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Mimicking a squeezed-bath interaction: Quantum-reservoir engineering with atoms
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The interaction of an atomic two-level system and a squeezed vacuum leads to interesting effects in atomic
dynamics, including line narrowing in resonance fluorescence and absorption spectra, and a sufgressed
hanced decay of the in-phase and out-of-phase components of the atomic polarization. On the experimental
side these predictions have so far eluded observation, essentially due to the difficulty of embedding atoms in
a 47 squeezed vacuum. In this paper we show how to “engineer” a squeezed-bath-type interaction for an
effective two-level system. In the simplest example, our two-level atom is represented by the two ground levels
of an atom with an angular momentuds 1/2— J=1/2 transition(a four-level system which is driven by
(weak laser fields and coupled to the vacuum reservoir of radiation modes. Interference between the sponta-
neous emission channels in optical pumping leads to a squeezed-bath-type coupling and thus to symmetry
breaking of decay on the Bloch sphere. With this system it should be possible to observe the effects predicted
in the context of squeezed-bath—atom interactions. The laser parameters allow one to choose properties of the
squeezed-bath interaction, such as teffective photon-number expectation numbdrand the squeezing
phase¢. We present results of a detailed analytical and numerical sf$dy050-294707)04012-3

PACS numbgs): 42.50.Ct, 32.80-t, 42.50.Lc

I. INTRODUCTION vacuum. At the same time the decay (@,) will be en-
hanced:y,—2yN (> ). As studied in numerous theoretical
The interaction of atomic systems with squeezed lightpapers, these phase-sensitive decay rates will also be visible
leads to interesting effects in atomic dynamjdg. In par- in the spectrum of resonance fluorescef8ed] and the
ticular, Gardinef2] has shown that the atomic Bloch vector atomic absorption spectrufg]. A study in the context of the
of a two-level system coupled to a squeezed bath, which idaynes-Cummings model has been done[6h From a
characterized by a mean photon numbérand squeezing physical point of view, the suppression of the decay below
parametemM, obeys the equations the free vacuum level is due to the reduced quantum fluctua-
tions of one of the quadrature components of squeezed light.
d Similar effects have been investigated for the case of three-
a(SQ: — (S0 level systemg7,8]. For experimental realization one has to
include finite bandwidth effects. This has been done, for ex-
d ample, in[9-13.
S =S D On the experimental side, there have been only a few
experiments where the dynamics of atoms in squeezed light
d has been studied in the laboratory. Most notable are the ex-
—(S)=—7,S,)— 7. periments by Kimble and co-workers who, for example, re-
dt ported experimental observation of the linear intensity de-
pendencd 14,15 of two-photon absorption rate in squeezed

The decay constants in this equation are given by light [16]. The predictions of a suppressed and phase-

1 sensitive decay of the atomic polarization according to Egs.
y=y| N+ =—M ) , (1) and(2) have so far eluded observation, essentially due to
2 the difficulty of embedding atoms in a squeezed vacuum in a
complete 47 solid angle. If we denote by the fraction of
_ 1 the solid angle filled by the squeezed vacuum modes, then
=Y N+ 5+M], @ the polarization decay rates reduce 29
= y(2N+1) 1 1
Y=Y ' Yx="7Y| € N+§—M +(l—6)§,

with vy is the spontaneous emission rate in free vacuum. We

will refer to Eqg. (1) as the Gardiner-Bloch equation. Accord-

ing to Egs.(1) and(2), the two quadrature components of the W=V
atomic polarization(S,) and(S,) will decay with different

ratesy, and y,, respectively. In the limit of large photon Clearly, if € differs significantly from 1 the influence of the
numberN>1 and maximal squeezinf?>=N(N+1), the squeezed vacuum will be reduced accordingly. One possible
decay of(S,) will be suppressed according tg,— y/8N solution to achieve a large effectiveclose to 1 is to con-
(<v) in comparison to spontaneous emission in freesider systems that are effectively one dimensional due, for
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squeezedbath coupling, as given, for example, by the cross-
lewip) T =172 decay terms in spontaneous emission in Fig. 1, will be inves-
a tigated in Sec. V; in addition, we will suggest mechanisms
on how to suppress these unwanted effects. We conclude in
Sec. VI.

Il. TWO-LEVEL ATOM IN A SQUEEZED VACUUM:

lo-172) A SUMMARY

l9+1/2)  J=1/2
FIG. 1. Realization of a level scheme involving two ground | this section we will briefly review the basic effects and
states and two upper states_ that are Zeeman sublevels: The atonﬂf:operties of a two-level system coupled to a squeezed bath.
levels are coupled by two right- and left-circularly polarized laser), *5 ic\yjar, we discuss solutions of the Gardiner-Bloch
fields with Rabi frequencies, Q) ande_(). These laser fields are equationg2] and the main features of the spectrum of reso-
i >e. Q. [ [ i i i i
weak in the sense that>e.. Q. We will consider this scheme in nance fluorescence and the atomic absorption spectrum. We

two situations.(a) In the ideal situationthere is only spontaneous e th Its f f in the followi
decay along channels withm;=0. These decays interfere and give summarize these results for reterence in the following sec-

rise to squeezed-bath-like effectb) In a realistic modeleach up- tions.
per level decays with a total decay rdtewith a branching prob-

ability for the decay channels determined by the Clebsch-Gordan
coefficientsg, andg, . The processes along the cross lines of decay

do not interfere since they give rise to right- and left-circularly ~ We consider a two-level atom with ground stage and
polarized photons, respectively. The effect of these cross-decagxcited statde). The coupling of the atom to a squeezed
channels will give rise to collisionlike effects of the reservoir. In vacuum is described by the interaction Hamiltonian

Sec. V B we show how to suppress the cross decay.

A. The Gardiner-Bloch equation

Hiw=0TT+¢o'T, 3)
example, to a strong cavity-atom interaction as proposed
(see, e.g., Ref§17] and[18]).

In this paper we will show how to“engineer” a
squeezed-bath-type interactiteading to a Gardiner-Bloch
equation(1) by studying the dynamics of driven multilevel
atom coupled to “normal” vacuumin the simplest version
we will consider a four-level system: for example, an angular _ o
momentumJ, = 1/2— J,= 1/2 transition with two(degener- F(t)_% KBk € )
ate ground ?gm:ﬂ,z)) and excited states/é,—-1»)), as ’
illustrated in Fig. 1. If this atomic transition is driven lay, -
and 0—_-po|arized laser ||ght, the Spontaneous|y emitted |in_A broadband Squeezed bath centered around the atomic tran-
early polarized = photons emitted in the transition §ition frequencyw, is characterized by the correlation func-
les 12 =941 and |e_1)—|g_1) will interfere since  tions
they are indistinguishable. For weak driving fields far below
saturation we can adiabatically eliminate the excited states. (T (L)) = yNS(t—t"),

The dynamics of the two ground staties, 1,5),|g_1/») then

obeys a Master equation with damping terms due to optical

pumping processes between the two ground states. This Mas- (TOTT("))y=p(N+1)6(t—t"),

ter equation has a structure analogous to the coupling of (5)
two-level atoms to a squeezed bath. Interfering processes to b i 2t ,

mimic squeezed state detection statistics have been used pre- (TOI(L"))=yMe e A'5(t—t'),

viously by Lewenstein and co-worker$9,20. It is used in

the _conte_xt of z_:ltomic spin measurementg2d]. Reservoir _ <FT(t)FT(t/)>: yMeiPe?ioats(t—t'),
engineering to influence resonance fluorescence by changing

the density of states in a cavity has been investigat¢@dh

In the context of ion motion, reservoir engineering has beenvith effective photon numbeN and the(rea) squeezing
shown in[23]. parameteM. These parameters are restricted by the inequal-

The paper is organized as follows. In Sec. Il we will sum-ity M2<N(N+1), where the equal sign holds for maximal
marize the properties of the master equation for a two-levesqueezing. The squeezing phase is denotedgbyHere
atom coupled to a squeezed bath for reference and compatibroadband squeezed bath” refers to the assumption that the
son in later sections. In Sec. Il we discuss the reduction ofqueezing bandwidth is larger than the other frequency scales
the multilevel Master equation to an effective two-level mas-in the problem(excluding the optical frequengysuch as the
ter equation with squeezed-bath-type couplings of the fornspontaneous decay raje
(1). Section IV presents numerical results for resonance fluo- Knowledge of the correlation function{) allows one to
rescence and absorption spectra in four-level systems arikrive the Master equation for the atomic dynamics in the
compares with the corresponding squeezed bath resultBorn-Markov approximation. In a rotating frame the Master
Nonideal effects, leading to thermalas opposed to equation ig2,3]

with an atomic lowering operatar=|g){e| and a bath op-
eratorI", which is given in terms of the coupling constants
ki and the photon annihilation operatay , as
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TABLE I. Linewidth in the regime of strong driving. The notationg, v, ,y, refers to the notation of

Egs.(2).
$=0 b=
Central peak %=y(N+3-M) 7y=y(N+3+M)
Sidebands (vy+72)/2= 7 (6N+3+2M) (vt 72)/2= (6N+3—2M)
d 1 t_ ot t d
giP= 3 (Nt 1)(20p0"~c'op—po'o) Gi(S)=—v(2N+1)(S)—Qp(S)~ 7,
1 . . . .
+E)/N(Z(J'era'—0'(7Tp—p0'a'Jr)—)/Me"’sa:rpo-T where ¢=pg5—2¢p With ¢p a phase of the driving field
with Rabi frequency()p and ¢g a squeezing phase in the
—yMe ¢opo. (6) same reference frame as,. The Bloch equation is given

here for the choicepp=0. A consequence of the broken
For nonperfect squeezing we define mean photon numbefymmetry in the polarization decay is that the steady state of
N; andN, throughN;(N;+1)=M? andN=N;+N,, which  the driven two-level system becomes dependent on the rela-
allows us to rewrite Eq(6) in the form tive phase between the squeezing and the driving field.

%p: %y(zzpzT_zTa_E —pETE) B. Steady state
The steady state of the Bloch equati@) for the driven
1 two-level system becomes phase dependent if the vacuum is
+3 WNy(20pa'~a'op—po'o) squeezed Nl #0). This means that propagation effects such
as absorption and dispersion become dependent on the the

1 ‘ : ‘ relative phase between the driving field and the squeezing
+5YNx(207po—0g0lp—pao’), (7)  phase. Therefore, the steady state might be interesting to be
used as a kind of optical switching where propagating beams
with are controlled by the squeezing phase and the driving laser.
For normal vacuum the steady stat€up to a global phage
S = \/mo_+ei¢\/N—lo_T. independent of the phase of the driving laser.
The first line in Eq.(7) represents damping terms for ideal C. Spectrum of resonance fluorescence

squeezing, while the second and third lines correspond to a The spectrum of resonance fluorescence spectrum of a

thermal reservoitbackgroung strongly driven two-level atom is determined by the Fourier

In a wave-function simTuIation of the master equation Weyransforms(w) of the stationary two-time correlation func-
would interprets ando,o" as quantum jump operators for tion of the atomic dipole:

the various damping terms in E{7). In this quantum jump
picture the master equation is represented by an ensemble of Sy(w)=dF(oT(0)a(7)). 9
guantum trajectories of pure system wave functions, where
the evolution of states is described by an effective, non
Hermitian HamiltonianH s, interrupted by quantum jumps
where the wave function undergoes jumps according to th
action of quantum jump operators on the wave function. For
a discussion of a quantum jump picture of two-level atom
coupled to a squeezed bath we refer the readg24p

With the notationS,=(o'+ o), S,=((c¢'—0)/i), and

Equation(9) implies that the free field corresponding to the
articular mode for which the spectrum is observed is not
queezed.

The spectrum of resonance fluorescence for a squeezed
bath has been calculated in RE3]. According to the quan-
tum regression theorem, the evolution of the correlation
) function is governed by the Bloch equations. Therefore, the
S;=(Pe—Pg) for the Bloch vector, the Master equati®®)  gpeciral lines of the resonance fluorescence spectrum are de-
with the phase choicé =0 is equivalent to Eqel) givenin  armined by the eigenvalues of the coefficient matrix in Eq.
the Introduction. The corresponding equation for a drlven(8)_ For strong drivingp3 7, , y, one finds a Mollow trip-
system reads let with phase-dependent linewidths and intensitisse
Table ). For strong squeezing\(—«) the center line can

%(S&: — y( N+ %_ M co&j)) (S)+ yMsing(S,), become arbitrarily close to zero linewidth fgr=0.

D. Atomic absorption spectrum

d 1 .
Gi{S=- 7( N+5+ MCO&f’) (Sy)+ yMsing(S;) The absorption spectrum of a weak probe field in the pres-
ence of a strong driving field is related to the Fourier trans-
+Qp(S,), (8)  form of the two-time correlation function
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W(w)=®FT ,a'(0)]). 10 d
= e B o iHup oMl T (01 a2)pl ] o)

According to Ref[5], W(w) shows a strong dependence on +9To_pol +gTo,pol, (12)
the value ofé. For ¢ =0 it shows a strong peak at the center

and dispersionlike sidebands. The width of the central abyjith H,; an effective Hamiltonian

sorption peak is again dependentdm@and narrows to zero as

N grows, since its linewidth is the same as in the resonance r QO

fluorescence. Between the center line and the sidebands is a He=—i EPe+ E,§(O't+0',)

region with gain. Fokp= 7 these detuning regions with gain

are stronger and one finds even for the center line stimulated Q _ _

emission. The center line is broadened as well, in accordance + €+§(ef'¢L01 +efo,), (12
with the center linewidth of the resonance fluorescence.

where ¢, is the relative phase between the two lasers. The

Ill. DERIVATION OF A SQUEEZED-BATH MASTER atomic lowering operators are

EQUATION FOR AN EFFECTIVE TWO-LEVEL SYSTEM
o1=lg_1(e_12, 2= 12(es 1,

The signature of the squeezed-bath coupling in the master
equation(7) is the appearance of a quantum jump operator of or=|gs (e, o_=lg_1)(ei.
the form JN;+1o+€'*N;o'. We interpret the structure
of this operator as arising from interference in the atomicFurthermore, we define a projection operator for the upper
transition from the lower to the upper atomic level'j and  states as
the transition from the upper to the lower state)( An

analogous interference will occur in optical pumping pro- Po=le_1p{(e_1+|esy{(er-
cesses between the two ground states in a four-level system
in the emission ofr-polarized photons. The Clebsch-Gordan coefficients for the coupling of the up-

Let us consider the four-level atom according to Fig. 1.per to the lower levels are denoted ¢pyandg. , respectively
The two ground statelg,,— 1/, correspond to the two lev- (compare Fig. 1
els |g),|e) of the preceding section. The two upper levels |n a parameter regime satisfying. Q<I" we can adia-

|em=+12) Will be used as auxiliary levels. The upper and patically eliminate the upper leves_y,) and|e, 1,5 [25].
lower levels are connected by spontaneous decay due to th®y this we introduce the operator

interaction with the normal vacuum reservoir. The two decay

channels are assumed to give the same decaylrated to D=¢_o_+e, %0,

give rise to emitted photons of the same polarization and

frequency, so that the two spontaneous emission processgsy use the projections onto the upper stagsand the

are indistinguishable. We add two weak resonant laser fieldg),or statesP, to represent the master equation in terms of
to connect coherently the levelg_ ;) to |e, 1) With @ e evolution of the upper states, the lower states, and the

Rabi frequencye Q0 (<I') anc21 |g+21/2> to |e_yp) with @ coherence between upper and lower states. The correspond-
Rabi frequencye, Q) (<I') (ei+eZ=1). Thus the two jng equations are

ground states are connected by optical pumping. The first
process starts at levld _1,,) and transfers via the weak laser d d Q
field with Rabi frequency_Q to level|e, ,/,) from where it d—PepPe=d—pee= —I'pee—i E(DTpge_ pegP), (13
decays to levelg, ). The second process will connect t t
|9+ 12 to|g_1, due to absorption from the other laser with g g . 0
Rabi frequencye Q) (<I'). As a result, we end up with a _ _ .
Master equation for the effective two-level system dt oPPe=giPoe™ = 7 Poet i 5 (PggD ~Dped), (14
|g11/2),/9_1/2, where the damping terms have a structure
analogous to a squeezed-bath coupling. The cross-decayy d QO
terms corresponding to emission oba or o photon will anpPg:&pgg: —i §(Dpeg— pgeD*)
not interfere and thus give rise to a phase-insensitive back-
glr_oun)d (deviation from the ideal squeezed-bath-type cou- + 0T (014 03) ped 01+ 05) + 02T o peeor’
plings).
+92T 0y pees’ - (15)

A. Adiabatic elimination in the four-level system

- In the adiabatic approximatiop,. follows adiabatically the
Master equation

changes in the coherences describedppy, which in turn

We will now derive the Master equation for the effective follow adiabatically the dynamics of the ground stapgsg.
two-level system starting with the master equation for theln this approximation we find for the density matrix re-
four-level system, including the cross decésig. 1). It is  stricted to the lower levelpyy a Master equation that in-
given by volves two Lindblad terms
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TABLE Il. Parameters of the two-level system in a squeezed )
vacuum expressed as a function of the parameters of the mimicking
four-level system.
Two-level atom in squeezed vacuum Four-level system
Spontaneous emission rate in Y , 502
Normal vacuum (€€ ; d
squeecze
Photon-number expectation N € o
Value of squeezed vacuum 2 _ &2 - vachull .
c—€”
Squeezing parameter M _ .
e system reservoir
€L —€-
Phase of squeezing e e'h b)
d 102 ~ —y e —_~—— ~ ‘
_ 2 ,
JiPas=3 T 9 (22p2'-3"3p—p3T3) (16 L Lasers

normal
vacuum

ZQ
Sgc?(zangz_ 2p), (17

with the jump operatoﬁ given in terms of the Raman op- ]
eratoro=|g_1,{(9+ 14 as system reservoltr

§= (e, o+ eid)é_O_T)_ (18) F_IG. 2. Schematic view of the relation b_etwe_en system and res-
ervoir for the two-level and the four-level situation.

The remaining parts of the four-level density matrix are re-

lated topgyg by lg_12—|9+12. We will assume that these lasers are far
from any atomic resonance so that spontaneous emission can
0?2 be neglectedAlternatively, one can consider an ac magnetic
PeeIFDTngD (190 field.) The Bloch equation is given by
and d L2 2M si
a<sx>: —y| N+ 59 Mcosp, [(S)+ ygrMsing, (S,),
Q.
Peg=1 D Pgg- (20) d 1, o
a(3y>= —y| N+ 519 Mcosp, [(S,)+ ygfMsing (S,)
We make the replacements of Table Il to write this Master
equation as +Qp(Sy), (23
a _ —i(Hegp— pH o) d z ;
giP = 71 (Herp—pHer (8= 7 (2N+1)(S) ~ Up(S) -7,
+g|2)/( N+10'+ei¢\/N0'T)p( N+ 10'T+e_i¢\/N0')

where(), is the Rabi frequency of the Raman transition with

, ([N 1 the phase chosen @=0.
+dcy E"_Z 000z, (21

B. Discussion

with the effective Hamiltonian Forg,=1 (no cross decayEq. (23) is precisely the Bloch

equation(8). We can bring the Master equati¢h6) into the
. (220  form (6) or the Bloch form(1) by making the identifications
of Table Il. The two ground levels thus show a dynamics that
is analogous to that of a two-level atom in a squeezed bath.
Effectively we “engineer,” with the help of the upper levels
o,=P,.—P_ and the laser fields, a reservoir for the two ground levels such
that it looks like the coupling to a squeezed b@tbe Fig. 2
is characteristic for a process that destroys the decoherenddis point of view can be brought out more clearly by writ-
between the two ground-state levE®6]. Now we also con- ing an interaction Hamiltonian for the lower states in the
sider a laser connecting the Raman transitionadiabatic elimination as

1 2
+g4NI+P,)

Y ofN
Heﬁ=—|§9§ >t

The additional jump operator damping term involving
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(8S)

0.05-

0
-4

FIG. 3. Steady state fod=2.1, y/I'=1.9x 1075, andQ /y=5.1 and for the ideal case gf=1 (solid line) and three other values with
g,=0.99(dashed ling g,=0.95 (dash-dotted ling andg,=0.9 (dotted ling.

o= Ugng n U;gﬁ (24) A. Steady-state solution
An example of exact correspondence is the steady-state
. - solution for the driven system as investigated by Carmichael,
with ogg=912)(g- 12 the transition operator between the Lane, and Wall§3]. We drive the system by a resonant
two ground states and the bath operdtogiven in terms of  Raman transition with an effective Rabi frequer@y, . A
the coupling constantgy , and the photon annihilation op- typical steady state is shown as a solid line in Fig. 3. The
eratoray ) as dependence on the phageallows light fields, causing the
two internal transitions and the driving, to interact depending
_ QO . . on the relative phase between them. This leads to effects in
I'= 2 H| —) (Kk’)\E,a?:‘)\el otgTloLt the propagation of those fields through a cloud of atoms with
I the effective four-level system as shown above. The results
for the four-level system show th¢ dependence in agree-
- K’k")\e+e‘i‘f’ak'xe‘i“’k‘emtt)}. (25  ment with a corresponding two-level system.

B. Absorption spectrum
The correlation functions of these bath operators are the
same as the correlation functions of the opera&tagiven in
Eq. (5) of the squeezed bath if one uses the identification o

Tf:)bdi d”stZPeds :ﬁze}?e ITgnSCCc%urgstzeg difr?r Tvean?:r?ee:erat wo-level system strongly coupling the two ground states in a
9 In summary. the n?ain elyements %f the?okur-level S .ste Raman transition that is tuned on resonance. Then the weak-
Y, ySteMelg absorption spectrum is measured, where the probe field

are that the d'rECt. fransition between the_: two levels .Of th s represented by another stimulated Raman transition. The
two-level scheme is replaced by a pumping process involv:

ing other atomic levels and that the driving between the twq{srt:r:'gfg?rg/ ;b;(iwélg&zpfg::ggﬂf nt?uerr]wcggvnen by the Fourier
ground states is replaced by a Raman coupling.

As our first example we study the absorption spectrum of
}he four-level system. The idea is, in analogy to the investi-
ation concerning the two-level system, to drive the effective

W(w)~ P (ogy(7) 08 4(0) = 0l y(0)agg(7)),  (26)
IV. DISCUSSION AND RESULTS: THE IDEAL MODEL

We will now present some examples of the idegl1)  which can be calculated using the quantum regression theo-
behavior of the four-level system to illustrate that it indeedrem.
mimics a two-level atom coupled to a squeezed bath. The The absorption spectrum of the four-level systésee
following figures were produced using the full Master equa-Fig. 4(a)] is identical to that of the two-level system in a
tion for the four-level system of Fig. 1. Analytic formulas sgqueezed bath and we can see the phase dependence and the
presented, however, use the adiabatically eliminated equsharp peak at the center fgr=0 (solid line). This is readily
tions for the ground states to allow an easier comparison tonderstood since the process involved in measuring the ab-
the two-level system. For the parameters used in the figuresprption spectrum makes use only of the system level dy-
the adiabatically eliminated and the exact calculations are imamics as described by the Master equa(®i). This stands
excellent agreement. in contrast to the situation of the resonance fluorescence,
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30
25

absorption spectrum W(w)

-4
5 -5 0 5

detuning 107 (@ - ©)/T

FIG. 4. Absorption spectrurfin arbitrary unit$ for N=1, y/T'=3x10"%, andQ/y=7.1 and for(a) the ideal caseq,=1) and for
three values of);={0.9,(3)*2 (3)Y3 [(b), (c), and(d), respectivel}. The solid(dotted lines show the spectra fap=0 (= ).

which differs slightly from that of the two-level scheme, as s(w):qDFTqungg(OH e,agg(O)][@e*W’ogg( 7)
will be shown in the next subsection. ;
e gyl ]). (27)

C. Resonance fluorescence In contrast, the fluorescence spectrum calculated 3jyis

For resonance fluorescence we drive the system again thased on the Fourier transform of the correlation function
a stimulated Raman transition and detect the fluorescenc®,(w)=® (o "(0)a(7)) (see Sec. )| which is based on
coming from the transitionge. 1,5 ™|g-1/»). This leads, in the assumption that there is no interference in the detector
the adiabatic elimination, to the spectrum given in terms ofbetween the source field and the squeezed vacuum modes. In

ground-state correlations as our case the fluorescence spectrum is due to a kind of atomic
3 25
2.5 P
2
1.5

1

0.5

R . N SN - >

0 =
=9 -0.5 0 0.5 1 =9 -0.5 0 0.5 1

1.5

resonance fluorescence spectrum S{w)

0.5

detuning 107 (@ - @) /T

FIG. 5. Resonance fluorescence in arbitrary unit§\fer0.2, y/T'=7.1xX 10" °, andQp, /y=7.1 and for(a) the ideal cased;=1) and for
three values of);={0.9,(3)*2 (3)Y/3 [sub-plots(a)—(d)]. The solid(dotted line shows the spectrum fap=0 (p= ).
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TABLE lll. Linewidth in the regime of strong driving in depending on the effective photon nurNbemnd
Clebsch-Gordan coefficienff=1—g2.

$=0 o=
Central peak YN+ z-gPIN(N+1)] YN+ 2 +gfVN(N+1)]
Sideband
aebands %{2N+1+29$[2N+1+\/N(N+1)]} %{2N+1+Zg|2[2N+1—\/N(N+1)]}

guadrature correlatiorfsimilar to those appearing in the  The linewidth of the resonance fluorescence interpolates
squeezing spectrufiz7]) and there are three additional terms linearly as a function ogg between the values valid for the
with respect to the two-level scheme if we use the four-leveinteraction with a squeezed vacuum and those for the normal
scheme. The effect of the additional terms is to enhancg@acuum as shown in Table Ill. The steady-state variation
(supprespthe central peak of the Mollow triplet fop=0  with ¢, especially that of the compone8{, is more sensi-

(¢= ) relative to the sidebands even more than is the casgve to the presence of cross decay. To utilize thelepen-

for the two-level system. This effect becomes more promi-dence of the steady state one has to find a means to suppress
nent with increasing\N and leads folN>1 to a vanishing this cross decay to an extent as large as postiele Fig. 3.
amplitude for the sidebands¢&0) or the central line

(¢p=m). However, this does not change the position and B. Suppressing the effects of cross decay

width of the lines in the Mollow triplet. Therefore, the line L
narrowing and the phase dependence of the line intensities To suppress the dephasing in favqr of the squeezed-bath-
can be observed in the four-level systésee Fig. 8)]. The type effects, one can use d_estructlve mte_rference of th_e Cross
resonance fluorescence of the four-level scheme differs frorﬂjecay In a conflgu_ratlon W.'th more atomic levels, similar to
that of the two-level, which is not surprising since its origint e one proposed i{28]. This scheme emplloys upper levels
can be explained only in the full four-level scheme and not i-6€Man levels of angular momentudg=> and those of

the effective two-level scheme of the ground states. On thi@ngular momentund,=; (see Fig. 6. The weak laser fields
point the resonance fluorescence differs from the absorptiofif Téuencyw, are now detuned between the upper levels
spectrum and the steady state, which can be explained just }th Je=2 and those with J;=; with detunings

terms of the master equation for the two ground states. 2e=@L~ @eg aNd Ay=—(w —w,g), respectively. The
We continue to speak of the Mollow triplet for the four- spontaneous decay rate and the Clebsch-Gordan coefficients

level system in this parameter regime since only these threla@ve a subscript indicating the level they are referring to. We
lines have non-negligible intensity. As one leaves the regim&an calculate the rate for processes starting and endlng in the
of validity of the adiabatic elimination, where the effective S2Me ground level. This rate depends on the detuning and the

two-level system and the four-level system are in perfecfliPole elementsls andd,, referring to the transition be-
agreement, one finds, of course, a richer line structsee  tWeEeN the selected ground state and the two intermediate

Sec. V Q. upper levels taking part in the transition, respectively. It is
given by
V. RESULTS AND DISCUSSION: NONIDEAL EFFECTS 1 12%|E?| 92T, o2, 2 -
In this section we will address separately two problems T how? Iy Lol 28)
connected to the validity of the effective two-level system Ag—i 2 A 2

Master equation with squeezed-bath-type couplings. One is

the question of the influence of dephasing terms in the masgyhere we introduced the field strendt| corresponding to
ter equat|or‘(2_1) due to cross decay. The other is the_ queSthe Rabi frequencieg,,_Q, respectively. We always can
tion of behavior of the system at the onset of saturation. choose the detuning such that, /A, g(ce)zre/g(ca)zra.

A. Effects of cross decay
my=-3/2 my=-1/2 my=1/2 my=3/2
1

For a four-level systemJg=%—>Je=§ the Clebsch- _ _ . -———
Gordan coefficients arg?=3% and g>=2, so most of the P =32
spontaneous processes go into thmwanted dephasing la—y/2) laviya)
part. This ratio improves by using Zeeman sublevels of leuya) & 121 Iz les1/2) J=1/2
higher angular momentum as upper levels where, with the
help of the ac Stark effect, only the levels with= + 3 take
part in the dynamics while the other levels are shifted off
resonance by a laser field. Fiy= 3 we then find the slightly
more favorable numbers @f=2 andg?=1.

The effect of a nonvanishing. on the spectra and the
steady state is quite different. The absorption spectrum and FiG. 6. Extended level scheme that is used to suppress sponta-
the resonance fluorescence spectrum show eveg%e a  neous decay between levels withy= — 3 andm;= + 3 (cross de-
strong dependence af (see Figs. 4 and)5 cay) due to destructive interference.

lg-1/2) 9+1/2) J=1/2
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FIG. 7. Study of line positions and width for the full four-level systémlid and dash-dotted linggh comparison with the results of
adiabatically eliminated equatioridotted line$. The parameter values ake=0.2, ) /y=7.1, andg,=1. Compared are the linewidth of
the center lindtop left), the linewidth of the sideband linébottom lef), and the positions of the three lin@sp righy. To demonstrate that
the Mollow triplet is clearly distinguishable from other lines, we show the linewidth of the line that is the narrowest after théoiijrben
right). From this comparison it is clear that foY/I'<<0.2 the approximation made in the adiabatic elimination of the upper states is valid.

This will reduce the cross decay by an order of magnitude in VI. CONCLUSION

TgalAga. A trati f this effect i imil . . .
sgﬁe/mgahas bggnmg?\fe;atl)?/nxsa Y;S aide%ﬁe;? :n; |rn;|_ar The central result of this paper is that there is a way to
maining cross decay can be described, within the validity o "9IN€€r an environment for a two-level system. The basic

the adiabatic elimination, by effective Clebsch-Gordan coef!d€@ is o use the regime of adiabatic elimination to link
ficients and an effective decay rd@0]. coherent transitions from system levels to additional atomic

levels with spontaneous transitions from these additional lev-
els back to system levels. This leads to jump operators in the
C. Validity of the adiabatic elimination Master equation, which can be designed for a specific pur-

Finally, we investigate the behavior of the four-level Sys_pose. Especially interesting jump operators can be achieved
' if one uses, as in the model presented here, that there are

tem if we increase the Rabi frequencies of the internal tran- ~'™~ ~>¢ ! X
sitions. To explore the range of validity of the adiabatic INdistinguishable spontaneous processes leading to linear su-

elimination and the effects of onset of saturation, we comP€rpositions of jump operators. With this engineering one
pare the linewidth and position of the Mollow triplet for the Converts the tr.|V|§1I reservoir of normal vacuum modes into
adiabatically eliminated situation and the full four-level sys-the more sophisticated one of an effective squeezed vacuum
tem. In the latter we characterize the Mollow triplet as thefilling the whole solid angle of 4.

three narrowest lines in the resonance fluorescence spectrum.We have illustrated this procedure for the example of a
We can find their positions and linewidth as eigenvalues osqueezed-bath-type coupling. Within this example we dem-
the 15< 15 matrix appearing in the Bloch equation of the onstrated that this reservoir can be engineered by the use of
four-level system. The effect of an increased value)st” Zeeman sublevels. The predicted effects of the squeezed-
for the parameters used to plot the resonance fluorescencelath coupling on the steady state, the absorptions spectrum,
Fig. 5 is shown in Fig. 7. Up t6)/T"~0.2 the linewidth and and, with a slight change, the resonance fluorescence have
positions of the two-level Mollow triplet follow the curve been recovered in this model. We have shown that one can
predicted by the adiabatically eliminated theory. For higherselect spontaneous decay channels in the multilevel scheme
values of Q/T" the same position is still predicted by both and suppress others. Therefore, one can enhance the effect of
equations, but all three lines become narrower in the fullengineered jump operators in the final master equation and
system than expected by the reduced equations. Other linasippress other processes that would partially destroy the de-
of the full four-level system prove to be clearly distinct in sired effects. In a numerical study we have shown the effects
their linewidth from the ones of the Mollow triplet. We have of a nonideal realization resulting in decoherence processes
checked that the whole appearance of the resonant fluoreliat are collisionlike. This study shows that the predicted
cence(that is, including the line amplitudgeshows an in- effects are robust enough to allow their observation. The
creasing deviation from the adiabatically eliminated equategime of validity of the adiabatic elimination of the upper
tions asQ/I" increases beyond the val@¥/I'=0.2, just as levels in our model has been explored.

expected from the behavior of the eigenvalues. Our work presents an approach that allows the observa-
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|a+1/2) F

= HAB:kz;\ [ﬁKﬁi)akx|e+1/2><971/2|

les1/2) P + 1k Ay 2a)(g- 179 +H.C] (A4)

+ % [7 k(S Ak | € 12)(9+ 179

+hidan]1a)(g. 1 +H.cl, (A5)

g- g
l9-172) 1941/2) e W, Wa Hal=%Q )€ 12(9-1d +hQa)las 11)(g-12 + H.c.
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FIG. 8. Subsystem relevant to investigate the destructive mterHere K(ki) :KE&) are coupling constants defined in terms of

ference of spontaneous emission along the pumping transitions. Th . L e
total decay rates of the upper levels dtgandI’,. The Clebsch- tipole vectorse/q) , UNit vectors for the electric field, .
);md a quantization volume by

Gordan coefficients for the spontaneous decay emitting circularl
(linearly) polarized photons are denoted g§ andg!® (g{® and

() ; ; i fi ; Wi\
g¥). The Iaser_ls described by the electric-field amplit{ieand K(k?\/a): (€ 0(e/a))- (A7)
shown as a solid arrow. 2h egV

tion of theoretically predicted effects within reach of todays The Rabi frequencies due to the interaction with the classi-
experimental techniques. It encourages the investigation dially treated laser fields with electric field of amplituds]
other reservoir couplings that could be engineered with thé@nd unit vectore, are

ideas presented in this paper. 2/E|
Q(e/a):T(eLd(e/a))- (A8)
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APPENDIX: TRANSITION RATE FOR CROSS DECAY 1 4E)Pw} 1dal? |del?|? A9)
The value of the detuning that gives destructive interfer- T 3mchle Aa  Ae|

ence can be found using second-order perturbation theory.

We consider the subsystem as shown in Fig. 8. The Hamil- 126%0|E|?| g T i |?

tonian describing the subsystem is given by = hwﬁ ‘ A, A, |

H=Ha+Hg+Hag+HaL, (A1) (A10)
with the system Hamiltonians of the atom, the bath, and thdnclusion of the main terms of higher orders by the resolvent
laser mode given by method[31] yields the result

— 3 2 (a)2 (e)2 2
HA—ﬁwePeH,z"’hwaPaH/Za (A2) E: 12c €OlE| g¢ Ta B gc Te (A11)
T ho! Ta Te
Aa_ | 7 Ae_ | ?
Hg= % hoal,aq , (A3)

This leads finally to expressiai28). The same result can be
and the interaction Hamiltonian’s atom-bath and atom-laseobtained using adiabatic elimination in the Master equation

couplings given by for the full system as shown in Fig. 6.
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