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Solitary attractors and low-order filamentation in anisotropic self-focusing media
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We present a detailed theoretical analysis of the properties and formation of single solitons and higher-order
bound dipole pairs in media with anisotropic nonlocal photorefractive material response. The single solitons
are elliptical beams, whereas the dipole pairs are formed by a pair of displaced elliptical beamsr\pitlase
shift between their fields. The theory predicts convergence of Gaussian beams to the solitary states within a
certain basin of attraction. Experimental observation of these solitons has been presented elsewhere. The
experimental portion of the present paper concentrates on the region further away in parameter space, where
complex spatial oscillations, including asymmetric filamentation into several beamlets, occurs.
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I. INTRODUCTION presently a very active topid4—16. The possibility of ob-
taining large optical nonlinearities using low-power
The possibility of creating two-transverse-dimensionalcontinuous-wave lasers has made photorefractive materials
[(2+1)D] soliton-type structures of light in nonlinear media attractive for studying a range of spatial dynamics including
is of considerable interest due to potential applications irmodulation instabilitie§17,18, vortex dynamicg19], gen-
optical information processing systeirld. The dynamics of eration of spatial subharmoni¢20], and pattern formation
nonlinear propagation equations resulting in the formation of21).
such structures can be very complex and may result in the Photorefractive materials respond to the presence of the
generation of higher-order and multisoliton solutions. Theseptical field B(f") by a nonlinear change in the refractive
solutions have been investigated extensively in (the1)D index én that is both an anisotropic and nonlocal function of
(one-transverse-dimensionatase[2], where a number of the light intensity. The anisotropy does not allow radially
exact analytical methods have been developed including theymmetric soliton solutions thereby necessitating explicit
inverse scattering method, which provides an exact solutiotreatment of both transverse coordinates. The nonlocality is
of an initial-value problem, Beklund transformations, and another feature of the photorefractive response that makes it
Lax pairs. Examples of higher-order bound soliton solutionssignificantly different from typical nonlinear optical media,
include the formation of soliton-antisoliton paifisinks) [3], where the refractive inde&n is an algebrai¢local) function
incoherently coupled bright and dark beapd$, and multi-  of the light intensity. This local response in the simplest case
soliton solutions of a set of coupled high-order nonlinearsne|B|? results in the canonical nonlinear Sctimger
Schralinger equation$5]. The existence and properties of equation for the amplitude of light propagating in the me-
higher-order and multisoliton solutions in tl{2+1)D case dium [22]. Higher-order nonlinearities result in various
have been investigated much less than in(the1)D case. forms of local saturable respon$23]. In photorefractive
Noteworthy results include calculation of nonlinear dipolarmedia the change in the refractive index is proportional to
structures in the context of the Korteweg—de Vries equationhe amplitude of the static electric field induced by the opti-
[6], molecular matrices with impuritieg7], and fluids[8]. cal beam. Finding the material response therefore requires
Higher-order radially symmetric structures in media with cu-solving an elliptic-type equation for an electrostatic potential
bic nonlinearity were given in Ref9], and their evolution in  with a source term due to light-induced generation of mobile
a saturating nonlinear medium was studied in R&0].  carriers. The corresponding elliptic boundary-value problem
More complex localized solutions were described in Refhas to be treated globally in the whole volume of the nonlin-
[11]. ear medium. An immediate consequence of this fact is that
In this paper we present a detailed theory addressingoth single and multisoliton (21)D solitary solutions in
properties and formation of (21)D (two-transverse- photorefractive media have exponential asymptotics for the
dimensional solitons in media with a photorefractive optical electromagnetic field, but algebraic asymptotics for the non-
nonlinearity. Self-focusing in photorefractive media was firstlinear refractive index of the medium, and in this sense can
studied experimentally several years 448,13, and this is  be called semialgebraic. The reason is that the above electro-
static potential is that of a two-dimensional distributed in-
duced dipole, and has algebraic tails even for an exponen-
*Permanent address: Institute for Problems in Mechanics, Russidially localized beam. Note that typical soliton solutions of
Academy of Sciences, Prospekt Vernadskogo 101, Moscownonlinear propagation equations have exponentially decaying
117526 Russia. asymptotics at infinity. Several notable exceptions include
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view see, e.g., Ref24]) or theK-P equation[25] that are W(Vgo—éz)
algebraic in nature. n
Due to the above circumstances the equations governing E \? 1+|BJ?
propagation of a light beam in focusing and/or defocusing = m =
photorefractive medifi26,27 have no direct analogs in non- ext .
linear optics. Their closest structurally similar counterparts S A . . .
probably are Davey-Stewartson equatid8] describing :Ig:etrovs;a}tl'(ca/ '2,29 xt'zéla'/r?g) ’ce?jng thhls gg:md'mtehn;']zn:)%ssn 4-
nonlinear dispersive waves in fluid dynamics, or Zakharov e p fal indu y e T wi u
. . . ry conditionsV ¢(F—»)—0. The dimensionless coordi-
equations for parametrically coupled electromagnetic and lated h hvsical o
Langmuir waves in plasmd&9]. na’tes’ (f,y,zg aiﬁ relate tq the p yIS|ca’ c,oor mgtes
The paper is organized as follows. In Sec. Il we discus X'.y’,2') by the expressions y(z)=l,(y',2') an

. ) el =kI2x’, wherel, =(kn?) "1(2/r sEex) 2. Herek is the
the structure of the basic set of equations describing Sel\ivave number of light in the mediunm is the index of re-

focusing of a light beam in photorefractive media. Threef action, r i1 is the effective element of the electro-optic ten-

mplementar hni r lution . L : )
compieme t_a y tec_: ques are used to_ study so th S osor,E is the characteristic value of the internal field, ahg;
these equations. First, in Sec. Il A, we give an approximate

: i o . . . Is the amplitude of the external field directed alongztais
analytical solution describing evolution of a single light far from the beam. The normalized intensiB(r)|? is mea-
beam in the aberrationless approximation. The solution de sured in units of séturation intensity, so that the physical
onstrates the possibility of the existence of soliton solutionsbearn intensity is given byB(F)[?l . 'Finally 2 is the di-
The analytical solution is obtained in the limit of weak Satu'agonal dielectric tensor of the medium n,orrr;1a|ized to the
ration of the nonlinear response. For arbitrary values of the o, of its component along the axis ez, and

saturation we use the exact numerical procedure described L (E/E)(1kol, ), whereky is the Debye wave number.

Sec. Il B to construct soliton solutions. These solutions ar€’ +,. s proportional to the parametein Eq. (1) describe
found and their properties analyzed in detail, in Sec. Ill. In¢onipytions from the antisymmetric part of the photorefrac-
the weak saturation limit the analytical and numerical procey;ye nonlinearity responsible for beam bendifgt,37 and
dures lead to soliton profiles that agree within the limits ofinconerent stimulated scattering. For typical spatial struc-
the approximations used. In order to address the question @fires of light in the conditions when these terms are domi-
convergence of arbitrary Gaussian beams to the solitoRant, see Ref(33]. In the region of parameters correspond-
asymptotic states, the value of the convergence rate, and ifgg to the experimental investigation of photorefractive self-
dependence on the parameters of the problem, we solve thigcusing these terms are frequently not important and can be
basic equations2) numerically. The answers determine neglected. In this limitf=0 and Egs.(1) take the form
whether the soliton solutions can be obseved in experiment[26,18).

and outline the region of parameters where the convergence

solutions of the Benjamin-Ohno equatigfor a recent re- { 1+B|?

0. (1b)

takes place. These numerical results are given in the latter 9 i de
part of Sec. IIl. —- EVZ}B(FFi—B(F), (23
Section IV repeats the analysis of Sec. Il for higher-order X 9z

bound dipole soliton pairs. Gaussian beams lying outside the

basin of attraction of the above soliton solutions exhibit com- J

plex spatial dynamics. For large beams an order of magni- VZe+V In(1+[B[?)- Vo= 5'”(1+|B|Z)- (2b)
tude or more wider than the soliton solutions, filamentation

occurs[30], resulting in a spatially disordered, statistically

homogeneous distributidrd8]. Beams with parameters rela- A. Approximate analytical solutions

tively close to the soliton solutions exhibit low-order fila-
mentation and split into several child beams. The chil

beams evolve in a complex fashion with strong oscillations® b hould b d llitical and ch ized b
in their energy and relative sizes. Repeated cycles of splittin{"€ 2€am should be treated as elliptical and characterized by

and fusion may occur. Section V presents numerical and ex- 0 d|ar?_et3r$iy anﬁdz along tlhey andz axes, respectl\t/)ely.
perimental results on these complex dynamics. Finally, Sects ampl'tu E 'P the parabolic approximation can be ex-
VI is devoted to discussion of the results. pressed in the form

d The strong anisotropy of Eq&2) does not allow radially
ymmetric solution$26,27]. In the simplest approximation

4y? 472 y?d, Z°d;
B_\/Im(x)exl{___d—g'H?d—y-HEd—z-H@,

dy
&)

Il. GENERAL ANALYSIS

Steady-state propagation of an optical beBfT) in a
photorefractive medium is governed by the set of equaﬂonﬁ/herelm(x)zIindy(O)dZ(O)/dde, I, is the input beam in-
[26] tensity, andd(x) is the nonlinear phase change. The primes
denote differentiation with respect ta In the unsaturated
regime | ,=<1, Eq. (2b) reduces toV2p=3|B()|%/dz. Its
solution in cylindrical coordinatey=r cosy, z=r siny
takes the forms

_——VZ}B(F)zia—(ZPB(F), (13
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o(r, )= 2'<+1Fk(r2)sin(2k+ 1)y, (48

2 T
Fk=fr dr 772k72J d7’ 7" IA (7 )exp —aT’),
oo 0
(4b)

Ak:(_l)k+1[5k,0+(1_ Sk l(b7)+ 1y 1(b7)].
(40)

Herea=4(d, *+d; ), b=4(d, *~d; %, andl, are modi-
fied Bessel functions.

The refractive index in the central region of the beam

according to Eqs(4) is given by the expression

d2y?+(d+2d,d,) 2?
d2(d,+d,)?

v(y,z)=—8lp ©)

Substituting expressiong) and (3) into Eq. (2a), one
arrives at the set of equatiof36]

(6a)
(6b)

where k=1;,d,(0)d,(0), andF=d,(x)/d,(x) is the beam
diameter ratio.

dy=16d, *[4— «kF3(F+1)~?],

dr=16d, 3 [4— k(F+2)(F+1)"2],

Equations(6) demonstrate a nontrivial nonseparable way
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nature in the framework of the parabolic approximation. The
spatial period of the oscillations is inversely proportional to
the intensity of the beam.

B. Exact numerical procedure

The analytical approach indicates the possibility of exis-
tence of spatially localized (21)D soliton solutions of Egs.
(2). They are light beams propagating in the medium without
changing their shap&(x,y,z) =b(y,z)exp(rx), where\ is
a real propagation constant. The soliton amplitude satisfies
the set of equations

1 e
{A—Evz}b(y,zhzb, (108)

V2p+V In(1+|b|2)~V<p=%In(1+|b|2), (10b)
constituting an eigenvalue-eigenfunction problem with the
eigenvaluesh forming a continuous set. In the numerical
analysis of the eigenproblefi0) we have adopted an ap-
proach based on the iterative procedure due to Petviashuvili
[34] (see alsd35,6)).

The basic formula for the iterative process has the form

Fdgn/zby(F)]

) — —3/2
bn+1(k) |M| )\+k2/2 1

(11)

in which both diameters of the beam contribute to its evolu-

tion. In particular they show the possibility of self-channeledWhereF is the two-dimensional Fourier operator
propagationd, ,d,=const that corresponds to the value of
the diameter rati¢ determined by the relatioR®=F + 2 or
F=Fy~1.5. The self-channeled beam is narrower in the di-
rection of the applied field and wider in the perpendicular
direction. The absolute values of the diameters for this cas

IE[f(F)]Ef(IZ)=fdeex;iilZ-F)f(F), (12

andM is the renormalization parameter ensuring stability of

are determined by the relations
d(0)=2(Fo+1)Fq 21, "2, (78)

dy(0)=2(Fo+1)Fq 1,12 (7b)

Linearizing Eqs(6) around the self-channeled solution gives
the perturbation of the diameters

the equation for
6d,(x) =d,(x) —d,(0) andad,(x)=d(x)—dy(0)

the iterative procedure defined by the relation

_ JdK FLagy/azbn(7)1b5 (K)
JAROA+K22)|b(K)|2

(13

The steps of the above iteration scheme are as follows:
specify an initial distribution of the fielda starter function
b,(F) (n=0), solve Eq.(2b) for ¢=¢,(F), calculate the
renormalization parametgfi3), and compute the next ap-

g2 proximation according to Eq11). The degree of conver-
Wédy —16d,(0) 2, '”(F n 1)3(5d Food,), gence of the iterative process is controlled by monitoring the
(83 norm of the relative error
dr|b,;1(F)—b,(F)| |[M—1]
o2  Fo(Fo+3) _ Jdr|bn.4(1) —by 14
32 9d:=16d,(0) 2|in(FOT)3(5dy_F05dz)- ¢ Jdrlbn 1 ()] M| a9
(8b)

Four eigenvalues of these equations are

[ll. SINGLE-BEAM SOLITON SOLUTIONS

The numerical soliton-finding procedure described in Sec.

Kk12=0, (98 1l requires specification of an initial guesg(y,z) for the
amplitude of the light beanfa starter function To find
C 21F8 [ (Fo+3)(1+F3)\ Y2 single soliton solutions of Eqg2), starter functions have
K34= I (1+F)? 1+F, (9b) been taken to be arbitrary Gaussian beams. The iterations

have been carried out unt# went below 104-107°. The

Equations(9) show that the evolution of small perturba- single-beam soliton solution of Eq§2) turns out to be a
tions around the self-channeled solution is of an oscillatorysmooth elliptical beam that is narrower along the coordinate
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FIG. 1. Diameters of the soliton solution of Eq®) and their E L _
ratio vs its maximum intensity. -
z (the direction of the applied electric figldnd wider in the > | |m= 50 ]
perpendicular direction. The asymptotic structure of the po- 5
tential far from the beam is of the forgaecz/(y?+ z?). This z [ 1
structure implies that the refractive index d¢/dz has both E L i
positive (focusing and negative(defocusing regions; the =
latter are situated on both sides of the beam along the plus- B 7
minus directions of the axis. I ; .
Figure 1 shows the diametets, and d, of the soliton -10 -5 0 5 10
solution and their ratiod, /d, as functions of the soliton TRANSVERSE COORIDNATE

. . . — 2 .
maximum intensiy lb(0’0)| ' T_he d|a_meter_s have been FIG. 3. Soliton intensity cross sections along thand z axes
calculated at thg level of the maximum intensity. The val- for 1-—1.10. and 50
m— -+ 1 .

ues of the diameters are inversely proportional to the square

root qf thg soliton maximum |nt'en3|tyy'zoc 1/‘/E for I ,,—0, tions along they andz axes for different values of the maxi-
logarithmically proportional to itdy ,<vIn Iy) in the oppo- 1 intensityl,,. The wider profiles are cross sections of

site limit | y—o°, and pass through shallow minima in be- 4, soiton along they axis and the narrower ones along the
tween. Notice that the diameter ratio in Fig. 1 is strikingly ;, ois |n the unsaturated limit<1 the spatial distribution

close to the valud==1.5 following from the approximate . the soliton field is universal and does not depend on the
analytical formulas Eqsi6). The absolute values of the di- \5e of the propagation constant except for a trivial rescal-
ameters given by Eqg6) are about two times off as com- ing. Indeed, in this limit Eq. (2b) reduces to

pared to eéaf[:t num(;r]ical vall:es in th_e IilrmK 1.(;I'he dis;j t V2y=¢?|B|%/922, where v=4deldz. The renormalizations
cpproximals analylcal soluton s ue 1o the Gaussian ansalge) = YA9), and b=)VB, ,=x7 vanstormn the
made in the analytic development |ggnvalue—e|genfunct|on problem for finding the soliton
. ! N I profiles to the universal form
The range of soliton maximum intensities in Fig. 1 corre-
sponds to values of the propagation conshalying between

1 -
A=0.002 and 0.95. Both the maximum intensity and the [1-2V?]b=7D, (153
power of the soliton are increasing functions of the propaga- )

tion constant. This is illustrated in Fig. 2, where the soliton V2= ‘97'52 (15b)
maximum intensity versus the propagation constant is gz " -

shown. Finally, Fig. 3 presents soliton intensity cross sec-
Returning to the X,y) coordinate frame, we immediately
1000.00 . . . . conclude that the maximum intensity is proportional to the
- value of the propagation constantec\ and the total power
. P=[dx dy I¥ is independent of the propagation constant.
: Numerical analysis of the evolution of arbitrary initial
. beams has been carried out by direct numerical solution of
the nonlinear propagation equatiof@. This analysis shows
- that the soliton solutions are attractors of the set of equations
(2). The rate of convergence to these solutions depends pri-
. marily on the normalized intensitl,,. We have found that
. . evolution of an input beam in general is characterized by
0-0100 0-2 0-4 0-6 0'8 - oscillations of both its diameters, in qualitative agreement
: PROPAGATION CONSTANT : Wlth the results of the_ anfalyncal approach. In the unsaturatgd
limit 1 ,<1 these oscillations are strongly damped, and their
FIG. 2. Soliton maximum intensity vs the propagation constant. spatial period scales asl }/. Increasind ,, up to about unity
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FIG. 4. Spatial evolution of diameters of an initially round
Gaussian beam fdr,=0.5, 6, and 50.

decreases the period of the oscillations, while still keepinqive':i'r?desx' (;pf;’[:g ?Aztri'sgﬂgg d°f ;Tsnft'%(?)f'otrhtehgodr;"gleearsge”ftgc'
them reasonably heavily damped thereby decreasing the ’ P P y

. . . luti f EQs(2).
length of the spatial transient. The initially round beam e on © as{2)

comes elliptical and converges to the soliton solution as Waﬁwately equal to 1)1 Note also the absence of any practical
confirmed experimentally in Ref15]. Further increase iy, ¢onyergence to the soliton solution in the high-saturation re-

up to several units still decreases the spatial period of osCilsia |t should be mentioned that the longitudinal span of

lations, but also sharply decreases the relaxation rate angy 4 considerably exceeds the characteristic lengths of pho-
increases the spatial transient length. In the very high satyy efractive media

ration regime the oscillation period starts to grow, and the
relaxation rate remains small, so the spatial transient length
remains large. The characteristic period of oscillations in this
case may exceed the length of the medium. By adjusting To find dipole solitary solutions of Eq$2), starter func-
input parameters the output profiles of the beam in the hightions were specified as a pair of Gaussian beams with a
saturation transient regime can be made to have a broadlutual phase shift spaced some distance apart. Figure 5 il-
range of shapes starting from beams that are more elongat@gktrates a typical distribution of the electromagnetic fields
along they axis to those elongated along tleaxis, and corresponding to the dipole solitary wave solution of Eg.

IV. BOUND DIPOLE PAIRS

including round output beams in between. (a), the corresponding distribution of the nonlinear refractive
Figure 4 shows spatial evolution of the input Gaussianndex v=d¢/dz (b), and the induced potential (c) for the
beam maximum intensity of the solutioh,,=1. The solution is a
pair of elliptical coupled (2-1)D beams that are spaced
Bin=\1in exd —2In 2(r/d)?] (16)  some distance apart. The pair is aligned alongythgis. The

fields of each of the components comprising the pair have
for 1,,=0.5, 6, and 50. In all cases the beam experiencethe same magnitude but different signs. The total flelid
self-focusing inside the medium. Nevertheless the characte@ntisymmetric iny and symmetric ire. The intensity|b|? is
of its spatial evolution is dramatically different for different symmetric both with respect tp andz, so the potentialp
values of the saturation. Note rapid relaxation to the solitorthat is due to the source term proportional to zheerivative
solution in the moderate saturation regime Ifge=0.5 (after  of the intensity is symmetric iy and antisymmetric irz.
the spatial transient the beam intensity becomes approxi- Figure 6 shows cross sections of the electromagnetic field,
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1.0 corresponding argumentation replicates that of Sec. lll.
Numerical analysis of spatial evolution of various initial
distributions of the field indicates that the dipole pairs are
attractors of the set of equatiof®). They are not the only
attractors of the system, since E@8) also have the single
beam soliton solutions discussed in Sec. lll. Initial distribu-
tions of the field sufficiently close to the dipole solitary so-
lutions converge to these solutions, as was demonstrated ex-
perimentally in Ref[16]. As with single-beam solitons, the
rate of convergence depends primarily on the normalized in-
tensity I ,,. Below we will discuss evolution of input fields
-1.0 , l l ) consisting of an anti-phased pair of Gaussian beams sepa-
-20 -10 0 10 20 rated by the distanck along they axis. The corresponding
COORDINATE Z structure of the field is of the form

0.5

0.0

-0.5

FIG. 6. Cross sections of the field, the refractive index, and the
potential along the axis through one of the maximums of the field B = \/E{exq —(y— L/2)2/d2— 22/d2]
shown in Fig. 5.
—exd — (y+L/2)2/d*>—z%/d?]}, (17

the refractive index, and the potential taken along the z axis

through the maximum of one of the intensity peaks. Note thE\ENhereI- is the initial maximum intensity of each of the
slow power-law decay of the potential at infinity. n y

In Fig. 7 we present the diametatsandd, of each of the input beams in units of saturation intensity, ah@éndL are

- . . . their initial diameter and separation, respectively.
beams comprising the dipole solution and the separatigh . : . T S
between them as functions of the maximum intensity The spatial dynamics of the input fieldks7) are similar to

The diameters have been calculated at dhievel of the those of single beams. Practically all conclusions of Sec. Il

maximum intensity of the solution. Both of the intensity are d|_rectly appll_cable _to the dipole pairs. That S, spatial
eaks comprising the dipole solution turn out to be smoothevomtIon of the input fields, Eq17), is characterized by
P . P 9 P : atial oscillations of both its diameters and the separation
Gaussian-type beams that are narrower along the coordin o

) ; ) L ) etween the beams. In the low-saturation liljt<1 these
z and wider in the perpendicular direction. This structure of

the beams is very similar to that of the single beam Solitonsoscnlatlons are damped, but their spatial period is large since

discussed in Sec. lll, and is indicative of the dominant role oI’t. sc:_:tles as.”” B In the h|gh—sature}t|on I|m|t_m>1 the. 0s-
; ; . . cillation period is smaller, but their relaxation rate is very
the anisotropy in their formation.

Analogously to the single-beam solitons in the weak satu-sma”’ and so the spatial transient length again is large. In the

ration limit |,,<1, both the values of the diameters and themoderate saturation limlt,;~1 the oscillations are St'". rea-
. i . sonably heavily damped, and the length of the spatial tran-
separation are inversely proportional to the square root of the.

maximum intensity. In the opposite limit of large saturation stent is minimized. . . . '
I,>>1, they are lo érithmicall roportional to it. The power Figure 8 shows the spatial evolution of an input field
m>- ey 9 y prop ) P given by Eq.(17) for two different values of the saturation

and the maximum intensity of the dipole solitary solution areintensity. Figure &) corresponds to the strong-saturation re-

monotonically growing functions of the propagation constant ime when the input intensity is about ten times larger than

\. The range of |nten5|t|gs n Fig. 3. is mapped to a range o he saturation intensity; Fig.(8) is the moderate-saturation
propagation constants lying in the interval 0.02A<0.8. regime with | ,~2.5. Both figures demonstrate that two

In the unsaturated limik <1 the spatial distribution of the beams comprising the initial dipole form a bound pair. The

Sgﬁfoﬁwgn r'ga'; IZtliJonr:vfc:izlt’eﬁngize? fr;?tadrigigﬁnon _It_?]?ate of convergence to the dipole solitary solutions though is
propag P 9. gstrong function of the normalized light intensity. Note the

rapid relaxation to the soliton solution fdf,=0.5, and a

10_ ' ' 40 very long transient in the high-saturation regime. Observa-
tion of the dipole solitary solutions in the high-saturation
8r 4130 regime is problematic because of long spatial transients. On
e 5 the other hand, fol,,~1 the spatial transients at the output
i 6r e from the crystal are largely gone, and the beam is close to its
W 120z asymptotic soliton shape.
< 4 o
8 t
110
2F V. LOW-ORDER FILAMENTATION
0 , . 0 A. Theory
0.1 1.0 10.0 100.0

Gaussian beams lying outside the basin of attraction of
the above soliton solutions exhibit complex spatial dynam-
FIG. 7. Diameters and the separation between the beams cons. For large beams, an order of magnitude or more wider
prising the dipole solitary solution vs its maximum intensity. than the soliton solutions, filamentation occurs, resulting in a

CINTENSITY
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FIG. 8. Diameters, maximum intensity, and separation betweerThe length of the medium is=1cm, the inital 'ntens'ty
peaks as functions of the propagation distance in fggland mod- I;m=10, the relevant component of the elggtrq—optlc te_nsor
erate(b) saturation regimes. I33=360 pm/V, the AvaIuAe of the characteristic internal field

E=700 V/cm, ande,,/€,,=0.5. For zero applied field
spatially disordered, statistically homogeneous distributiorEe=0 the output beam remains practically round with the
[18]. For Gaussian-type beams there are two parameters thautput diameter equal to 49m. The upper left frame in Fig.
determine the subsequent dynamics: the beam diameter afdshows the output intensity of the beam for the applied field
its normalized intensity. Convergence to solitary solutions is2qual toE,=220 V/cm, and the upper right frame shows a
only achieved when both of these parameters start relativelgross section of the intensity through the maximum along the
close to their asymptotic values. Beams outside of the basihorizontal ¢) axis. The lower left frame shows the output
of attraction filament and split into several child beams thatbeam intensity forE.,=1100 V/cm, and the lower right
then exhibit complex oscillations of their relative sizes andframe is its cross section along the horizontal axis. It dem-
energies. Depending on the initial parameters the splittingonstrates the clearly asymmetric splitting of the beam at
may occur along both the andy coordinates. We refer to higher values of the applied field. Calculations in @0
this as low-order filamentation. In the range of parameterdmit also give splitting, but the intensities of the split beams
considered here, where the beams start out relatively close re equal. Calculations conducted for still wider beams show
the basin of attraction of the solitary solutions, the dynamicghat each of the split beams may undergo secondary split-
are dominated by the interaction of only a few filaments. Thetings.
spatial evolution is complex, and not statistically homoge- Due to the presence of asymmetric terms in the material
neous. The interaction of several filaments in media with aesponse the beam bends in thezj plane when it propa-
cubic nonlinearity was also studied recently in R&6]. gates through the nonlinear medium. The center of the beam

The spatial dynamics of filamentation are in a first ap-is displaced along the horizontal axis to the left by about 5
proximation well described by Eq$2). In particular, these um for Eg=220V/cm, and by about 26um for
equations predict correctly the splitting. A more detailedE,,,=1100 V/cm(the shift for zero applied field equals 2.8
analysis reveals, however, that a noticeable experimental feazm). The output windows in Fig. 9 are shifted by those
ture of the splitting is that there is an asymmetric exchangamounts so that the intensities are centered in their respective
of energy between beamlets separated along ttuordinate.  windows.

This asymmetry lies outside the behavior described by Egs. It is interesting to note that the intensity of the left beam-
(2) that are symmetric with respect to inversion alangn let in Fig. 9 for E.,;=1100 V/cm is smaller than that of the

order to account for the observed behavior we need to useght one, i.e., the energy is transferred “upstream,” oppo-
the more general set of Eqg4.). site to the direction of bending. This result is counterintuitive

Results of the numerical solution of Eq4) demonstrat- since for wide beams in the absence of an applied field the
ing asymmetric beam splitting are shown in Fig. 9. The inputbeamlets propagating to the left of the main beam gain en-
boundary conditions correspond to a @ Gaussian beam ergy, resulting in the appearance of a fan of light, moving to
with the waist coinciding with the input face of the medium. the left.
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B. Experiment
FIG. 11. Oscillatory self-focusing of a circular input beam in the

The experimental arrangement is shown in Fig. 10. Anigh-saturation regime. The power of the input beam wag.80
10-mW He-Ne laser beamAE&0.63um) was passed
through a variable beam splitter and a system of lenses cond the focusing conditioneve have observed ellipticities
trolling the size of the beam waist. The beam was directedjy/dZ ranging from about 0.5 to 5, including round output
into a photorefractive crystal of SBN:60 doped with 0.002%peams. Figure 12, obtained for moderate saturation intensi-
by weight Ce. The beam propagated perpendicular to thges, demonstrates quite different behavior. That is, the out-
crystalc axis, and was polarized along it to take advantageyut beam profile converges rapidly to an elliptically shaped
of the largest component of the electro-optic tensor of SBNsoliton solution elongated along the axis, in agreement
rss. The crystal measured 10 mm along the direction ofwith the theoretical results. Experimental results demonstrat-
propagation, and was 9 mm wide along thaxis. A variable  ing existence of the dipole solitons analyzed in Sec. IV, and
dc voltageV,,; was applied along the axis to control the convergence to them were given in REI6].
value of nonlinear coupling. The beam intensity distributions  Below we would like to address the question of evolution
at the output face of the crystal were imaged onto a screepf Gaussian beams lying further away in the parameter
and recorded with a CCD camera. The pictures were respace, so that the solitons are not formed. The spatial evolu-
corded after all temporal transients had died away. tion in this case is given by Figs. 13, 14, and 15 that show

The effective saturation intensity was varied by illuminat- the change in the output intensity distribution as the applied
ing the crystal from above with incoherent white light. The field is increased for three different values of the saturation
dependence of the photorefractive coupling constant on satintensity.
ration intensityl 4 in the absence of an applied field takes the  Figure 13 obtained for,,~9.5 shows self-focusing to an
form [37] = ol pean! (I peanit |4). By measuring the two- elliptically shaped beam squeezed alanépr V=200V,
beam coupling gain with the white light source offj0)  and squeezed along for V=550 V. Similar pictures of
and on (4#0), the ratio | ,=Ipean/lq Was determined. oscillatory self-focusing in the high saturation regime were
These measurements have a relatively large uncertainty dygven in Ref.[15]. Increasing the applied voltage further re-
to the influence of several factors, including the intensitysults in the formation of a large asymmetric bright region
profile of the beams, and background-stimulated scattering i(\V,,,=800 V) that then splits along into two filaments
the medium. The experimental uncertainty in the value of thgv, ,=1050 V). There is an asymmetric exchange of energy
saturation intensity is therefore larger than the uncertainty ibetween the filaments, leading eventually to a strong filament
the values of the beam diameter, externally applied field, and
electro-optic coefficient, which can all be determined rela- 80 , , :
tively precisely.

Experimental results demonstrating both the existence of
the single solitons and convergence to them were given in
Ref. [15]. Here we present a digest of those results for the
reader’s convenience. Figure 11 shows the output diameters
of a round input 26zm-diameter beam as functions of the
applied voltage in the high-saturation regime. The insets
show the beam profiles at 0.5 and 0.9 kV. Figure 12 shows

DIAMETERS [um]
NN
o

the output diameters versus the applied voltage for the same 20

beam as in Fig. 12 but, with 12 times smaller power. The

inset is the output intensity distribution for 1.0-kV external ol ) ) ) )

voltage. In both figures, squares are experimental results and 0.0 0.2 0.4 0.6 0.8 1.0
solid curves are theoretical calculations. APPLIED VOLTAGE [kV]

Figure 11 confirms the theoretical predictions of Sec. I
that in the high-saturation regime the round input beam does FIG. 12. Output diameters vs applied voltage for a circular input
not reach a soliton asymptotic state. Its output shape changesam in the moderate-saturation regime. The power of the input
as a function of the voltage, the input diameter of the beampeam was 4.24W.
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FIG. 13. Output intensity distribution vs applied voltage for
I ,=~9.5. The power of the input beam was @/, and its diameter
was 34um full width at half maximum. The individual frames each
depict a 10&x 100 um? region and the axis is horizontal.

to the right, separated several diameters from a crescent-
shaped region with lower intensity to the left. The asymmet-
ric exchange of energy alormgresulted in the displacement

of the beams to the left so that, as in the calculations in Sec.
V A, the frames have been translated to keep the displayed
filaments centered in the windows.

Comparison with Fig. 9 shows good agreement with the
numerical results. .In particular, the cognteriptu!tive result rig 14 Output intensity distribution vs applied voltage for
that the upstream filament has a higher intensity is observeq. g Al other parameters are the same as in Fig. 13.

The full width at half maximum diameter of the output beam

along thez axis measured from the experimental frames

V=200 and 1050 V in Fig. 13 equal 22 and 29/, Measured value af33=360 pm/V. The intensity minimum
respectively. In the latter case the beam is double humped, dt¢tween the peaks is more pronounced on the theoretical
the diameter corresponds to the width of the whole structurdigure than on the experimental one. Additional comparisons
The above values of the applied voltage correspond to thwith other frames show that in general the experimental and
electric field E.,~=222 and 1167 V/cm, given the 9-mm theoretical results agree to within 20% error. Note also that
width of the crystal and assuming no losses at the electrodeadditional measurements and calculations using a 20-mm-
The theorectical diameters in Fig. 9 are equal to Jhbfor  long crystal withrz3=210 pm/V showed no evidence of
Ee=220 V/icm, and 3Qum for E.,=1100 V/cm, using the splitting.
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ment is smaller in Fig. 14 than in Fig. 13, since the saturation
is smaller(see Fig. 1L The increased ratio of beam size to
filament size in Fig. 14 is sufficient to allow splitting along
the y coordinate. It is not surprising that splitting occurs
more easily along due to the fact that the nonlinearity is
stronger by order 50% alorgthan alongy [26].

The effect of varying the saturation for fixed external
voltage is shown in Fig. 16. The first four frames show the
output beam foit ,,~0.5 tol ,~2.2. In this range of param-
eters the length of the spatial transient is still reasonably
short so that these frames demonstrate convergence or near
convergence to solitary solutions. In agreement with Fig. 1
the beam diameters fdr,~2 are noticeably less than for
I »=0.5. For intermediate values of the saturatibp~3.5 to
| w=32) the output beams are elongated algngand split
along thez coordinate. At very high values of saturation
there is no splitting, and we see an elliptical output beam
squeezed along eithgr or z. In this parameter regime the
spatial evolution along is characterized by large oscilla-
tions of the diametergsee Fig. 4, so that the shape of the
output beam, for a given length of nonlinear medium, de-
pends on the particular value of the saturation parameter.

VI. DISCUSSION

In this paper we presented a detailed analysi€efl)D
soliton solutions in media with a photorefractive nonlinear-
ity, and addressed the question of convergence to these so-
lutions. Our results demonstrate that the rate of convergence
is dramatically different for different values of the saturation
(rapid relaxation to the soliton solution in the moderate satu-
ration regime, and the absence of any practical convergence
to the soliton solution in the high-saturation regjmeepen-
dence of the character of the spatial evolution on the value of
the saturation is not specific to t2+1)D case, and pertains
equally well to the(1+1)D limit. In this limit (8/dy=0) the
photorefractive nonlinearitffor {=0) is identical to the
saturable Kerr nonlinearity, and Eq®) reduce to

g i 3
X 2 972

B/

B(X,Z)ZI WB.

(18

Soliton solutions of Eq(18) were analyzed in Ref38].
Figure 17a) shows the spatial evolution of the diameter
of the input Gaussian beaBy,= I, exq—2 In 2(z/d)?] in
the (1+1)D case forl;,=0.5 (solid), 5 (dotted, and 50
(dashed cunje The similarities between this figure and the
(2+1)D case(Fig. 4 are evident. Figure 17 confirms the
convergence of an arbitrary beam to its asymptotic soliton
FIG. 15. Output intensity distribution vs applied voltage for Shape in the moderate saturation regirve {). It also dem-
I »~19. All other parameters are the same as in Fig. 13. onstrates that the only way to observe solitons experimen-
tally in a photorefractive medium in the strong saturation
The output intensity distributions for lower and higher regime (>1) is to start from those solitons. The most com-
values of the saturation are shown in Figs. 14 and 15. In alnon choice of input beam in experiments is a Gaussian
cases the most prominent feature is asymmetric splittingpeam. A Gaussian profile does not match the exact soliton
along thez coordinate with most of the energy captured byshape, but in the (£1)D case it is possible to adjust the
the filament on the right. In Fig. 14 there is also a furtherdiameter of this input beam so that it is close to a soliton.
splitting along they axis. This may be understood qualita- This is illustrated by Fig. 1(b), that shows the spatial evo-
tively as follows. When the beam is very much larger thanlution of a Gaussian beam with input diameter equal to 4.2
the characteristic scale of an individual filament, it breaks umndl;,= 50 (the dashed line The input diameter was chosen
into many filamentd18]. The characteristic size of a fila- to ensure the minimum possible deviations from the soliton
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FIG. 16. Output intensity distribution vs saturation parametelfQ=1250 V. The frames are labeled with the valué f and all other
parameters are the same as in Fig. 13.
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solution (solid ling). From a rigorous point of view, an ex-
perimental observation of the soliton in the high saturation
regime is questionable even with this fitting of the input
Gaussian profile to a soliton shape. Since deviations from the
soliton shape do not decégee Fig. 17)], it can be argued
that the beam remains an oscillating Gaussian, exhibiting no
trend of convergence toward a soliton. From the practical
point of view the above argument may be unimportant, since
the beam remains sufficiently close to a soliton solution.

The situation is qualitatively different in the ¢21)D
case. Any radially symmetric beand(/d,=1) differs sig-
nificantly from an elliptic soliton solutiondy,/d,~1.5), and
no adjustments of its diameter will make it close. Besides
specifying input soliton profiles, the only practical possibility
to observe (2-1)D soliton solutions experimentally in a
photorefractive medium is to work in the moderate saturation
regime where the intensity of the beam is about the satura-
tion intensity.

Another point worth mentioning is that, strictly speaking,
the soliton solutions found above are only valid e 0. For
any finite value ofZ, propagation through a sufficiently long
medium results in a bending of the beam trajectory toward
the direction of the applied field. Thus, in a strict sense,
within the framework of Eqs(1), there are no solitary solu-
tions that propagate along In practice, for finite nonlinear
media, such solutions coexist adiabatically with a slow bend-
ing of the trajectory in the direction of the applied field. The
trajectory bending has been mentioned above in Sec. V. The

FIG. 17. Evolution of the diameter of an input Gaussian beam inslow bending is not of paramount experimental concern,

the (1+1)D case forl;,=0.5 (solid), 5 (dotted, and 50(dashed

since the longest photorefractive crystal used for soliton ex-

line) (a); evolution of the “best-matched” input Gaussian with periments to date is the approximately 20-mm-long sample

d=4.2 andl;,=50 (dasheg@land the soliton solutiofsolid line) (b).

used here and in Ref§16,19. The amount of bending at
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image image
of output  of input

FIG. 18. The result of imaging through an inhomogeneou
age.

such distances is relatively small.

s
waveguide. Each row is labeled with the value of the applied volt-

ous reports of soliton formation in photorefractive media
have claimed to observe both circular and elliptical solitons
squeezed in either transverse direction depending on the
voltage[39]. In our opinion, those observations correspond
to a spatially transient regime of evolution of a light beam,
where such oscillations of the output diameters as a function
of the voltage indeed take pladéor their detailed experi-
mental analysis, see R¢fl5]).

We note that considerable experimental care must be ex-
ercised when observing self-focusing effects. The only di-
rectly accessible information about the intensity profile of
the beam is its distribution at the output face of the crystal.
Attempting to measure the beam profile inside the nonlinear
medium can lead to erroneous conclusions, as was pointed
out in the second of Refl12]. Two techniques have been
employed elsewhere: side-view imaging of the one-
dimensional beam profile along the direction of propagation,
and end-view imagng of the two-dimensional profile looking
through the nonlinear medium. Side-view images of the
beam profile do not correspond to the direct intensity distri-
bution of the beam, but are due to scattering of light on
inhomogeneities of the crystal. Proper interpretation of the
images requires solving an inverse problem accounting for
the presence of the nonlinear lens and the scatterers. We
have found that images taken inside the volume of the crystal
frequently are misleading. In many cases they show needle-
like structures of light that might be interpreted as solitons
formed in the crystal. Unfortunately their quantitative value
is close to zero, since they do not allow one to measure the
values of the beam diameters inside the crystal, and hence
make any quantitative comparisons with the theory.

End-view images of the directly transmitted intensity dis-
tribution are not affected by the distribution of scattering
inhomogeneities, but are strongly distorted by the nonlinear
lens. To illustrate the errors associated with imaging through
the nonlinear medium, consider Fig. 18. The figure gives a
direct comparison between the output intensity distribution
(left column observed as the applied voltage is changed, and
the input intensity distribution obtained by imaging through
the nonlinear mediunfright column. For V=0 the input
and output images both show a circularly symmetric beam,
as expected. A¥,, is increased the output image shows
self-focusing and convergence to an elliptical soliton. On the
other hand, the image of the circular input beam as obtained
by looking through the nonlinear waveguide becomes ellip-
tical and strongly distorted. Strong anisotropy of the nonlin-
ear aberrations renders it impossible to determine even quali-
tatively the correct structure of the internal beam by imaging
through the medium.
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