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Threshold characteristics and intensity fluctuations of lasers with excess quantum noise
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We discuss the threshold characteristics and intensity noise of a laser with excess quantum noise as occurs,
e.g., in an unstable-cavity laser. We give a theoretical description of the intensity aspects of excess noise based
on laser rate equations, including bad-cavity effects. Experimentally, we have measured spectra of intensity
noise and phase noise of small HeXe gas lasers. We operate the laser on either a stable or an unstable cavity,
in order to change from a situation of no excess noise to large excess noise. By comparing the measured
spectra with the theory, we deduce the excess-noise fact@nd the spontaneous-emission faci@r
[S1050-294{@8)01401-2

PACS numbe(s): 42.50.Lc, 42.60.Da, 42.55.Lt

I. INTRODUCTION we focus on the high-gain HeXe lasex<£3.51 um), being
a very suitable system for excess-noise measurements

In lasers with nonorthogonal transverse eigenmodes thgg,9,10. Using this laser, we directly compare the situation
spontaneous-emission noise in the laser mode is enhanced by no excess noise to large excess noise; this is done by
the transverse excess-noise factorKofactor [1-12). Ex-  changing the laser cavity from a stable to an unstable mirror
perimental values of transverkefactors realized in unstable configuration.
cavities range fronkK =200 to 500[2,6,7]. The longitudinal The paper is organized as follows. In Sec. Il we present
K factor, which arises due to nonorthogonality of the longi-our theory. In Sec. Ill the experimental setup is described
tudinal eigenmodes, usually stays close to ufit{,12. So and in Sec. IV the experimental results. We end with a
far, all studies of th& factor, both theoretically and experi- Speculative discussion in Sec. V and a concluding summary
mentally, have concentrated on its consequences for the lasir Sec. VI.
phase noise. In this paper we investigate, both theoretically
and experimentally, the appearance Kfin the intensity Il. THEORETICAL MODEL

noise. This automatically brings up the laser threshold char- . . . .
acteristics, being intimately linked to intensity noise. In our Our HeXe laser operates in the bad-cavity regime, in the

analysis we include bad-cavity aspects since, in practica}ense that the decay rate of the cavity field is much larger
cases, excess noise occurs in lasers with relatively largéian the collisional dephasing rate of the atomic polarization,
losses, so that the cavity bandwidth often exceeds the gaff-» the cavity bandwidth is much larger than the gain band-
bandwidth[13]. width. '_I'h_erefore, the atomic pqlarlzano_n cannot be adiabati-

Setting up an appropriate quantum theory to describe e)ga[ly ellmlnate({1_3,15§|. In adgjltloq, the inversion cannot be
cess quantum noise fluctuations is troubled by some concegdiabatically eliminated, as is evident from the pronounced
tual difficulties. The excess noise arises in open-sided syd€laxation oscillations of HeXe lasers. Generally, the com-
tems since the open character leads to nonorthogon&'”e‘j dy_namlc_s of_ the ele;trlc field, the atomic polarization
eigenmode$1]. The standard descriptions of quantum noise2nd the inversion is described by the Maxwell-Bloch equa-
in quantum optics rely on a complete set of orthogonal basidons[16,17. In order to simplify this, the atomic polariza-
modes. For open systems there is no natural set of orthogon#Pn can be eliminated in a nonadiabatic way, where the bad-
modes 14]. The complex amplitudes of a set of nonorthogo-cavity effect is accounted for by Taylor expansion of the
nal modes cannot be turned into a set of noncommuting oatomic susceptibilityy(w) around the laser frequency keep-
erators because of problems related to unitarity and conse?9 only the first-order term and rewritindy/dw in the
vation of probability. Therefore, we have chosen to set up derms of the group refractive index, [15,18. Incorporating
phenomenological semiclassical model, based on rate equBgr N0 the cavity loss rate changes the latter into the
tions for the laser intensity and population inversion, in“dressed”-cavity loss rate. This procedure reduces the
which the consequences of mode nonorthogonality are inMaxwell-Bloch equations to a set of rate equations for the
serted in anad hoc fashion. We account for the excess !aser intensity and population inversiph9—21]
spontaneous-emission noise by assigning to one of the pho-

ton emission channels, i.e., to the laser modes @mes s=[G(N)=T'¢(N)]s+Rgyt+ f(1), (1a)
higher weight than to the other modes. Our theoretical model _
is sufficiently general and simple that features of gas lasers, N=A—vyoN(1+pBs), (1b)

solid-state laser&.g., Nd:YVQ,), and semiconductor lasers
(e.g., AlGaAs) can be easily incorporated. Experimentallywheres is the number of photons in the lasing mobleis the
inversion, i.e., the number of excited- minus ground-state
atoms (N=N,—N;), G(N) is the inversion-dependent
*Electronic address: Eijkel@RuLhm1.LeidenUniv.nl intensity-gain rate, and (N) is the cavity loss rate of the
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dressed cavity, which depends on the inverdirthrough  where we have sef .=G(N) and used the above derived
the group refractive indery,. The dressed-cavity loss rate relation G(N)=Ngy, and the definition ofNg,. Note that
I'«(N) now contains the bad-cavity effects, taking into ac-above threshold the dressed-cavity loss datds indepen-
count the effect of the atomic polarizatiph8]. As an aside dent of the pump rate due to gain clamping. The Langevin
we note that for semiconductor lasers this complication isoise associated with this average spontaneous-emission rate
absent since there the gain bandwidth is much larger than the & correlated in time and via the fluctuation-dissipation
cavity bandwidth, so that the dressed-cavity loss Fa{éN) theorem found to be

equals the empty-cavity loss rakg. Spontaneous emission

is included in the form of an average spontaneous-emission (F(t)F(t" +1))=2Rgs8(1), (39
rate Ry, and a fluctuating termf(t) [19-21. The
spontaneous-emission fact@ris defined as the fraction of |]—"(w)|2:4RSpg (3b)

spontaneous emission that ends up in the laser mads.
the pump ratéproportlonal to the.|nJeCt|On Curren.t in case of Wheref(w) is the Fourier transform 0|f(t) [26] The pho-
semiconductor lasers or to the discharge power in case of ga§n number s occurs due to the admixture of the
lasers and y, is the decay rate of the inversion. Pump noisespontaneous-emission amplitude noise with the laser field as
and spontaneous-emission noise in the inversion equatiggcal oscillator[27].
(1b) are neglected; this assumption is valid since for practical \We focus now on the appearance of the dressed-cavity
laserss<N so that the fluctuations in the photon number |gss ratel'((N) in Eq. (1a). We consider a homogeneously
are dominant(i.e., we exclude the regime of a one-atom, proadened gain medium, with a Lorentzian gain spectrum
one-photon laser o , with a full width at half maximum(FWHM) yg./ 7. Note

By setting the stimulated emission rates in EGs) and  that the parametey,, can be quite different frony because
(1b) equal, we find the relatio®(N)=NpByo. The decay the former is related to decay and dephasing, whereas the
rate of the inversiony, can depend on the inversidf asis Jatter concerns only decay. For a bad-cavity laser above
the case for semiconductor lasers. Later on we will need thﬁ‘n‘esho]d, the dressed_cavity loss rﬂt:ehas a natural upper
derive}tive of_G(N) With respect toN; therefore, we define |imit 2 ygain, the spectral width of the gain mediufd3],
the differential inversion decay ratg=yo+N(Jyo/IN).  whereas in the limiting case of no pumping, the dressed-
For gas lasers and almost all solid-state lasers the decay dgvity loss rate must equal the empty-cavity loss mge

independent of the inversion, so thgt y,. ~Introducing the threshold inversiddy,, we find in fact for
The above rate equatioiisa) and(1b) will now be modi-  the dressed-cavity loss rate

fied ad hocto our case of interest, i.e., we will include excess

noise in a heuristic way. We assume that the atoms have T T

p= B! photon-emission channels available for spontaneous  I'c((N)= =1 ' .

emission. It has been demonstrated recently that in case of NgN) - 1+[Fo/27gainl[ G(N)/G(Nip) ]

phase noise, mode nonorthogonality increases the effect ?f
i

4

spontaneous emission in the laser mode by the excess-no gis expression can .be found ﬂm3,15_], apart f“’”.“ the fac-
fa?ctor, orK factor [2,3,6,9,10. We assumeythat the same O G(N)/G(Ng), which has been introduced in order to

holds in case of intensity noise, so that we simply accoun iIUd? ?ISO the Sl:bt:"ejhmd ctj)ehawo;Rtgr(]N)d.Thls f_actor th
for possible mode nonorthogonality by giving one of their?veerssilcr)]no ?hcr%?]ur;] thee iﬁgrr;;g?lirgni erellzﬁg:15IoRb0C)T/e €
photon-emission channels, i.e., the lasing mod& ames 9 9 i

higher weight than the others. Note that this weight factorlhresmld’ the inversion is clamped, so that

only applies to the spontaneous-emission rate into the Iasg(N)/G(Nth): 1; the factorG(I_\I)(G(Nth) IS of |mportance
mode, but not to the stimulated emission rate. We stress thzgtnly below threshold. If the gainis proporuona! to the Inver-
we treat the spontaneous-emission noise as appearing in QH:E(N)/G(Nm) gan be V\f{”ttgn afN”:'tchj and g In ‘:‘ﬁd'f

(19) in a perturbative sense, which in standard semiclassica“. n, glr,:IV(/aermNn ecay re|1 e tﬁes ”d‘? epen | on the inver-
laser theory require8<1; i.e., spontaneous emission in the sion, t( ?\/I—(A/ﬁ})\ equ_?hs h € h |mﬁn|sd|on ess pu;np
laser mode is only a small fraction of the overall spontaneou arameter V= n [Wi € threshoid pump _rate
emission. Since in our mod& 3 has taken the place ¢8 = Yo(N)Nipn] [28]. It can be easily checked that E¢)

(see below, we have to assumiB<1. This assumption is has the proper limits; above threshold, when increa$ipg

in fact reasonable for typical experiments reported so far'€ dressed-cavity loss rate has a natural upper limit;

where, e.g.,K~500, B~4x 10 ° for a unstable-cavity whereas below threshold a decrease of the inversion leads to

semiconductor lasdf7] or K~200, B~1x 10~ for a HeXe an increase of ((N) towardsI'. Note that for semiconduc-

gas lasef6] ' tor lasers Eq(4) is irrelevant since these lasers operate in the
To account for possible population in the lower laser leveld00d-cavity regime[I'((N)=T']. Differentiating Eq. (4)

Ny, we introduce, as usual, in the noise souRg, the with respect td\ we find, for operation close to threshold,

incomplete-inversion factaNg,=N,/(N,—N;) [13,22-25.

Using all this, we can write the average spontaneous- IT«(N) __ e §~ _ 1 ﬁ_ (5)

emission rate into the lasing modeRg= K 8v,N, or, more dN 2Ygain ON 1+ 2ygain/T'o IN

conveniently,

Far into the bad-cavity regimd (> vy, this results in
dl' /N~ —9G/oN. For later use it is convenient to intro-
Rsp=KNgpl'c, (2)  duce a parameteZ, which is defined as
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107 . . : To calculate the intensity noise of the laser we will lin-
earize Eqs(1a and(1b) around the operating poimg,Sg.

This linearization is reasonably safe far below threshold, be-
cause saturation is then relatively unimportant, and far above
threshold, because the laser intensity is then relatively stable
[21]. Linearization is of course bound to break down very
close to the lasing threshold. We introduce the small fluctua-
tions o and », so thats=s;+ o andN=Ng+ 7, to obtain

. Rsp
o== < 0t yCBsen+ (1), (93

0
0 05 10 15 20 n=—Tw— y(1+ Bsy) 7. (9b)
M We note that the differential inversion decay rateenters

these equations instead of the inversion decay ygte
FIG. 1. Laser threshold characteristics in the presence of excess Solution of Egs.(9a and (9b) by a Fourier transform is
noise. The intracavity photon numbefs plotted versus the dimen- straightforward. We obtain the following power spectrum of
sionless pump parametdt. The drawn curves are calculated from the intensity noise:
Eq. (7) using8=10"°C=2, Ng=1, andK=(a) 1, (b) 1¢*, and

c) 10*. The presence of excess noise smoothens the input-output 2
(©) 10", The p put-outp |0(w)|2:4RSpS/ ’_inrKNsch YCBsole |?
so  Y(1+Bsy) —iw|
(10
_2+2'ygain/F0 6
- 1+2ygain/To ©) which shows that the excess-noise factdr and the
spontaneous-emission factBrare present in different terms

and obviously obeys £ C<2. of the denominator; this allows an independent measurement

By setting the time derivatives in Eqda and(1b) equal ~ Of these parameters. The interpretation of El@) is troubled
to zero, we can find the relation between the pump parametélue to the complicated nature of the denominator. However,
M and photon numbes. We usel'.=BAy, and expand the result simplifies considerably in the three limits that are

G(N)—T'¢(N) aroundNy,, with G(Ny) —T'¢(Ng) =0. Using ~ discussed in Secs. IlA-IIC.
Eq. (5) andsB<1 we find We note that in the comparison between theory and ex-

periment one relies on the relation between intracavity pho-
ton numbers, and laser output powe®,,;, which is

(M—1)+ \/(M—1)2+4K3N%p. 7)

So

2B Pou=hTSo. (1D
Equation(7) shows the laser threshold behavior; the steadyyhere we have introduced the dressed output-mirror trans-
state ph?rt]on numb?hr Its affected bydtr:e t[::]res?ncg 0; EXCeHTission loss rat€’ = ng’rl(c/ZL)InR, with R the outcoupling
noise In the sense that, as compared fo the standard expregg, reflectivity (the mirror loss rate is not necessarily

sion, B is replaced byK 8, as has been hinted at[id]. This -
is not surprising, considering the fact that we have “byequal to the cavity loss rate;, In=I).

hand” multiplied Rg, with a factor ofK [cf. Eq. (2)]. Note
the remarkable simplicity of Eq7); all complications due to
the inversion dependence of gain and decay rates have dis- The low-frequency intensity noise is easily found by tak-
appeared. The photon number at threstglds given by ing the limit w0 in Eq. (10) which gives

2K =2 ® |o(0)|?=

s/
cp' CAT, ™

Notice that the excess-noise factérand the bad-cavity Wwheresy, is the photon number at threshold, as given by Eq.
correction factorC influence the threshold photon number (8). The low-frequency intensity noisgr(0)|? increases
s A large excess-noise factét thus leads to an increase Steeply ass3 far below the lasing threshold, whereas it de-
of s, increasing the laser output power at lasing thresholdcreases as, * far above threshold. Note that E(.2) does
To first order(i.e., KB<1) the pump threshold pump rate not depend on the damping rage Experimentally, it might
A will not be affected because this is dominantly deter-be difficult to find the precise position of the “kink” in the
mined by the spontaneous emission in the otnenlasing  input-output characteristic that corresponds with threshold
modes. Large excess-noise factors will smoothen the threslisee Fig. 1 Equation(12) provides a much easier way to
old transition. This can be seen in Fig. 1, where we havdind the laser threshold, namely, by determining at which
plotted s, as given by Eq(7), versusM, using the values output power the low-frequency noise strength(0)|? is
B=10"%,C=2, Ny,=1, andK= (a) 1, (b) 1¢?, and(c) 10*.  maximum. We will deduce the value sf, by fitting Eq.(12)

A. Intensity noise at low frequency

2
Sth . So

_+_
So S

N

, (12
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to measurements ¢ér(0)|? as a function of output power; tion of the overlap between the mode and the gain medium,
this yields the value oK 3! [using Eq.(8) and the calcu- either in a spatial or in a spectral sefi3&,32. In a gas laser,

lated values ofC andNgp. spectral hole burning may occur for a Doppler-broadened
gain transition and spatial hole burning may occur if the
B. Intensity noise far below threshold spatial diffusion of the atoms is sufficiently slow. In fact, by

fitting Eq. (15) to the measured relaxation-oscillation spectra,
we found that nonlinear gain is quite important in our gas
lasers; it has a profound effect on the damping of the relax-
4s2A _ Negle ation oscillations. For relatively small photon numbers the
5 5 with Aw=K S (13 damping rate shows a strong increase with photon number
o +Aw 0 S, Which cannot be accounted for by = y(1+ 8sp). Sub-
sequently, for higher values gf the damping rate saturates

Far below threshold, at small photon numbgysthe third
term in the denominator of Eq10) can be neglected so that

|o(w)]?=

This spectrum is Lorentzian with a half-width at half maxi- i lue that i h der of itude | "
mum A w. Note that the bad-cavity correction fac®rplays atavalue that IS more than an order of magnitude farger than

no role in the subthreshold noise spectra. From (E8) we the starting valuey atsy=0. This behavior is similar to that
see that, for the same number of photons in the lasing mod&ecently reported for a semiconductor laggg]. We have
a laser withK>1 will have a much broader subthreshold found that these effects of nonlinear gain are larger for the
intensity-noise spectrum than a laser witl 1. Experimen- stable- than for the unstable-cavity laser. This is to be ex-
tally, we will derive the value oK from the width of the pected since the stable-cavity laser has a smaller mode vol-
subthreshold Lorentzian noise spectra, combined with medime than the unstable-cavity laser, so that a certain photon
surements of the dressed-cavity decay rate and the outpOtimbers, corresponds to a higher intracavity intensity. Fi-
power. By comparing the experimental determination ofnally, we note that all these complications concerning the
KB~ from the low-frequency intensity-noise measurementgelaxation oscillations do not affect Eq32) and(13), which
of Sec. Il A to the value oK determined with the subthresh- will play a key role in the analysis of our experimental data.
old Lorentzian noise spectra, we will obtain a value gr

We note that integration over the subthreshold spectrum

in Eq. (13) gives Ill. EXPERIMENTAL SETUP

1 (= ) ) Experimentally, we have not attempted to measure the
ﬂfo |o(w)|*do=s;, (14 input-output relatiorsy(M) as given by Eq(7) and Fig. 1
since typicallyB~1x 108, so that the dimensionless width
which expresses that the mean square of the intensity flusf the threshold transition is roughly8~1x10"2 [34],
tuations is as large as the square of the average intensity, adich demands an accuracy fM better than 0.1%. This

expected for “thermal” light[29]. cannot be realized experimentally due to fluctuations in the
discharge power and due to the aging of the HeXe gas mix-
C. Intensity noise far above threshold ture (Xe depletion [25]. Instead, we have focused on two

methods, which are discussed below in Secs. IV A and IV B.
Far abo've threshold, at large photon ”“”.‘Wﬁhe S€C”  Wwe have compared measurements of intensity-noise spectra

OE‘? term in the denominator of E10), which scales as of a stable-cavity lasei{=1) to those of an unstable-cavity

S, can be neglected as compared to the other terms. Weser K>1). We use a small HeXe laser that operates in a

then find single longitudinal and transverse modleis applies to both
24 2 the stable- and unstable-cavity regime& HeXe gas dis-

|U(w)|2:4RSpS7’d—“’ (15) charge is rf excited in a glass tulf mm inner diameter

(0?— w)*+ Yia?' providing an unsaturated gain of about 110 dB/m at3.51

pmm. The operating pressure is 0.5 kPa, which gives a
where we have introduced the relaxation-oscillation fre-FWHM gain bandwidthygy,/7 = 152 MHz[35] (including
quency wg by w3=yCpBsoI' and the damping rate 110-MHz Doppler broadeningThis relatively narrow gain
va= y(1+ Bso). Equation(15) has a limited validity for our ~ profile puts us well into the bad-cavity regirfia the experi-
case since in the HeXe laser severe complications of th&ents described below the measured group refractive index
relaxation-oscillation spectra may arise. As one example, &Ng) is given byny= 3.5 for the stable and,= 6.8 for the
transversely nonuniform gain distribution, as is to be ex-unstable cavity The inversion decay ratg=0.83x 10° s,
pected in a discharge tube, strongly alters the relaxationderived from the natural lifetime of 1,2s found in literature
oscillation frequency[30]. As another example, in our [35]. The rf discharge is driven with anC circuit resonant
present experiments we have observed a strong effect of noat 15 MHz. The gain tube is terminated by two 0.5-mm-thick
linear gain on the damping of the relaxation oscillations. Wequartz windows, each of which has a measured single-pass
discuss now, as a small side step, the latter effect. transmission of 0.91.

For many lasers the gai@(N) is not only a function of As shown schematically in Fig. 2, the resonator has a
the (saturateglinversion, but it also depends explicitly on the lengthL~10 cm and consists of a concave dielectric output
intensity; this is called nonlinear gain. More specifically, themirror M, with a 30-cm radius of curvature and a reflectiv-
gain in the saturated system is generally lower than in théty of 32%, and a gold-coated mirrdf,. A key point is that
unsaturated system with the same inversion due to a reduthe curvature oM, is different in the two experiments. We
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FIG. 2. Schematic drawing of the laser cavity. The two laser (b)

mirrors are labeled; andM,. The laser length i4. The screen
just in front of mirrorM, contains a square aperture with edge 2

o(w)[2

take M, to be either a flat gold mirror, making the configu-
ration a stable cavity, or a convex gold mirror with a 10.4-cm 1 2
radius of curvature, making it an unstable cavity. The linear
round-trip magnificatiorM for the unstable case is 2.88. As
a limiting aperture we insert right in front of mirrdvl, a
screen with a square apertutas was used previously in
[6,9]), with an area of 1.27< 1.28 mn?. This gives an
equivalent Fresnel numbé&r=1.137[36]. Using the magni-
fication M and Fresnel numbeX we calculated an excess- 1 3 5 7 9

noise factorK = 82 for the unstable-cavity cag&7]. The

stable-cavity laser has afalmost negligibl¢ longitudinal

excess-noise factdf =1.1[11,12. The HeXe gain tube has Frequency w/2n (MHz)

a square shape with an inner area of % mm?; this value is

large enough to ensure that the laser mode remains clear of FIG. 3. Typical intensity-noise spectta(w)|?, measured for
the glass tube at all times. the unstable-cavity lasdr) below thresholdP,,=0.12 uW, (b)

The laser output is split into two parts by a flat mirror 20Und threshold,Pq,=0.18 uW, and (c) above threshold,
with 90% reflectivity(not drawn in Fig. 2 The transmitted Pi"“t;)lo'?’ pW. AtthresholdPo,=0.24 uW (as determined from
part is measured by a room-temperature InAs detector, in g- 9
order to determine the laser output powy,. Using Eq. . ) o
(11) this is converted into the intracavity photon numisgr ~ Mode-pulling strengtf{38,39. The applied magnetic field
The reflected part is directed to a cryogenic InSb detectoinduces a Zeeman splitting of the gain transition, which leads
with a 4-MHz bandwidth, which is used for measuring thet® oppositely directed mode pulling on the left and right
intensity-noise spectra. The relatively narrow gain bandwidtifircularly polarized ¢, ando_) cavity modes. The strength
mentioned above ensures single longitudinal- and transversgf the frequency pulling depends on the cavity loss rate. The
mode operation, since the transverse- and longitudinal-modeeat frequency of ther, and o modes is recorded by a
splittings are larger than the gain bandwidth, both for thedetector behind a linear polarizer; this frequency reflects the
stable and for the unstable cavity. In the case of the stabldnode-pulling strength and thus provides a value for the
cavity laser, single transverse-mode operation is further eglressed-cavity loss rate.
tablished by the mode discrimination of the aperture. Finally, we will discuss the behavior of the incomplete-

For the stable-cavity laser the dressed-cavity loss rate cafversion factorNg,. It has been shown by Kuppems al.
be calculated from the known mirror reflectivities and the[25] that for small HeXe lasers as we use, the incomplete-
transmission of the gain-tube windows. For the unstablelnversion factorNg, increases almost linearly with the dis-

cavity laser we measure the dressed-cavity loss rate by agharge poweP, asNg,=1.2+0.26°, with P,y expressed
plying an axial magnetic field and determining the cavity!n Watts. For the subthreshold measurements, we use a small

discharge poweP ;<1 W; this givesNg;~1.4 for both the
_ _ stable- and unstable-cavity cases. This valudgfwill be
TABLE I. Summary of the various laser cavity parameters such;sed in Secs. IVA and IVB for both the stable- and

as the radius of curvature of the mirrd®s andR, (the mirror radii unstable-cavity lasers. For the above-threshold phase-noise
are positive for convex curvaturethe laser length., the dressed measurements on the unstable-cavity laser, a somewhat
cavity Ipss ratd";, the dress_ed mirror Iqss raf_en, the bad-cavity larger discharge powelP(;~5 W) was needed to bring the
correction factorC, and the incomplete-inversion factbi,. laser above threshold, so that the incomplete-inversion factor
is somewhat largerNg,~2.2. This value is used for the
unstable-cavity laser measurements in Sec. IV C. For the
stable-cavity measurements in Sec. IV C we use again the
stable —30 « 949 6.84 511 172 1.4  above valueNg~1.4 sinceP;<1 W.

unstable =30 +10.4 9.40 8.14 267 1.85 1.4-2.2 The above-mentioned experimental details, the measured
dressed-cavity loss ratds., the bad-cavity correction fac-

|o(w)[2

Laser R, R» L I'. I C Nsp
cavity (cm) (cm) (cm) (1 s Y (10fs™ 1)




576 van EIJKELENBORG, van EXTER, AND WOERDMAN 57
5 s
100 -3 0B .
h\ qBﬁb\ —_ . ° °
,: e Q N .
o ¢ X I
— / NANEY SN = 2 0o®
[%)) o bt o\ © ~ .
= / \ O o
c 10 » (/>’o ® 00, ] & e
3 ! o \ 94 1
# Qfl’ ‘e Q 3
. / \ 4 LY .8
o) / / \ o\ R o~ g
= ¢ 9 N 05 )
© . / .
N 1 | / Oj ]
Ql ! ' '
P 1 Q/ 0.001 0.01 0.1
@) s 7°
E i go out (“’ )
0.1 ¢ j : o
f ? FIG. 5. Measured Lorentzian widthsw/27 of the subthreshold
intensity-noise spectra as a function of the laser output p&ygr
lf /i) for both the stabldfilled circles and the unstable cavitfopen
I circles. The dotted fitting curves represent Ed3), with sy con-

1 I02 i 03 164 165 166 verted intoP; using Eq.(11).

Pt is converted into an intracavity photon number using

S Eq. (11). The resulting curve ofa(0)|? versuss, is shown
0 in Fig. 4 for both the stablefilled circles and the unstable-

FIG. 4. Intensity-noise strength at low frequerjoy0)|? versus ~ Cavity case(open circles The dashed curves are fits to Eq.
the number of photons, in the laser cavity. We show results for (12), which nicely follow the data points; below threshold
both the stable cavityfilled circles and unstable cavitfopen the low-frequency noise level rises proportionally $g,
circles. Both of the dashed curves are fits to EtR), which yield  whereas above threshold it reduces proportionallysgé.
sy for each case. We findy, =858+ 60 for the stable-cavity laser From both curves it can be estimated that we operate the
(filled circles andsy,=(15.9+ 1.5)x 10* for the unstable-cavity la-  |aser rather close to threshold; the range of measurements
ser (open circles This corresponds to output powers corresponds to the photon numisgrvarying from roughly a
P1,=0.025-0.0024W and Py,=0.24+0.02 uW, respectively. factor of 10 below to a factor of 10 above the threshold
photon number. Expressed M this corresponds to the
rangeM =0.99- 1.01 (assuming3~ 10" ). This close prox-
imity to threshold ensures that we detect the noise of a single
laser mode only, the higher-order modes being much further
below threshold.

The fitting of Eq.(12) to the data in Fig. 4 provides the

Typical examples of measured intensity-noise spectra arealue of sy, for both cases. We find;,=858+60 for the
shown in Fig. 3 for the case of the unstable-cavity laser. Allstable-cavity laser andsy,=(15.9+1.5)x10> for the
measured spectra have been corrected for the 4-MHz bandnstable-cavity laser. This difference can be ascribed to the
width of the detector. In Fig.(@) we show an intensity-noise difference of the excess-noise factoifor the two lasers and
spectrum measured below threshold; the drawn curve is a fihe difference in3. Using Eq.(8) and the values in Table |
to Eq. (13). Figure 3c) shows a spectrum measured farwe find KB 1=(9.3=1.4)x10° for the stable and
above threshold. The drawn curve is a fit to Etp). Very KB 1=(3.4+0.7)x1C® for the unstable cavity. In Sec.
close to threshold we measure spectra such as shown in Fig/ B we will compare these values with independent mea-
3(b), using Eq.(15) as the fit curve. It is clear from Fig. 3 surements oK to obtain a value fop.
that the behavior of the spectra when going through thresh-
old nicely follows the calculations. We will now proceed

! ¢ B. Analysis of intensity noise far below threshold
with methods proposed in Secs. Il A and Il B to analyze the )
experimental results, i.e., we will measure both the low- 1Nhe subthreshold Lorentzian spectrum of Ef3) has

frequency noise and the width of the subthreshold Lorentziaf€€n fitted to data as shown in FigaB The fitting results
spectra as a function ¢, for the width A w/27r are shown in Fig. 5 as a function of
P..: for the stable-cavity(filled circles and the unstable-
. . . _ cavity laser(open circles For the stable cavity we find
A. Analysis of intensity noise at low frequency (Aw/27) P o= (8.0+ 1.0)X 10~3 Hz W and for the unstable
From the measured spectra we determine the loweavity (Aw/27)Py,=(65+9)x 10 2 HzW. Using Eq.(13),
frequency noise levelo(0)|?> by taking the value at Eq.(11), and the values of the dressed-cavity loss faten
w/27 =280 kHz (to avoid the low-frequency technical-noise Table |, we find K=1.9+0.3 for the stable cavity and
peak around zero frequencyThe measured output power K=24+4 for the unstable cavity. As expected, the unstable-

tors C, and the incomplete-inversion factbls, are summa-
rized in Table 1.

IV. EXPERIMENTAL RESULTS
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TABLE Il. Summary of the various experimentally determined values. The bottom row indicates in which section the results were
obtained.

Laser K K KBt K B B

cavity Calculation Subthreshold Low frequency Phase noise CombifiagdK 81 Calculation
Stable 1.1 1.90.3 (9.3t 1.4)X10° 1.1+0.2 2.0<10°® 3.7x10°®
Unstable 82 244 (3.4+0.7)x 1¢° 32+5 0.71x10°7 (1.2-5.9)x10°7
See Sec. IVB IVB VA IvVC VD IVD

cavity laser has a much larger excess-noise factor. Thesbe measured value &, by the number in the third column,
values can be compared with theoretical values: The stablé-e., the measured value &1, in order to obtain3. We
cavity laser has a calculated longitudintal factor K=1.1  find PBggne=2.0<10° for the stable-cavity laser and
and the unstable-cavity laser a calculated fcransvlérﬁm:tor Bunstabie 7-1x 1078 for the unstable-cavity laser. Clearly the
K=82. The agreement between the experiments and the calnstable cavity has a much smaller spontaneous-emission
culated values oK is no better than a factor of 3. Note that factor 8. According to theory should vary inversely pro-
deviations of this magnitude are commonly found whenyqrtional to the mode volumgtd]; i.e., one expectByncbic
comparing excess-noise measurements to calculationg pe much smaller thaBgupe as measured, since the

[2,3,6. unstable-resonator laser operates with a much larger mode
volume.

We theoretically estimatg using Eq.(11) in [41], which

Values ofK can of course also be obtained from phase+equires that the effective mode volurwé" is known. For
linewidth measurements, as has been demonstrated befaige stable cavity this can be calculated; we find
[2,6,9,10. We determine the quantum-limited phase Iine-\/g‘;fvz WWSL:4-7X 108 m?, so that3=3.7x107%. This is
width of our laser from the spectral width of the beat fre- 3 factor of 2 larger than the measured value. For the unstable
quency between the, ando_ modes[38,39, which was  ¢4yity the effective mode volume is not properly defined. We

also used to measure the cavity loss ra@ee Sec. Il In estimate thatve is larger thanV§§V=(2a)2L=1.5>< 1077

short, this linewidth measurement technique is based on thes .oy .
following idea. The combination of frequency-spiit, and o , Where 2 is the edge of the square aperture in Fig. 2, and

eff _ —7 3 H
o_ polarized light is equivalent to linearly polarized light Emallder tha:]nvcav—_7.4><|10 rr? ,_Where thg tl)attir value Ifs h
with a rotating angle of polarization. This rotation is dis- 22S€d on the entire volume that is covered by the rays of the

turbed only by the randomly polarized spontaneous-emissiof€ometrical eigenmode. These values v}, lead to
noise since technical noigsuch as mirror vibrationshas no ~ 1.2x10°'<8<5.9x10"’, which is somewhat larger than
effect on the laser polarization. By measuring the noise in théhe experimental valug, s 7.1 108 found above.
polarization-rotation frequency, we can directly obtain the

guantum-limited laser linewidth. This has been described in V. THRESHOLDLESS LASER?

detail in[39]. From the measured linewidth we deduce the _ .
excess-noise factor by comparing to the calculated linewidth AS We have stressed, our model is a phenomenological

of a stable-cavity laser with the same loss; the latter lineM0del to investigate the influence of excess noise on the

width is well understood13]. threshold characteristics of a laser. One may of course ques-

These measurements are similar to those reported ifion the validity of this model. However, we remind the
[6,9,10,39,4Q) so we will be brief here. The measurementsféader that, as was discussed in the Introduction, a proper
of the phase linewidth as a function Bf,, always showed guantum thgory is not avajlable. This leaves some freedom
the expected Schawlow-Towné%gu% dependence, as ob- for;pecu{;’:\tlotﬂs th?t \f[ve V\.”” eﬁﬁlorfe b?lOW. ¢ ;
served before. The experimental result Forobtained from Recently, theg factor, i.e., the fraction of spontaneous
the stable-cavity laser phase linewidth Ks=1.1+0.2, in emission radiated into a specific mode, has become of great
good agreement with the calculations mentioned in SedMPertance in relation to thg=1 laser, sometimes called a

IV B. The experimental result for the unstable cavity laser iszero-threshold lasg2,49. A better terminology is thresh-

K=32+5. We conclude, as in Sec. IV B, that the measureaOId.Iess Iase{34]. The current interpretation of the excess-
unstable-cavity value ok is smaller than calculated, again nhoise facto |mp|_|es that the fracuo_n of spontaneous emis-
by a factor of about 3. sion that ends up in the laser mode is enhanced t_>y this _factor,
We summarize the various experimental results ineffectlvely.en_hancmg% by a factor ofK. As menthned N
Table II. Sec. I, th|s interpretation is supported by experiments on
phase noise of unstable-cavity lasg2s3,6,9,10. On the ba-
sis of our phenomenological model we find that the threshold
characteristics of a large- laser have an appearance that
The independent determination i3~ andK from the  approaches that of a thresholdless laser; the kink in the input
intensity-noise measurements in Secs. IV A and IV B allowsoutput curve (see Fig. 1 will become smoother and
for a determination of the spontaneous-emission fagtor smoother the largeK becomes. Extrapolation of this sce-
We divide the number in the second column of Table I, i.e.,nario would provide an alternative route to reach threshold-

C. Phase-linewidth measurements

D. Determination of the spontaneous-emission factor
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less laser operation. The important parameter is kg8 ment of this case requires a fully gquantum-mechanical

instead ofg3. theory.
The value of8 has the natural upper limit of 1, which

corresponds to all the spontaneous emission being directed

into the laser mode. The limiting situatigh=1 is notori- We have investigated, both theoretically and experimen-
ously difficult to realize since it requires a very small Iaserta"y, the influence of excess noise on both the threshold
cavity volume. Therefore, it is tempting to use a laige- characteristics and the intensity noise of a laser. Theoreti-
factor for “leverage,” maximizingK g instead of 3. The cally, we have presented laser rate equations for the photon
largest experimentally realizetl factor is~700[44]. Theo- number and atomic inversion, including ad hocexcess-
retically, there seems to be no limit to the valuekofand  noise factolK (K<B~1). Also, we have included bad-cavity
values as large as 40have been calculated for a one- aspects such as the dependence of the cavity loss rate on
dimensional hard-edged unstable cavity Idrimplying a  inversion. We have found that, due to the presence of excess
value of 16 for the corresponding two-dimensional cavity noise, the output power at lasing threshold is increased by a
when using a square apertygd. Therefore, the produdt¢  factor JK and we have derived expressions for the sub-
seems unlimited. It remains to be seen, however, how reathreshold intensity-noise spectra, containing the excess-noise
istic such gigantid factors are. factor K._ To first-order approximatiqnl(ﬁ« 1). Fhere is no

It should be noted that fdk 8> 1 theK noise photons in change in the laser threshold pumping condition.

the mode are in principle able to saturate the inversion since. Exp(lalrilzne)?tally, \1ve have h;tuf?ied inter&sity-npihse spectlr)?
p=pB"1is the saturation photon number. Therefore, it would®' SMall HeXe gas lasers, which operated on either a stable

be interesting to see what the photon statistics and phascéa\./Ity (no excess noigeor an unstable cawtj(large excess
noise. From the measured low-frequency intensity-noise
coherence of & 8>1 laser are.

-1
Naively speaking, the cases1 suggests an inconsis- strength we deduced the value OB~ ~. Further, for a laser

M han 100% of th L I(%perating relatively far below threshold we observed that the
tency: More than 0 Of the spontaneous emission Woulghiensity-noise spectrum is a Lorentzian, centered at zero fre-

end up in the laser mode. This, however, is not the case. fency. The width of this spectrum was used to deterrkine
largeK factor arises when the laser eigenmodes are hlghljgy combining these independently measured values of
nonorthogonal, so that a substantial degree of overlap beg-1 andK, we obtained a value fo8. In most cases the
tween different transverse modes can be fourjdThe noise  agreement between experiment and theory was no better than
in different modes is then strongly correlated, so that afteq factor of 2 or 3; this is, however, typical for this kind of
selection of one mode, i.e., the laser mode, there appears ¥gork [2,6,9,1Q and may be not surprising in view of the
be a factor oK more spontaneously-emitted photons. How-complexity of a real-life gas laser.
ever, the overall spontaneous-emission rate into all modes, We have speculated on the possibility to reach threshold-
including the laser mode, is unchand®&. When determin- |ess laser operation by maximizing the valuekg® and we
ing the fraction of the spontaneous emssion that ends up iimdicated the need for a proper quantum theory. Developing
the laser mode, this strong overlap betweeen all modesuch theory is highly nontrivial in view of the fact that we
should be taken into account, removing the inconsistency. deal with a three-dimensional open-sided nonlinear system.
We stress again that the cas@>1, where these intrigu- As a first step in this direction, an interesting quantum-
ing phenomena potentially occur, is beyond the validitymechanical “toy model” has been reported very recently
range of our modefwe have assumedB<<1). Proper treat- [45].

VI. SUMMARY
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