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Solitary attractors and low-order filamentation in anisotropic self-focusing media
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JILA, University of Colorado, Boulder, Colorado 80309-0440
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~Received 5 March 1997!

We present a detailed theoretical analysis of the properties and formation of single solitons and higher-order
bound dipole pairs in media with anisotropic nonlocal photorefractive material response. The single solitons
are elliptical beams, whereas the dipole pairs are formed by a pair of displaced elliptical beams with ap phase
shift between their fields. The theory predicts convergence of Gaussian beams to the solitary states within a
certain basin of attraction. Experimental observation of these solitons has been presented elsewhere. The
experimental portion of the present paper concentrates on the region further away in parameter space, where
complex spatial oscillations, including asymmetric filamentation into several beamlets, occurs.
@S1050-2947~97!03011-4#
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I. INTRODUCTION

The possibility of creating two-transverse-dimension
@(211)D# soliton-type structures of light in nonlinear med
is of considerable interest due to potential applications
optical information processing systems@1#. The dynamics of
nonlinear propagation equations resulting in the formation
such structures can be very complex and may result in
generation of higher-order and multisoliton solutions. The
solutions have been investigated extensively in the~111!D
~one-transverse-dimensional! case @2#, where a number of
exact analytical methods have been developed including
inverse scattering method, which provides an exact solu
of an initial-value problem, Ba¨cklund transformations, and
Lax pairs. Examples of higher-order bound soliton solutio
include the formation of soliton-antisoliton pairs~kinks! @3#,
incoherently coupled bright and dark beams@4#, and multi-
soliton solutions of a set of coupled high-order nonline
Schrödinger equations@5#. The existence and properties
higher-order and multisoliton solutions in the~211!D case
have been investigated much less than in the~111!D case.
Noteworthy results include calculation of nonlinear dipo
structures in the context of the Korteweg–de Vries equa
@6#, molecular matrices with impurities@7#, and fluids@8#.
Higher-order radially symmetric structures in media with c
bic nonlinearity were given in Ref.@9#, and their evolution in
a saturating nonlinear medium was studied in Ref.@10#.
More complex localized solutions were described in R
@11#.

In this paper we present a detailed theory address
properties and formation of (211)D ~two-transverse-
dimensional! solitons in media with a photorefractive optic
nonlinearity. Self-focusing in photorefractive media was fi
studied experimentally several years ago@12,13#, and this is
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presently a very active topic@14–16#. The possibility of ob-
taining large optical nonlinearities using low-pow
continuous-wave lasers has made photorefractive mate
attractive for studying a range of spatial dynamics includ
modulation instabilities@17,18#, vortex dynamics@19#, gen-
eration of spatial subharmonics@20#, and pattern formation
@21#.

Photorefractive materials respond to the presence of
optical field B(rW ) by a nonlinear change in the refractiv
indexdn that is both an anisotropic and nonlocal function
the light intensity. The anisotropy does not allow radia
symmetric soliton solutions thereby necessitating expl
treatment of both transverse coordinates. The nonlocalit
another feature of the photorefractive response that mak
significantly different from typical nonlinear optical media
where the refractive indexdn is an algebraic~local! function
of the light intensity. This local response in the simplest ca
dn}uBu2 results in the canonical nonlinear Schro¨dinger
equation for the amplitude of light propagating in the m
dium @22#. Higher-order nonlinearities result in variou
forms of local saturable response@23#. In photorefractive
media the change in the refractive index is proportional
the amplitude of the static electric field induced by the op
cal beam. Finding the material response therefore requ
solving an elliptic-type equation for an electrostatic poten
with a source term due to light-induced generation of mob
carriers. The corresponding elliptic boundary-value probl
has to be treated globally in the whole volume of the nonl
ear medium. An immediate consequence of this fact is t
both single and multisoliton (211)D solitary solutions in
photorefractive media have exponential asymptotics for
electromagnetic field, but algebraic asymptotics for the n
linear refractive index of the medium, and in this sense c
be called semialgebraic. The reason is that the above ele
static potential is that of a two-dimensional distributed
duced dipole, and has algebraic tails even for an expon
tially localized beam. Note that typical soliton solutions
nonlinear propagation equations have exponentially deca
asymptotics at infinity. Several notable exceptions inclu
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,
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57 523SOLITARY ATTRACTORS AND LOW-ORDER . . .
solutions of the Benjamin-Ohno equation~for a recent re-
view see, e.g., Ref.@24#! or theK-P equation@25# that are
algebraic in nature.

Due to the above circumstances the equations gover
propagation of a light beam in focusing and/or defocus
photorefractive media@26,27# have no direct analogs in non
linear optics. Their closest structurally similar counterpa
probably are Davey-Stewartson equations@28# describing
nonlinear dispersive waves in fluid dynamics, or Zakha
equations for parametrically coupled electromagnetic
Langmuir waves in plasmas@29#.

The paper is organized as follows. In Sec. II we disc
the structure of the basic set of equations describing s
focusing of a light beam in photorefractive media. Thr
complementary techniques are used to study solutions
these equations. First, in Sec. II A, we give an approxim
analytical solution describing evolution of a single lig
beam in the aberrationless approximation. The solution d
onstrates the possibility of the existence of soliton solutio
The analytical solution is obtained in the limit of weak sa
ration of the nonlinear response. For arbitrary values of
saturation we use the exact numerical procedure describe
Sec. II B to construct soliton solutions. These solutions
found and their properties analyzed in detail, in Sec. III.
the weak saturation limit the analytical and numerical pro
dures lead to soliton profiles that agree within the limits
the approximations used. In order to address the questio
convergence of arbitrary Gaussian beams to the sol
asymptotic states, the value of the convergence rate, an
dependence on the parameters of the problem, we solve
basic equations~2! numerically. The answers determin
whether the soliton solutions can be obseved in experim
and outline the region of parameters where the converge
takes place. These numerical results are given in the la
part of Sec. III.

Section IV repeats the analysis of Sec. III for higher-ord
bound dipole soliton pairs. Gaussian beams lying outside
basin of attraction of the above soliton solutions exhibit co
plex spatial dynamics. For large beams an order of ma
tude or more wider than the soliton solutions, filamentat
occurs@30#, resulting in a spatially disordered, statistica
homogeneous distribution@18#. Beams with parameters rela
tively close to the soliton solutions exhibit low-order fila
mentation and split into several child beams. The ch
beams evolve in a complex fashion with strong oscillatio
in their energy and relative sizes. Repeated cycles of split
and fusion may occur. Section V presents numerical and
perimental results on these complex dynamics. Finally, S
VI is devoted to discussion of the results.

II. GENERAL ANALYSIS

Steady-state propagation of an optical beamB(rW ) in a
photorefractive medium is governed by the set of equati
@26#
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¹•F 11uBu2

12z¹•~ ên¹w!
~¹w2eW z!

2S Ẽ

Eext
D 2

z¹
11uBu2

12z¹•~ ên¹w!
G50. ~1b!

Here ¹5 ŷ(]/]y)1 ẑ(]/]z), and w is the dimensionless
electrostatic potential induced by the beam with the bou
ary conditions¹w(rW→`)→0. The dimensionless coordi
nates (x,y,z) are related to the physical coordinat
(x8,y8,z8) by the expressions (y,z)5 l'(y8,z8) and
x5kl'

2 x8, where l'5(kn2)21(2/r effEext)
1/2. Here k is the

wave number of light in the medium,n is the index of re-
fraction, r eff is the effective element of the electro-optic te
sor,Ẽ is the characteristic value of the internal field, andEext
is the amplitude of the external field directed along thez axis
far from the beam. The normalized intensityuB(rW)u2 is mea-
sured in units of saturation intensityI d , so that the physica
beam intensity is given byuB(rW)u2I d . Finally, ên is the di-
agonal dielectric tensor of the medium normalized to
value of its component along thez axis e33, and
z5(Eext/Ẽ)(1/kDl'), wherekD is the Debye wave number

Terms proportional to the parameterz in Eq. ~1! describe
contributions from the antisymmetric part of the photorefra
tive nonlinearity responsible for beam bending@31,32# and
incoherent stimulated scattering. For typical spatial str
tures of light in the conditions when these terms are do
nant, see Ref.@33#. In the region of parameters correspon
ing to the experimental investigation of photorefractive se
focusing these terms are frequently not important and can
neglected. In this limitz50 and Eqs.~1! take the form
~@26,18#!.
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]z
B~rW !, ~2a!

¹2w1¹ ln~11uBu2!•¹w5
]

]z
ln~11uBu2!. ~2b!

A. Approximate analytical solutions

The strong anisotropy of Eqs.~2! does not allow radially
symmetric solutions@26,27#. In the simplest approximation
the beam should be treated as elliptical and characterize
two diametersdy anddz along they andz axes, respectively
Its amplitude in the parabolic approximation can be e
pressed in the form

B5AI m~x! expF2
4y2

dy
2 2

4z2

dz
2 1 i

y2

2

dy8

dy
1 i

z2

2

dz8

dz
1 iuG ,

~3!

whereI m(x)5I indy(0)dz(0)/dydz , I in is the input beam in-
tensity, andu(x) is the nonlinear phase change. The prim
denote differentiation with respect tox. In the unsaturated
regime I m<1, Eq. ~2b! reduces to¹2w5]uB(rW)u2/]z. Its
solution in cylindrical coordinatesy5r cosc, z5r sinc
takes the forms
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w~r ,c!5
I m

16dz
2 (

k50

`

r 2k11Fk~r 2!sin~2k11!c, ~4a!

Fk5 È r 2

dt t22k22E
0

t

dt8t8k11Ak~t8!exp~2at8!,

~4b!

Ak5~21!k11@dk,01~12dk,0!I k~bt!1I k11~bt!#.
~4c!

Herea54(dy
221dz

22), b54(dy
222dz

22), and I k are modi-
fied Bessel functions.

The refractive index in the central region of the bea
according to Eqs.~4! is given by the expression

n~y,z!528I m

dz
2y21~dy

212dydz!z
2

dz
2~dy1dz!

2 . ~5!

Substituting expressions~5! and ~3! into Eq. ~2a!, one
arrives at the set of equations@36#

dy9516dy
23@42kF3~F11!22#, ~6a!

dz9516dz
23@42k~F12!~F11!22#, ~6b!

where k5I indy(0)dz(0), andF5dy(x)/dz(x) is the beam
diameter ratio.

Equations~6! demonstrate a nontrivial nonseparable w
in which both diameters of the beam contribute to its evo
tion. In particular they show the possibility of self-channel
propagationdy ,dz5const that corresponds to the value
the diameter ratioF determined by the relationF35F12 or
F5F0'1.5. The self-channeled beam is narrower in the
rection of the applied field and wider in the perpendicu
direction. The absolute values of the diameters for this c
are determined by the relations

dz~0!52~F011!F0
22I in

21/2, ~7a!

dy~0!52~F011!F0
21I in

21/2. ~7b!

Linearizing Eqs.~6! around the self-channeled solution giv
the equation for the perturbation of the diamete
ddz(x)5dz(x)2dz(0) andddy(x)5dy(x)2dy(0)

d2

dx2 ddy5216dz~0!22I in

F013

~F011!3 ~ddy2F0ddz!,

~8a!

d2

dx2 ddz516dz~0!22I in

F0~F013!

~F011!3 ~ddy2F0ddz!.

~8b!

Four eigenvalues of these equations are

k1,250, ~9a!

k3,456 i
2I inF0

2

~11F0!2 S ~F013!~11F0
2!

11F0
D 1/2

. ~9b!

Equations~9! show that the evolution of small perturba
tions around the self-channeled solution is of an oscillat
-

i-
r
se

s

y

nature in the framework of the parabolic approximation. T
spatial period of the oscillations is inversely proportional
the intensity of the beam.

B. Exact numerical procedure

The analytical approach indicates the possibility of ex
tence of spatially localized (211)D soliton solutions of Eqs.
~2!. They are light beams propagating in the medium witho
changing their shape:B(x,y,z)5b(y,z)exp(ilx), wherel is
a real propagation constant. The soliton amplitude satis
the set of equations

Fl2
1

2
¹2Gb~y,z!5

]w

]z
b, ~10a!

¹2w1¹ ln~11ubu2!•¹w5
]

]z
ln~11ubu2!, ~10b!

constituting an eigenvalue-eigenfunction problem with t
eigenvaluesl forming a continuous set. In the numeric
analysis of the eigenproblem~10! we have adopted an ap
proach based on the iterative procedure due to Petvias
@34# ~see also@35,6#!.

The basic formula for the iterative process has the for

bn11~kW !5uM u23/2
F̂@]wn /]zbn~rW !#

l1k2/2
, ~11!

whereF̂ is the two-dimensional Fourier operator

F̂@ f ~rW !#[ f ~kW !5E E drW exp~ ikW•rW ! f ~rW !, ~12!

andM is the renormalization parameter ensuring stability
the iterative procedure defined by the relation

M5
*dkW F̂@]wn /]zbn~rW !#bn* ~kW !

*dkW~l1k2/2!ubn~kW !u2
. ~13!

The steps of the above iteration scheme are as follo
specify an initial distribution of the field~a starter function!
bn(rW) (n50), solve Eq.~2b! for w5wn(rW), calculate the
renormalization parameter~13!, and compute the next ap
proximation according to Eq.~11!. The degree of conver
gence of the iterative process is controlled by monitoring
norm of the relative error

e5
*drWubn11~rW !2bn~rW !u

*drWubn11~rW !u
}

uM21u
uM u

. ~14!

III. SINGLE-BEAM SOLITON SOLUTIONS

The numerical soliton-finding procedure described in S
II requires specification of an initial guessb0(y,z) for the
amplitude of the light beam~a starter function!. To find
single soliton solutions of Eqs.~2!, starter functions have
been taken to be arbitrary Gaussian beams. The iterat
have been carried out untile went below 1024– 1025. The
single-beam soliton solution of Eqs.~2! turns out to be a
smooth elliptical beam that is narrower along the coordin
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57 525SOLITARY ATTRACTORS AND LOW-ORDER . . .
z ~the direction of the applied electric field! and wider in the
perpendicular direction. The asymptotic structure of the
tential far from the beam is of the formw}z/(y21z2). This
structure implies that the refractive indexn5]w/]z has both
positive ~focusing! and negative~defocusing! regions; the
latter are situated on both sides of the beam along the p
minus directions of thez axis.

Figure 1 shows the diametersdy and dz of the soliton
solution and their ratiody /dz as functions of the soliton
maximum intensityI m5ub(0,0)u2. The diameters have bee
calculated at the12 level of the maximum intensity. The val
ues of the diameters are inversely proportional to the squ
root of the soliton maximum intensitydy,z}1/AI m for I m→0,
logarithmically proportional to it (dy,z}Aln Im) in the oppo-
site limit I m→`, and pass through shallow minima in b
tween. Notice that the diameter ratio in Fig. 1 is striking
close to the valueF51.5 following from the approximate
analytical formulas Eqs.~6!. The absolute values of the d
ameters given by Eqs.~6! are about two times off as com
pared to exact numerical values in the limitI m!1. The dis-
crepancy between the exact numerical procedure and
approximate analytical solution is due to the Gaussian an
made in the analytic development.

The range of soliton maximum intensities in Fig. 1 corr
sponds to values of the propagation constantl lying between
l50.002 and 0.95. Both the maximum intensity and t
power of the soliton are increasing functions of the propa
tion constant. This is illustrated in Fig. 2, where the solit
maximum intensity versus the propagation constant
shown. Finally, Fig. 3 presents soliton intensity cross s

FIG. 1. Diameters of the soliton solution of Eqs.~2! and their
ratio vs its maximum intensity.

FIG. 2. Soliton maximum intensity vs the propagation consta
-

s-

re

he
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e
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tions along they andz axes for different values of the max
mum intensityI m . The wider profiles are cross sections
the soliton along they axis and the narrower ones along th
z axis. In the unsaturated limitl<1 the spatial distribution
of the soliton field is universal and does not depend on
value of the propagation constant except for a trivial resc
ing. Indeed, in this limit Eq. ~2b! reduces to
¹2n5]2uBu2/]z2, where n5]w/]z. The renormalizations
(x,y)5l21/2( x̃,ỹ ), and b5l1/2b̃, n5lñ transform the
eigenvalue-eigenfunction problem for finding the solit
profiles to the universal form

@12 1
2 ¹̃2#b̃5 ñ b̃, ~15a!

¹̃2ñ5
]2

] z̃ 2 b̃ 2. ~15b!

Returning to the (x,y) coordinate frame, we immediatel
conclude that the maximum intensity is proportional to t
value of the propagation constantI m}l and the total power
P5*dx dy b2 is independent of the propagation constan

Numerical analysis of the evolution of arbitrary initia
beams has been carried out by direct numerical solution
the nonlinear propagation equations~2!. This analysis shows
that the soliton solutions are attractors of the set of equat
~2!. The rate of convergence to these solutions depends
marily on the normalized intensityI m . We have found that
evolution of an input beam in general is characterized
oscillations of both its diameters, in qualitative agreem
with the results of the analytical approach. In the unsatura
limit I m!1 these oscillations are strongly damped, and th
spatial period scales as 1/I m . IncreasingI m up to about unity

FIG. 3. Soliton intensity cross sections along they andz axes
for I m51, 10, and 50.
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526 57ZOZULYA, ANDERSON, MAMAEV, AND SAFFMAN
decreases the period of the oscillations, while still keep
them reasonably heavily damped thereby decreasing
length of the spatial transient. The initially round beam b
comes elliptical and converges to the soliton solution as
confirmed experimentally in Ref.@15#. Further increase inI m
up to several units still decreases the spatial period of os
lations, but also sharply decreases the relaxation rate
increases the spatial transient length. In the very high s
ration regime the oscillation period starts to grow, and
relaxation rate remains small, so the spatial transient len
remains large. The characteristic period of oscillations in t
case may exceed the length of the medium. By adjus
input parameters the output profiles of the beam in the h
saturation transient regime can be made to have a b
range of shapes starting from beams that are more elong
along they axis to those elongated along thez axis, and
including round output beams in between.

Figure 4 shows spatial evolution of the input Gauss
beam

Bin5AI in exp@22 ln 2~r /d!2# ~16!

for I in50.5, 6, and 50. In all cases the beam experien
self-focusing inside the medium. Nevertheless the chara
of its spatial evolution is dramatically different for differen
values of the saturation. Note rapid relaxation to the soli
solution in the moderate saturation regime forI in50.5 ~after
the spatial transient the beam intensity becomes appr

FIG. 4. Spatial evolution of diameters of an initially roun
Gaussian beam forI in50.5, 6, and 50.
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mately equal to 1.1!. Note also the absence of any practic
convergence to the soliton solution in the high-saturation
gime. It should be mentioned that the longitudinal span
Fig. 4 considerably exceeds the characteristic lengths of p
torefractive media.

IV. BOUND DIPOLE PAIRS

To find dipole solitary solutions of Eqs.~2!, starter func-
tions were specified as a pair of Gaussian beams withp
mutual phase shift spaced some distance apart. Figure
lustrates a typical distribution of the electromagnetic fie
corresponding to the dipole solitary wave solution of Eqs.~2!
~a!, the corresponding distribution of the nonlinear refracti
index n5]w/]z ~b!, and the induced potentialw ~c! for the
maximum intensity of the solutionI m51. The solution is a
pair of elliptical coupled (211)D beams that are space
some distance apart. The pair is aligned along they axis. The
fields of each of the components comprising the pair h
the same magnitude but different signs. The total fieldb is
antisymmetric iny and symmetric inz. The intensityubu2 is
symmetric both with respect toy and z, so the potentialw
that is due to the source term proportional to thez derivative
of the intensity is symmetric iny and antisymmetric inz.

Figure 6 shows cross sections of the electromagnetic fi

FIG. 5. Spatial distribution of the field~a!, the nonlinear refrac-
tive index ~b!, and the induced potential~c! for the dipole solitary
solution of Eqs.~2!.
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57 527SOLITARY ATTRACTORS AND LOW-ORDER . . .
the refractive index, and the potential taken along the z a
through the maximum of one of the intensity peaks. Note
slow power-law decay of the potential at infinity.

In Fig. 7 we present the diametersdy anddz of each of the
beams comprising the dipole solution and the separationLsep
between them as functions of the maximum intensityI m .
The diameters have been calculated at the1

2 level of the
maximum intensity of the solution. Both of the intensi
peaks comprising the dipole solution turn out to be smo
Gaussian-type beams that are narrower along the coord
z and wider in the perpendicular direction. This structure
the beams is very similar to that of the single beam solit
discussed in Sec. III, and is indicative of the dominant role
the anisotropy in their formation.

Analogously to the single-beam solitons in the weak sa
ration limit I m!1, both the values of the diameters and t
separation are inversely proportional to the square root of
maximum intensity. In the opposite limit of large saturati
I m@1, they are logarithmically proportional to it. The pow
and the maximum intensity of the dipole solitary solution a
monotonically growing functions of the propagation const
l. The range of intensities in Fig. 3 is mapped to a range
propagation constantsl lying in the interval 0.02<l<0.8.
In the unsaturated limitl<1 the spatial distribution of the
dipole soliton pair is universal, and does not depend on
value of the propagation constant except for a rescaling.

FIG. 6. Cross sections of the field, the refractive index, and
potential along thez axis through one of the maximums of the fie
shown in Fig. 5.

FIG. 7. Diameters and the separation between the beams
prising the dipole solitary solution vs its maximum intensity.
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corresponding argumentation replicates that of Sec. III.
Numerical analysis of spatial evolution of various initi

distributions of the field indicates that the dipole pairs a
attractors of the set of equations~2!. They are not the only
attractors of the system, since Eqs.~2! also have the single
beam soliton solutions discussed in Sec. III. Initial distrib
tions of the field sufficiently close to the dipole solitary s
lutions converge to these solutions, as was demonstrated
perimentally in Ref.@16#. As with single-beam solitons, th
rate of convergence depends primarily on the normalized
tensity I m . Below we will discuss evolution of input fields
consisting of an anti-phased pair of Gaussian beams s
rated by the distanceL along they axis. The corresponding
structure of the field is of the form

Bin5AI in$exp@2~y2L/2!2/d22z2/d2#

2exp@2~y1L/2!2/d22z2/d2#%, ~17!

where I in is the initial maximum intensity of each of th
input beams in units of saturation intensity, andd andL are
their initial diameter and separation, respectively.

The spatial dynamics of the input fields~17! are similar to
those of single beams. Practically all conclusions of Sec.
are directly applicable to the dipole pairs. That is, spa
evolution of the input fields, Eq.~17!, is characterized by
spatial oscillations of both its diameters and the separa
between the beams. In the low-saturation limitI m!1 these
oscillations are damped, but their spatial period is large si
it scales as 1/I m . In the high-saturation limitI m@1 the os-
cillation period is smaller, but their relaxation rate is ve
small, and so the spatial transient length again is large. In
moderate saturation limitI m'1 the oscillations are still rea
sonably heavily damped, and the length of the spatial tr
sient is minimized.

Figure 8 shows the spatial evolution of an input fie
given by Eq.~17! for two different values of the saturatio
intensity. Figure 8~a! corresponds to the strong-saturation r
gime when the input intensity is about ten times larger th
the saturation intensity; Fig. 8~b! is the moderate-saturatio
regime with I m'2.5. Both figures demonstrate that tw
beams comprising the initial dipole form a bound pair. T
rate of convergence to the dipole solitary solutions though
a strong function of the normalized light intensity. Note t
rapid relaxation to the soliton solution forI in50.5, and a
very long transient in the high-saturation regime. Obser
tion of the dipole solitary solutions in the high-saturatio
regime is problematic because of long spatial transients.
the other hand, forI in'1 the spatial transients at the outp
from the crystal are largely gone, and the beam is close to
asymptotic soliton shape.

V. LOW-ORDER FILAMENTATION

A. Theory

Gaussian beams lying outside the basin of attraction
the above soliton solutions exhibit complex spatial dyna
ics. For large beams, an order of magnitude or more wi
than the soliton solutions, filamentation occurs, resulting i
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spatially disordered, statistically homogeneous distribut
@18#. For Gaussian-type beams there are two parameters
determine the subsequent dynamics: the beam diamete
its normalized intensity. Convergence to solitary solutions
only achieved when both of these parameters start relati
close to their asymptotic values. Beams outside of the b
of attraction filament and split into several child beams t
then exhibit complex oscillations of their relative sizes a
energies. Depending on the initial parameters the split
may occur along both thez and y coordinates. We refer to
this as low-order filamentation. In the range of paramet
considered here, where the beams start out relatively clos
the basin of attraction of the solitary solutions, the dynam
are dominated by the interaction of only a few filaments. T
spatial evolution is complex, and not statistically homog
neous. The interaction of several filaments in media wit
cubic nonlinearity was also studied recently in Ref.@36#.

The spatial dynamics of filamentation are in a first a
proximation well described by Eqs.~2!. In particular, these
equations predict correctly the splitting. A more detail
analysis reveals, however, that a noticeable experimental
ture of the splitting is that there is an asymmetric excha
of energy between beamlets separated along thez coordinate.
This asymmetry lies outside the behavior described by E
~2! that are symmetric with respect to inversion alongz. In
order to account for the observed behavior we need to
the more general set of Eqs.~1!.

Results of the numerical solution of Eqs.~1! demonstrat-
ing asymmetric beam splitting are shown in Fig. 9. The in
boundary conditions correspond to a 34-mm Gaussian beam
with the waist coinciding with the input face of the medium

FIG. 8. Diameters, maximum intensity, and separation betw
peaks as functions of the propagation distance in high~a! and mod-
erate~b! saturation regimes.
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The length of the medium isl 51 cm, the inital intensity
I m510, the relevant component of the electro-optic ten
r 335360 pm/V, the value of the characteristic internal fie
Ẽ5700 V/cm, and êyy / êzz50.5. For zero applied field
Eext50 the output beam remains practically round with t
output diameter equal to 49mm. The upper left frame in Fig
9 shows the output intensity of the beam for the applied fi
equal toEext5220 V/cm, and the upper right frame shows
cross section of the intensity through the maximum along
horizontal (z) axis. The lower left frame shows the outp
beam intensity forEext51100 V/cm, and the lower righ
frame is its cross section along the horizontal axis. It de
onstrates the clearly asymmetric splitting of the beam
higher values of the applied field. Calculations in thez50
limit also give splitting, but the intensities of the split beam
are equal. Calculations conducted for still wider beams sh
that each of the split beams may undergo secondary s
tings.

Due to the presence of asymmetric terms in the mate
response the beam bends in the (x,z) plane when it propa-
gates through the nonlinear medium. The center of the be
is displaced along the horizontal axis to the left by abou
mm for Eext5220 V/cm, and by about 26mm for
Eext51100 V/cm~the shift for zero applied field equals 2.
mm!. The output windows in Fig. 9 are shifted by tho
amounts so that the intensities are centered in their respe
windows.

It is interesting to note that the intensity of the left bea
let in Fig. 9 for Eext51100 V/cm is smaller than that of th
right one, i.e., the energy is transferred ‘‘upstream,’’ opp
site to the direction of bending. This result is counterintuiti
since for wide beams in the absence of an applied field
beamlets propagating to the left of the main beam gain
ergy, resulting in the appearance of a fan of light, moving
the left.

n

FIG. 9. Theoretical output intensity distributions of an inp
Gaussian beam demonstrating asymmetric beam splitting.
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B. Experiment

The experimental arrangement is shown in Fig. 10.
10-mW He-Ne laser beam (l50.63mm) was passed
through a variable beam splitter and a system of lenses
trolling the size of the beam waist. The beam was direc
into a photorefractive crystal of SBN:60 doped with 0.002
by weight Ce. The beam propagated perpendicular to
crystal ĉ axis, and was polarized along it to take advanta
of the largest component of the electro-optic tensor of S
r 33. The crystal measured 10 mm along the direction
propagation, and was 9 mm wide along theĉ axis. A variable
dc voltageVext was applied along theĉ axis to control the
value of nonlinear coupling. The beam intensity distributio
at the output face of the crystal were imaged onto a scr
and recorded with a CCD camera. The pictures were
corded after all temporal transients had died away.

The effective saturation intensity was varied by illumina
ing the crystal from above with incoherent white light. Th
dependence of the photorefractive coupling constant on s
ration intensityI d in the absence of an applied field takes t
form @37# g5g0I beam/(I beam1I d). By measuring the two-
beam coupling gain with the white light source off (I d50)
and on (I dÞ0), the ratio I m5I beam/I d was determined.
These measurements have a relatively large uncertainty
to the influence of several factors, including the intens
profile of the beams, and background-stimulated scatterin
the medium. The experimental uncertainty in the value of
saturation intensity is therefore larger than the uncertaint
the values of the beam diameter, externally applied field,
electro-optic coefficient, which can all be determined re
tively precisely.

Experimental results demonstrating both the existence
the single solitons and convergence to them were give
Ref. @15#. Here we present a digest of those results for
reader’s convenience. Figure 11 shows the output diame
of a round input 26-mm-diameter beam as functions of th
applied voltage in the high-saturation regime. The ins
show the beam profiles at 0.5 and 0.9 kV. Figure 12 sho
the output diameters versus the applied voltage for the s
beam as in Fig. 12 but, with 12 times smaller power. T
inset is the output intensity distribution for 1.0-kV extern
voltage. In both figures, squares are experimental results
solid curves are theoretical calculations.

Figure 11 confirms the theoretical predictions of Sec.
that in the high-saturation regime the round input beam d
not reach a soliton asymptotic state. Its output shape cha
as a function of the voltage, the input diameter of the be

FIG. 10. Experimental setup.
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and the focusing conditions~we have observed ellipticities
dy /dz ranging from about 0.5 to 5, including round outp
beams!. Figure 12, obtained for moderate saturation inten
ties, demonstrates quite different behavior. That is, the o
put beam profile converges rapidly to an elliptically shap
soliton solution elongated along they axis, in agreement
with the theoretical results. Experimental results demonst
ing existence of the dipole solitons analyzed in Sec. IV, a
convergence to them were given in Ref.@16#.

Below we would like to address the question of evoluti
of Gaussian beams lying further away in the parame
space, so that the solitons are not formed. The spatial ev
tion in this case is given by Figs. 13, 14, and 15 that sh
the change in the output intensity distribution as the app
field is increased for three different values of the saturat
intensity.

Figure 13 obtained forI m'9.5 shows self-focusing to an
elliptically shaped beam squeezed alongz for Vext5200 V,
and squeezed alongy for Vext5550 V. Similar pictures of
oscillatory self-focusing in the high saturation regime we
given in Ref.@15#. Increasing the applied voltage further r
sults in the formation of a large asymmetric bright regi
(Vext5800 V) that then splits alongz into two filaments
(Vext51050 V). There is an asymmetric exchange of ene
between the filaments, leading eventually to a strong filam

FIG. 11. Oscillatory self-focusing of a circular input beam in t
high-saturation regime. The power of the input beam was 50mW.

FIG. 12. Output diameters vs applied voltage for a circular in
beam in the moderate-saturation regime. The power of the in
beam was 4.2mW.
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to the right, separated several diameters from a cresc
shaped region with lower intensity to the left. The asymm
ric exchange of energy alongz resulted in the displacemen
of the beams to the left so that, as in the calculations in S
V A, the frames have been translated to keep the displa
filaments centered in the windows.

Comparison with Fig. 9 shows good agreement with
numerical results. In particular, the counterintuitive res
that the upstream filament has a higher intensity is obser
The full width at half maximum diameter of the output bea
along thez axis measured from the experimental fram
Vext5200 and 1050 V in Fig. 13 equal 22 and 29.5mm,
respectively. In the latter case the beam is double humped
the diameter corresponds to the width of the whole struct
The above values of the applied voltage correspond to
electric field Eext5222 and 1167 V/cm, given the 9-mm
width of the crystal and assuming no losses at the electro
The theorectical diameters in Fig. 9 are equal to 19.5mm for
Eext5220 V/cm, and 30mm for Eext51100 V/cm, using the

FIG. 13. Output intensity distribution vs applied voltage f
I m'9.5. The power of the input beam was 31mW, and its diameter
was 34-mm full width at half maximum. The individual frames eac
depict a 1003100 mm2 region and thez axis is horizontal.
nt-
t-
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ed

e
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measured value ofr 335360 pm/V. The intensity minimum
between the peaks is more pronounced on the theore
figure than on the experimental one. Additional compariso
with other frames show that in general the experimental
theoretical results agree to within 20% error. Note also t
additional measurements and calculations using a 20-m
long crystal with r 335210 pm/V showed no evidence o
splitting.

FIG. 14. Output intensity distribution vs applied voltage f
I m'6. All other parameters are the same as in Fig. 13.
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The output intensity distributions for lower and high
values of the saturation are shown in Figs. 14 and 15. In
cases the most prominent feature is asymmetric split
along thez coordinate with most of the energy captured
the filament on the right. In Fig. 14 there is also a furth
splitting along they axis. This may be understood qualit
tively as follows. When the beam is very much larger th
the characteristic scale of an individual filament, it breaks
into many filaments@18#. The characteristic size of a fila

FIG. 15. Output intensity distribution vs applied voltage f
I m'19. All other parameters are the same as in Fig. 13.
ll
g

r

n
p

ment is smaller in Fig. 14 than in Fig. 13, since the saturat
is smaller~see Fig. 1!. The increased ratio of beam size
filament size in Fig. 14 is sufficient to allow splitting alon
the y coordinate. It is not surprising that splitting occu
more easily alongz due to the fact that the nonlinearity i
stronger by order 50% alongz than alongy @26#.

The effect of varying the saturation for fixed extern
voltage is shown in Fig. 16. The first four frames show t
output beam forI m'0.5 to I m'2.2. In this range of param
eters the length of the spatial transient is still reasona
short so that these frames demonstrate convergence or
convergence to solitary solutions. In agreement with Fig
the beam diameters forI m'2 are noticeably less than fo
I m'0.5. For intermediate values of the saturation~I m'3.5 to
I m'32! the output beams are elongated alongy, and split
along thez coordinate. At very high values of saturatio
there is no splitting, and we see an elliptical output be
squeezed along eithery or z. In this parameter regime th
spatial evolution alongx is characterized by large oscilla
tions of the diameters~see Fig. 4!, so that the shape of th
output beam, for a given length of nonlinear medium, d
pends on the particular value of the saturation paramete

VI. DISCUSSION

In this paper we presented a detailed analysis of~211!D
soliton solutions in media with a photorefractive nonlinea
ity, and addressed the question of convergence to these
lutions. Our results demonstrate that the rate of converge
is dramatically different for different values of the saturati
~rapid relaxation to the soliton solution in the moderate sa
ration regime, and the absence of any practical converge
to the soliton solution in the high-saturation regime!. Depen-
dence of the character of the spatial evolution on the valu
the saturation is not specific to the~211!D case, and pertains
equally well to the~111!D limit. In this limit ( ]/]y50) the
photorefractive nonlinearity~for z50! is identical to the
saturable Kerr nonlinearity, and Eqs.~2! reduce to

F ]

]x
2

i

2

]2

]z2GB~x,z!5 i
uBu2

11uBu2
B. ~18!

Soliton solutions of Eq.~18! were analyzed in Ref.@38#.
Figure 17~a! shows the spatial evolution of the diamet

of the input Gaussian beamBin5AI in exp@22 ln 2(z/d)2# in
the (111)D case forI in50.5 ~solid!, 5 ~dotted!, and 50
~dashed curve!. The similarities between this figure and th
(211)D case~Fig. 4! are evident. Figure 17 confirms th
convergence of an arbitrary beam to its asymptotic soli
shape in the moderate saturation regime (I'1). It also dem-
onstrates that the only way to observe solitons experim
tally in a photorefractive medium in the strong saturati
regime (I @1) is to start from those solitons. The most com
mon choice of input beam in experiments is a Gauss
beam. A Gaussian profile does not match the exact sol
shape, but in the (111)D case it is possible to adjust th
diameter of this input beam so that it is close to a solito
This is illustrated by Fig. 17~b!, that shows the spatial evo
lution of a Gaussian beam with input diameter equal to
andI in550 ~the dashed line!. The input diameter was chose
to ensure the minimum possible deviations from the soli
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FIG. 16. Output intensity distribution vs saturation parameter forVext51250 V. The frames are labeled with the value ofI m , and all other
parameters are the same as in Fig. 13.
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FIG. 17. Evolution of the diameter of an input Gaussian beam
the (111)D case forI in50.5 ~solid!, 5 ~dotted!, and 50~dashed
line! ~a!; evolution of the ‘‘best-matched’’ input Gaussian wit
d54.2 andI in550 ~dashed! and the soliton solution~solid line! ~b!.
solution ~solid line!. From a rigorous point of view, an ex
perimental observation of the soliton in the high saturat
regime is questionable even with this fitting of the inp
Gaussian profile to a soliton shape. Since deviations from
soliton shape do not decay@see Fig. 17~a!#, it can be argued
that the beam remains an oscillating Gaussian, exhibiting
trend of convergence toward a soliton. From the practi
point of view the above argument may be unimportant, sin
the beam remains sufficiently close to a soliton solution.

The situation is qualitatively different in the (211)D
case. Any radially symmetric beam (dy /dz51) differs sig-
nificantly from an elliptic soliton solution (dy /dz'1.5), and
no adjustments of its diameter will make it close. Besid
specifying input soliton profiles, the only practical possibili
to observe (211)D soliton solutions experimentally in
photorefractive medium is to work in the moderate saturat
regime where the intensity of the beam is about the sat
tion intensity.

Another point worth mentioning is that, strictly speakin
the soliton solutions found above are only valid forz50. For
any finite value ofz, propagation through a sufficiently lon
medium results in a bending of the beam trajectory tow
the direction of the applied field. Thus, in a strict sen
within the framework of Eqs.~1!, there are no solitary solu
tions that propagate alongx. In practice, for finite nonlinear
media, such solutions coexist adiabatically with a slow be
ing of the trajectory in the direction of the applied field. Th
trajectory bending has been mentioned above in Sec. V.
slow bending is not of paramount experimental conce
since the longest photorefractive crystal used for soliton
periments to date is the approximately 20-mm-long sam
used here and in Refs.@16,19#. The amount of bending a

n
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57 533SOLITARY ATTRACTORS AND LOW-ORDER . . .
such distances is relatively small.
Photorefractive self-focusing is essentially anisotro

@26,27#. The spatial shape of soliton solutions is determin
uniquely by the anisotropy, as discussed above. Some p

FIG. 18. The result of imaging through an inhomogeneo
waveguide. Each row is labeled with the value of the applied v
age.
c
d
vi-

ous reports of soliton formation in photorefractive med
have claimed to observe both circular and elliptical solito
squeezed in either transverse direction depending on
voltage@39#. In our opinion, those observations correspo
to a spatially transient regime of evolution of a light bea
where such oscillations of the output diameters as a func
of the voltage indeed take place~for their detailed experi-
mental analysis, see Ref.@15#!.

We note that considerable experimental care must be
ercised when observing self-focusing effects. The only
rectly accessible information about the intensity profile
the beam is its distribution at the output face of the crys
Attempting to measure the beam profile inside the nonlin
medium can lead to erroneous conclusions, as was poi
out in the second of Ref.@12#. Two techniques have bee
employed elsewhere: side-view imaging of the on
dimensional beam profile along the direction of propagati
and end-view imagng of the two-dimensional profile looki
through the nonlinear medium. Side-view images of t
beam profile do not correspond to the direct intensity dis
bution of the beam, but are due to scattering of light
inhomogeneities of the crystal. Proper interpretation of
images requires solving an inverse problem accounting
the presence of the nonlinear lens and the scatterers.
have found that images taken inside the volume of the cry
frequently are misleading. In many cases they show nee
like structures of light that might be interpreted as solito
formed in the crystal. Unfortunately their quantitative val
is close to zero, since they do not allow one to measure
values of the beam diameters inside the crystal, and he
make any quantitative comparisons with the theory.

End-view images of the directly transmitted intensity d
tribution are not affected by the distribution of scatteri
inhomogeneities, but are strongly distorted by the nonlin
lens. To illustrate the errors associated with imaging throu
the nonlinear medium, consider Fig. 18. The figure give
direct comparison between the output intensity distribut
~left column! observed as the applied voltage is changed,
the input intensity distribution obtained by imaging throu
the nonlinear medium~right column!. For Vext50 the input
and output images both show a circularly symmetric bea
as expected. AsVext is increased the output image show
self-focusing and convergence to an elliptical soliton. On
other hand, the image of the circular input beam as obtai
by looking through the nonlinear waveguide becomes el
tical and strongly distorted. Strong anisotropy of the nonl
ear aberrations renders it impossible to determine even q
tatively the correct structure of the internal beam by imag
through the medium.
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