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Mimicking a squeezed-bath interaction: Quantum-reservoir engineering with atoms

N. Lütkenhaus, J. I. Cirac, and P. Zoller
Institut für Theoretische Physik, Universita¨t Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria

~Received 16 June 1997!

The interaction of an atomic two-level system and a squeezed vacuum leads to interesting effects in atomic
dynamics, including line narrowing in resonance fluorescence and absorption spectra, and a suppressed~en-
hanced! decay of the in-phase and out-of-phase components of the atomic polarization. On the experimental
side these predictions have so far eluded observation, essentially due to the difficulty of embedding atoms in
a 4p squeezed vacuum. In this paper we show how to ‘‘engineer’’ a squeezed-bath-type interaction for an
effective two-level system. In the simplest example, our two-level atom is represented by the two ground levels
of an atom with an angular momentumJ51/2→J51/2 transition~a four-level system!, which is driven by
~weak! laser fields and coupled to the vacuum reservoir of radiation modes. Interference between the sponta-
neous emission channels in optical pumping leads to a squeezed-bath-type coupling and thus to symmetry
breaking of decay on the Bloch sphere. With this system it should be possible to observe the effects predicted
in the context of squeezed-bath–atom interactions. The laser parameters allow one to choose properties of the
squeezed-bath interaction, such as the~effective! photon-number expectation numberN and the squeezing
phasef. We present results of a detailed analytical and numerical study.@S1050-2947~97!04012-2#

PACS number~s!: 42.50.Ct, 32.80.2t, 42.50.Lc
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I. INTRODUCTION

The interaction of atomic systems with squeezed li
leads to interesting effects in atomic dynamics@1#. In par-
ticular, Gardiner@2# has shown that the atomic Bloch vect
of a two-level system coupled to a squeezed bath, whic
characterized by a mean photon numberN and squeezing
parameterM , obeys the equations

d

dt
^Sx&52gx^Sx&,

d

dt
^Sy&52gy^Sy&, ~1!

d

dt
^Sz&52gz^Sz&2g.

The decay constants in this equation are given by

gx5gS N1
1

2
2M D ,

gx5gS N1
1

2
1M D , ~2!

gz5g~2N11!,

with g is the spontaneous emission rate in free vacuum.
will refer to Eq.~1! as the Gardiner-Bloch equation. Accor
ing to Eqs.~1! and~2!, the two quadrature components of th
atomic polarization̂ Sx& and ^Sy& will decay with different
ratesgx and gy , respectively. In the limit of large photo
numberN@1 and maximal squeezingM25N(N11), the
decay of ^Sx& will be suppressed according togx→g/8N
(!g) in comparison to spontaneous emission in fr
571050-2947/98/57~1!/548~11!/$15.00
t
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vacuum. At the same time the decay of^Sy& will be en-
hanced:gy→2gN (@g). As studied in numerous theoretica
papers, these phase-sensitive decay rates will also be vi
in the spectrum of resonance fluorescence@3,4# and the
atomic absorption spectrum@5#. A study in the context of the
Jaynes-Cummings model has been done in@6#. From a
physical point of view, the suppression of the decay bel
the free vacuum level is due to the reduced quantum fluc
tions of one of the quadrature components of squeezed li
Similar effects have been investigated for the case of th
level systems@7,8#. For experimental realization one has
include finite bandwidth effects. This has been done, for
ample, in@9–13#.

On the experimental side, there have been only a
experiments where the dynamics of atoms in squeezed
has been studied in the laboratory. Most notable are the
periments by Kimble and co-workers who, for example,
ported experimental observation of the linear intensity
pendence@14,15# of two-photon absorption rate in squeez
light @16#. The predictions of a suppressed and pha
sensitive decay of the atomic polarization according to E
~1! and~2! have so far eluded observation, essentially due
the difficulty of embedding atoms in a squeezed vacuum
complete 4p solid angle. If we denote bye the fraction of
the solid angle filled by the squeezed vacuum modes, t
the polarization decay rates reduce to@2#

gx5gFeS N1
1

2
2M D1~12e!

1

2G ,
gy5gFeS N1

1

2
1M D1~12e!

1

2G .
Clearly, if e differs significantly from 1 the influence of th
squeezed vacuum will be reduced accordingly. One poss
solution to achieve a large effectivee close to 1 is to con-
sider systems that are effectively one dimensional due,
548 © 1998 The American Physical Society
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57 549MIMICKING A SQUEEZED-BATH INTERACTION: . . .
example, to a strong cavity-atom interaction as propo
~see, e.g., Refs.@17# and @18#!.

In this paper we will show how to‘‘engineer’’ a
squeezed-bath-type interactionleading to a Gardiner-Bloch
equation~1! by studying the dynamics of adriven multilevel
atom coupled to ‘‘normal’’ vacuum. In the simplest version
we will consider a four-level system: for example, an angu
momentumJg51/2→Je51/2 transition with two~degener-
ate! ground (ugm561/2&) and excited states (uem561/2&), as
illustrated in Fig. 1. If this atomic transition is driven bys1-
ands2-polarized laser light, the spontaneously emitted l
early polarized p photons emitted in the transitio
ue11/2&→

p ug11/2& and ue21/2&→
p ug21/2& will interfere since

they are indistinguishable. For weak driving fields far belo
saturation we can adiabatically eliminate the excited sta
The dynamics of the two ground statesug11/2&,ug21/2& then
obeys a Master equation with damping terms due to opt
pumping processes between the two ground states. This M
ter equation has a structure analogous to the coupling
two-level atoms to a squeezed bath. Interfering processe
mimic squeezed state detection statistics have been used
viously by Lewenstein and co-workers@19,20#. It is used in
the context of atomic spin measurements in@21#. Reservoir
engineering to influence resonance fluorescence by chan
the density of states in a cavity has been investigated in@22#.
In the context of ion motion, reservoir engineering has be
shown in@23#.

The paper is organized as follows. In Sec. II we will su
marize the properties of the master equation for a two-le
atom coupled to a squeezed bath for reference and com
son in later sections. In Sec. III we discuss the reduction
the multilevel Master equation to an effective two-level ma
ter equation with squeezed-bath-type couplings of the fo
~1!. Section IV presents numerical results for resonance fl
rescence and absorption spectra in four-level systems
compares with the corresponding squeezed bath res
Nonideal effects, leading to thermal~as opposed to

FIG. 1. Realization of a level scheme involving two grou
states and two upper states that are Zeeman sublevels. The a
levels are coupled by two right- and left-circularly polarized las
fields with Rabi frequenciese1V ande2V. These laser fields are
weak in the sense thatG@e6V. We will consider this scheme in
two situations.~a! In the ideal situationthere is only spontaneou
decay along channels withDmj50. These decays interfere and giv
rise to squeezed-bath-like effects.~b! In a realistic modeleach up-
per level decays with a total decay rateG with a branching prob-
ability for the decay channels determined by the Clebsch-Gor
coefficientsgc andgl . The processes along the cross lines of de
do not interfere since they give rise to right- and left-circula
polarized photons, respectively. The effect of these cross-de
channels will give rise to collisionlike effects of the reservoir.
Sec. V B we show how to suppress the cross decay.
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squeezed! bath coupling, as given, for example, by the cros
decay terms in spontaneous emission in Fig. 1, will be inv
tigated in Sec. V; in addition, we will suggest mechanis
on how to suppress these unwanted effects. We conclud
Sec. VI.

II. TWO-LEVEL ATOM IN A SQUEEZED VACUUM:
A SUMMARY

In this section we will briefly review the basic effects an
properties of a two-level system coupled to a squeezed b
In particular, we discuss solutions of the Gardiner-Blo
equations@2# and the main features of the spectrum of res
nance fluorescence and the atomic absorption spectrum
summarize these results for reference in the following s
tions.

A. The Gardiner-Bloch equation

We consider a two-level atom with ground stateug& and
excited stateue&. The coupling of the atom to a squeeze
vacuum is described by the interaction Hamiltonian

H int5sG†1s†G, ~3!

with an atomic lowering operators5ug&^eu and a bath op-
eratorG, which is given in terms of the coupling constan
kk,l and the photon annihilation operatorak,l as

G~ t !5(
k,l

kk,lak,le2 ivkt. ~4!

A broadband squeezed bath centered around the atomic
sition frequencyvA is characterized by the correlation fun
tions

^G†~ t !G~ t8!&5gNd~ t2t8!,

^G~ t !G†~ t8!&5g~N11!d~ t2t8!,
~5!

^G~ t !G~ t8!&5gMe2 ife22ivAtd~ t2t8!,

^G†~ t !G†~ t8!&5gMeife2ivAtd~ t2t8!,

with effective photon numberN and the~real! squeezing
parameterM . These parameters are restricted by the inequ
ity M2<N(N11), where the equal sign holds for maxim
squeezing. The squeezing phase is denoted byf. Here
‘‘broadband squeezed bath’’ refers to the assumption that
squeezing bandwidth is larger than the other frequency sc
in the problem~excluding the optical frequency!, such as the
spontaneous decay rateg.

Knowledge of the correlation functions~5! allows one to
derive the Master equation for the atomic dynamics in
Born-Markov approximation. In a rotating frame the Mast
equation is@2,3#
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r

n
y
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TABLE I. Linewidth in the regime of strong driving. The notationsgx ,gy ,gz refers to the notation of
Eqs.~2!.

f50 f5p

Central peak gx5g(N1
1
2 2M ) gy5g(N1

1
2 1M )

Sidebands
(gy1gz)/25

g

4
(6N1312M ) (gx1gz)/25

g

4
(6N1322M )
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dt
r5

1

2
g~N11!~2srs†2s†sr2rs†s!

1
1

2
gN~2s†rs2ss†r2rss†!2gMeifs†rs†

2gMe2 ifsrs. ~6!

For nonperfect squeezing we define mean photon num
N1 andN2 throughN1(N111)5M2 andN5N11N2, which
allows us to rewrite Eq.~6! in the form

d

dt
r5

1

2
g~2SrS†2S†sS2rS†S!

1
1

2
gN2~2srs†2s†sr2rs†s!

1
1

2
gN2~2s†rs2ss†r2rss†!, ~7!

with

S5AN111s1eifAN1s†.

The first line in Eq.~7! represents damping terms for ide
squeezing, while the second and third lines correspond
thermal reservoir~background!.

In a wave-function simulation of the master equation w
would interpretS ands,s† as quantum jump operators fo
the various damping terms in Eq.~7!. In this quantum jump
picture the master equation is represented by an ensemb
quantum trajectories of pure system wave functions, wh
the evolution of states is described by an effective, n
Hermitian HamiltonianHeff , interrupted by quantum jumps
where the wave function undergoes jumps according to
action of quantum jump operators on the wave function. F
a discussion of a quantum jump picture of two-level ato
coupled to a squeezed bath we refer the reader to@24#.

With the notationSx5^s†1s&, Sy5^(s†2s)/ i &, and
Sz5^Pe2Pg& for the Bloch vector, the Master equation~6!
with the phase choicef50 is equivalent to Eqs.~1! given in
the Introduction. The corresponding equation for a driv
system reads

d

dt
^Sx&52gS N1

1

2
2Mcosf D ^Sx&1gMsinf^Sy&,

d

dt
^Sy&52gS N1

1

2
1Mcosf D ^Sy&1gMsinf^Sx&

1VD^Sz&, ~8!
rs

l
a

e
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-
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n

d

dt
^Sz&52g~2N11!^Sz&2VD^Sy&2g,

where f5wS22wD with wD a phase of the driving field
with Rabi frequencyVD and wS a squeezing phase in th
same reference frame aswD . The Bloch equation is given
here for the choicewD50. A consequence of the broke
symmetry in the polarization decay is that the steady state
the driven two-level system becomes dependent on the r
tive phase between the squeezing and the driving field.

B. Steady state

The steady state of the Bloch equation~8! for the driven
two-level system becomes phase dependent if the vacuu
squeezed (MÞ0). This means that propagation effects su
as absorption and dispersion become dependent on the
relative phase between the driving field and the squeez
phase. Therefore, the steady state might be interesting t
used as a kind of optical switching where propagating bea
are controlled by the squeezing phase and the driving la
For normal vacuum the steady state is~up to a global phase!
independent of the phase of the driving laser.

C. Spectrum of resonance fluorescence

The spectrum of resonance fluorescence spectrum o
strongly driven two-level atom is determined by the Four
transformS(v) of the stationary two-time correlation func
tion of the atomic dipole:

S2~v!5FFT^s†~0!s~t!&. ~9!

Equation~9! implies that the free field corresponding to th
particular mode for which the spectrum is observed is n
squeezed.

The spectrum of resonance fluorescence for a squee
bath has been calculated in Ref.@3#. According to the quan-
tum regression theorem, the evolution of the correlati
function is governed by the Bloch equations. Therefore,
spectral lines of the resonance fluorescence spectrum are
termined by the eigenvalues of the coefficient matrix in E
~8!. For strong drivingVD@gx ,gy one finds a Mollow trip-
let with phase-dependent linewidths and intensities~see
Table I!. For strong squeezing (N→`) the center line can
become arbitrarily close to zero linewidth forf50.

D. Atomic absorption spectrum

The absorption spectrum of a weak probe field in the pr
ence of a strong driving field is related to the Fourier tran
form of the two-time correlation function
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W~v!5FFT^@s~t!,s†~0!#&. ~10!

According to Ref.@5#, W(v) shows a strong dependence
the value off. Forf50 it shows a strong peak at the cent
and dispersionlike sidebands. The width of the central
sorption peak is again dependent onN and narrows to zero a
N grows, since its linewidth is the same as in the resona
fluorescence. Between the center line and the sidebands
region with gain. Forf5p these detuning regions with gai
are stronger and one finds even for the center line stimul
emission. The center line is broadened as well, in accorda
with the center linewidth of the resonance fluorescence.

III. DERIVATION OF A SQUEEZED-BATH MASTER
EQUATION FOR AN EFFECTIVE TWO-LEVEL SYSTEM

The signature of the squeezed-bath coupling in the ma
equation~7! is the appearance of a quantum jump operato
the form AN111s1eifAN1s†. We interpret the structure
of this operator as arising from interference in the atom
transition from the lower to the upper atomic level (s†) and
the transition from the upper to the lower state (s). An
analogous interference will occur in optical pumping pr
cesses between the two ground states in a four-level sy
in the emission ofp-polarized photons.

Let us consider the four-level atom according to Fig.
The two ground statesugm561/2& correspond to the two lev
els ug&,ue& of the preceding section. The two upper leve
uem561/2& will be used as auxiliary levels. The upper an
lower levels are connected by spontaneous decay due to
interaction with the normal vacuum reservoir. The two dec
channels are assumed to give the same decay rateG and to
give rise to emitted photons of the same polarization a
frequency, so that the two spontaneous emission proce
are indistinguishable. We add two weak resonant laser fi
to connect coherently the levelsug21/2& to ue11/2& with a
Rabi frequencye2V (!G) and ug11/2& to ue21/2& with a
Rabi frequencye1V (!G) (e1

2 1e2
2 51). Thus the two

ground states are connected by optical pumping. The
process starts at levelug21/2& and transfers via the weak las
field with Rabi frequencye2V to level ue11/2& from where it
decays to levelug11/2&. The second process will conne
ug11/2& to ug21/2&, due to absorption from the other laser wi
Rabi frequencye1V (!G). As a result, we end up with a
Master equation for the effective two-level syste
ug11/2&,ug21/2&, where the damping terms have a structu
analogous to a squeezed-bath coupling. The cross-d
terms corresponding to emission of as1 or s2 photon will
not interfere and thus give rise to a phase-insensitive ba
ground ~deviation from the ideal squeezed-bath-type co
plings!.

A. Adiabatic elimination in the four-level system
Master equation

We will now derive the Master equation for the effectiv
two-level system starting with the master equation for
four-level system, including the cross decay~Fig. 1!. It is
given by
-

ce
s a

ed
ce

er
f

c

-
m

.

the
y

d
ses
ds

st

e
ay

k-
-

e

d

dt
r52 i ~Heffr2rHeff

† !1gl
2G~s11s2!r~s1

†1s2
†!

1gc
2Gs2rs2

† 1gc
2Gs1rs1

† , ~11!

with Heff an effective Hamiltonian

Heff52 i
G

2
Pe1e2

V

2
~s2

† 1s2!

1e1

V

2
~e2 ifLs1

† 1eifLs1!, ~12!

wherefL is the relative phase between the two lasers. T
atomic lowering operators are

s15ug21/2&^e21/2u, s25ug11/2&^e11/2u,

s15ug11/2&^e21/2u, s25ug21/2&^e11/2u.

Furthermore, we define a projection operator for the up
states as

Pe5ue21/2&^e21/2u1ue11/2&^e11/2u.

The Clebsch-Gordan coefficients for the coupling of the u
per to the lower levels are denoted bygl andgc , respectively
~compare Fig. 1!.

In a parameter regime satisfyinge6V!G we can adia-
batically eliminate the upper levelsue21/2& and ue11/2& @25#.
For this we introduce the operator

D5e2s21e1eifLs1

and use the projections onto the upper statesPe and the
lower statesPg to represent the master equation in terms
the evolution of the upper states, the lower states, and
coherence between upper and lower states. The corresp
ing equations are

d

dt
PerPe5

d

dt
ree52Gree2 i

V

2
~D†rge2regD !, ~13!

d

dt
PgrPe5

d

dt
rge52

G

2
rge1 i

V

2
~rggD2Dree!, ~14!

d

dt
PgrPg5

d

dt
rgg52 i

V

2
~Dreg2rgeD

†!

1gl
2G~s11s2!ree~s1

†1s2
†!1gc

2Gs2rees2
†

1gc
2Gs1rees1

† . ~15!

In the adiabatic approximation,ree follows adiabatically the
changes in the coherences described byreg , which in turn
follow adiabatically the dynamics of the ground statesrgg .
In this approximation we find for the density matrix re
stricted to the lower levelsrgg a Master equation that in
volves two Lindblad terms
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d

dt
rgg5

1

2

V2

G
gl

2~2S̃rS̃†2S̃†S̃r2rS̃†S̃! ~16!

1
1

8
gc

2 V2

G
~2szrsz22r!, ~17!

with the jump operatorS̃ given in terms of the Raman op
erators5ug21/2&^g11/2u as

S̃5~e1s1eife2s†!. ~18!

The remaining parts of the four-level density matrix are
lated torgg by

ree5
V2

G2
D†rggD ~19!

and

reg5 i
V

G
D†rgg . ~20!

We make the replacements of Table II to write this Mas
equation as

d

dt
r52 i ~Heffr2rHeff

† !

1gl
2g~AN11s1eifANs†!r~AN11s†1e2 ifANs!

1gc
2gS N

2
1

1

4Dszrsz , ~21!

with the effective Hamiltonian

Heff52 i
g

2Fgc
2S N

2
1

1

4D1gl
2~N11P1!G . ~22!

The additional jump operator damping term involving

sz5P12P2

is characteristic for a process that destroys the decoher
between the two ground-state levels@26#. Now we also con-
sider a laser connecting the Raman transit

TABLE II. Parameters of the two-level system in a squeez
vacuum expressed as a function of the parameters of the mimic
four-level system.

Two-level atom in squeezed vacuum Four-level system

Spontaneous emission rate in
Normal vacuum

g
(e1

2 2e2
2 )

V2

G

Photon-number expectation
Value of squeezed vacuum

N e2
2

e1
2 2e2

2

Squeezing parameter M e2e1

e1
2 2e2

2

Phase of squeezing eif eifL
-

r

ce

n

ug21/2&→ug11/2&. We will assume that these lasers are
from any atomic resonance so that spontaneous emission
be neglected.~Alternatively, one can consider an ac magne
field.! The Bloch equation is given by

d

dt
^Sx&52gS N1

1

2
2gl

2McosfLD ^Sx&1ggl
2MsinfL^Sy&,

d

dt
^Sy&52gS N1

1

2
1gl

2McosfLD ^Sy&1ggl
2MsinfL^Sx&

1VD^Sz&, ~23!

d

dt
^Sz&52ggl

2~2N11!^Sz&2VD^Sy&2gl
2g,

whereVD is the Rabi frequency of the Raman transition w
the phase chosen asfR50.

B. Discussion

For gl51 ~no cross decay! Eq. ~23! is precisely the Bloch
equation~8!. We can bring the Master equation~16! into the
form ~6! or the Bloch form~1! by making the identifications
of Table II. The two ground levels thus show a dynamics t
is analogous to that of a two-level atom in a squeezed b
Effectively we ‘‘engineer,’’ with the help of the upper level
and the laser fields, a reservoir for the two ground levels s
that it looks like the coupling to a squeezed bath~see Fig. 2!.
This point of view can be brought out more clearly by wr
ing an interaction Hamiltonian for the lower states in t
adiabatic elimination as

FIG. 2. Schematic view of the relation between system and
ervoir for the two-level and the four-level situation.

d
ng
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FIG. 3. Steady state forN52.1,g/G51.931025, andVD /g55.1 and for the ideal case ofgl51 ~solid line! and three other values with
gl50.99 ~dashed line!, gl50.95 ~dash-dotted line!, andgl50.9 ~dotted line!.
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ce,
H int5sggG̃
†1sgg

† G̃, ~24!

with sgg5ug1/2&^g21/2u the transition operator between th

two ground states and the bath operatorG̃ given in terms of
the coupling constantskk,l and the photon annihilation op
eratorak,l as

G̃5(
k,l

F S i
V

G D ~kk,le2ak,l
† eivkte2 ivLt

2kk,l* e1e2 ifak,le2 ivkteivLt!G . ~25!

The correlation functions of these bath operators are
same as the correlation functions of the operatorG given in
Eq. ~5! of the squeezed bath if one uses the identification
Table II and takes into account that for the degener
ground states the frequency corresponding tovA vanishes.

In summary, the main elements of the four-level syst
are that the direct transition between the two levels of
two-level scheme is replaced by a pumping process inv
ing other atomic levels and that the driving between the t
ground states is replaced by a Raman coupling.

IV. DISCUSSION AND RESULTS: THE IDEAL MODEL

We will now present some examples of the ideal (gl51)
behavior of the four-level system to illustrate that it inde
mimics a two-level atom coupled to a squeezed bath.
following figures were produced using the full Master equ
tion for the four-level system of Fig. 1. Analytic formula
presented, however, use the adiabatically eliminated e
tions for the ground states to allow an easier compariso
the two-level system. For the parameters used in the figu
the adiabatically eliminated and the exact calculations ar
excellent agreement.
e

f
te

e
-

o

e
-

a-
to
s,
in

A. Steady-state solution

An example of exact correspondence is the steady-s
solution for the driven system as investigated by Carmich
Lane, and Walls@3#. We drive the system by a resona
Raman transition with an effective Rabi frequencyVD . A
typical steady state is shown as a solid line in Fig. 3. T
dependence on the phasef allows light fields, causing the
two internal transitions and the driving, to interact depend
on the relative phase between them. This leads to effect
the propagation of those fields through a cloud of atoms w
the effective four-level system as shown above. The res
for the four-level system show thef dependence in agree
ment with a corresponding two-level system.

B. Absorption spectrum

As our first example we study the absorption spectrum
the four-level system. The idea is, in analogy to the inve
gation concerning the two-level system, to drive the effect
two-level system strongly coupling the two ground states i
Raman transition that is tuned on resonance. Then the w
field absorption spectrum is measured, where the probe
is represented by another stimulated Raman transition.
stationary absorption spectrum is then given by the Fou
transform of a two-time correlation function

W~v!;FFT^sgg~t!sgg
† ~0!2sgg

† ~0!sgg~t!&, ~26!

which can be calculated using the quantum regression th
rem.

The absorption spectrum of the four-level system@see
Fig. 4~a!# is identical to that of the two-level system in
squeezed bath and we can see the phase dependence a
sharp peak at the center forf50 ~solid line!. This is readily
understood since the process involved in measuring the
sorption spectrum makes use only of the system level
namics as described by the Master equation~21!. This stands
in contrast to the situation of the resonance fluorescen
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FIG. 4. Absorption spectrum~in arbitrary units! for N51, g/G5
1
3 31024, andVD /g57.1 and for~a! the ideal case (gl51) and for

three values ofgl5$0.9,(2
3 )1/2,( 1

3 )1/2% @~b!, ~c!, and~d!, respectively#. The solid~dotted! lines show the spectra forf50 (f5p).
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which differs slightly from that of the two-level scheme,
will be shown in the next subsection.

C. Resonance fluorescence

For resonance fluorescence we drive the system agai
a stimulated Raman transition and detect the fluoresce
coming from the transitionsue61/2&→p ug61/2&. This leads, in
the adiabatic elimination, to the spectrum given in terms
ground-state correlations as
by
ce

f

S~v!5FFT^@e1eifsgg
† ~0!1e2sgg~0!#@e1e2 ifsgg~t!

1e2sgg
† ~t!#&. ~27!

In contrast, the fluorescence spectrum calculated by@3# is
based on the Fourier transform of the correlation funct
S2(v)5FFT^s†(0)s(t)& ~see Sec. II!, which is based on
the assumption that there is no interference in the dete
between the source field and the squeezed vacuum mode
our case the fluorescence spectrum is due to a kind of ato
FIG. 5. Resonance fluorescence in arbitrary units forN50.2,g/G57.131025, andVD /g57.1 and for~a! the ideal case (gl51) and for

three values ofgl5$0.9,(2
3 )1/2,( 1

3 )1/2% @sub-plots~a!–~d!#. The solid~dotted! line shows the spectrum forf50 (f5p).
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TABLE III. Linewidth in the regime of strong driving in depending on the effective photon numberN and
Clebsch-Gordan coefficientgl

2512gc
2 .

f50 f5p

Central peak g@N1
1
2 2gl

2AN(N11)# g@N1
1
2 1gl

2AN(N11)#
Sidebands g

4 $2N1112gl
2@2N111AN(N11)#%

g

4 $2N1112gl
2@2N112AN(N11)#%
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quadrature correlation~similar to those appearing in th
squeezing spectrum@27#! and there are three additional term
with respect to the two-level scheme if we use the four-le
scheme. The effect of the additional terms is to enha
~suppress! the central peak of the Mollow triplet forf50
(f5p) relative to the sidebands even more than is the c
for the two-level system. This effect becomes more pro
nent with increasingN and leads forN@1 to a vanishing
amplitude for the sidebands (f50) or the central line
(f5p). However, this does not change the position a
width of the lines in the Mollow triplet. Therefore, the lin
narrowing and the phase dependence of the line intens
can be observed in the four-level system@see Fig. 5~a!#. The
resonance fluorescence of the four-level scheme differs f
that of the two-level, which is not surprising since its orig
can be explained only in the full four-level scheme and no
the effective two-level scheme of the ground states. On
point the resonance fluorescence differs from the absorp
spectrum and the steady state, which can be explained ju
terms of the master equation for the two ground states.

We continue to speak of the Mollow triplet for the fou
level system in this parameter regime since only these th
lines have non-negligible intensity. As one leaves the reg
of validity of the adiabatic elimination, where the effectiv
two-level system and the four-level system are in perf
agreement, one finds, of course, a richer line structure~see
Sec. V C!.

V. RESULTS AND DISCUSSION: NONIDEAL EFFECTS

In this section we will address separately two proble
connected to the validity of the effective two-level syste
Master equation with squeezed-bath-type couplings. On
the question of the influence of dephasing terms in the m
ter equation~21! due to cross decay. The other is the qu
tion of behavior of the system at the onset of saturation.

A. Effects of cross decay

For a four-level systemJg5 1
2→Je5 1

2 the Clebsch-
Gordan coefficients aregl

25 1
3 and gc

25 2
3, so most of the

spontaneous processes go into the~unwanted! dephasing
part. This ratio improves by using Zeeman sublevels
higher angular momentum as upper levels where, with
help of the ac Stark effect, only the levels withm56 1

2 take
part in the dynamics while the other levels are shifted
resonance by a laser field. ForJe5 3

2 we then find the slightly
more favorable numbers ofgl

25 2
3 andgc

25 1
3.

The effect of a nonvanishinggc on the spectra and th
steady state is quite different. The absorption spectrum
the resonance fluorescence spectrum show even forgc

25 2
3 a

strong dependence onf ~see Figs. 4 and 5!.
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The linewidth of the resonance fluorescence interpola
linearly as a function ofgc

2 between the values valid for th
interaction with a squeezed vacuum and those for the nor
vacuum as shown in Table III. The steady-state variat
with f, especially that of the componentSx , is more sensi-
tive to the presence of cross decay. To utilize thef depen-
dence of the steady state one has to find a means to sup
this cross decay to an extent as large as possible~see Fig. 3!.

B. Suppressing the effects of cross decay

To suppress the dephasing in favor of the squeezed-b
type effects, one can use destructive interference of the c
decay in a configuration with more atomic levels, similar
the one proposed in@28#. This scheme employs upper leve
Zeeman levels of angular momentumJe5 1

2 and those of
angular momentumJa5 3

2 ~see Fig. 6!. The weak laser fields
of frequencyvL are now detuned between the upper lev
with Je5 1

2 and those with Ja5 3
2 with detunings

De5vL2veg and Da52(vL2vag), respectively. The
spontaneous decay rate and the Clebsch-Gordan coeffic
have a subscript indicating the level they are referring to.
can calculate the rate for processes starting and ending in
same ground level. This rate depends on the detuning and
dipole elementsde and da , referring to the transition be
tween the selected ground state and the two intermed
upper levels taking part in the transition, respectively. It
given by

1

t
5

12c3e0uEu2

\vL
3 U gc

~a!2Ga

Da2 i
Ga

2

2
gc

~e!2Ge

De2 i
Ge

2
U2

, ~28!

where we introduced the field strengthuEu corresponding to
the Rabi frequenciese1/2V, respectively. We always ca

choose the detuning such thatDe /Da5gc
(e)2

Ge /gc
(a)2

Ga .

FIG. 6. Extended level scheme that is used to suppress spo
neous decay between levels withmJ52

1
2 andmJ51

1
2 ~cross de-

cay! due to destructive interference.
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FIG. 7. Study of line positions and width for the full four-level system~solid and dash-dotted lines! in comparison with the results o
adiabatically eliminated equations~dotted lines!. The parameter values areN50.2, VD /g57.1, andgl51. Compared are the linewidth o
the center line~top left!, the linewidth of the sideband lines~bottom left!, and the positions of the three lines~top right!. To demonstrate tha
the Mollow triplet is clearly distinguishable from other lines, we show the linewidth of the line that is the narrowest after the triplet~bottom
right!. From this comparison it is clear that forV/G,0.2 the approximation made in the adiabatic elimination of the upper states is v
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This will reduce the cross decay by an order of magnitude
Ge/a /De/a . A demonstration of this effect in a simila
scheme has been given by Xia, Ye, and Zhu@29#. Any re-
maining cross decay can be described, within the validity
the adiabatic elimination, by effective Clebsch-Gordan co
ficients and an effective decay rate@30#.

C. Validity of the adiabatic elimination

Finally, we investigate the behavior of the four-level sy
tem if we increase the Rabi frequencies of the internal tr
sitions. To explore the range of validity of the adiaba
elimination and the effects of onset of saturation, we co
pare the linewidth and position of the Mollow triplet for th
adiabatically eliminated situation and the full four-level sy
tem. In the latter we characterize the Mollow triplet as t
three narrowest lines in the resonance fluorescence spec
We can find their positions and linewidth as eigenvalues
the 15315 matrix appearing in the Bloch equation of th
four-level system. The effect of an increased value ofV/G
for the parameters used to plot the resonance fluorescen
Fig. 5 is shown in Fig. 7. Up toV/G'0.2 the linewidth and
positions of the two-level Mollow triplet follow the curve
predicted by the adiabatically eliminated theory. For high
values ofV/G the same position is still predicted by bo
equations, but all three lines become narrower in the
system than expected by the reduced equations. Other
of the full four-level system prove to be clearly distinct
their linewidth from the ones of the Mollow triplet. We hav
checked that the whole appearance of the resonant fluo
cence~that is, including the line amplitudes! shows an in-
creasing deviation from the adiabatically eliminated eq
tions asV/G increases beyond the valueV/G50.2, just as
expected from the behavior of the eigenvalues.
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VI. CONCLUSION

The central result of this paper is that there is a way
engineer an environment for a two-level system. The ba
idea is to use the regime of adiabatic elimination to li
coherent transitions from system levels to additional atom
levels with spontaneous transitions from these additional
els back to system levels. This leads to jump operators in
Master equation, which can be designed for a specific p
pose. Especially interesting jump operators can be achie
if one uses, as in the model presented here, that there
indistinguishable spontaneous processes leading to linea
perpositions of jump operators. With this engineering o
converts the trivial reservoir of normal vacuum modes in
the more sophisticated one of an effective squeezed vac
filling the whole solid angle of 4p.

We have illustrated this procedure for the example o
squeezed-bath-type coupling. Within this example we de
onstrated that this reservoir can be engineered by the us
Zeeman sublevels. The predicted effects of the squee
bath coupling on the steady state, the absorptions spect
and, with a slight change, the resonance fluorescence
been recovered in this model. We have shown that one
select spontaneous decay channels in the multilevel sch
and suppress others. Therefore, one can enhance the effe
engineered jump operators in the final master equation
suppress other processes that would partially destroy the
sired effects. In a numerical study we have shown the effe
of a nonideal realization resulting in decoherence proces
that are collisionlike. This study shows that the predict
effects are robust enough to allow their observation. T
regime of validity of the adiabatic elimination of the upp
levels in our model has been explored.

Our work presents an approach that allows the obse
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tion of theoretically predicted effects within reach of toda
experimental techniques. It encourages the investigatio
other reservoir couplings that could be engineered with
ideas presented in this paper.
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APPENDIX: TRANSITION RATE FOR CROSS DECAY

The value of the detuning that gives destructive interf
ence can be found using second-order perturbation the
We consider the subsystem as shown in Fig. 8. The Ha
tonian describing the subsystem is given by

H5HA1HB1HAB1HAL , ~A1!

with the system Hamiltonians of the atom, the bath, and
laser mode given by

HA5\vePe11/2
1\vaPa11/2

, ~A2!

HB5(
k,l

\vkakl
† akl , ~A3!

and the interaction Hamiltonian’s atom-bath and atom-la
couplings given by

FIG. 8. Subsystem relevant to investigate the destructive in
ference of spontaneous emission along the pumping transitions
total decay rates of the upper levels areGe andGa . The Clebsch-
Gordan coefficients for the spontaneous decay emitting circul
~linearly! polarized photons are denoted bygc

(e) andgc
(a) (gl

(e) and
gl

(a)). The laser is described by the electric-field amplitudeuEu and
shown as a solid arrow.
et
of
e

e

-
ry.
il-

e

r

HAB5(
k,l

@\kkl
~e!aklue11/2&^g21/2u

1\kkl
~a!aklu2a&^g21/2u1H.c.# ~A4!

1(
k,l

@\kkl
~e!aklue21/2&^g11/2u

1\kkl
~a!aklu1a&^g11/2u1H.c.#, ~A5!

HAL5\V~e!ue11/2&^g21/2u1\V~a!ua11/2&^g21/2u1H.c.
~A6!

Here kkl
(e) ,kkl

(a) are coupling constants defined in terms
dipole vectorsd(e/a) , unit vectors for the electric fieldekl ,
and a quantization volumeV by

kkl
~e/a!5A vkl

2\e0V
~ekld~e/a!!. ~A7!

The Rabi frequencies due to the interaction with the cla
cally treated laser fields with electric field of amplitudeuEu
and unit vectoreL are

V~e/a!5
2uEu

\
~eLd~e/a!!. ~A8!

In second-order perturbation theory the transition rate
processes starting and ending inug21/2& under spontaneou
emission of a circular polarized photon is given by

1

t
5

4uEu2vL
3

3pc3\3e0
Uudau2

Da
2

udeu2

De
U2

~A9!

5
12c3e0uEu2

\vL
3 Ugc

~a!2Ga

Da
2

gc
~e!2Ge

De
U2

.

~A10!

Inclusion of the main terms of higher orders by the resolv
method@31# yields the result

1

t
5

12c3e0uEu2

\vL
3 U gc

~a!2Ga

Da2 i
Ga

2

2
gc

~e!2Ge

De2 i
Ge

2
U2

. ~A11!

This leads finally to expression~28!. The same result can b
obtained using adiabatic elimination in the Master equat
for the full system as shown in Fig. 6.
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