31), and(34), the sum of all
the contributions can be written in the following compact
form:

1 i o
AEtot:M pym fﬁxdw<a|[pi+47TaZa|D|i(w)]G(w+sa)

X[pi+4maZanDyi(w)]a), (39
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FIG. 4. Two-electron Coulomb nuclear recoil diagram.

where G(g)=32,(s—en,+i7,0) " n)(n| is the electron
Green function. In the case of a hydrogenlike atom, the ex-
pressions derived here coincide with the ones given in Sec. I.

IV. TWO ELECTRONS OVER CLOSED SHELLS

Consider now an atom with two electrons over closed
shells(a general case ™ electrons over closed shells can be
considered in the same wayFor simplicity, we take as the
unperturbed wave function the one-determinant wave func-
tion

1
u=- ; (—1)PpalXe) Ppp(X2). (36)

The nuclear recoil correction is the sum of the one-electron
and two-electron contributions. Using the diagram technique
rules from the Appendix and Sec. Il and the form(22),

one easily finds that the one-electron contribution is equal to
the sum of the expressiorni85) for thea andb states. The
two-electron contributions correspond to the diagrams shown
in Figs. 4—6. The two-electron Coulomb contribution is

. 11
(inp_ — _— —g©
AE; M 2 3€Fd E(E-E")

X[
1 1 1

XE P eppti0 p’— 2,110 E—pO—ep+i0

i\ (e
_ 0 10 _aq\P_ -
277) f_mdp dp ; (=) p'%—gp,til

x<Pa|pi|a><Pb|pi|b>J. @7

Integrating ovemp®, p’®, andE we get

b

a

FIG. 5. Two-electron one-transverse-photon nuclear recoil dia-
grams.
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and a charge; and a valent nucleon with a mass and a
chargee,). In this case the sum of the last three terms in Eq.
(9) must be replaced bk, +H,+H;, where

--_-_.____

H. o e f q €1 + €2 42
1= 4n X pe(X) |X—X1| |X—X2| ) (42)
Ho=5— [p1—eiA(xy) 1>+ L [p2—eA(X)]?
FIG. 6. Two-electron two-transverse-photon nuclear recoil dia- 2my 2m,
gram U, (43)
. 1
(int)y _ — _1\P . .
AET =4 ; (—1)"(Palpi|a)(Pblpi|b). (38 Ha= — u0 - H (%) — p® - H(x,). (44)
A similar calculation of the one-transverse-photon contribuere U(x,—x,) describes the interaction between the
tion gives nuclear particlegfor simplicity, we assume thal does not
depend on the spihaind u{Y and u{? are the intrinsic mag-
) 4dral X s s & )
AEﬁ}’(‘B= VI > (-1)P[(Palpia) netic moments of the nuclear particles. Introducing the
P

center-of-nucleus-mass variables

X (Pb|ayDyi(epp—ep)|b) N
_ MgXy T MpX3

+<Pa|akai(8Pa_8a)|a> Xn mi+m, Xn=X1—Xp, (45)
X (Pb|pi|b)]. (39
i o ~ we have
Finally, for the two-transverse-photon contribution we find
- (AmaZ)? _ M _ M B
ABy=—y— 2 (- VP aDii(zpa=za)la) P, PP P2= - PamPay (46)
X(Pb|amDmi(gpp—&p)[b). (400  whereP,= —Vyx_ andp,=—V, . As in the Sec. Il, we can

restrict our consideration to the center-of-atom-mass system
(P=P,+ P+ P;=0). So, the total nuclear momentupy is
given by Eq.(11). In terms of the variableX,, and x, the
operatorH, can be represented in the form

The sum of the two-electron contributio38)—(40) can be
written in the following compact form:

) 1
AE%T):M ; (—1)P(Palpj+4maZaD(epa—ea)|a)

H,=H,+H 4
X(Pb|p;+ 47 aZamDmi(eps—£1)|b). (41) 2o “0
The formulas(38)—(41) coincide with the related expres- Where
sions found for highZ few-electron atoms ifl1] (see also
[7]). The only difference is that the present expressions pﬁ
(38)—(41) are not restricted to the case of the pure Coulomb Huzﬂ”L U(Xn), (48)

zero approximation.

and = (m;m,)/(m;+m,). The HamiltonianH , describes
the intrinsic states of the nucleus. Let us denote the wave
The problem of the composite nuclear structure in thefunction of the nuclear state that is under the consideration
nuclear recoil theory was first discussed by Salpgdérin by ¢4(x,). The wave function of the whole system in the
Ref. [6], it was shown that the calculations based on thezero approximation is the product @f,(x,) and the atomic
assumption that the nucleus is a point Dirac particle of elecwave function calculated using the operatar,|H,| ¢,) as
tric charge|e|Z and masdM are valid for composite nuclei the interaction with the nucleusve assume here and subse-
(independently of the nuclear spjrif the distance between quently that the distance between the nuclear energy levels is
the nuclear levels is large compared with the distance bdarge compared with the distance between the atomic levels
tween the atomicelectrons plus fieldlevels contributing to  The operator ¢,|H,| ¢,) describes the interaction of elec-
the nuclear recoil effect. In this section we consider how thigrons with the extended nucleus charge. ThéVl correc-
result[which is not quite obvious for the term quadratic in tions are calculated by perturbation theory. Using the fact
A(0)] can be derived within the approach developed in thethat the nuclear size<{|x,|) is much smaller than the atomic
present paper. size, we expand the vectdy in powers ofx,,. Taking into
Let us assume, for simplicity, that the nucleus is a boundiccount thate,(x,) is of a definite parity we find to the
state of a two-particle systefe.g., a core with a mass; lowest orders

V. COMPOSITE NUCLEAR STRUCTURE
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P2 ( (ertey) ) teraction— p- H(X,), wherep=p{+ pH+ p{2+ u? is
(BalHul ba)=(bal| 537~ —Zp1 [Pn-AXn) the total magnetic moment of the nucleus ang’
5 : =(g;/2m;)l; . Since the operatdd), contains the term
el 2 e €
: , 1
FAXD) Palt | om, * 2m )A (o) HM=—(m—l— —) Pn-A(Xn), (51

! [Pn(Xn- Vx JA(X,) there is a contribution of the orden/M from the second
" order of the perturbation theory. For a statef the whole

1 [egmy, em
2M 1\ m,

system we have
+ (X0 Vx JA(Xp)P ]]|¢ : (49
no o a> AE' ( €1 3)2 <a|pn'A(Xn)|n><n|pn'A(Xn)|a>
The last term in Eq(49) can be transformed to m; M/ n7a Ea—En '

(52

1 (elmz e,m;

- m m, ) f dxnd’a(xn)

Assuming that the energy difference between the nuclear
state that is under the consideration and the other nuclear

X (XX Pn) fa(Xn) H(Xn) states contributing to the sum in EG2) is large compared
with the corresponding energy differences between the
( )+ (Iz)) H(X,), (500  atomic(electrons plus fieldstates that give a dominant con-

tribution to AE), we replaceE,—E, in Eq. (52) with e,
wherell andl, are the orbital moments of the nuclear par- —¢,, wheree, and¢,, are the nuclear energies. Using the
ticles in the center-of-nucleus-mass system. Adding this ternidentity p,=iu[H, ,x,], we find
to the termH5 gives the total operator of the hyperfine in-

|pn| ¢a>+<¢a|pn| ¢n><¢n|[H;4 aXn]|¢a>]

y7l

|8 &
AEa_(ml ) <(I)a|A2(xn)|q)a> 2

:(&_ _) <(Da|A2(Xn)|(Da> 2 ME [<¢a|xn|¢n><¢n|pn|¢a> <¢a|pn|¢n><¢n|xn|¢a>]

my
e, & )
m_l_ . <(I)a|A (Xn)|q)a> M<¢a|[xnapn]|¢a>
1
=3 (ri—ll— %22) (@ AZ(X,)| D), (53

where | ¢,) is the nuclear wave function andb,) is the  Yelkhovsky are gratefully acknowledged. | wish also to
atomic (electrons plus fiel[dwave function. Combining this thank T. Beier and G. Plunien for useful discussions. The
term with Eq.(49), we find that the nuclear recoil correction research described in this publication was made possible in

of the first order inm/M is defined by the operator part by Grant No. 95-02-05571a from RFBR.
H Po_ (este) P-AX,)+A(X,)-P
MToOMT T 2m [Pn- ACXn) +A(Xn) - Pr] APPENDIX: FEYNMAN RULES FOR G
e;+e,)? (i) The external electron line
( 1 2) Az(xn)
2M
1 ) i
:m[Pn_|e|ZA(Xn)] : (54) X y 275(%)(,}’) s

So, within the approximations made above, we may consider
the nucleus as a structureless particle of mdssThe error ~ Where, in the formalism with the usual vacuum,
due to these approximations depends on the specific nuclear
structure. In the case of deuterium it was estimated by Sal-
eter[6] to be about 10%. o
P [ ] 0 S(w x y) — Z 1/’n(x)1/)n(}’)
? 2 -
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(iv) The internal photon line

(a-p+,5m+V)1/)n=€n1/)n-

ii) The internal electron line beerrneennes . ]
( ) #ffooo deW(w,x—y),

X Yy f;ffooodw S(W,X,Y)'

where

(iii) The separate electron line, which is not connectec

with others dk exp[ik: (x—y)]
Dy(w,x—y)= “gw/ (2r)®  w?—k2 +10
Xy %S(w, X,y)d(w — w') . in the Feynman gauge and
1 .
Doo(w,x — y) Do = Do; =0 (¢ = 1,2,3),

T irlx—yl|’

dk expik- (x—Y)] kiki -
Dafw,x =) =/(27r)3 F 0 Gime) (=123

in the Coulomb gauge.
(v) The vertex

w3

Wi
—ieyH2mé(wy — wy — ws) [ dx,
wherey*=(3,Ba); B, a are Dirac’s matrices.

(vi) The symmetry factor€ 1)F, whereP is the parity of the permutation of the final electron coordinates with respect to
the initial ones. For every closed electron loop a minus sign is added.
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